JP3317170B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JP3317170B2
JP3317170B2 JP34293896A JP34293896A JP3317170B2 JP 3317170 B2 JP3317170 B2 JP 3317170B2 JP 34293896 A JP34293896 A JP 34293896A JP 34293896 A JP34293896 A JP 34293896A JP 3317170 B2 JP3317170 B2 JP 3317170B2
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
temperature
expansion valve
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34293896A
Other languages
Japanese (ja)
Other versions
JPH10185343A (en
Inventor
徹 稲塚
知宏 薮
隆之 瀬戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP34293896A priority Critical patent/JP3317170B2/en
Publication of JPH10185343A publication Critical patent/JPH10185343A/en
Application granted granted Critical
Publication of JP3317170B2 publication Critical patent/JP3317170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスインジェクシ
ョン回路を備えた冷凍装置に関し、特に、中間圧力制御
に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus having a gas injection circuit, and more particularly to an intermediate pressure control.

【0002】[0002]

【従来の技術】従来より、冷凍装置としての空気調和装
置には、各種のものが提案されており、例えば、特公平
1−15786号公報に開示されているように、圧縮機
と四路切換弁と室外熱交換器と第1膨張機構と気液分離
器と第2膨張機構と室内熱交換器とが順に接続されてな
る冷媒回路を備えているものがある。
2. Description of the Related Art Conventionally, various types of air conditioners as refrigeration systems have been proposed. For example, as disclosed in Japanese Patent Publication No. 1-15786, a compressor and a four-way switching system are disclosed. Some include a refrigerant circuit in which a valve, an outdoor heat exchanger, a first expansion mechanism, a gas-liquid separator, a second expansion mechanism, and an indoor heat exchanger are sequentially connected.

【0003】上記気液分離器と圧縮機との間には、気液
分離器の中間圧ガス冷媒を圧縮機に供給するインジェク
ション回路を設け、空調能力の向上を図っている。
An injection circuit is provided between the gas-liquid separator and the compressor to supply the intermediate-pressure gas refrigerant of the gas-liquid separator to the compressor, thereby improving the air-conditioning capacity.

【0004】[0004]

【発明が解決しようとする課題】上述した空気調和装置
において、第1膨張機構及び第2膨張機構が何れもキャ
ピラリチューブの組み合わせて構成されているので、減
圧量が固定され、圧縮機の容量を増大すると、インジェ
クションする中間圧ガス冷媒を適性量に保つことができ
ないという問題があった。
In the above-described air conditioner, since both the first expansion mechanism and the second expansion mechanism are constructed by combining a capillary tube, the amount of reduced pressure is fixed, and the capacity of the compressor is reduced. When it increases, there is a problem that the intermediate-pressure gas refrigerant to be injected cannot be maintained at an appropriate amount.

【0005】そこで、第1膨張機構及び第2膨張機構を
開度可変な膨張弁で構成することが考えられる。しかし
ながら、従来、上記両膨張機構を何れもキャピラリチュ
ーブの組み合わせて構成しているので、中間圧力の調整
については何ら考慮されておらず、両膨張機構を膨張弁
で構成した際においても、中間圧ガス冷媒のインジェク
ション量を変更するものの、最適な中間圧力に保たれて
いるという保証がなく、インジェクション効果を最大限
に発揮しているとはいえないという問題があった。
Therefore, it is conceivable that the first expansion mechanism and the second expansion mechanism are constituted by expansion valves whose opening degree is variable. However, since both of the above-mentioned expansion mechanisms are conventionally configured by combining a capillary tube, no consideration is given to the adjustment of the intermediate pressure. Although the injection amount of the gas refrigerant is changed, there is no guarantee that the pressure is maintained at the optimum intermediate pressure, and there is a problem that the injection effect cannot be said to be maximized.

【0006】本発明は、斯かる点に鑑みてなされたもの
で、中間圧力が適性値に保持されるようにして最大のイ
ンジェクション効果を発揮し得るようにすることを目的
とするものである。
[0006] The present invention has been made in view of such a point, and it is an object of the present invention to maintain the intermediate pressure at an appropriate value so as to exhibit the maximum injection effect.

【0007】[0007]

【課題を解決するための手段】−発明の概要− 本発明は、主冷媒回路(2M)にインジェクション回路
(30)を設ける一方、インジェクション回路(30)を流
れる中間圧ガス冷媒の最大流量に対応する中間圧冷媒の
目標圧力が主冷媒回路(2M)における各冷媒状態に対し
て設定され、中間圧冷媒の中間圧力が目標圧力になるよ
うに下流側膨張弁(EV)の開度を制御する。特に、中間
圧ガス冷媒の最大流量に対応する圧縮機(21)の吐出温
度の低下量の急変化点に下流側膨張弁(EV)の開度を制
御する。
Means for Solving the Problems-Summary of the Invention- The present invention provides an injection circuit (30) in a main refrigerant circuit (2M), while corresponding to a maximum flow rate of an intermediate-pressure gas refrigerant flowing through the injection circuit (30). The target pressure of the intermediate-pressure refrigerant is set for each refrigerant state in the main refrigerant circuit (2M), and the opening degree of the downstream expansion valve (EV) is controlled so that the intermediate pressure of the intermediate-pressure refrigerant becomes the target pressure. . In particular, the opening degree of the downstream expansion valve (EV) is controlled at a point where the amount of decrease in the discharge temperature of the compressor (21) corresponding to the maximum flow rate of the intermediate-pressure gas refrigerant suddenly changes.

【0008】−解決手段− 具体的に、図1に示すように、請求項1に係る発明が講
じた手段は、先ず、圧縮機(21)と熱源側熱交換器(2
3)と開度の可変な第1膨張弁(EV-1)と気液分離器(2
4)と開度の可変な第2膨張弁(EV-2)と利用側熱交換
器(25)とが順に接続されて成る主冷媒回路(2M)が設
けられている。更に、該主冷媒回路(2M)における凝縮
圧力と蒸発圧力との間の中間圧力にある中間圧冷媒のう
ちの中間圧ガス冷媒を気液分離器(24)から圧縮機(2
1)に供給するインジェクション回路(30)が設けられ
ている。そして、上記主冷媒回路(2M)の上流側膨張弁
(EV)は、蒸発器となる利用側熱交換器(25)又は熱源
側熱交換器(23)の出口側の冷媒過熱度が所定値になる
ように開度が制御される。加えて、上記インジェクショ
ン回路(30)を流れる中間圧ガス冷媒が最大流量となる
ように主冷媒回路(2M)の下流側膨張弁(EV)の開度を
調整する開度調整手段(52)が設けられている。
-Solution Means- Specifically, as shown in FIG. 1, means taken by the invention according to claim 1 includes a compressor (21) and a heat source side heat exchanger (2).
3) Variable opening degree first expansion valve (EV-1) and gas-liquid separator (2
There is provided a main refrigerant circuit (2M) in which a fourth expansion valve (EV-2) having a variable opening and a use-side heat exchanger (25) are connected in order. Further, the intermediate-pressure gas refrigerant of the intermediate-pressure refrigerant at an intermediate pressure between the condensing pressure and the evaporating pressure in the main refrigerant circuit (2M) is transferred from the gas-liquid separator (24) to the compressor (2M).
An injection circuit (30) for supplying to 1) is provided. And the upstream expansion valve of the main refrigerant circuit (2M)
(EV) is the user-side heat exchanger (25) or heat source that will be the evaporator
Superheat degree at the outlet side of the side heat exchanger (23) reaches a predetermined value
Is controlled in such a manner. In addition, the opening of the intermediate-pressure gas refrigerant flowing through the Injection <br/> down circuit (30) adjusts the degree of opening of the downstream-side expansion valve of the main refrigerant circuit (2M) so that the maximum flow rate (EV) Adjusting means (52) is provided.

【0009】請求項2記載の発明が講じた手段は、上記
請求項1記載の発明において、開度調整手段(52)は、
中間圧ガス冷媒の最大流量に対応する中間圧冷媒の目標
圧力が主冷媒回路(2M)における各冷媒状態に対して設
定され、該中間圧冷媒の中間圧力が目標圧力になるよう
に下流側膨張弁(EV)の開度を制御する構成としてい
る。
The means adopted by the invention according to claim 2 is the invention according to claim 1, wherein the opening adjustment means (52) is
The target pressure of the intermediate-pressure refrigerant corresponding to the maximum flow rate of the intermediate-pressure gas refrigerant is set for each refrigerant state in the main refrigerant circuit (2M), and the downstream expansion is performed so that the intermediate pressure of the intermediate-pressure refrigerant becomes the target pressure. It is configured to control the opening of the valve (EV).

【0010】請求項3記載の発明が講じた手段は、上記
請求項1記載の発明において、圧縮機(21)の吐出冷媒
の吐出温度を検出して検出信号を出力する吐出温度検出
手段(Th-d)が設けられている。更に、開度調整手段
(52)は、吐出温度検出手段(Th-d)の検出信号を受け
て、中間圧ガス冷媒の最大流量に対応する吐出温度の低
下量の急変化点に下流側膨張弁(EV)の開度を制御す構
成としている。
The means adopted by the third aspect of the present invention is the discharge temperature detecting means (Th) for detecting the discharge temperature of the refrigerant discharged from the compressor (21) and outputting a detection signal in the first aspect of the present invention. -d) is provided. Further, in response to the detection signal of the discharge temperature detecting means (Th-d), the opening degree adjusting means (52) expands the downstream side to a sudden change point in the discharge temperature decrease amount corresponding to the maximum flow rate of the intermediate-pressure gas refrigerant. It is designed to control the opening of the valve (EV).

【0011】請求項4記載の発明が講じた手段は、図6
に示すように、上記請求項1記載の発明において、主冷
媒回路(2M)における冷媒の凝縮温度を検出する凝縮温
度検出手段(Th)と、冷媒の蒸発温度を検出する蒸発温
度検出手段(Th)と、中間圧冷媒の中間圧温度を検出す
る中間圧温度検出手段(Th-m)が設けられている。更
に、開度調整手段(52)は、中間圧ガス冷媒の最大流量
に対応する中間圧冷媒の目標温度が主冷媒回路(2M)の
各凝縮温度と各蒸発温度に対して予め設定され、上記凝
縮温度検出手段(Th)と蒸発温度検出手段(Th)と中間
圧温度検出手段(Th-m)の検出信号を受けて、中間圧冷
媒の中間圧温度が、検出凝縮温度と検出蒸発温度に対応
する目標温度になるように下流側膨張弁(EV)の開度を
制御する構成としている。
Means taken by the invention described in claim 4 is shown in FIG.
As described in the first aspect of the present invention, the condensation temperature detecting means (Th) for detecting the condensation temperature of the refrigerant in the main refrigerant circuit (2M), and the evaporation temperature detection means (Th for detecting the evaporation temperature of the refrigerant. ) And an intermediate pressure temperature detecting means (Th-m) for detecting an intermediate pressure temperature of the intermediate pressure refrigerant. Further, the opening degree adjusting means (52) sets the target temperature of the intermediate-pressure refrigerant corresponding to the maximum flow rate of the intermediate-pressure gas refrigerant in advance for each condensation temperature and each evaporation temperature of the main refrigerant circuit (2M), Upon receiving the detection signals from the condensing temperature detecting means (Th), the evaporating temperature detecting means (Th) and the intermediate pressure temperature detecting means (Th-m), the intermediate pressure temperature of the intermediate pressure refrigerant is changed to the detected condensing temperature and the detected evaporating temperature. The opening degree of the downstream expansion valve (EV) is controlled so that the corresponding target temperature is reached.

【0012】請求項5記載の発明が講じた手段は、図8
に示すように、上記請求項1記載の発明において、イン
ジェクション回路(30)を流れる中間圧ガス冷媒の流量
を検出する流量検出手段(60)が設けられている。開度
調整手段(52)は、流量検出手段(60)の検出流量が最
大になるように下流側膨張弁(EV)の開度を制御する構
成としている。
Means taken by the invention described in claim 5 is shown in FIG.
As shown in (1), in the first aspect of the present invention, a flow rate detecting means (60) for detecting a flow rate of the intermediate-pressure gas refrigerant flowing through the injection circuit (30) is provided. The opening degree adjusting means (52) is configured to control the opening degree of the downstream expansion valve (EV) so that the flow rate detected by the flow rate detecting means (60) is maximized .

【0013】−作用− 上記の発明特定事項により、請求項1記載の発明では、
冷凍運転時において、高圧冷媒は、第1膨張弁(EV-1)
と第2膨張弁(EV-2)とによって減圧されることになる
が、主体となる減圧は、上流側膨張弁(EV)で行われ
る。例えば、冷房運転時の第1膨張弁(EV-1)及び暖房
運転時の第2膨張弁(EV-2)は、蒸発器となる利用側熱
交換器(25)又は熱源側熱交換器(23)の出口側の冷媒
過熱度が所定値になるように開度が制御される。
-Operation- According to the above-mentioned invention specifying matter, in the invention described in claim 1,
During the refrigeration operation, the high-pressure refrigerant flows through the first expansion valve (EV-1)
And the second expansion valve (EV-2), the main pressure reduction is performed by the upstream expansion valve (EV). For example, the first expansion valve (EV-1) at the time of the cooling operation and the second expansion valve (EV-2) at the time of the heating operation include the use-side heat exchanger (25) or the heat-source-side heat exchanger ( The degree of opening is controlled so that the degree of superheat of the refrigerant at the outlet side of ( 23) becomes a predetermined value.

【0014】一方、中間圧ガス冷媒のインジェクション
のための減圧は、下流側膨張弁(EV)で行われる。例え
ば、冷房運転時の第2膨張弁(EV-2)及び暖房運転時の
第1膨張弁(EV-1)が減圧を行う。
On the other hand, the pressure reduction for the injection of the intermediate-pressure gas refrigerant is performed by a downstream expansion valve (EV). For example, the second expansion valve (EV-2) during the cooling operation and the first expansion valve (EV-1) during the heating operation reduce the pressure.

【0015】この下流側の減圧動作は、開度調整手段
(52)によって行われ、インジェクション回路(30)を
流れる中間圧ガス冷媒が最大流量となるように主冷媒回
路(2M)の下流側膨張弁(EV)の開度を調整する。
The downstream pressure reducing operation is performed by the opening degree adjusting means (52), and the downstream side expansion of the main refrigerant circuit (2M) is performed so that the intermediate pressure gas refrigerant flowing through the injection circuit (30) has the maximum flow rate. Adjust the opening of the valve (EV).

【0016】具体的に、請求項2記載の発明では、中間
圧ガス冷媒の最大流量に対応する中間圧冷媒の目標圧力
が主冷媒回路(2M)における各冷媒状態に対して設定さ
れ、該中間圧冷媒の中間圧力が目標圧力になるように下
流側膨張弁(EV)の開度を制御する。
More specifically, in the present invention, the target pressure of the intermediate-pressure refrigerant corresponding to the maximum flow rate of the intermediate-pressure gas refrigerant is set for each refrigerant state in the main refrigerant circuit (2M), The opening degree of the downstream expansion valve (EV) is controlled so that the intermediate pressure of the compressed refrigerant becomes the target pressure.

【0017】請求項3記載の発明では、圧縮機(21)の
吐出温度が急激に低下する急変化点の中間圧力に中間圧
冷媒が保持されるように下流側膨張弁(EV)の開度を調
整する。つまり、気液分離器(24)の中間圧力が増大し
ていくと、中間圧ガス冷媒の流量、つまり、インジェク
ション量は増大していくものの、気液分離器(24)の乾
き度Xが小さくなる。この結果、気液分離器(24)の中
間圧ガス冷媒が少なくなるので、所定圧力以上になる
と、中間圧ガス冷媒の実際のインジェクション量が低下
する。
According to the third aspect of the present invention, the opening degree of the downstream expansion valve (EV) is maintained such that the intermediate-pressure refrigerant is maintained at the intermediate pressure at the sudden change point where the discharge temperature of the compressor (21) suddenly decreases. To adjust. That is, as the intermediate pressure of the gas-liquid separator (24) increases, the flow rate of the intermediate-pressure gas refrigerant, that is, the injection amount increases, but the dryness X of the gas-liquid separator (24) decreases. Become. As a result, the amount of the intermediate-pressure gas refrigerant in the gas-liquid separator (24) decreases, and when the pressure exceeds a predetermined pressure, the actual injection amount of the intermediate-pressure gas refrigerant decreases.

【0018】このインジェクション量が最大となると、
気液分離器(24)の中間圧ガス冷媒が少ないため、気液
分離器(24)の中間圧液冷媒がインジェクション回路
(30)を通って圧縮機(21)に供給される。この結果、
この液冷媒の蒸発によって圧縮機(21)内の冷媒が急激
に冷却され、吐出温度が急激に低下する。ことから、圧
縮機(21)の吐出温度の低下量が急変化する点の中間圧
力に中間圧冷媒がなるように下流側膨張弁(EV)の開度
を調整し、中間圧ガス冷媒のインジェクション量を最大
にする。
When the injection amount becomes maximum,
Since the intermediate-pressure gas refrigerant of the gas-liquid separator (24) is small, the intermediate-pressure liquid refrigerant of the gas-liquid separator (24) is supplied to the compressor (21) through the injection circuit (30). As a result,
Due to the evaporation of the liquid refrigerant, the refrigerant in the compressor (21) is rapidly cooled, and the discharge temperature is rapidly lowered. Therefore, the opening degree of the downstream expansion valve (EV) is adjusted so that the intermediate pressure refrigerant becomes the intermediate pressure at the point where the amount of decrease in the discharge temperature of the compressor (21) changes abruptly, and the intermediate pressure gas refrigerant is injected. Maximize volume.

【0019】請求項4記載の発明では、開度調整手段
(52)は、各凝縮温度及び各蒸発温度において、中間圧
ガス冷媒のインジェクション量が最大となる最適な中間
圧温度の目標温度を予め設定し、例えば、目標温度をテ
ーブル化して設定している。そして、上記開度調整手段
(52)は、凝縮温度検出手段(Th)及び蒸発温度検出手
段(Th)の凝縮温度及び蒸発温度に基づき最適な中間圧
温度の目標温度を導出し、検出中間圧温度が目標温度に
なるように下流側膨張弁(EV)の開度を調整する。
According to the fourth aspect of the present invention, the opening degree adjusting means (52) sets the target temperature of the optimum intermediate pressure temperature at which the injection amount of the intermediate pressure gas refrigerant becomes maximum at each condensation temperature and each evaporation temperature in advance. For example, the target temperatures are tabulated and set. The opening degree adjusting means (52) derives an optimum intermediate pressure target temperature based on the condensing temperature and the evaporating temperature of the condensing temperature detecting means (Th) and the evaporating temperature detecting means (Th). Adjust the opening of the downstream expansion valve (EV) so that the temperature reaches the target temperature.

【0020】請求項5記載の発明では、インジェクショ
ン回路(30)に設けられた流量検出手段(60)がインジ
ェクション回路(30)を流れる中間圧ガス冷媒の流量を
検出する。この流量検出手段(60)の検出流量を受けて
開度調整手段(52)は中間圧ガス冷媒の流量、つまり、
インジェクション量が最大となるように下流側膨張弁
(EV)の開度を調整する。
According to the fifth aspect of the invention, the flow rate detecting means (60) provided in the injection circuit (30) detects the flow rate of the intermediate-pressure gas refrigerant flowing through the injection circuit (30). In response to the flow rate detected by the flow rate detecting means (60), the opening degree adjusting means (52) sets the flow rate of the intermediate-pressure gas refrigerant,
Adjust the opening of the downstream expansion valve (EV) so that the injection amount is maximized .

【0021】[0021]

【発明の効果】したがって、本発明によれば、中間圧ガ
ス冷媒の供給量が最大になるように下流側膨張弁(EV)
の開度を制御するようにしたために、中間圧ガス冷媒の
インジェクション効果を確実に発揮させることができ
る。つまり、中間圧ガス冷媒のインジェクションによる
運転能力の向上を確実に図ることができ、運転能力の向
上が図られる。換言すると、運転能力を従来と同様に保
つと、圧縮機(21)入力を低減することができ、省エネ
ルギ化を確実に図ることができる。
Therefore, according to the present invention, the downstream expansion valve (EV) is controlled so that the supply amount of the intermediate-pressure gas refrigerant is maximized.
The opening degree of the intermediate pressure gas refrigerant is controlled, so that the injection effect of the intermediate-pressure gas refrigerant can be reliably exhibited. That is, it is possible to surely improve the operation capacity by the injection of the intermediate-pressure gas refrigerant, and to improve the operation capacity. In other words, if the operating capacity is maintained as before, the input of the compressor (21) can be reduced, and energy saving can be reliably achieved.

【0022】特に、請求項3記載の発明によれば、圧縮
機(21)の吐出温度が急変化する状態に下流側膨張弁
(EV)の開度を調整するようにしたために、圧縮機(2
1)の吐出温度を検出するのみでもって、中間圧冷媒を
適正な中間圧力に保つことができることから、簡略な制
御構成によって確実に冷凍能力の向上又は省エネルギ化
を確実に図ることができる。
In particular, according to the third aspect of the present invention, the opening degree of the downstream expansion valve (EV) is adjusted so that the discharge temperature of the compressor (21) changes abruptly. Two
Since the intermediate pressure refrigerant can be maintained at an appropriate intermediate pressure only by detecting the discharge temperature in 1), it is possible to surely improve the refrigeration capacity or save energy with a simple control configuration.

【0023】請求項4記載の発明によれば、中間圧ガス
冷媒が最大となる中間圧温度に中間圧冷媒を保持するの
で、中間圧ガス冷媒のインジェクション効果を確実に発
揮させることができると同時に、各凝縮温度及び各蒸発
温度における最適な目標温度を予め設定しているので、
中間圧ガス冷媒の供給量を確実に最大値に調整すること
ができる。
According to the fourth aspect of the present invention, since the intermediate-pressure refrigerant is maintained at the intermediate-pressure temperature at which the intermediate-pressure gas refrigerant is maximized, the injection effect of the intermediate-pressure gas refrigerant can be reliably exhibited. Since the optimal target temperature at each condensation temperature and each evaporation temperature is set in advance,
The supply amount of the intermediate-pressure gas refrigerant can be reliably adjusted to the maximum value.

【0024】請求項5記載の発明によれば、中間圧ガス
冷媒の流量を直接に検出することから、中間圧ガス冷媒
の流量を正確に最大値に調整することができる。
According to the fifth aspect of the invention, since detecting the flow rate of intermediate-pressure gas refrigerant directly, as possible out to adjust the flow rate of intermediate-pressure gas refrigerant in exactly the maximum value.

【0025】[0025]

【発明の実施の形態1】以下、本発明の実施形態1を図
面に基づいて詳細に説明する。
Embodiment 1 Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to the drawings.

【0026】図1に示すように、空気調和装置(10)
は、冷凍装置としてのヒートポンプ式の空気調和装置で
あって、冷房運転と暖房運転とに切り換え運転自在に構
成されている。
As shown in FIG. 1, the air conditioner (10)
Is a heat pump type air conditioner as a refrigerating device, which is configured to be freely operable by switching between a cooling operation and a heating operation.

【0027】該空気調和装置(10)の冷媒回路(20)
は、圧縮機(21)と四路切換弁(22)と熱源側熱交換器
である室外熱交換器(23)と第1電動膨張弁(EV-1)と
気液分離器(24)と第2電動膨張弁(EV-2)と利用側熱
交換器である室内熱交換器(25)とアキュムレータ(2
6)とが冷媒配管(27)によって順に接続されてなる主
冷媒回路(2M)を備えている。
The refrigerant circuit (20) of the air conditioner (10)
Is a compressor (21), a four-way switching valve (22), an outdoor heat exchanger (23) as a heat source side heat exchanger, a first electric expansion valve (EV-1), and a gas-liquid separator (24). The second electric expansion valve (EV-2), the indoor heat exchanger (25), which is a use side heat exchanger, and the accumulator (2
6) and a main refrigerant circuit (2M) connected in order by a refrigerant pipe (27).

【0028】上記圧縮機(21)は、インバータ(40)が
接続されて制御電力が供給され、該インバータ(40)に
は、コントローラ(50)が接続されて該インバータ(4
0)がコントローラ(50)の電力制御部(51)によって
制御されている。該コントローラ(50)の電力制御部
(51)は、室内の熱負荷に対応して圧縮機(21)の供給
周波数を制御し、該圧縮機(21)の運転容量を無段階又
は多段階に制御する周波数制御手段を構成している。
The compressor (21) is connected to an inverter (40) to be supplied with control power, and a controller (50) is connected to the inverter (40) to control the inverter (4).
0) is controlled by the power control unit (51) of the controller (50). The power control unit (51) of the controller (50) controls the supply frequency of the compressor (21) according to the indoor thermal load, and adjusts the operating capacity of the compressor (21) in a stepless or multi-step manner. It constitutes frequency control means for controlling.

【0029】上記四路切換弁(22)は、圧縮機(21)の
吐出側を室外熱交換器(23)に接続し且つ吸入側を室内
熱交換器(25)に接続する状態(図1に実線で示す状
態)と、圧縮機(21)の吐出側を室内熱交換器(25)に
接続し且つ吸入側を室外熱交換器(23)に接続する状態
(図1に破線で示す状態)とに切り換わる。この四路切
換弁(22)の切り換え動作によって冷媒回路(20)の冷
媒循環方向が変り、空気調和装置(10)の冷房運転と暖
房運転とが切り換わる。
The four-way switching valve (22) is in a state where the discharge side of the compressor (21) is connected to the outdoor heat exchanger (23) and the suction side is connected to the indoor heat exchanger (25) (FIG. 1). And a state where the discharge side of the compressor (21) is connected to the indoor heat exchanger (25) and a suction side is connected to the outdoor heat exchanger (23) (the state shown by the broken line in FIG. 1). ). The switching operation of the four-way switching valve (22) changes the refrigerant circulation direction of the refrigerant circuit (20), and switches between the cooling operation and the heating operation of the air conditioner (10).

【0030】上記冷媒回路(20)には、本発明の特徴と
して、インジェクション回路(30)を設けている。該イ
ンジェクション回路(30)は、中間圧ガス冷媒を圧縮機
(21)にインジェクションする回路であって、一端が気
液分離器(24)の上部に、他端が圧縮機(21)の圧縮行
程中に連通し、途中に電磁弁(SV)が設けられている。
つまり、上記気液分離器(24)には、凝縮圧力と蒸発圧
力との中間圧力になっている中間圧冷媒が貯溜されてい
るが、インジェクション回路(30)は、電磁弁(SV)を
開口し、気液分離器(24)の中間圧冷媒のうち、ガス相
の中間圧ガス冷媒を圧縮機(21)にインジェクションす
る。
The refrigerant circuit (20) is provided with an injection circuit (30) as a feature of the present invention. The injection circuit (30) is a circuit for injecting the intermediate-pressure gas refrigerant into the compressor (21), one end of which is above the gas-liquid separator (24), and the other end of which is a compression stroke of the compressor (21). There is a solenoid valve (SV) on the way.
That is, the gas-liquid separator (24) stores an intermediate-pressure refrigerant at an intermediate pressure between the condensing pressure and the evaporating pressure, but the injection circuit (30) opens the solenoid valve (SV). Then, of the intermediate-pressure refrigerant of the gas-liquid separator (24), the gas-phase intermediate-pressure gas refrigerant is injected into the compressor (21).

【0031】上記第1電動膨張弁(EV-1)と第2電動膨
張弁(EV-2)とは、本発明の特徴として、開度調整自在
に構成されて減圧度(絞り率)の調整を行えるようにし
ている。そして、上記第1電動膨張弁(EV-1)又は第2
電動膨張弁(EV-2)で減圧される中間圧冷媒が気液分離
器(24)に貯溜される。
The first motor-operated expansion valve (EV-1) and the second motor-operated expansion valve (EV-2) are characterized in that the opening degree is freely adjustable and the degree of pressure reduction (throttle ratio) is adjusted. Can be done. Then, the first electric expansion valve (EV-1) or the second
The intermediate-pressure refrigerant decompressed by the electric expansion valve (EV-2) is stored in the gas-liquid separator (24).

【0032】上記圧縮機(21)の吐出側の冷媒配管に
は、吐出管センサ(Th-d)が設けられている。該吐出管
センサ(Th-d)は、圧縮機(21)の吐出冷媒の吐出温度
を検出して検出温度をコントローラ(50)に出力する吐
出温度検出手段を構成している。
The refrigerant pipe on the discharge side of the compressor (21) is provided with a discharge pipe sensor (Th-d). The discharge pipe sensor (Th-d) constitutes a discharge temperature detecting means for detecting the discharge temperature of the refrigerant discharged from the compressor (21) and outputting the detected temperature to the controller (50).

【0033】上記コントローラ(50)には、本発明の最
も特徴とする開度調整手段(52)が構成され、該開度調
整手段(52)は、インジェクション回路(30)を流れる
中間圧ガス冷媒が最大流量となるように下流側電動膨張
弁(EV)の開度を調整して中間圧力を制御する。具体的
に、上記吐出管センサ(Th-d)が検出する吐出管温度の
低下量が急変化する点の中間圧力に中間圧冷媒がなるよ
うに下流側膨張弁(EV)の開度を制御する。
The controller (50) is provided with an opening degree adjusting means (52) which is the most characteristic of the present invention. The opening degree adjusting means (52) is an intermediate-pressure gas refrigerant flowing through the injection circuit (30). The intermediate pressure is controlled by adjusting the opening of the downstream electric expansion valve (EV) so that the maximum flow rate is obtained. Specifically, the opening degree of the downstream expansion valve (EV) is controlled so that the intermediate-pressure refrigerant becomes the intermediate pressure at the point where the amount of decrease in the discharge pipe temperature detected by the discharge pipe sensor (Th-d) suddenly changes. I do.

【0034】−開度調整の基本原理− そこで、上述した中間圧力を吐出温度に基づいて制御す
るようにした基本的原理について説明する。
-Basic Principle of Opening Adjustment- Therefore, a basic principle of controlling the above-described intermediate pressure based on the discharge temperature will be described.

【0035】先ず、上記主冷媒回路(2M)における冷媒
の状態変化について概略説明すると、図2に示すよう
に、圧縮機(21)における冷媒は、A点からB点の高圧
状態に圧縮され、この高圧ガス冷媒は、凝縮してC点で
高圧液冷媒になる。この高圧液冷媒は、第1電動膨張弁
(EV-1)又は第2電動膨張弁(EV-2)でD点まで中間圧
冷媒に減圧され、気液分離器(24)で中間圧液冷媒と中
間圧ガス冷媒とに分離する。
First, the state change of the refrigerant in the main refrigerant circuit (2M) will be briefly described. As shown in FIG. 2, the refrigerant in the compressor (21) is compressed to a high pressure state from the point A to the point B. This high-pressure gas refrigerant is condensed and becomes a high-pressure liquid refrigerant at point C. This high-pressure liquid refrigerant is decompressed to an intermediate-pressure refrigerant to point D by the first electric expansion valve (EV-1) or the second electric expansion valve (EV-2), and is then discharged by the gas-liquid separator (24). And an intermediate-pressure gas refrigerant.

【0036】この分離した中間圧ガス冷媒は、インジェ
クション回路(30)を介して圧縮機(21)の圧縮行程途
中(G点参照)に供給される一方、中間圧液冷媒は、E
点から第2電動膨張弁(EV-2)又は第1電動膨張弁(EV
-1)でF点まで低圧二相冷媒に減圧される。この低圧二
相冷媒は、蒸発してA点に変化し、圧縮機(21)に戻
る。
The separated intermediate-pressure gas refrigerant is supplied through the injection circuit (30) to the middle of the compression stroke (see point G) of the compressor (21), while the intermediate-pressure liquid refrigerant is supplied to the compressor E21.
From the point of view, the second electric expansion valve (EV-2) or the first electric expansion valve (EV
In -1), the pressure is reduced to the low-pressure two-phase refrigerant to point F. This low-pressure two-phase refrigerant evaporates and changes to point A, and returns to the compressor (21).

【0037】上記インジェクション回路(30)を流れる
中間圧ガス冷媒の流量、つまり、インジェクション量
は、低圧圧力と中間圧力との圧力差によって定まる。
The flow rate of the intermediate-pressure gas refrigerant flowing through the injection circuit (30), that is, the injection amount is determined by the pressure difference between the low pressure and the intermediate pressure.

【0038】一方、図3に示すように、上記圧縮機(2
1)にインジェクションする中間圧ガス冷媒のインジェ
クション量を増大すると、運転能力が向上する。具体的
に、A1のインジェクションを行わない場合からA2及
びA3の順にインジェクション量を増大すると、運転能
力が向上する。
On the other hand, as shown in FIG.
When the injection amount of the intermediate-pressure gas refrigerant to be injected in 1) is increased, the operating capacity is improved. Specifically, when the injection amount is increased in the order of A2 and A3 from the case where the injection of A1 is not performed, the driving ability is improved.

【0039】つまり、圧縮機(21)の供給電力(圧縮機
入力)を一定とすると、暖房運転時では、中間圧ガス冷
媒のインジェクション量を多くすると、室内熱交換器
(25)を流れる冷媒循環量が増大し、暖房能力(運転能
力)が向上し、冷房運転時にあっては、D点からE点ま
でのエンタルピが増大するので、蒸発する冷媒の熱量が
多くなり、冷房能力(運転能力)が向上する。
That is, assuming that the supply power (compressor input) of the compressor (21) is constant, when the injection amount of the intermediate-pressure gas refrigerant is increased during the heating operation, the refrigerant circulation flowing through the indoor heat exchanger (25) As the amount increases, the heating capacity (operating capacity) improves, and during cooling operation, the enthalpy from point D to point E increases, so that the amount of heat of the evaporated refrigerant increases, and the cooling capacity (operating capacity) increases. Is improved.

【0040】換言すると、運転能力を一定とすると、中
間圧ガス冷媒をインジェクションしない場合から中間圧
ガス冷媒を増大するに従って圧縮機(21)の供給電力
(圧縮機入力)が低下する。
In other words, assuming that the operating capacity is constant, the supply power (compressor input) of the compressor (21) decreases as the intermediate-pressure gas refrigerant increases from when no intermediate-pressure gas refrigerant is injected.

【0041】したがって、中間圧ガス冷媒のインジェク
ション量、つまり、インジェクション回路(30)を流れ
る中間圧ガス冷媒の流量を最大にすると、運転能力が最
大又は圧縮機入力が最小となる。
Therefore, when the injection amount of the intermediate-pressure gas refrigerant, that is, the flow rate of the intermediate-pressure gas refrigerant flowing through the injection circuit (30) is maximized, the operating capacity is maximized or the compressor input is minimized.

【0042】この中間圧ガス冷媒のインジェクション量
は、蒸発器の冷媒圧力である低圧圧力(圧縮機(21)の
吸入圧力)と気液分離器(24)の冷媒圧力である中間圧
力との圧力差によって定まる。そこで、図4に示すよう
に、上記圧力差ΔPを増大していくと、中間圧ガス冷媒
のインジェクション量Q1は増大して所定の圧力差ΔP
で最大Qmax となる。更に、圧力差ΔPを増大すると、
中間圧ガス冷媒のインジェクション量Q1は逆に低下す
る。
The injection amount of the intermediate-pressure gas refrigerant is the pressure between the low-pressure pressure (the suction pressure of the compressor (21)) which is the refrigerant pressure of the evaporator and the intermediate pressure which is the refrigerant pressure of the gas-liquid separator (24). Determined by the difference. Therefore, as shown in FIG. 4, as the pressure difference ΔP is increased, the injection amount Q1 of the intermediate-pressure gas refrigerant is increased to a predetermined pressure difference ΔP.
At the maximum Qmax. Further, when the pressure difference ΔP is increased,
Conversely, the injection amount Q1 of the intermediate-pressure gas refrigerant decreases.

【0043】この圧力差ΔPとインジェクション量Q1
の特性図に吐出温度Tdの特性を重畳すると、この吐出
温度Tdは、圧力差ΔPを増大していくと、徐々に低下
し、中間圧ガス冷媒のインジェクション量Q1が最大と
なる点において、吐出温度Tdが急激に低下する。この
吐出温度Tdの低下量の急変化点C1は、インジェクシ
ョン量Q1の最大点Qmax にほぼ一致する。
The pressure difference ΔP and the injection amount Q1
When the characteristic of the discharge temperature Td is superimposed on the characteristic diagram of FIG. 5, the discharge temperature Td gradually decreases as the pressure difference ΔP increases, and the discharge temperature Td is increased at the point where the injection amount Q1 of the intermediate-pressure gas refrigerant becomes maximum. The temperature Td drops rapidly. The sudden change point C1 of the decrease amount of the discharge temperature Td substantially coincides with the maximum point Qmax of the injection amount Q1.

【0044】この理由は次の通りである。先ず、気液分
離器(24)に中間圧力が十分に貯溜していると仮定する
と、図5に示すように、圧力差ΔPを増大していくと、
中間圧ガス冷媒のインジェクション量Q2は増大してい
く。この圧力差ΔPとインジェクション量Q2の特性図
に気液分離器(24)の乾き度Xの特性を重畳すると、所
定の圧力差ΔPで交叉し、この交叉点C2は、実際のイ
ンジェクション量Q1の最大点Qmax にほぼ一致する。
The reason is as follows. First, assuming that the intermediate pressure is sufficiently stored in the gas-liquid separator (24), as shown in FIG.
The injection amount Q2 of the intermediate-pressure gas refrigerant increases. When the characteristics of the dryness X of the gas-liquid separator (24) are superimposed on the characteristic diagram of the pressure difference ΔP and the injection amount Q2, they intersect at a predetermined pressure difference ΔP, and the intersection point C2 corresponds to the actual injection amount Q1. It almost coincides with the maximum point Qmax.

【0045】つまり、上記圧力差ΔPを増大していく
と、中間圧ガス冷媒のインジェクション量Q2は増大し
ていくものの、この中間圧力を増大すると、気液分離器
(24)の乾き度Xが小さくなる。この結果、気液分離器
(24)に存在する中間圧ガス冷媒が少なくなるので、所
定の圧力差ΔP以上になると、中間圧ガス冷媒の実際の
インジェクション量Q1が低下し、インジェクション量
Q1が最大となる圧力差ΔPが存在することになる。
That is, as the pressure difference ΔP increases, the injection amount Q2 of the intermediate-pressure gas refrigerant increases. However, when the intermediate pressure increases, the dryness X of the gas-liquid separator (24) decreases. Become smaller. As a result, the amount of the intermediate-pressure gas refrigerant present in the gas-liquid separator (24) is reduced. Therefore, when the pressure difference becomes equal to or more than the predetermined pressure difference ΔP, the actual injection amount Q1 of the intermediate-pressure gas refrigerant decreases, and the injection amount Q1 becomes the maximum. Is present.

【0046】更に、上記インジェクション量Q1が最大
となると、上述したように気液分離器(24)の中間圧ガ
ス冷媒が少ないため、気液分離器(24)の中間圧液冷媒
がインジェクション回路(30)を通って圧縮機(21)に
供給される。この結果、この液冷媒の蒸発によって圧縮
機(21)内の冷媒が急激に冷却され、図4に示すよう
に、吐出温度TdがC1点で急激に低下することにな
る。
Further, when the injection amount Q1 is maximized, the intermediate-pressure liquid refrigerant of the gas-liquid separator (24) is small because the intermediate-pressure gas refrigerant of the gas-liquid separator (24) is small as described above. It is supplied to the compressor (21) through 30). As a result, the refrigerant in the compressor (21) is rapidly cooled by the evaporation of the liquid refrigerant, and as shown in FIG. 4 , the discharge temperature Td is rapidly lowered at the point C1.

【0047】以上のことから、本実施形態1では、吐出
管センサ(Th-d)が検出する吐出温度Tdの低下量が急
変化する点C1の中間圧力に中間圧冷媒がなるように下
流側膨張弁(EV)の開度を調整し、中間圧ガス冷媒のイ
ンジェクション量Q1は最大にするようにしている。
As described above, in the first embodiment, the intermediate-pressure refrigerant is set so that the intermediate-pressure refrigerant becomes the intermediate pressure at the point C1 at which the amount of decrease in the discharge temperature Td detected by the discharge pipe sensor (Th-d) suddenly changes. The opening of the expansion valve (EV) is adjusted so that the injection amount Q1 of the intermediate-pressure gas refrigerant is maximized.

【0048】−空気調和動作− 次に、上述した空気調和装置(10)の空気調和動作につ
いて説明する。
-Air Conditioning Operation- Next, the air conditioning operation of the above-described air conditioner (10) will be described.

【0049】先ず、室内の冷房運転時には、四路切換弁
(22)を図1の実線側に切り換える。この状態におい
て、圧縮機(21)から吐出した冷媒は、四路切換弁(2
2)を経て室外熱交換器(23)に流れ、該室外熱交換器
(23)において外気と熱交換して凝縮する。その後、こ
の液冷媒は、第1電動膨張弁(EV-1)で減圧され、凝縮
圧力と蒸発圧力との中間圧力の中間圧冷媒となって気液
分離器(24)に流れ、該気液分離器(24)に溜まる。
First, during the indoor cooling operation, the four-way switching valve (22) is switched to the solid line side in FIG. In this state, the refrigerant discharged from the compressor (21) is supplied to the four-way switching valve (2
After flowing through 2), it flows to the outdoor heat exchanger (23), where it exchanges heat with outside air and condenses. Thereafter, the liquid refrigerant is reduced in pressure by the first electric expansion valve (EV-1), becomes an intermediate-pressure refrigerant having an intermediate pressure between the condensing pressure and the evaporation pressure, flows into the gas-liquid separator (24), and Collect in the separator (24).

【0050】上記気液分離器(24)に溜まった中間圧冷
媒のうち、中間圧液冷媒は、第2電動膨張弁(EV-2)で
減圧された後、室内熱交換器(25)において室内空気と
熱交換して蒸発し、室内空気を冷却する。その後、この
ガス冷媒は四路切換弁(22)及びアキュムレータ(26)
を経て圧縮機(21)に戻る。このような冷媒の循環動作
を行うことにより室内の冷房が行われる。
The intermediate-pressure liquid refrigerant among the intermediate-pressure refrigerant accumulated in the gas-liquid separator (24) is depressurized by the second electric expansion valve (EV-2), and then depressurized in the indoor heat exchanger (25). It exchanges heat with room air and evaporates to cool the room air. Thereafter, the gas refrigerant is supplied to the four-way switching valve (22) and the accumulator (26).
And returns to the compressor (21). By performing such a circulation operation of the refrigerant, indoor cooling is performed.

【0051】一方、暖房運転時には、四路切換弁(22)
を図1の破線側に切り換える。この状態において、圧縮
機(21)から吐出した冷媒は、四路切換弁(22)を経て
室内熱交換器(25)に流れ、該室内熱交換器(25)にお
いて室内空気と熱交換し、室内空気を加熱しながら凝縮
する。その後、この液冷媒は、第2電動膨張弁(EV-2)
で減圧され、中間圧冷媒となって気液分離器(24)に流
れ、該気液分離器(24)に溜まる。
On the other hand, during the heating operation, the four-way switching valve (22)
Is switched to the broken line side in FIG. In this state, the refrigerant discharged from the compressor (21) flows through the four-way switching valve (22) to the indoor heat exchanger (25), and exchanges heat with indoor air in the indoor heat exchanger (25). Condenses while heating room air. Then, the liquid refrigerant is supplied to the second electric expansion valve (EV-2)
, And flows into the gas-liquid separator (24) as an intermediate-pressure refrigerant and accumulates in the gas-liquid separator (24).

【0052】上記気液分離器(24)に溜まった中間圧冷
媒のうち、中間圧液冷媒は、第1電動膨張弁(EV-1)で
減圧された後、室外熱交換器(23)において外気と熱交
換して蒸発する。その後、このガス冷媒は四路切換弁
(22)及びアキュムレータ(26)を経て圧縮機(21)に
戻る。このような冷媒の循環動作を行うことにより室内
の暖房が行われる。
Among the intermediate-pressure refrigerants stored in the gas-liquid separator (24), the intermediate-pressure liquid refrigerant is decompressed by the first electric expansion valve (EV-1), and then is decompressed in the outdoor heat exchanger (23). It evaporates by heat exchange with the outside air. Thereafter, the gas refrigerant returns to the compressor (21) via the four-way switching valve (22) and the accumulator (26). The indoor heating is performed by performing such a circulation operation of the refrigerant.

【0053】上述した空気調和運転時において、インジ
ェクション回路(30)の電磁弁(SV)を開口すると、気
液分離器(24)の中間圧ガス冷媒が圧縮機(21)にイン
ジェクションされる。
In the above-described air conditioning operation, when the solenoid valve (SV) of the injection circuit (30) is opened, the intermediate-pressure gas refrigerant of the gas-liquid separator (24) is injected into the compressor (21).

【0054】上記冷媒回路(20)における冷媒の状態変
化は、上述した図2に示すようになる。
The state change of the refrigerant in the refrigerant circuit (20) is as shown in FIG.

【0055】先ず、圧縮機(21)における冷媒は、A点
の低圧状態からB点の凝縮圧力の高圧状態に圧縮され
る。この高圧ガス冷媒は、室外熱交換器(23)又は室内
熱交換器(25)で凝縮し、C点で高圧液冷媒になる。こ
の高圧液冷媒は、第1電動膨張弁(EV-1)又は第2電動
膨張弁(EV-2)でD点まで中間圧冷媒に減圧され、気液
分離器(24)に貯溜し、該気液分離器(24)で中間圧液
冷媒と中間圧ガス冷媒とに分離する。
First, the refrigerant in the compressor (21) is compressed from a low pressure state at the point A to a high pressure state at the condensation pressure at the point B. This high-pressure gas refrigerant is condensed in the outdoor heat exchanger (23) or the indoor heat exchanger (25) and becomes a high-pressure liquid refrigerant at point C. The high-pressure liquid refrigerant is reduced to an intermediate-pressure refrigerant at point D by the first electric expansion valve (EV-1) or the second electric expansion valve (EV-2), and stored in the gas-liquid separator (24). The gas-liquid separator (24) separates the intermediate-pressure liquid refrigerant and the intermediate-pressure gas refrigerant.

【0056】この分離した中間圧ガス冷媒は、インジェ
クション回路(30)を介して圧縮機(21)の圧縮行程途
中(G点参照)にインジェクションされる一方、中間圧
液冷媒は、E点から第2電動膨張弁(EV-2)又は第1電
動膨張弁(EV-1)でF点まで低圧二相冷媒に減圧され
る。この低圧二相冷媒は、室内熱交換器(25)又は室外
熱交換器(23)で蒸発し、A点に変化して圧縮機(21)
に戻る。
The separated intermediate-pressure gas refrigerant is injected through the injection circuit (30) during the compression stroke of the compressor (21) (see point G), while the intermediate-pressure liquid refrigerant is injected from point E to point The pressure is reduced to the low-pressure two-phase refrigerant to point F by the second electric expansion valve (EV-2) or the first electric expansion valve (EV-1). This low-pressure two-phase refrigerant evaporates in the indoor heat exchanger (25) or the outdoor heat exchanger (23), changes to the point A, and the compressor (21)
Return to

【0057】この結果、暖房運転時にあっては、凝縮器
となる室内熱交換器(25)を流れる冷媒は、中間圧ガス
冷媒が加わることから、冷媒循環量が増大し、暖房能力
が向上する。
As a result, during the heating operation, the refrigerant flowing through the indoor heat exchanger (25) serving as the condenser is added with the intermediate-pressure gas refrigerant, so that the refrigerant circulation amount increases, and the heating capacity is improved. .

【0058】一方、冷房運転時にあっては、F点の低圧
二相冷媒は、D点からE点までのエンタルピが増大する
ので、室内熱交換器(25)で蒸発する冷媒の熱量が多く
なり、冷房能力が向上する。
On the other hand, during the cooling operation, the low-pressure two-phase refrigerant at the point F has an increased enthalpy from the point D to the point E, so that the amount of heat of the refrigerant evaporated in the indoor heat exchanger (25) increases. The cooling capacity is improved.

【0059】上記空調運転時において、高圧冷媒は、第
1電動膨張弁(EV-1)と第2電動膨張弁(EV-2)とによ
って減圧されることになるが、主体となる減圧は、上流
側電動膨張弁(EV)で行われる。つまり、冷房運転時の
第1電動膨張弁(EV-1)及び暖房運転時の第2電動膨張
弁(EV-2)は、蒸発器となる室内熱交換器(25)又は室
外熱交換器(23)の出口側の冷媒過熱度が所定値になる
ように開度が制御され、図2におけるC−Dの減圧を行
う。
During the air-conditioning operation, the high-pressure refrigerant is reduced in pressure by the first electric expansion valve (EV-1) and the second electric expansion valve (EV-2). It is performed by the upstream electric expansion valve (EV). That is, the first electric expansion valve (EV-1) during the cooling operation and the second electric expansion valve (EV-2) during the heating operation are connected to the indoor heat exchanger (25) or the outdoor heat exchanger ( The opening degree is controlled so that the degree of superheat of the refrigerant at the outlet side of 23) becomes a predetermined value, and the pressure in CD in FIG. 2 is reduced.

【0060】一方、中間圧ガス冷媒のインジェクション
のための減圧は、下流側電動膨張弁(EV)で行われる。
つまり、冷房運転時の第2電動膨張弁(EV-2)及び暖房
運転時の第1電動膨張弁(EV-1)が、図2におけるE−
Fの減圧を行う。
On the other hand, the pressure reduction for the injection of the intermediate-pressure gas refrigerant is performed by the downstream electric expansion valve (EV).
That is, the second motor-operated expansion valve (EV-2) during the cooling operation and the first motor-operated expansion valve (EV-1) during the heating operation correspond to E-E in FIG.
The pressure of F is reduced.

【0061】この下流側の減圧動作は、本発明の特徴と
して、開度調整手段(52)によって行われ、図4に示す
ように、圧縮機(21)の吐出温度Tdが急激に低下する
急変化点C1の中間圧力に中間圧冷媒が保持されるよう
に下流側電動膨張弁(EV)の開度が調整される。
As a feature of the present invention, this downstream pressure reduction operation is performed by the opening degree adjusting means (52). As shown in FIG. 4, the discharge temperature Td of the compressor (21) suddenly drops. The opening of the downstream electric expansion valve (EV) is adjusted so that the intermediate-pressure refrigerant is maintained at the intermediate pressure at the change point C1.

【0062】具体的に、吐出管温度センサが圧縮機(2
1)の吐出冷媒の温度である吐出温度Tdを検出し、こ
の吐出温度Tdは、上述したように、下流側電動膨張弁
(EV)の開度を小さくして中間圧力を大きくすると、所
定の中間圧力で急激に低下する。この吐出温度Tdが急
激に低下する点の中間圧力に中間圧冷媒が保持されるよ
うに下流側電動膨張弁(EV)、つまり、冷房運転時の第
2電動膨張弁(EV-2)、暖房運転時の第1電動膨張弁
(EV-1)の開度を制御し、中間圧ガス冷媒のインジェク
ション量Q1を最大にする。
Specifically, the discharge pipe temperature sensor is connected to the compressor (2
The discharge temperature Td, which is the temperature of the discharged refrigerant in 1), is detected. When the opening degree of the downstream electric expansion valve (EV) is reduced and the intermediate pressure is increased as described above, the discharge temperature Td becomes a predetermined value. Drops sharply at intermediate pressures. The downstream electric expansion valve (EV), that is, the second electric expansion valve (EV-2) during the cooling operation, and the heating so that the intermediate-pressure refrigerant is maintained at the intermediate pressure at the point where the discharge temperature Td rapidly decreases. The opening degree of the first electric expansion valve (EV-1) during operation is controlled to maximize the injection amount Q1 of the intermediate-pressure gas refrigerant.

【0063】−実施形態1の効果− 以上のように、本実施形態によれば、圧縮機(21)の吐
出温度Tdが急変化する状態に下流側電動膨張弁(EV)
の開度を調整するようにしたために、中間圧ガス冷媒の
インジェクション量Q1が最大となる中間圧力に中間圧
冷媒を保持することができる。この結果、中間圧ガス冷
媒のインジェクション量Q1を最大に保持することがで
きるので、中間圧ガス冷媒のインジェクション効果を確
実に発揮させることができる。つまり、中間圧ガス冷媒
のインジェクションによる運転能力の向上を確実に図る
ことができ、冷房能力及び暖房能力の向上が図られる。
換言すると、運転能力を従来と同様に保つと、圧縮機入
力を低減することができ、省エネルギ化を確実に図るこ
とができる。
-Effects of First Embodiment- As described above, according to the present embodiment, the downstream-side electric expansion valve (EV) is set in a state where the discharge temperature Td of the compressor (21) changes rapidly.
The intermediate pressure refrigerant can be maintained at the intermediate pressure at which the injection amount Q1 of the intermediate pressure gas refrigerant is maximized. As a result, the injection amount Q1 of the intermediate-pressure gas refrigerant can be kept at the maximum, so that the injection effect of the intermediate-pressure gas refrigerant can be reliably exhibited. That is, it is possible to reliably improve the operation capacity by the injection of the intermediate-pressure gas refrigerant, and to improve the cooling capacity and the heating capacity.
In other words, if the operating capacity is maintained as before, the compressor input can be reduced, and energy saving can be reliably achieved.

【0064】特に、圧縮機(21)の吐出温度Tdを検出
するのみでもって、中間圧冷媒を適正な中間圧力に保つ
ことができることから、簡略な制御構成によって確実に
冷房能力及び暖房能力の向上又は省エネルギ化を確実に
図ることができる。
In particular, since the intermediate-pressure refrigerant can be maintained at an appropriate intermediate pressure only by detecting the discharge temperature Td of the compressor (21), the cooling capacity and the heating capacity can be reliably improved by a simple control configuration. Alternatively, energy saving can be reliably achieved.

【0065】[0065]

【発明の実施の形態2】図6は、本発明の実施形態2を
示し、開度調整手段(52)が、凝縮温度と蒸発温度と中
間圧温度とに基づいて下流側電動膨張弁(EV)の開度を
調整するようにしたものである。
Second Embodiment FIG. 6 shows a second embodiment of the present invention, in which an opening degree adjusting means (52) is provided with a downstream electric expansion valve (EV) based on a condensation temperature, an evaporation temperature and an intermediate pressure temperature. ) Is adjusted.

【0066】具体的に、室外熱交換器(23)には、該室
外熱交換器(23)の冷媒温度を検出する室外熱交換セン
サ(Th-o)が設けられ、室内熱交換器(25)には、該室
内熱交換器(25)の冷媒温度を検出する室内熱交換セン
サ(Th-i)が設けられる一方、気液分離器(24)には、
該気液分離器(24)の冷媒温度を検出する中間圧温度セ
ンサ(Th-m)が設けられている。
Specifically, the outdoor heat exchanger (23) is provided with an outdoor heat exchange sensor (Th-o) for detecting the refrigerant temperature of the outdoor heat exchanger (23). ) Is provided with an indoor heat exchange sensor (Th-i) for detecting the refrigerant temperature of the indoor heat exchanger (25), while the gas-liquid separator (24)
An intermediate pressure temperature sensor (Th-m) for detecting the refrigerant temperature of the gas-liquid separator (24) is provided.

【0067】上記室外熱交換センサ(Th-o)は、冷房運
転時における冷媒の凝縮温度及び暖房運転時における冷
媒の蒸発温度を検出し、室内熱交換センサ(Th-i)は、
冷房運転時における冷媒の蒸発温度及び暖房運転時にお
ける冷媒の凝縮温度を検出し、この室外熱交換センサ
(Th-o)及び室内熱交換センサ(Th-i)が凝縮温度検出
手段(Th)及び蒸発温度検出手段(Th)を構成してい
る。
The outdoor heat exchange sensor (Th-o) detects the condensation temperature of the refrigerant during the cooling operation and the evaporation temperature of the refrigerant during the heating operation, and the indoor heat exchange sensor (Th-i)
The outdoor heat exchange sensor (Th-o) and the indoor heat exchange sensor (Th-i) detect the evaporation temperature of the refrigerant during the cooling operation and the condensation temperature of the refrigerant during the heating operation. It constitutes evaporating temperature detecting means (Th).

【0068】上記中間圧温度センサ(Th-m)は、気液分
離器(24)における中間圧冷媒の飽和温度である中間圧
温度を検出する中間圧温度検出手段を構成している。
The intermediate pressure temperature sensor (Th-m) constitutes an intermediate pressure temperature detecting means for detecting an intermediate pressure temperature which is a saturation temperature of the intermediate pressure refrigerant in the gas-liquid separator (24).

【0069】一方、コントローラ(50)には、図7に示
すように、各凝縮温度Tc及び各蒸発温度Teにおける
最適な中間圧温度の目標温度Tmが予め記憶されてい
る。つまり、実施形態1における図2のモリエル線図に
示すように、主冷媒回路(2M)における凝縮温度Tc及
び各蒸発温度Teが定まると、この凝縮温度Tc及び各
蒸発温度Teにおける最適な中間圧温度の目標温度Tm
を実験的に定めることができる。
On the other hand, in the controller (50), as shown in FIG. 7, a target temperature Tm of the optimum intermediate pressure temperature at each condensation temperature Tc and each evaporation temperature Te is stored in advance. That is, as shown in the Mollier diagram of FIG. 2 in the first embodiment, when the condensation temperature Tc and each evaporation temperature Te in the main refrigerant circuit (2M) are determined, the optimum intermediate pressure at this condensation temperature Tc and each evaporation temperature Te is determined. Temperature target temperature Tm
Can be determined experimentally.

【0070】そこで、上記コントローラ(50)の開度調
整手段(52)は、各凝縮温度Tc及び各蒸発温度Teに
おいて、中間圧ガス冷媒のインジェクション量が最大と
なる最適な中間圧温度の目標温度Tmを予めテーブル化
して設定し、室外熱交換センサ(Th-o)及び室内熱交換
センサ(Th-i)の検出凝縮温度及び検出蒸発温度を受け
て最適な中間圧温度の目標温度Tmを導出する。更に、
該開度調整手段(52)は、中間圧温度センサ(Th-m)か
らの検出中間圧温度を受けて該中間圧温度が目標温度T
mになるように下流側電動膨張弁(EV)の開度を調整す
る。
Therefore, the opening degree adjusting means (52) of the controller (50) determines the target temperature of the optimum intermediate pressure temperature at which the injection amount of the intermediate pressure gas refrigerant becomes maximum at each condensation temperature Tc and each evaporation temperature Te. Tm is tabulated in advance and set, and the target temperature Tm of the optimum intermediate pressure temperature is derived based on the detected condensation temperature and detected evaporation temperature of the outdoor heat exchange sensor (Th-o) and the indoor heat exchange sensor (Th-i). I do. Furthermore,
The opening degree adjusting means (52) receives the detected intermediate pressure temperature from the intermediate pressure temperature sensor (Th-m) and changes the intermediate pressure temperature to the target temperature T.
The opening degree of the downstream electric expansion valve (EV) is adjusted to be m.

【0071】したがって、本実施形態によれば、前実施
形態1と同様に、中間圧ガス冷媒のインジェクション量
Q1が最大となる中間圧温度に中間圧冷媒を保持するこ
とができるので、中間圧ガス冷媒のインジェクション効
果を確実に発揮させることができる。その上、各凝縮温
度Tc及び各蒸発温度Teにおける最適な目標温度Tm
を予め設定しているので、中間圧ガス冷媒のインジェク
ション量Q1を確実に最大値に調整することができる。
Therefore, according to the present embodiment, similarly to the first embodiment, the intermediate-pressure refrigerant can be maintained at the intermediate-pressure temperature at which the injection amount Q1 of the intermediate-pressure gas refrigerant is maximized. The injection effect of the refrigerant can be reliably exhibited. In addition, the optimum target temperature Tm at each condensation temperature Tc and each evaporation temperature Te
Is set in advance, the injection amount Q1 of the intermediate-pressure gas refrigerant can be reliably adjusted to the maximum value.

【0072】[0072]

【発明の実施の形態3】図8は、本発明の実施形態3を
示し、インジェクション回路(30)に流量計(60)を設
けたものである。
Third Embodiment FIG. 8 shows a third embodiment of the present invention, in which a flow meter (60) is provided in an injection circuit (30).

【0073】具体的に、該流量計(60)は、インジェク
ション回路(30)を流れる中間圧ガス冷媒の流量を検出
する流量検出手段を構成し、直接的に中間圧ガス冷媒の
インジェクション量Q1を検出している。
Specifically, the flow meter (60) constitutes flow rate detecting means for detecting the flow rate of the intermediate-pressure gas refrigerant flowing through the injection circuit (30), and directly detects the injection amount Q1 of the intermediate-pressure gas refrigerant. Detected.

【0074】一方、コントローラ(50)の開度調整手段
(52)は、流量計(60)から中間圧ガス冷媒の検出流量
を受けて中間圧ガス冷媒のインジェクション量Q1が最
大となるように下流側電動膨張弁(EV)の開度を調整す
る。
On the other hand, the opening degree adjusting means (52) of the controller (50) receives the detected flow rate of the intermediate-pressure gas refrigerant from the flow meter (60) so that the injection amount Q1 of the intermediate-pressure gas refrigerant is maximized. Adjust the opening of the side electric expansion valve (EV).

【0075】したがって、本実施形態によれば、前実施
形態1と同様に、中間圧ガス冷媒のインジェクション量
Q1を最大にすることができるので、中間圧ガス冷媒の
インジェクション効果を確実に発揮させることができ
る。その上、中間圧ガス冷媒のインジェクション量Q1
を直接に検出することから、中間圧ガス冷媒のインジェ
クション量Q1を正確に最大値に調整することがで
る。
Therefore, according to the present embodiment, similarly to the first embodiment, the injection amount Q1 of the intermediate-pressure gas refrigerant can be maximized, so that the injection effect of the intermediate-pressure gas refrigerant can be reliably exhibited. Can be. In addition, the injection amount Q1 of the intermediate-pressure gas refrigerant
Since the detection directly, Ki out to adjust the injection amount Q1 of the intermediate-pressure gas refrigerant in exactly the maximum value
You.

【0076】[0076]

【発明の他の実施の形態】本実施形態においては、冷房
運転と暖房運転とに可逆可能な空気調和装置について説
明したが、本発明は冷房専用機や暖房専用機の空気調和
装置の他、各種の冷凍装置であってもよい。
Other Embodiments In this embodiment, an air conditioner reversible between a cooling operation and a heating operation has been described. However, the present invention is not limited to an air conditioner for a cooling only device or a heating only device. Various refrigeration devices may be used.

【0077】また、請求項2に係る発明の実施形態とし
て、中間圧ガス冷媒の中間圧力は、中間圧温度センサ
(Th-m)の他、圧力センサで検出するようにしてもよ
く、また、中間圧温度は、圧力センサによる中間圧力に
基づく中間圧力相当飽和温度であってもよい。
Further, as an embodiment of the invention according to claim 2, the intermediate pressure of the intermediate-pressure gas refrigerant may be detected by a pressure sensor other than the intermediate-pressure temperature sensor (Th-m). The intermediate pressure temperature may be an intermediate pressure equivalent saturation temperature based on the intermediate pressure obtained by the pressure sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1を示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram showing Embodiment 1 of the present invention.

【図2】冷媒回路の冷媒状態を示すモリエル線図であ
る。
FIG. 2 is a Mollier diagram showing a refrigerant state of a refrigerant circuit.

【図3】インジェクション量に対する運転能力と圧縮機
入力との特性図である。
FIG. 3 is a characteristic diagram of an operation capacity and a compressor input with respect to an injection amount.

【図4】中間圧力と低圧圧力の圧力差に対するインジェ
クション量と吐出温度の特性図である。
FIG. 4 is a characteristic diagram of an injection amount and a discharge temperature with respect to a pressure difference between an intermediate pressure and a low pressure.

【図5】中間圧力と低圧圧力の圧力差に対するインジェ
クション量と乾き度の特性図である。
FIG. 5 is a characteristic diagram of an injection amount and a dryness with respect to a pressure difference between an intermediate pressure and a low pressure.

【図6】本発明の実施形態2を示す冷媒回路図である。FIG. 6 is a refrigerant circuit diagram showing Embodiment 2 of the present invention.

【図7】最適中間圧温度の記憶内容を示す説明図であ
る。
FIG. 7 is an explanatory diagram showing stored contents of an optimum intermediate pressure temperature.

【図8】本発明の実施形態3を示す冷媒回路図である。 FIG. 8 is a refrigerant circuit diagram showing Embodiment 3 of the present invention .

【符号の説明】[Explanation of symbols]

10 空気調和装置 20 冷媒回路 21 圧縮機 23 室外熱交換器(熱源側熱交換器) 24 気液分離器 25 室内熱交換器(利用側熱交換器) 2M 主冷媒回路 EV-1 第1電動膨張弁 EV-2 第2電動膨張弁 30 インジェクション回路 40 インバータ 50 コントローラ 51 電力制御部(周波数制御手段) 52 開度調整手段 60 流量計(流量検出手段) Th-d 吐出管温度センサ(吐出温度検出手段) Th-m 中間圧温度センサ(中間圧温度検出手
段) Th-o 室外熱交換センサ(温度検出手段) Th-i 室内熱交換センサ(温度検出手段)
10 Air conditioner 20 Refrigerant circuit 21 Compressor 23 Outdoor heat exchanger (heat source side heat exchanger) 24 Gas-liquid separator 25 Indoor heat exchanger (use side heat exchanger) 2M Main refrigerant circuit EV-1 1st electric expansion Valve EV-2 2nd electric expansion valve 30 Injection circuit 40 Inverter 50 Controller 51 Power control unit (Frequency control means) 52 Opening adjustment means 60 Flow meter (Flow rate detection means) Th-d Discharge pipe temperature sensor (Discharge temperature detection means) Th-m Intermediate pressure temperature sensor (Intermediate pressure temperature detection means) Th-o Outdoor heat exchange sensor (Temperature detection means) Th-i Indoor heat exchange sensor (Temperature detection means)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−302767(JP,A) 特開 平6−11205(JP,A) 特開 昭60−111849(JP,A) 特公 平6−33910(JP,B2) (58)調査した分野(Int.Cl.7,DB名) F25B 13/00 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-5-302767 (JP, A) JP-A-6-11205 (JP, A) JP-A-60-111849 (JP, A) 33910 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 13/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機(21)と熱源側熱交換器(23)と
開度の可変な第1膨張弁(EV-1)と気液分離器(24)と
開度の可変な第2膨張弁(EV-2)と利用側熱交換器(2
5)とが順に接続されて成る主冷媒回路(2M)と、 該主冷媒回路(2M)における凝縮圧力と蒸発圧力との間
の中間圧力にある中間圧冷媒のうちの中間圧ガス冷媒を
気液分離器(24)から圧縮機(21)に供給するインジェ
クション回路(30)とを備え上記主冷媒回路(2M)の上流側膨張弁(EV)は、蒸発器
となる利用側熱交換器(25)又は熱源側熱交換器(23)
の出口側の冷媒過熱度が所定値になるように開度が制御
される一方、 上記 インジェクション回路(30)を流れる中間圧ガス冷
媒が最大流量となるように主冷媒回路(2M)の下流側膨
張弁(EV)の開度を調整する開度調整手段(52)が設け
られている ことを特徴とする冷凍装置。
1. A compressor (21), a heat source side heat exchanger (23), a first expansion valve (EV-1) having a variable opening, a gas-liquid separator (24), and a second opening having a variable opening. Expansion valve (EV-2) and use side heat exchanger (2
5) are connected in order, and the intermediate-pressure gas refrigerant of the intermediate-pressure refrigerant at an intermediate pressure between the condensing pressure and the evaporation pressure in the main refrigerant circuit (2M) is vaporized. liquid separator and a injection circuit (30) to the compressor (21) from (24), the upstream side expansion valve of the main refrigerant circuit (2M) (EV) is an evaporator
User side heat exchanger (25) or heat source side heat exchanger (23)
Opening is controlled so that the superheat of the refrigerant at the outlet
While the downstream-side expansion valve of the main refrigerant circuit (2M) as intermediate-pressure gas refrigerant flowing through the injection circuit (30) becomes the maximum flow opening adjustment means for adjusting the opening degree of the (EV) (52) Provided
A refrigeration apparatus characterized by being used.
【請求項2】 請求項1記載の冷凍装置において、 開度調整手段(52)は、中間圧ガス冷媒の最大流量に対
応する中間圧冷媒の目標圧力が主冷媒回路(2M)におけ
る各冷媒状態に対して設定され、該中間圧冷媒の中間圧
力が目標圧力になるように下流側膨張弁(EV)の開度を
制御する ことを特徴とする冷凍装置。
2. The refrigeration apparatus according to claim 1, wherein the opening degree adjusting means (52) is configured to set the target pressure of the intermediate-pressure refrigerant corresponding to the maximum flow rate of the intermediate-pressure gas refrigerant in each refrigerant state in the main refrigerant circuit (2M). And the opening degree of the downstream expansion valve (EV) is controlled so that the intermediate pressure of the intermediate-pressure refrigerant becomes the target pressure.
【請求項3】 請求項1記載の冷凍装置において、 圧縮機(21)の吐出冷媒の吐出温度を検出して検出信号
を出力する吐出温度検出手段(Th-d)が設けられる一
方、 開度調整手段(52)は、吐出温度検出手段(Th-d)の検
出信号を受けて、中間圧ガス冷媒の最大流量に対応する
吐出温度の低下量の急変化点に下流側膨張弁(EV)の開
度を制御する ことを特徴とする冷凍装置。
3. The refrigeration apparatus according to claim 1, further comprising a discharge temperature detecting means (Th-d) for detecting a discharge temperature of a refrigerant discharged from the compressor and outputting a detection signal. The adjusting means (52) receives the detection signal from the discharge temperature detecting means (Th-d), and sets a downstream expansion valve (EV) at a point where the discharge temperature decreases rapidly corresponding to the maximum flow rate of the intermediate-pressure gas refrigerant. A refrigeration apparatus characterized by controlling the opening degree of the refrigeration system.
【請求項4】 請求項1記載の冷凍装置において、 主冷媒回路(2M)における冷媒の凝縮温度を検出する凝
縮温度検出手段(Th)と、冷媒の蒸発温度を検出する蒸
発温度検出手段(Th)と、中間圧冷媒の中間圧温度を検
出する中間圧温度検出手段(Th-m)が設けられる一方、 開度調整手段(52)は、中間圧ガス冷媒の最大流量に対
応する中間圧冷媒の目標温度が主冷媒回路(2M)の各凝
縮温度と各蒸発温度に対して予め設定され、上記凝縮温
度検出手段(Th)と蒸発温度検出手段(Th)と中間圧温
度検出手段(Th-m)の検出信号を受けて、中間圧冷媒の
中間圧温度が、検出凝縮温度と検出蒸発温度に対応する
目標温度になるように下流側膨張弁(EV)の開度を制御
する ことを特徴とする冷凍装置。
4. The refrigerating apparatus according to claim 1, wherein a condensing temperature detecting means (Th) for detecting a condensing temperature of the refrigerant in the main refrigerant circuit (2M), and an evaporating temperature detecting means (Th) for detecting an evaporating temperature of the refrigerant. ) And an intermediate-pressure temperature detecting means (Th-m) for detecting the intermediate-pressure temperature of the intermediate-pressure refrigerant, while the opening degree adjusting means (52) provides an intermediate-pressure refrigerant corresponding to the maximum flow rate of the intermediate-pressure gas refrigerant. Is preset for each condensing temperature and each evaporating temperature of the main refrigerant circuit (2M), and the condensing temperature detecting means (Th), the evaporating temperature detecting means (Th), and the intermediate pressure temperature detecting means (Th- m), the opening degree of the downstream expansion valve (EV) is controlled so that the intermediate pressure temperature of the intermediate pressure refrigerant reaches the target temperature corresponding to the detected condensation temperature and the detected evaporation temperature in response to the detection signal of (m). And refrigeration equipment.
【請求項5】 請求項1記載の冷凍装置において、 インジェクション回路(30)を流れる中間圧ガス冷媒の
流量を検出する流量検出手段(60)が設けられる一方、 開度調整手段(52)は、流量検出手段(60)の検出流量
が最大になるように下流側膨張弁(EV)の開度を制御す
る ことを特徴とする冷凍装置。
5. The refrigeration apparatus according to claim 1, wherein a flow rate detecting means (60) for detecting a flow rate of the intermediate-pressure gas refrigerant flowing through the injection circuit (30) is provided, while the opening degree adjusting means (52) comprises: A refrigeration system characterized by controlling the opening of a downstream expansion valve (EV) so that the flow rate detected by the flow rate detection means (60) is maximized.
JP34293896A 1996-12-24 1996-12-24 Refrigeration equipment Expired - Fee Related JP3317170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34293896A JP3317170B2 (en) 1996-12-24 1996-12-24 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34293896A JP3317170B2 (en) 1996-12-24 1996-12-24 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH10185343A JPH10185343A (en) 1998-07-14
JP3317170B2 true JP3317170B2 (en) 2002-08-26

Family

ID=18357685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34293896A Expired - Fee Related JP3317170B2 (en) 1996-12-24 1996-12-24 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3317170B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005424A1 (en) 2011-07-05 2013-01-10 パナソニック株式会社 Refrigeration cycle device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194842B2 (en) * 2008-01-31 2013-05-08 ダイキン工業株式会社 Refrigeration equipment
JP2010054194A (en) * 2008-07-31 2010-03-11 Daikin Ind Ltd Refrigerating device
US9494348B2 (en) 2011-05-23 2016-11-15 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2012052801A (en) * 2011-12-12 2012-03-15 Daikin Industries Ltd Refrigerating device
CN106931545B (en) * 2017-03-27 2023-10-27 广东美的制冷设备有限公司 Heat pump enthalpy-spraying system, control method thereof and air conditioner
CN107975959B (en) * 2017-11-08 2023-09-22 宁波奥克斯电气股份有限公司 Multi-split air conditioning system and control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005424A1 (en) 2011-07-05 2013-01-10 パナソニック株式会社 Refrigeration cycle device
CN103348197A (en) * 2011-07-05 2013-10-09 松下电器产业株式会社 Refrigeration cycle device
CN103348197B (en) * 2011-07-05 2016-02-10 松下知识产权经营株式会社 Refrigerating circulatory device

Also Published As

Publication number Publication date
JPH10185343A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
JP3925545B2 (en) Refrigeration equipment
EP2083230B1 (en) Air conditioning system
US7360372B2 (en) Refrigeration system
EP2224191B1 (en) Air conditioner and method of controlling the same
US6883346B2 (en) Freezer
JP4895883B2 (en) Air conditioner
WO2006013938A1 (en) Freezing apparatus
WO2000019155A1 (en) Refrigerator
JP2002081767A (en) Air conditioner
WO2019053876A1 (en) Air conditioning device
JP4407012B2 (en) Refrigeration equipment
WO2007102345A1 (en) Refrigeration device
JP2000274859A (en) Refrigerator
JP3208923B2 (en) Operation control device for air conditioner
JPH07120076A (en) Air conditioner
JP3317170B2 (en) Refrigeration equipment
JP3161347B2 (en) Refrigeration equipment
JPH11270918A (en) Refrigerating device
JP2987951B2 (en) Operation control device for air conditioner
JP3334222B2 (en) Air conditioner
KR20110062455A (en) Air conditioning system
WO2021156901A1 (en) Refrigeration cycle device
JP3149625B2 (en) Operation control device for air conditioner
KR102313304B1 (en) Air conditioner for carbon dioxide
JP3189492B2 (en) Operation control device for air conditioner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees