JP4277354B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4277354B2
JP4277354B2 JP12359799A JP12359799A JP4277354B2 JP 4277354 B2 JP4277354 B2 JP 4277354B2 JP 12359799 A JP12359799 A JP 12359799A JP 12359799 A JP12359799 A JP 12359799A JP 4277354 B2 JP4277354 B2 JP 4277354B2
Authority
JP
Japan
Prior art keywords
stage compression
temperature
load
outside air
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12359799A
Other languages
Japanese (ja)
Other versions
JP2000314566A (en
Inventor
知宏 藪
泰 山下
義和 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP12359799A priority Critical patent/JP4277354B2/en
Publication of JP2000314566A publication Critical patent/JP2000314566A/en
Application granted granted Critical
Publication of JP4277354B2 publication Critical patent/JP4277354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2段圧縮機構を備えた空気調和装置に関し、特に、単段圧縮運転と2段圧縮運転の切換制御技術に係るものである。
【0002】
【従来の技術】
従来より、蒸発圧力が低くて高圧縮比の運転が要求される空気調和装置では、例えば特開平4−80545号公報に示されているように、2段圧縮式冷凍サイクルが採用されている。2段圧縮式冷凍サイクルの圧縮機構は、第1圧縮機と第2圧縮機とから構成され、一方の圧縮機のみを使用する単段圧縮運転と、両方の圧縮機を直列に使用する2段圧縮運転とを切り換えられるように構成されている。
【0003】
上記公報に記載された空気調和装置では、図7に示すように、暖房運転時、吹出し温度がある温度Bよりも低くて外気温度がある温度Aよりも高いときに単段圧縮運転を行い、それ以外の温度条件のときには2段圧縮運転を行うようにしている。これは、吹出し温度がBより高いと単段圧縮運転よりも2段圧縮運転の方がエネルギー効率が高く、外気温度がある温度Aより高いと2段圧縮運転よりも単段圧縮運転の方がエネルギー効率が高いとの理由によるものである。また、冷房運転時には、高圧縮比にしなくてもエネルギー効率が高いとの理由で、常に単段圧縮運転を行うようにしている。
【0004】
【発明が解決しようとする課題】
しかし、このような運転制御では、例えば暖房運転の立ち上げ時には吹出し温度が低いため、外気温度がAより高いと単段圧縮運転を行うことになる。つまり、立ち上げ時には能力を高くして運転することが望まれるのに反して低能力での運転になってしまう。また、外気温度が高い場合には、室温が上がっても、吹出し温度が高いと2段圧縮運転が行われるので、運転に無駄が生じる。さらに、冷房運転の場合には、常に単段圧縮運転であるため、立ち上げ時などは十分な性能が得られないことになる。
【0005】
本発明は、このような問題点に鑑みて創案されたものであり、その目的とするところは、2段圧縮機構を備えた空気調和装置において、常に必要な能力で効率の良い運転を行えるようにすることである。
【0006】
【課題を解決するための手段】
本発明が講じた第1の解決手段は、2段圧縮機構(1) を備えた空気調和装置において、外気温度(T) と負荷(Q) とに基づいて、単段圧縮運転と2段圧縮運転とを切り換える制御手段(20)を備えた構成としたものである。
【0007】
また、この第1の解決手段では、制御手段(20)を、暖房運転時、外気温度(T) が予め定められた基準温度(Ta)よりも低いと2段圧縮運転を行う一方、外気温度(T) が基準温度(Ta)以上であると、負荷(Q) がそのときの外気温度に対して予め定められた基準負荷(Qa)よりも小さいときには単段圧縮運転を行い、負荷(Q) が該基準負荷(Qa)以上であるときには2段圧縮運転を行うように構成している。
【0008】
また、この第1の解決手段では、暖房の基準負荷(Qa)を、外気温度(T) が高くなるほど大きな値に設定している。
【0009】
また、本発明が講じた第2の解決手段は、上記第1の解決手段において、制御手段(20)を、冷房運転時、外気温度(T) が予め定められた基準温度(Tb)よりも低いと単段圧縮運転を行う一方、外気温度(T) が基準温度(Tb)以上であると、負荷(Q) がそのときの外気温度に対して予め定められた基準負荷(Qb)よりも大きいときには2段圧縮運転を行い、負荷(Q) が該基準負荷(Qb)以下であるときには単段圧縮運転を行うように構成したものである。
【0010】
また、この第2の解決手段では、冷房の基準負荷(Qb)を、外気温度(T) が高くなるほど小さな値に設定している。
【0011】
−作用−
上記第1の解決手段では、従来の空気調和装置とは違って、外気温度と吹出し温度でなく、外気温度(T) と負荷(Q) (室内温度と設定温度との差)とに基づいて、単段と2段の圧縮運転が切り換えられる。
【0012】
このため、暖房運転時は、外気温度(T) が基準温度(Ta)よりも低いと2段圧縮運転で高能力の運転を行う一方、外気温度(T) が基準温度(Ta)以上であると、負荷(Q) が基準負荷(Qa)よりも小さいときには単段圧縮で運転を効率よく行い、負荷(Q) が該基準負荷(Qa)以上であるときには2段圧縮で高能力の運転を行うことができる。
【0013】
また、外気温度(T) が高いときほど、負荷(Q) 、つまり室内温度と設定温度との差が大きくなければ2段圧縮は行われず、それ以外は単段圧縮で効率よく運転できる。つまり、無駄な運転を行うのを防止できる。また、逆に外気温度(T) が高くても負荷(Q) が大きいときは、2段圧縮による高い能力の運転を行うことができる。
【0014】
上記第2の解決手段では、冷房運転時は、外気温度(T) が基準温度(Tb)よりも低いと単段圧縮で高効率の運転を行う一方、外気温度(T) が基準温度(Tb)以上であると、負荷(Q) が基準負荷(Qb)よりも大きいときには2段圧縮で高能力の運転を行い、負荷(Q) が該基準負荷(Qb)以下であるときには単段圧縮で運転を効率よく行うことができる。
【0015】
また、外気温度(T) が高いときは、負荷(Q)が比較的小さくても高能力の2段圧縮運転が行われる。
【0016】
【発明の効果】
上記第1の解決手段によれば、外気温度(T) と負荷(Q) とから、必要に応じて単段圧縮と2段圧縮の運転が切り換えられるので、常に必要な能力で効率の良い運転を行うことができる。また、暖房運転時に能力と効率のバランスをとりながら運転を行うことができ、必要以上に二段圧縮運転を行うことがなく、無駄なく効率の良い運転を行うことができる。
【0017】
上記第2の解決手段によれば、冷房運転時に能力と効率のバランスをとりながら運転を行うことができる。また、必要以上に二段圧縮運転を行うことがなく、無駄なく効率の良い運転を行うことができる。
【0018】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0019】
図1は、本実施形態の空気調和装置の冷媒回路図である。この冷媒回路は、二段になった圧縮機構(1) と、四路切換弁(2) と、室内熱交換器(3) と、第1電子膨張弁(4) と、気液分離器(5) と、第2電子膨張弁(6) と、室外熱交換器(7) とから構成され、圧縮機構(1) は、下段側の第1圧縮機(8) と上段側の第2圧縮機(9) とから構成されている。
【0020】
具体的には、第1圧縮機(8) の吐出側がアキュムレータ(10)を介して第2圧縮機(9) の吸入側に接続され、第2圧縮機(9) の吐出側は、四路切換弁(2) 、室内熱交換器(3)、第1電子膨張弁(4) 、気液分離器(5) 、第2電子膨張弁(6)、室外熱交換器(7) 、そして四路切換弁(2) を介して、第1圧縮機(9) の吸入側に接続されている。なお、第1圧縮機(8) の吐出側は、第1圧縮機(9) と並列に四路切換弁(2) にも接続され、その並列回路の一方を使用するために電磁弁(12,13) が設けられている。
【0021】
本実施形態の冷媒回路は、二段圧縮運転が可能なだけでなく、必要に応じてガスインジェクションを行えるように構成されている。このため、気液分離器(5) のガス出口と、第2圧縮機(9) の吸入側との間に、2段圧縮運転のときに気液分離器(5) 内のガス冷媒を第2圧縮機(9) に送るインジェクション通路(14)が接続され、該インジェクション通路(14)には電磁弁(15)が設けられている。さらに、上記室内熱交換器(3) と第1膨張弁(4) の間と、インジェクション通路(14)の電磁弁(15)の上流側との間に、冷媒の一部をインジェクション通路(14) に導入する液冷媒導入通路(16)が接続され、該液冷媒導入通路(16)には第3電子膨張弁(17)が設けられている。
【0022】
なお、室内熱交換器(3) 及び室外熱交換器(7) は、いずれも空気熱交換器であり、それぞれ室内ユニット及び室外ユニットに設けられている。そして、室内ユニットには室内熱交換器(3) に空気を供給する室内ファン(図示せず)が設けられ、室外ユニットには室外熱交換器(7) に空気を供給する室外ファン(図示せず)が設けられている。
【0023】
図2は、この空気調和装置の概略機器構成を示すブロック図である。図示するように、この空気調和装置の制御手段であるコントローラ(20)の入力部(20a) には、リモートコントロールユニット(21)やセンサ(22)などが接続されている。リモートコントロールユニット(21)は、電源のオン/オフや温度設定などの信号を入力部(20a) に送信するように構成されている。また、センサ(22)は、外気温度、室内温度を検出する温度センサや、冷媒圧力を検知する圧力センサ等を含み、それぞれの検出値を入力部に送信する。なお、外気温度などは、例えば冷媒圧力から検出するようにしてもよい。
【0024】
これらの入力信号は、演算部(20b) を経て機器制御部(20c) に送られ、この機器制御部(20c) により、圧縮機構(1) (第1圧縮機(8) 、第2圧縮機(9) )、ファン(23)(室内ファン、室外ファン)、バルブ(24)(四路切換弁(2) 、各電子膨張弁(4,6,15)、電磁弁(12,13,15))等の各機器の動作が制御される。
【0025】
この空気調和装置では、暖房運転と冷房運転のいずれの場合も、外気温度(T) と負荷(Q) とに基づいて単段圧縮運転と2段圧縮運転とを切り換えるように構成されている。なお、ここで言う負荷(Q) は、室内温度と設定温度との差である。
【0026】
具体的には、暖房運転の場合は、図3に示すように、外気温度(T) が予め定められた基準温度(Ta)よりも低いと常に2段圧縮運転を行う一方、外気温度(T) が基準温度(Ta)以上であると、負荷(Q) がそのときの外気温度(T) に応じて予め定められた基準負荷(Qa)よりも小さいときには単段圧縮運転を行い、負荷(Q) が該基準負荷(Qa)以上であると2段圧縮運転を行うように構成されている。なお、本実施形態では、この基準負荷(Qa)は、外気温度(T) が高くなるに従って直線的に増加する値となるように設定されている。つまり、暖房運転で外気温度(T) が基準温度(Ta)以上で高くなるほど、負荷(Q) が大きいこと(言い換えれば設定温度が高くて室温との差が大きいこと)が2段圧縮運転を行う条件となる。
【0027】
また、冷房運転の場合は、図4に示すように、外気温度(T) が予め定められた基準温度(Tb)よりも低いと常に単段圧縮運転を行う一方、外気温度(T) が基準温度(Tb)以上であると、負荷(Q) がそのときの外気温度(T) に対して予め定められた基準負荷(Qb)よりも大きいときには2段圧縮運転を行い、負荷(Q) が該基準負荷(Qb)以下であると単段圧縮運転を行うように構成されている。本実施形態では、外気温度(T) が基準温度(Ta)以上で高くなっても、負荷(Q) が小さければ単段圧縮運転が行われる。
【0028】
−運転動作−
次に、この空気調和装置の運転動作について説明する。
【0029】
この空気調和装置は、四路切換弁(2) を切り換えることにより、暖房運転または冷房運転を任意に選択して行うことができ、暖房運転では四路切換弁(2) は図の実線側に設定され、冷房運転では破線側に設定される。また、2段圧縮運転を行う場合は、電磁弁(12)が開かれて電磁弁(13)が閉鎖され、両圧縮機(8,9) が直列に使用される一方、単段圧縮運転を行う場合は電磁弁(12)が閉鎖されて電磁弁(13)が開かれ、第1圧縮機(8) のみが使用される。さらに、2段圧縮運転時にガスインジェクション動作を行うときは、インジェクション通路(14)の電磁弁(15)が開かれる。
【0030】
以下に、この空気調和装置の運転状態の代表例として、2段圧縮でインジェクション通路(14)を開き、暖房運転する状態について説明する。このとき、コントローラ(20)は、四路切換弁(2) や各電磁弁(12,13,15)を制御するのに加えて、各電子膨張弁(4,6,17)の開度を調節し、気液分離器(5) 内の冷媒圧力を所定の中間圧力にするとともに、圧縮機構(1) の吐出側及び吸入側の冷媒圧力を、所定の高圧及び低圧に制御している。
【0031】
この状態で、圧縮機構(1) において2段圧縮されたガス冷媒は、四路切換弁(2) を経た後、室内熱交換器(3) に流入する。室内熱交換器(3) において、高温高圧のガス冷媒は室内空気と熱交換して凝縮し、室内空気を加熱する。凝縮した液冷媒は、第1電子膨張弁(4) を通過する際に減圧され、一部が膨張して中間圧の気液二相冷媒となる。気液二相冷媒は気液分離器(5) に流入し、ガス冷媒と液冷媒とに分離される。液冷媒は気液分離器(5) を流出した後、第2電子膨張弁(6) を通過して低圧の二相冷媒となり、室外熱交換器(7) に流入する。そして、室外熱交換器(7) において、二相冷媒は室外空気と熱交換して蒸発し、蒸発したガス冷媒は、四路切換弁(2) を通過した後、アキュムレータ(11)を経て第1圧縮機(1) に吸入される。
【0032】
一方、気液分離器(5) 内のガス冷媒は、インジェクション通路(14)から電磁弁(15)を経て、第2圧縮機(9) に吸入される。その際、室内熱交換器(3) を通過した後の液冷媒の一部が液冷媒導入通路(16)に吸引され、第3電子膨張弁(17)を通って減圧された後にインジェクション通路(14)のガス冷媒と混合して蒸発し、第2圧縮機(9) に吸入される。このガスインジェクション動作により、室内熱交換器(3) を流れるガス冷媒の循環量が増大し、暖房能力が向上する。
【0033】
なお、インジェクション通路(14)を閉じて行う二段圧縮運転や、単段圧縮運転、あるいは暖房運転とは逆サイクルで行う冷房運転について、冷媒循環動作の詳しい説明は省略する。
【0034】
次に、二段圧縮運転と単段圧縮運転の切り換え動作について説明する。
【0035】
図5は、本実施形態の空気調和装置における暖房運転時の動作を示すフローチャートである。このフローチャートにおいて、暖房運転が開始されると、まずステップST1で外気温度(T) が基準温度(Ta)以上であるかどうかが判別される。そして、外気温度(T) が基準温度(Ta)より低い場合はステップST2に進み、2段圧縮運転が行われる。このとき、必要に応じてガスインジェクション動作の要否も選択される(図示せず)。
【0036】
ステップST3では、リモートコントロールユニットなどによる停止信号の入力がないかどうかを検知しており、入力のない場合はステップST1へ戻り、入力があった場合は運転を停止する。
【0037】
ステップST1で外気温度(T) が(Ta)以上であることを検出した場合は、ステップST4へ進み、負荷(Q) が、基準負荷(Qa)以上かどうかを判別する。そして、負荷(Q) が該基準負荷(Qa)以上であるときは、ステップST2の2段圧縮運転が行われる。逆に負荷(Q) が基準負荷(Qa)より小さいと判断されると、ステップST5へ進んで1段圧縮運転が行われ、さらにステップST3以降の動作が継続して行われる。
【0038】
この空気調和装置では、外気温度、室内温度、設定温度などをコントローラで常時検知しており、温度変化に伴って判別結果が変化すると、2段圧縮運転と単段圧縮運転が自動的に切り替わるようになっている。
【0039】
一方、図6のフローチャートには冷房運転時の動作を示している。このフローでは、まずステップST11で外気温度(T) が基準温度(Tb)以上であるかどうかを判別し、温度(T) が低い場合はステップST12へ進んで単段圧縮運転を行う。ステップST13では停止信号の入力の有無を検出しており、入力のない場合はステップST11へ戻り、入力があった場合は運転を停止する。
【0040】
ステップST11の判別の結果、外気温度(T) が(Tb)以上であることを検知すると、ステップST14へ進んで負荷(Q) の判別を行う。そして、負荷(Q) が基準負荷(Qb)以下であればステップST12の単段圧縮運転を行い、それより大きければステップST15へ進んで2段圧縮運転を行うとともにステップST13以降の動作を繰り返す。この冷房運転時にも、単段圧縮運転と2段圧縮運転の切り換えは、外気温度、室内温度、設定温度などの変化に伴って自動的に行われる。
【0041】
−実施形態の効果−
本実施形態によれば、暖房運転時は、外気温度(T) が基準温度(Ta)よりも低いと常に2段圧縮運転で高能力の運転を行う一方、外気温度(T) が基準温度(Ta)以上であると、負荷(Q) が基準負荷(Qa)よりも小さいときには単段圧縮で運転を効率よく行い、負荷(Q) が基準負荷(Qa)以上になると2段圧縮で高能力の運転を行うことができる。また、冷房運転時は、外気温度(T) が基準温度(Tb)よりも低いと常に単段圧縮で高効率の運転を行う一方、外気温度(T) が基準温度(Tb)以上であると、負荷(Q) が基準負荷(Qb)よりも大きいときには2段圧縮で高能力の運転を行い、負荷(Q) が基準負荷(Qb)以下になると単段圧縮で運転を効率よく行うことができる。
【0042】
このように、本実施形態では、外気温度(T) と負荷(Q) とから、必要に応じて単段圧縮と2段圧縮をと切り換えて運転するようにしているので、常に必要な能力で効率の良い運転を行うことができる。つまり、暖房時、冷房時とも、能力と効率のバランスのとれた運転を行うことができる。
【0043】
【発明のその他の実施の形態】
本発明は、上記実施形態について、以下のような構成としてもよい。
【0044】
例えば、上記実施形態では、基準負荷(Qa,Qb) は外気温度(T) に対応して直線的に変化する値としたが、必ずしも直線的に変化する値でなくてもよく、状況に応じて適宜定めた値を用いればよい。
【0045】
また、上記冷媒回路の構成は単なる一例であって、上記実施形態に限定されるものではない。例えば、ガスインジェクションの機構は必ずしも設けなくてよいし、圧縮機構(1) の運転を単段と二段に切り換えるための具体的な回路構成なども適宜変更してよい。さらに、冷房運転は常時単段圧縮で行い、暖房運転を単段圧縮と2段圧縮とを切り換えながら行うようにしてもよい。
【0046】
また、上記実施形態では暖房運転と冷房運転とを切り換え可能な空気調和装置について説明したが、暖房専用機あるいは冷房専用機であっても単段圧縮運転と二段圧縮運転を切り換えるように構成することができる。
【図面の簡単な説明】
【図1】 本発明の実施形態に係る空気調和装置の冷媒回路図である。
【図2】 図1の空気調和装置の制御ブロック図である。
【図3】 図1の空気調和装置での暖房運転時における圧縮機構の運転モード切り換えを示す線図である。
【図4】 図1の空気調和装置での冷房運転時における圧縮機構の運転モード切り換えを示す線図である。
【図5】 図1の空気調和装置の暖房運転動作を示すフローチャートである。
【図6】 図1の空気調和装置の冷房運転動作を示すフローチャートである。
【図7】 従来の空気調和装置の暖房運転時における運転モード切り換えを示す線図である。
【符号の説明】
(1) 圧縮機構
(2) 四路切換弁
(3) 室内熱交換器
(4) 第1電子膨張弁
(5) 気液分離器
(6) 第2電子膨張弁
(7) 室外熱交換器
(8) 第1圧縮機
(9) 第2圧縮機
(10,11) アキュムレータ
(12,13) 電磁弁
(14) インジェクション通路
(15) 電磁弁
(16) 液冷媒導入通路
(17) 第3電子膨張弁
(20) コントローラ(制御手段)
(21) リモートコントロールユニット
(22) センサ
(23) ファン
(24) バルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner including a two-stage compression mechanism, and particularly relates to a switching control technique between a single-stage compression operation and a two-stage compression operation.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in an air conditioner that requires a high compression ratio operation with a low evaporation pressure, a two-stage compression refrigeration cycle is employed as disclosed in, for example, Japanese Patent Application Laid-Open No. 4-80545. The compression mechanism of the two-stage compression refrigeration cycle includes a first compressor and a second compressor, and a single-stage compression operation that uses only one compressor and a two-stage that uses both compressors in series. It is configured to be able to switch between compression operation.
[0003]
In the air conditioner described in the above publication, as shown in FIG. 7, during the heating operation, the single-stage compression operation is performed when the blow-out temperature is lower than the temperature B with a certain temperature and higher than the temperature A with an outside air temperature, In other temperature conditions, a two-stage compression operation is performed. This is because when the blow-out temperature is higher than B, the two-stage compression operation is more energy efficient than the single-stage compression operation, and when the outside air temperature is higher than a certain temperature A, the single-stage compression operation is more than the two-stage compression operation. This is because energy efficiency is high. Further, during cooling operation, single-stage compression operation is always performed because energy efficiency is high even if the compression ratio is not high.
[0004]
[Problems to be solved by the invention]
However, in such operation control, for example, when the heating operation is started up, the blow-out temperature is low. Therefore, when the outside air temperature is higher than A, the single-stage compression operation is performed. In other words, when starting up, it is desired to drive with a high capacity, but on the contrary, it becomes a low capacity driving. Further, when the outside air temperature is high, even if the room temperature rises, if the blow-out temperature is high, the two-stage compression operation is performed, so that the operation is wasted. Furthermore, since the cooling operation is always a single-stage compression operation, sufficient performance cannot be obtained at startup.
[0005]
The present invention has been made in view of such problems, and the object of the present invention is to perform an efficient operation with a necessary capacity at all times in an air conditioner equipped with a two-stage compression mechanism. Is to do.
[0006]
[Means for Solving the Problems]
The first solution provided by the present invention is a single-stage compression operation and a two-stage compression based on the outside air temperature (T) and the load (Q) in an air conditioner equipped with a two-stage compression mechanism (1). A control means (20) for switching between operation is provided.
[0007]
Further, in the first solution means, the control means (20) performs the two-stage compression operation when the outside air temperature (T) is lower than a predetermined reference temperature (Ta) during the heating operation. When (T) is equal to or higher than the reference temperature (Ta), single-stage compression operation is performed when the load (Q) is smaller than a predetermined reference load (Qa) with respect to the outside air temperature at that time, and the load (Q ) Is equal to or higher than the reference load (Qa), a two-stage compression operation is performed .
[0008]
In the first solution , the heating reference load (Qa) is set to a larger value as the outside air temperature (T) becomes higher .
[0009]
Further, the second solving means adopted by the present invention is that, in the first solving means, the control means (20) is configured such that the outside air temperature (T) is higher than a predetermined reference temperature (Tb) during the cooling operation. If the temperature is low, single-stage compression operation is performed.If the outside air temperature (T) is equal to or higher than the reference temperature (Tb), the load (Q) is higher than the reference load (Qb) determined in advance for the outside air temperature at that time. A two-stage compression operation is performed when the load is large, and a single-stage compression operation is performed when the load (Q) is equal to or less than the reference load (Qb).
[0010]
In the second solution , the cooling reference load (Qb) is set to a smaller value as the outside air temperature (T) becomes higher .
[0011]
-Action-
In the first solution, unlike the conventional air conditioner, it is based on the outside temperature (T) and the load (Q) (difference between the room temperature and the set temperature), not the outside temperature and the outlet temperature. The single-stage and the two-stage compression operation are switched.
[0012]
For this reason, during heating operation , if the outside air temperature (T) is lower than the reference temperature (Ta), a high-capacity operation is performed by two-stage compression operation, while the outside air temperature (T) is higher than the reference temperature (Ta). When the load (Q) is smaller than the reference load (Qa), efficient operation is performed by single-stage compression. When the load (Q) is equal to or higher than the reference load (Qa), high-performance operation is performed by two-stage compression. It can be carried out.
[0013]
Further, as the outside air temperature (T) is higher, the two-stage compression is not performed unless the difference between the load (Q), that is, the room temperature and the set temperature, is large, and the rest can be efficiently operated by the single-stage compression. That is, it is possible to prevent useless driving. Conversely, even if the outside air temperature (T) is high and the load (Q) is large, high-capacity operation by two-stage compression can be performed.
[0014]
In the second solution, during the cooling operation, if the outside air temperature (T) is lower than the reference temperature (Tb), high efficiency operation is performed by single-stage compression, while the outside air temperature (T) is changed to the reference temperature (Tb). When the load (Q) is greater than the reference load (Qb), high-capacity operation is performed with two-stage compression. When the load (Q) is less than the reference load (Qb), single-stage compression is performed. Driving can be performed efficiently.
[0015]
When the outside air temperature (T) is high, a high-capacity two-stage compression operation is performed even if the load (Q) is relatively small.
[0016]
【The invention's effect】
According to the above first solution, since the operation of the single-stage compression and the two-stage compression can be switched as required from the outside air temperature (T) and the load (Q), the efficient operation is always performed with the necessary capacity. It can be performed. Further, it is possible to perform the operation while balancing the capacity and the efficiency during the heating operation, and it is possible to perform the efficient operation without waste without performing the two-stage compression operation more than necessary.
[0017]
According to the second solution, the operation can be performed while balancing the capacity and efficiency during the cooling operation. Further , the two-stage compression operation is not performed more than necessary, and an efficient operation can be performed without waste.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0019]
FIG. 1 is a refrigerant circuit diagram of the air-conditioning apparatus of the present embodiment. This refrigerant circuit includes a two-stage compression mechanism (1), a four-way switching valve (2), an indoor heat exchanger (3), a first electronic expansion valve (4), and a gas-liquid separator ( 5), a second electronic expansion valve (6), and an outdoor heat exchanger (7). The compression mechanism (1) includes a lower first compressor (8) and an upper second compression. Machine (9).
[0020]
Specifically, the discharge side of the first compressor (8) is connected to the suction side of the second compressor (9) via the accumulator (10), and the discharge side of the second compressor (9) Switch valve (2), indoor heat exchanger (3), first electronic expansion valve (4), gas-liquid separator (5), second electronic expansion valve (6), outdoor heat exchanger (7), and four It is connected to the suction side of the first compressor (9) via a path switching valve (2). The discharge side of the first compressor (8) is also connected to the four-way switching valve (2) in parallel with the first compressor (9), and an electromagnetic valve (12) is used to use one of the parallel circuits. 13) is provided.
[0021]
The refrigerant circuit of the present embodiment is configured not only to be able to perform two-stage compression operation but also to perform gas injection as necessary. Therefore, the gas refrigerant in the gas-liquid separator (5) is removed between the gas outlet of the gas-liquid separator (5) and the suction side of the second compressor (9) during the two-stage compression operation. 2 An injection passage (14) to be sent to the compressor (9) is connected, and an electromagnetic valve (15) is provided in the injection passage (14). Further, a part of the refrigerant is passed between the indoor heat exchanger (3) and the first expansion valve (4) and the upstream side of the electromagnetic valve (15) of the injection passage (14). ) Is connected to a liquid refrigerant introduction passage (16), and a third electronic expansion valve (17) is provided in the liquid refrigerant introduction passage (16).
[0022]
The indoor heat exchanger (3) and the outdoor heat exchanger (7) are both air heat exchangers and are provided in the indoor unit and the outdoor unit, respectively. The indoor unit is provided with an indoor fan (not shown) for supplying air to the indoor heat exchanger (3), and the outdoor unit (not shown) for supplying air to the outdoor heat exchanger (7) is provided in the outdoor unit. Z).
[0023]
FIG. 2 is a block diagram showing a schematic device configuration of the air conditioner. As shown in the figure, a remote control unit (21), a sensor (22) and the like are connected to an input section (20a) of a controller (20) which is a control means of the air conditioner. The remote control unit (21) is configured to transmit signals such as power on / off and temperature setting to the input unit (20a). The sensor (22) includes a temperature sensor that detects the outside air temperature and the room temperature, a pressure sensor that detects the refrigerant pressure, and the like, and transmits each detected value to the input unit. In addition, you may make it detect external temperature etc. from a refrigerant | coolant pressure, for example.
[0024]
These input signals are sent to the equipment control section (20c) via the arithmetic section (20b), and the equipment control section (20c) sends the compression mechanism (1) (first compressor (8), second compressor). (9)), fan (23) (indoor fan, outdoor fan), valve (24) (four-way switching valve (2), electronic expansion valve (4, 6, 15), solenoid valve (12, 13, 15) )) Etc. are controlled.
[0025]
This air conditioner is configured to switch between a single-stage compression operation and a two-stage compression operation based on the outside air temperature (T) and the load (Q) in both the heating operation and the cooling operation. The load (Q) referred to here is the difference between the room temperature and the set temperature.
[0026]
Specifically, in the heating operation, as shown in FIG. 3, when the outside air temperature (T) is lower than a predetermined reference temperature (Ta), the two-stage compression operation is always performed, while the outside air temperature (T ) Is equal to or higher than the reference temperature (Ta), a single stage compression operation is performed when the load (Q) is smaller than the reference load (Qa) determined in advance according to the outside air temperature (T) at that time. When Q) is equal to or higher than the reference load (Qa), a two-stage compression operation is performed. In this embodiment, the reference load (Qa) is set to a value that increases linearly as the outside air temperature (T) increases. In other words, the higher the outside temperature (T) is higher than the reference temperature (Ta) in heating operation, the larger the load (Q) (in other words, the higher the set temperature and the greater the difference from room temperature), It is a condition to do.
[0027]
In the cooling operation, as shown in FIG. 4, when the outside air temperature (T) is lower than a predetermined reference temperature (Tb), the single stage compression operation is always performed, while the outside air temperature (T) is the reference temperature. When the temperature (Tb) is higher than the temperature (Tb), when the load (Q) is larger than the predetermined reference load (Qb) with respect to the outside air temperature (T) at that time, a two-stage compression operation is performed, and the load (Q) is When it is below the reference load (Qb), a single-stage compression operation is performed. In this embodiment, even if the outside air temperature (T) becomes higher than the reference temperature (Ta), the single-stage compression operation is performed if the load (Q) is small.
[0028]
-Driving action-
Next, the operation of the air conditioner will be described.
[0029]
This air conditioner can be operated by arbitrarily selecting heating operation or cooling operation by switching the four-way switching valve (2), and in the heating operation, the four-way switching valve (2) is on the solid line side of the figure. It is set and is set to the broken line side in the cooling operation. When performing a two-stage compression operation, the solenoid valve (12) is opened and the solenoid valve (13) is closed, and both compressors (8, 9) are used in series, while the single-stage compression operation is performed. When performing, the solenoid valve (12) is closed and the solenoid valve (13) is opened, and only the first compressor (8) is used. Further, when performing the gas injection operation during the two-stage compression operation, the electromagnetic valve (15) of the injection passage (14) is opened.
[0030]
Below, the state which opens an injection channel | path (14) by two-stage compression and performs a heating operation as a typical example of the operation state of this air conditioning apparatus is demonstrated. At this time, in addition to controlling the four-way switching valve (2) and each solenoid valve (12, 13, 15), the controller (20) controls the opening degree of each electronic expansion valve (4, 6, 17). The refrigerant pressure in the gas-liquid separator (5) is adjusted to a predetermined intermediate pressure, and the refrigerant pressure on the discharge side and the suction side of the compression mechanism (1) is controlled to a predetermined high pressure and low pressure.
[0031]
In this state, the gas refrigerant compressed in two stages in the compression mechanism (1) passes through the four-way switching valve (2) and then flows into the indoor heat exchanger (3). In the indoor heat exchanger (3), the high-temperature and high-pressure gas refrigerant exchanges heat with the indoor air and condenses to heat the indoor air. The condensed liquid refrigerant is depressurized when passing through the first electronic expansion valve (4), and a part of the refrigerant expands to become an intermediate-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flows into the gas-liquid separator (5) and is separated into a gas refrigerant and a liquid refrigerant. The liquid refrigerant flows out of the gas-liquid separator (5), passes through the second electronic expansion valve (6), becomes a low-pressure two-phase refrigerant, and flows into the outdoor heat exchanger (7). In the outdoor heat exchanger (7), the two-phase refrigerant exchanges heat with the outdoor air and evaporates, and the evaporated gas refrigerant passes through the four-way switching valve (2) and then passes through the accumulator (11). It is sucked into 1 compressor (1).
[0032]
On the other hand, the gas refrigerant in the gas-liquid separator (5) is sucked into the second compressor (9) from the injection passage (14) through the electromagnetic valve (15). At that time, a part of the liquid refrigerant after passing through the indoor heat exchanger (3) is sucked into the liquid refrigerant introduction passage (16), depressurized through the third electronic expansion valve (17), and then injected into the injection passage ( It is mixed with the gas refrigerant of 14) and evaporated, and is sucked into the second compressor (9). By this gas injection operation, the circulation amount of the gas refrigerant flowing through the indoor heat exchanger (3) is increased, and the heating capacity is improved.
[0033]
Note that detailed description of the refrigerant circulation operation is omitted for the cooling operation performed in a cycle opposite to the two-stage compression operation, the single-stage compression operation, or the heating operation performed by closing the injection passage (14).
[0034]
Next, the switching operation between the two-stage compression operation and the single-stage compression operation will be described.
[0035]
FIG. 5 is a flowchart showing the operation during the heating operation in the air-conditioning apparatus of the present embodiment. In this flowchart, when the heating operation is started, it is first determined in step ST1 whether or not the outside air temperature (T) is equal to or higher than the reference temperature (Ta). When the outside air temperature (T) is lower than the reference temperature (Ta), the process proceeds to step ST2 and a two-stage compression operation is performed. At this time, whether or not the gas injection operation is necessary is also selected as necessary (not shown).
[0036]
In step ST3, it is detected whether or not a stop signal is input by a remote control unit or the like. If there is no input, the process returns to step ST1, and if there is an input, the operation is stopped.
[0037]
If it is detected in step ST1 that the outside air temperature (T) is equal to or higher than (Ta), the process proceeds to step ST4 to determine whether the load (Q) is equal to or higher than the reference load (Qa). When the load (Q) is equal to or higher than the reference load (Qa), the two-stage compression operation in step ST2 is performed. On the contrary, if it is determined that the load (Q) is smaller than the reference load (Qa), the process proceeds to step ST5, where the one-stage compression operation is performed, and further, the operation after step ST3 is continuously performed.
[0038]
In this air conditioner, the outside air temperature, the room temperature, the set temperature, etc. are constantly detected by the controller, and the two-stage compression operation and the single-stage compression operation are automatically switched when the determination result changes with the temperature change. It has become.
[0039]
On the other hand, the flowchart of FIG. 6 shows the operation during the cooling operation. In this flow, first, in step ST11, it is determined whether or not the outside air temperature (T) is equal to or higher than the reference temperature (Tb). If the temperature (T) is low, the process proceeds to step ST12 and single stage compression operation is performed. In step ST13, whether or not a stop signal is input is detected. If there is no input, the process returns to step ST11, and if there is an input, the operation is stopped.
[0040]
As a result of the determination in step ST11, when it is detected that the outside air temperature (T) is equal to or higher than (Tb), the process proceeds to step ST14 to determine the load (Q). If the load (Q) is less than or equal to the reference load (Qb), the single-stage compression operation in step ST12 is performed. If larger than that, the process proceeds to step ST15 to perform the two-stage compression operation and the operations after step ST13 are repeated. Even during the cooling operation, switching between the single-stage compression operation and the two-stage compression operation is automatically performed according to changes in the outside air temperature, the room temperature, the set temperature, and the like.
[0041]
-Effect of the embodiment-
According to the present embodiment, during the heating operation, if the outside air temperature (T) is lower than the reference temperature (Ta), the high temperature operation is always performed by the two-stage compression operation, while the outside air temperature (T) is set to the reference temperature (T). When the load (Q) is smaller than the reference load (Qa), the operation is efficiently performed by single-stage compression. When the load (Q) exceeds the reference load (Qa), high performance is achieved by two-stage compression. Can be operated. Also, during cooling operation, if the outside air temperature (T) is lower than the reference temperature (Tb), high efficiency operation is always performed with single-stage compression, while the outside air temperature (T) is higher than the reference temperature (Tb). When the load (Q) is larger than the reference load (Qb), high-capacity operation is performed with two-stage compression, and when the load (Q) falls below the reference load (Qb), operation can be performed efficiently with single-stage compression. it can.
[0042]
As described above, in the present embodiment, the operation is performed by switching between the single-stage compression and the two-stage compression as necessary from the outside air temperature (T) and the load (Q). Efficient operation can be performed. That is, it is possible to perform an operation in which the capacity and efficiency are balanced both during heating and during cooling.
[0043]
Other Embodiments of the Invention
The present invention may be configured as follows with respect to the above embodiment.
[0044]
For example, in the above embodiment, the reference load (Qa, Qb) is a value that varies linearly corresponding to the outside air temperature (T), but it does not necessarily have to be a value that varies linearly, depending on the situation. May be used as appropriate.
[0045]
The configuration of the refrigerant circuit is merely an example, and is not limited to the above embodiment. For example, a gas injection mechanism is not necessarily provided, and a specific circuit configuration for switching the operation of the compression mechanism (1) between a single stage and a two stage may be appropriately changed. Further, the cooling operation may be always performed by single-stage compression, and the heating operation may be performed while switching between single-stage compression and two-stage compression.
[0046]
In the above-described embodiment, the air conditioner that can switch between the heating operation and the cooling operation has been described. However, the single-stage compression operation and the two-stage compression operation can be switched even when the heating-only machine or the cooling-only machine is used. be able to.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.
FIG. 2 is a control block diagram of the air conditioner of FIG.
FIG. 3 is a diagram showing operation mode switching of the compression mechanism during heating operation in the air conditioning apparatus of FIG. 1;
4 is a diagram showing operation mode switching of the compression mechanism during cooling operation in the air-conditioning apparatus of FIG. 1. FIG.
FIG. 5 is a flowchart showing a heating operation of the air conditioning apparatus of FIG.
6 is a flowchart showing a cooling operation of the air-conditioning apparatus of FIG.
FIG. 7 is a diagram showing operation mode switching during heating operation of a conventional air conditioner.
[Explanation of symbols]
(1) Compression mechanism
(2) Four-way selector valve
(3) Indoor heat exchanger
(4) First electronic expansion valve
(5) Gas-liquid separator
(6) Second electronic expansion valve
(7) Outdoor heat exchanger
(8) First compressor
(9) Second compressor
(10,11) Accumulator
(12,13) Solenoid valve
(14) Injection passage
(15) Solenoid valve
(16) Liquid refrigerant introduction passage
(17) Third electronic expansion valve
(20) Controller (control means)
(21) Remote control unit
(22) Sensor
(23) Fan
(24) Valve

Claims (2)

2段圧縮機構(1) を備えた空気調和装置であって、
外気温度(T) と負荷(Q) とに基づいて、単段圧縮運転と2段圧縮運転とを切り換える制御手段(20)を備え
制御手段 (20) は、暖房運転時、外気温度 (T) が予め定められた基準温度 (Ta) よりも低いと2段圧縮運転を行う一方、外気温度 (T) が基準温度 (Ta) 以上であると、負荷 (Q) が外気温度に対して予め定められた基準負荷 (Qa) よりも小さいときには単段圧縮運転を行い、負荷 (Q) が該基準負荷 (Qa) 以上であるときには2段圧縮運転を行うように構成され、
暖房の基準負荷 (Qa) は、外気温度 (T) が高くなるほど大きな値に設定されている空気調和装置。
An air conditioner equipped with a two-stage compression mechanism (1),
Control means (20) for switching between single-stage compression operation and two-stage compression operation based on outside air temperature (T) and load (Q) ,
The control means (20) performs a two-stage compression operation when the outside air temperature (T) is lower than a predetermined reference temperature (Ta) during heating operation, while the outside air temperature (T) is equal to or higher than the reference temperature (Ta). When the load (Q) is smaller than the reference load (Qa) predetermined with respect to the outside air temperature, single-stage compression operation is performed, and when the load (Q) is equal to or higher than the reference load (Qa) , Configured to perform stage compression operation,
The air conditioning apparatus in which the reference load (Qa) for heating is set to a larger value as the outside air temperature (T) becomes higher .
制御手段(20)は、冷房運転時、外気温度(T) が予め定められた基準温度(Tb)よりも低いと単段圧縮運転を行う一方、外気温度(T) が基準温度(Tb)以上であると、負荷(Q) が外気温度に対して予め定められた基準負荷(Qb)よりも大きいときには2段圧縮運転を行い、負荷(Q) が該基準負荷(Qb)以下であるときには単段圧縮運転を行うように構成され
冷房の基準負荷 (Qb) は、外気温度 (T) が高くなるほど小さな値に設定されている請求項1記載の空気調和装置。
The control means (20) performs a single-stage compression operation when the outside air temperature (T) is lower than a predetermined reference temperature (Tb) during cooling operation, while the outside air temperature (T) is equal to or higher than the reference temperature (Tb). If it is, load (Q) is performed sometimes two-stage compression operation greater than a predetermined reference load (Qb) relative to the outside air temperature, a single when the load (Q) is less than the reference load (Qb) Configured to perform stage compression operation ,
The air conditioner according to claim 1, wherein the cooling reference load (Qb) is set to a smaller value as the outside air temperature (T) becomes higher .
JP12359799A 1999-04-30 1999-04-30 Air conditioner Expired - Fee Related JP4277354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12359799A JP4277354B2 (en) 1999-04-30 1999-04-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12359799A JP4277354B2 (en) 1999-04-30 1999-04-30 Air conditioner

Publications (2)

Publication Number Publication Date
JP2000314566A JP2000314566A (en) 2000-11-14
JP4277354B2 true JP4277354B2 (en) 2009-06-10

Family

ID=14864560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12359799A Expired - Fee Related JP4277354B2 (en) 1999-04-30 1999-04-30 Air conditioner

Country Status (1)

Country Link
JP (1) JP4277354B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630495A1 (en) * 2004-08-24 2006-03-01 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO A method and a cooling system in which a refrigerant is used as a cooling agent and/or as a defrosting agent
JP5157224B2 (en) * 2007-04-05 2013-03-06 東京電力株式会社 Steam generation system
DE102011075207A1 (en) * 2011-05-04 2012-11-08 BSH Bosch und Siemens Hausgeräte GmbH Single-circuit refrigerating appliance
KR101873595B1 (en) * 2012-01-10 2018-07-02 엘지전자 주식회사 A cascade heat pump and a driving method for the same
CN102748900B (en) * 2012-07-24 2015-03-11 上海伯涵热能科技有限公司 Heat pump, heat pump air conditioner and heat pump water heating unit sequentially using single/double stage compression
AU2020252607B2 (en) * 2019-03-29 2023-03-30 Daikin Industries, Ltd. Refrigeration cycle device
CN114111040A (en) * 2021-11-22 2022-03-01 王思哲 Industrial ultra-high temperature heat pump unit

Also Published As

Publication number Publication date
JP2000314566A (en) 2000-11-14

Similar Documents

Publication Publication Date Title
CN115234993B (en) Air conditioner
KR101212681B1 (en) air conditioner
WO2007063883A1 (en) Freezing device
KR930005666B1 (en) Air conditioner and operating method
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
TW200928260A (en) Refrigeration device
KR100550566B1 (en) A hotting drive method of heat pump multi-air conditioner
AU2003281797A1 (en) Refrigeration equipment
WO2007102345A1 (en) Refrigeration device
JP2716248B2 (en) Heat pump type air conditioner
JP4449139B2 (en) Refrigeration equipment
JP2006138525A (en) Freezing device, and air conditioner
JP4277354B2 (en) Air conditioner
KR101161381B1 (en) Refrigerant cycle apparatus
KR100851906B1 (en) Multi air conditioner capable of heating and cooling simultaneously and control method thereof
CN114270111B (en) Heat source unit and refrigerating device
JP2001235245A (en) Freezer
CN114080529B (en) Refrigerating device
EP1541938A1 (en) Refrigeration equipment
JP2000346478A (en) Refrigerator
JP2010133584A (en) Refrigerating cycle device and air conditioner mounted with the same
JP5313774B2 (en) Air conditioner
JP4407013B2 (en) Heat pump equipment
JP2003042585A (en) Air conditioner
KR100626756B1 (en) Heat pump air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees