JP2000314566A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2000314566A
JP2000314566A JP11123597A JP12359799A JP2000314566A JP 2000314566 A JP2000314566 A JP 2000314566A JP 11123597 A JP11123597 A JP 11123597A JP 12359799 A JP12359799 A JP 12359799A JP 2000314566 A JP2000314566 A JP 2000314566A
Authority
JP
Japan
Prior art keywords
stage compression
load
temperature
outside air
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11123597A
Other languages
Japanese (ja)
Other versions
JP4277354B2 (en
Inventor
Tomohiro Yabu
知宏 藪
Yasushi Yamashita
泰 山下
Yoshikazu Sato
義和 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP12359799A priority Critical patent/JP4277354B2/en
Publication of JP2000314566A publication Critical patent/JP2000314566A/en
Application granted granted Critical
Publication of JP4277354B2 publication Critical patent/JP4277354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Abstract

PROBLEM TO BE SOLVED: To enable an air conditioner equipped with a two-stage compressor to always perform efficient operation with necessary capability. SOLUTION: An air conditioner is provided with a control means (20) for switching between single-stage compression and two-stage compression, based on the ambient air temperature (T) and a load (Q). In particular, during heating operation, it performs two-stage compression, when the ambient air temperature (T) is lower than a predetermined standard temperature (Ta), while when the ambient air temperature (T) is higher than the predetermined temperature (Ta), it performs single-stage compression, if the load (Q) is smaller than a standard load (Qa) that is previously determined for the ambient air temperature, and performs the two-stage compression if the load (Q) is not smaller than the standard load (Qa).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2段圧縮機構を備
えた空気調和装置に関し、特に、単段圧縮運転と2段圧
縮運転の切換制御技術に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having a two-stage compression mechanism, and more particularly to a technique for controlling switching between a single-stage compression operation and a two-stage compression operation.

【0002】[0002]

【従来の技術】従来より、蒸発圧力が低くて高圧縮比の
運転が要求される空気調和装置では、例えば特開平4−
80545号公報に示されているように、2段圧縮式冷
凍サイクルが採用されている。2段圧縮式冷凍サイクル
の圧縮機構は、第1圧縮機と第2圧縮機とから構成さ
れ、一方の圧縮機のみを使用する単段圧縮運転と、両方
の圧縮機を直列に使用する2段圧縮運転とを切り換えら
れるように構成されている。
2. Description of the Related Art Conventionally, an air conditioner which requires low evaporation pressure and high compression ratio operation is disclosed in, for example,
As shown in Japanese Patent No. 80545, a two-stage compression refrigeration cycle is employed. The compression mechanism of the two-stage compression refrigeration cycle includes a first compressor and a second compressor, a single-stage compression operation using only one compressor, and a two-stage compression operation using both compressors in series. It is configured to be able to switch between the compression operation and the compression operation.

【0003】上記公報に記載された空気調和装置では、
図7に示すように、暖房運転時、吹出し温度がある温度
Bよりも低くて外気温度がある温度Aよりも高いときに
単段圧縮運転を行い、それ以外の温度条件のときには2
段圧縮運転を行うようにしている。これは、吹出し温度
がBより高いと単段圧縮運転よりも2段圧縮運転の方が
エネルギー効率が高く、外気温度がある温度Aより高い
と2段圧縮運転よりも単段圧縮運転の方がエネルギー効
率が高いとの理由によるものである。また、冷房運転時
には、高圧縮比にしなくてもエネルギー効率が高いとの
理由で、常に単段圧縮運転を行うようにしている。
In the air conditioner described in the above publication,
As shown in FIG. 7, during the heating operation, the single-stage compression operation is performed when the blow-out temperature is lower than a certain temperature B and the outside air temperature is higher than a certain temperature A, and 2 in other temperature conditions.
Stage compression operation is performed. This is because, when the blowing temperature is higher than B, the energy efficiency of the two-stage compression operation is higher than that of the single-stage compression operation, and when the outside air temperature is higher than a certain temperature A, the single-stage compression operation is higher than the two-stage compression operation. This is because the energy efficiency is high. In the cooling operation, the single-stage compression operation is always performed because the energy efficiency is high even if the compression ratio is not set high.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような運
転制御では、例えば暖房運転の立ち上げ時には吹出し温
度が低いため、外気温度がAより高いと単段圧縮運転を
行うことになる。つまり、立ち上げ時には能力を高くし
て運転することが望まれるのに反して低能力での運転に
なってしまう。また、外気温度が高い場合には、室温が
上がっても、吹出し温度が高いと2段圧縮運転が行われ
るので、運転に無駄が生じる。さらに、冷房運転の場合
には、常に単段圧縮運転であるため、立ち上げ時などは
十分な性能が得られないことになる。
However, in such operation control, for example, when the heating operation is started, the blow-out temperature is low, so that when the outside air temperature is higher than A, the single-stage compression operation is performed. In other words, at the time of start-up, it is desired to drive with a high capacity, but on the other hand, the operation is performed with a low capacity. In addition, when the outside air temperature is high, even if the room temperature rises, if the blowing temperature is high, the two-stage compression operation is performed, so that the operation is wasted. Further, in the case of the cooling operation, since the single-stage compression operation is always performed, sufficient performance cannot be obtained at the time of startup or the like.

【0005】本発明は、このような問題点に鑑みて創案
されたものであり、その目的とするところは、2段圧縮
機構を備えた空気調和装置において、常に必要な能力で
効率の良い運転を行えるようにすることである。
[0005] The present invention has been made in view of the above problems, and an object of the present invention is to provide an air conditioner having a two-stage compression mechanism, which always has an efficient operation with a necessary capacity. Is to be able to do

【0006】[0006]

【課題を解決するための手段】本発明が講じた第1の解
決手段は、2段圧縮機構(1) を備えた空気調和装置にお
いて、外気温度(T) と負荷(Q) とに基づいて、単段圧縮
運転と2段圧縮運転とを切り換える制御手段(20)を備え
た構成としたものである。
According to a first aspect of the present invention, there is provided an air conditioner having a two-stage compression mechanism (1), based on an outside air temperature (T) and a load (Q). And a control means (20) for switching between a single-stage compression operation and a two-stage compression operation.

【0007】また、本発明が講じた第2の解決手段は、
上記第1の解決手段において、制御手段(20)を、暖房運
転時、外気温度(T) が予め定められた基準温度(Ta)より
も低いと2段圧縮運転を行う一方、外気温度(T) が基準
温度(Ta)以上であると、負荷(Q) がそのときの外気温度
に対して予め定められた基準負荷(Qa)よりも小さいとき
には単段圧縮運転を行い、負荷(Q) が該基準負荷(Qa)以
上であるときには2段圧縮運転を行うように構成したも
のである。
[0007] A second solution taken by the present invention is:
In the first solution, the control means (20) performs the two-stage compression operation when the outside air temperature (T) is lower than a predetermined reference temperature (Ta) during the heating operation, while controlling the outside air temperature (T ) Is equal to or higher than the reference temperature (Ta), when the load (Q) is smaller than a predetermined reference load (Qa) with respect to the outside air temperature at that time, a single-stage compression operation is performed, and the load (Q) is When the load is equal to or more than the reference load (Qa), the two-stage compression operation is performed.

【0008】また、本発明が講じた第3の解決手段は、
上記第2の解決手段において、暖房の基準負荷(Qa)を、
外気温度(T) が高くなるほど大きな値に設定したもので
ある。
[0008] A third solution taken by the present invention is:
In the second solution, the heating reference load (Qa) is
It is set to a larger value as the outside air temperature (T) increases.

【0009】また、本発明が講じた第4の解決手段は、
上記第1または第2の解決手段において、制御手段(20)
を、冷房運転時、外気温度(T) が予め定められた基準温
度(Tb)よりも低いと単段圧縮運転を行う一方、外気温度
(T) が基準温度(Tb)以上であると、負荷(Q) がそのとき
の外気温度に対して予め定められた基準負荷(Qb)よりも
大きいときには2段圧縮運転を行い、負荷(Q) が該基準
負荷(Qb)以下であるときには単段圧縮運転を行うように
構成したものである。
A fourth solution taken by the present invention is:
In the first or second solving means, the control means (20)
During the cooling operation, if the outside air temperature (T) is lower than a predetermined reference temperature (Tb), the single-stage compression operation is performed, while the outside air temperature
If (T) is equal to or higher than the reference temperature (Tb), a two-stage compression operation is performed when the load (Q) is higher than a predetermined reference load (Qb) with respect to the outside air temperature at that time. ) Is less than the reference load (Qb), a single-stage compression operation is performed.

【0010】また、本発明が講じた第5の解決手段は、
上記第4の解決手段において、冷房の基準負荷(Qb)を、
外気温度(T) が高くなるほど小さな値に設定したもので
ある。
[0010] A fifth solution taken by the present invention is:
In the fourth solution, the reference load (Qb) for cooling is
It is set to a smaller value as the outside air temperature (T) increases.

【0011】−作用− 上記第1の解決手段では、従来の空気調和装置とは違っ
て、外気温度と吹出し温度でなく、外気温度(T) と負荷
(Q) (室内温度と設定温度との差)とに基づいて、単段
と2段の圧縮運転が切り換えられる。
In the first solution, unlike the conventional air conditioner, not the outside air temperature and the blowout temperature but the outside air temperature (T) and the load.
(Q) The single-stage and two-stage compression operations are switched based on (the difference between the room temperature and the set temperature).

【0012】このため、暖房運転時は、上記第2の解決
手段のように、外気温度(T) が基準温度(Ta)よりも低い
と2段圧縮運転で高能力の運転を行う一方、外気温度
(T) が基準温度(Ta)以上であると、負荷(Q) が基準負荷
(Qa)よりも小さいときには単段圧縮で運転を効率よく行
い、負荷(Q) が該基準負荷(Qa)以上であるときには2段
圧縮で高能力の運転を行うことができる。
For this reason, during the heating operation, when the outside air temperature (T) is lower than the reference temperature (Ta) as in the second solution, the high-capacity operation is performed in the two-stage compression operation, while the outside air is operated. temperature
If (T) is equal to or higher than the reference temperature (Ta), the load (Q)
When it is smaller than (Qa), the operation can be efficiently performed by single-stage compression, and when the load (Q) is equal to or more than the reference load (Qa), high-capacity operation can be performed by two-stage compression.

【0013】また、上記第3の解決手段では、外気温度
(T) が高いときほど、負荷(Q) 、つまり室内温度と設定
温度との差が大きくなければ2段圧縮は行われず、それ
以外は単段圧縮で効率よく運転できる。つまり、無駄な
運転を行うのを防止できる。また、逆に外気温度(T) が
高くても負荷(Q) が大きいときは、2段圧縮による高い
能力の運転を行うことができる。
Further, in the third solution, the outside air temperature
As the (T) becomes higher, the two-stage compression is not performed unless the load (Q), that is, the difference between the room temperature and the set temperature, is large. Otherwise, the single-stage compression can be operated more efficiently. That is, useless driving can be prevented. On the contrary, when the load (Q) is large even when the outside air temperature (T) is high, a high-capacity operation by two-stage compression can be performed.

【0014】上記第4の解決手段では、冷房運転時は、
外気温度(T) が基準温度(Tb)よりも低いと単段圧縮で高
効率の運転を行う一方、外気温度(T) が基準温度(Tb)以
上であると、負荷(Q) が基準負荷(Qb)よりも大きいとき
には2段圧縮で高能力の運転を行い、負荷(Q) が該基準
負荷(Qb)以下であるときには単段圧縮で運転を効率よく
行うことができる。
[0014] In the fourth solution, during cooling operation,
When the outside air temperature (T) is lower than the reference temperature (Tb), high-efficiency operation is performed by single-stage compression.On the other hand, when the outside air temperature (T) is higher than the reference temperature (Tb), the load (Q) is When the load is larger than (Qb), high-capacity operation can be performed by two-stage compression, and when the load (Q) is equal to or less than the reference load (Qb), operation can be efficiently performed by single-stage compression.

【0015】また、上記第5の解決手段では、外気温度
(T) が高いときは、負荷(Q)が比較的小さくても高能力
の2段圧縮運転が行われる。
[0015] In the fifth solution, the outside air temperature
When (T) is high, high-capacity two-stage compression operation is performed even if the load (Q) is relatively small.

【0016】[0016]

【発明の効果】上記第1の解決手段によれば、外気温度
(T) と負荷(Q) とから、必要に応じて単段圧縮と2段圧
縮の運転が切り換えられるので、常に必要な能力で効率
の良い運転を行うことができる。
According to the first solution, the outside air temperature
The operation of the single-stage compression and the operation of the two-stage compression are switched as necessary from (T) and the load (Q), so that efficient operation can always be performed with the required capacity.

【0017】また、上記第2,第3の解決手段によれ
ば、暖房運転時に能力と効率のバランスをとりながら運
転を行うことができ、第4,第5の解決手段によれば、
冷房運転時に能力と効率のバランスをとりながら運転を
行うことができる。特に第3,第5の解決手段によれ
ば、必要以上に二段圧縮運転を行うことがなく、無駄な
く効率の良い運転を行うことができる。
Further, according to the second and third means, the operation can be performed while balancing the performance and efficiency during the heating operation. According to the fourth and fifth means,
During the cooling operation, the operation can be performed while balancing the performance and efficiency. In particular, according to the third and fifth solving means, it is possible to perform an efficient operation without waste without performing the two-stage compression operation more than necessary.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0019】図1は、本実施形態の空気調和装置の冷媒
回路図である。この冷媒回路は、二段になった圧縮機構
(1) と、四路切換弁(2) と、室内熱交換器(3) と、第1
電子膨張弁(4) と、気液分離器(5) と、第2電子膨張弁
(6) と、室外熱交換器(7) とから構成され、圧縮機構
(1) は、下段側の第1圧縮機(8) と上段側の第2圧縮機
(9) とから構成されている。
FIG. 1 is a refrigerant circuit diagram of the air conditioner of the present embodiment. This refrigerant circuit is a two-stage compression mechanism
(1), four-way switching valve (2), indoor heat exchanger (3),
Electronic expansion valve (4), gas-liquid separator (5), second electronic expansion valve
(6) and an outdoor heat exchanger (7),
(1) The first compressor (8) on the lower stage and the second compressor on the upper stage
(9).

【0020】具体的には、第1圧縮機(8) の吐出側がア
キュムレータ(10)を介して第2圧縮機(9) の吸入側に接
続され、第2圧縮機(9) の吐出側は、四路切換弁(2) 、
室内熱交換器(3)、第1電子膨張弁(4) 、気液分離器(5)
、第2電子膨張弁(6)、室外熱交換器(7) 、そして四路
切換弁(2) を介して、第1圧縮機(9) の吸入側に接続さ
れている。なお、第1圧縮機(8) の吐出側は、第1圧縮
機(9) と並列に四路切換弁(2) にも接続され、その並列
回路の一方を使用するために電磁弁(12,13) が設けられ
ている。
Specifically, the discharge side of the first compressor (8) is connected to the suction side of the second compressor (9) via an accumulator (10), and the discharge side of the second compressor (9) is , Four-way switching valve (2),
Indoor heat exchanger (3), first electronic expansion valve (4), gas-liquid separator (5)
, A second electronic expansion valve (6), an outdoor heat exchanger (7), and a four-way switching valve (2), which are connected to the suction side of the first compressor (9). The discharge side of the first compressor (8) is also connected to the four-way switching valve (2) in parallel with the first compressor (9), and the solenoid valve (12) is used to use one of the parallel circuits. , 13) are provided.

【0021】本実施形態の冷媒回路は、二段圧縮運転が
可能なだけでなく、必要に応じてガスインジェクション
を行えるように構成されている。このため、気液分離器
(5)のガス出口と、第2圧縮機(9) の吸入側との間に、
2段圧縮運転のときに気液分離器(5) 内のガス冷媒を第
2圧縮機(9) に送るインジェクション通路(14)が接続さ
れ、該インジェクション通路(14)には電磁弁(15)が設け
られている。さらに、上記室内熱交換器(3) と第1膨張
弁(4) の間と、インジェクション通路(14)の電磁弁(15)
の上流側との間に、冷媒の一部をインジェクション通路
(14) に導入する液冷媒導入通路(16)が接続され、該液
冷媒導入通路(16)には第3電子膨張弁(17)が設けられて
いる。
The refrigerant circuit according to the present embodiment is configured not only to perform two-stage compression operation, but also to perform gas injection as required. For this reason, gas-liquid separator
Between the gas outlet of (5) and the suction side of the second compressor (9),
An injection passage (14) for sending the gas refrigerant in the gas-liquid separator (5) to the second compressor (9) at the time of the two-stage compression operation is connected, and an electromagnetic valve (15) is connected to the injection passage (14). Is provided. Further, between the indoor heat exchanger (3) and the first expansion valve (4), and between the indoor heat exchanger (3) and the solenoid valve (15) of the injection passage (14).
A part of the refrigerant is injected between the
The (14) is connected to a liquid refrigerant introduction passage (16), and the liquid refrigerant introduction passage (16) is provided with a third electronic expansion valve (17).

【0022】なお、室内熱交換器(3) 及び室外熱交換器
(7) は、いずれも空気熱交換器であり、それぞれ室内ユ
ニット及び室外ユニットに設けられている。そして、室
内ユニットには室内熱交換器(3) に空気を供給する室内
ファン(図示せず)が設けられ、室外ユニットには室外
熱交換器(7) に空気を供給する室外ファン(図示せず)
が設けられている。
The indoor heat exchanger (3) and the outdoor heat exchanger
(7) are air heat exchangers, which are provided in the indoor unit and the outdoor unit, respectively. The indoor unit is provided with an indoor fan (not shown) for supplying air to the indoor heat exchanger (3), and the outdoor unit is provided with an outdoor fan (not shown) for supplying air to the outdoor heat exchanger (7). Z)
Is provided.

【0023】図2は、この空気調和装置の概略機器構成
を示すブロック図である。図示するように、この空気調
和装置の制御手段であるコントローラ(20)の入力部(20
a) には、リモートコントロールユニット(21)やセンサ
(22)などが接続されている。リモートコントロールユニ
ット(21)は、電源のオン/オフや温度設定などの信号を
入力部(20a) に送信するように構成されている。また、
センサ(22)は、外気温度、室内温度を検出する温度セン
サや、冷媒圧力を検知する圧力センサ等を含み、それぞ
れの検出値を入力部に送信する。なお、外気温度など
は、例えば冷媒圧力から検出するようにしてもよい。
FIG. 2 is a block diagram showing a schematic device configuration of the air conditioner. As shown in the figure, an input unit (20) of a controller (20), which is a control unit of the air conditioner,
a) includes the remote control unit (21) and sensor
(22) is connected. The remote control unit (21) is configured to transmit signals such as power on / off and temperature setting to the input unit (20a). Also,
The sensor (22) includes a temperature sensor that detects the outside air temperature and the indoor temperature, a pressure sensor that detects the refrigerant pressure, and the like, and transmits each detected value to the input unit. Note that the outside air temperature and the like may be detected from, for example, the refrigerant pressure.

【0024】これらの入力信号は、演算部(20b) を経て
機器制御部(20c) に送られ、この機器制御部(20c) によ
り、圧縮機構(1) (第1圧縮機(8) 、第2圧縮機(9)
)、ファン(23)(室内ファン、室外ファン)、バルブ
(24)(四路切換弁(2) 、各電子膨張弁(4,6,15)、電磁弁
(12,13,15))等の各機器の動作が制御される。
These input signals are sent to an equipment control section (20c) via an arithmetic section (20b), and the compression mechanism (1) (first compressor (8), 2 compressors (9)
), Fan (23) (indoor fan, outdoor fan), valve
(24) (Four-way switching valve (2), each electronic expansion valve (4, 6, 15), solenoid valve
The operation of each device such as (12, 13, 15)) is controlled.

【0025】この空気調和装置では、暖房運転と冷房運
転のいずれの場合も、外気温度(T)と負荷(Q) とに基づ
いて単段圧縮運転と2段圧縮運転とを切り換えるように
構成されている。なお、ここで言う負荷(Q) は、室内温
度と設定温度との差である。
This air conditioner is configured to switch between the single-stage compression operation and the two-stage compression operation based on the outside air temperature (T) and the load (Q) in both the heating operation and the cooling operation. ing. Here, the load (Q) is the difference between the room temperature and the set temperature.

【0026】具体的には、暖房運転の場合は、図3に示
すように、外気温度(T) が予め定められた基準温度(Ta)
よりも低いと常に2段圧縮運転を行う一方、外気温度
(T) が基準温度(Ta)以上であると、負荷(Q) がそのとき
の外気温度(T) に応じて予め定められた基準負荷(Qa)よ
りも小さいときには単段圧縮運転を行い、負荷(Q) が該
基準負荷(Qa)以上であると2段圧縮運転を行うように構
成されている。なお、本実施形態では、この基準負荷(Q
a)は、外気温度(T) が高くなるに従って直線的に増加す
る値となるように設定されている。つまり、暖房運転で
外気温度(T) が基準温度(Ta)以上で高くなるほど、負荷
(Q) が大きいこと(言い換えれば設定温度が高くて室温
との差が大きいこと)が2段圧縮運転を行う条件とな
る。
Specifically, in the case of the heating operation, as shown in FIG. 3, the outside air temperature (T) is set to a predetermined reference temperature (Ta).
If it is lower than this, always perform two-stage compression operation,
If (T) is equal to or higher than the reference temperature (Ta), a single-stage compression operation is performed when the load (Q) is smaller than a predetermined reference load (Qa) according to the outside air temperature (T) at that time, When the load (Q) is equal to or larger than the reference load (Qa), the two-stage compression operation is performed. In this embodiment, the reference load (Q
a) is set to a value that increases linearly as the outside air temperature (T) increases. In other words, as the outside air temperature (T) rises above the reference temperature (Ta) during heating operation, the load
The fact that (Q) is large (in other words, the set temperature is high and the difference from room temperature is large) is a condition for performing the two-stage compression operation.

【0027】また、冷房運転の場合は、図4に示すよう
に、外気温度(T) が予め定められた基準温度(Tb)よりも
低いと常に単段圧縮運転を行う一方、外気温度(T) が基
準温度(Tb)以上であると、負荷(Q) がそのときの外気温
度(T) に対して予め定められた基準負荷(Qb)よりも大き
いときには2段圧縮運転を行い、負荷(Q) が該基準負荷
(Qb)以下であると単段圧縮運転を行うように構成されて
いる。本実施形態では、外気温度(T) が基準温度(Ta)以
上で高くなっても、負荷(Q) が小さければ単段圧縮運転
が行われる。
In the cooling operation, as shown in FIG. 4, when the outside air temperature (T) is lower than a predetermined reference temperature (Tb), the single-stage compression operation is always performed, while the outside air temperature (T ) Is equal to or higher than the reference temperature (Tb), when the load (Q) is higher than a predetermined reference load (Qb) with respect to the outside air temperature (T) at that time, a two-stage compression operation is performed, and the load (Q) Q) is the reference load
(Qb) If it is less than or equal to, the single-stage compression operation is performed. In this embodiment, even if the outside air temperature (T) rises above the reference temperature (Ta), the single-stage compression operation is performed if the load (Q) is small.

【0028】−運転動作− 次に、この空気調和装置の運転動作について説明する。-Operation- Next, the operation of the air conditioner will be described.

【0029】この空気調和装置は、四路切換弁(2) を切
り換えることにより、暖房運転または冷房運転を任意に
選択して行うことができ、暖房運転では四路切換弁(2)
は図の実線側に設定され、冷房運転では破線側に設定さ
れる。また、2段圧縮運転を行う場合は、電磁弁(12)が
開かれて電磁弁(13)が閉鎖され、両圧縮機(8,9) が直列
に使用される一方、単段圧縮運転を行う場合は電磁弁(1
2)が閉鎖されて電磁弁(13)が開かれ、第1圧縮機(8) の
みが使用される。さらに、2段圧縮運転時にガスインジ
ェクション動作を行うときは、インジェクション通路(1
4)の電磁弁(15)が開かれる。
In this air conditioner, the heating operation or the cooling operation can be arbitrarily selected by switching the four-way switching valve (2). In the heating operation, the four-way switching valve (2) is used.
Is set on the solid line side in the figure, and is set on the broken line side in the cooling operation. When performing two-stage compression operation, the solenoid valve (12) is opened and the solenoid valve (13) is closed, and both compressors (8, 9) are used in series. When performing the operation, use the solenoid valve (1
2) is closed, the solenoid valve (13) is opened, and only the first compressor (8) is used. Further, when performing the gas injection operation during the two-stage compression operation, the injection passage (1
The solenoid valve (15) of 4) is opened.

【0030】以下に、この空気調和装置の運転状態の代
表例として、2段圧縮でインジェクション通路(14)を開
き、暖房運転する状態について説明する。このとき、コ
ントローラ(20)は、四路切換弁(2) や各電磁弁(12,13,1
5)を制御するのに加えて、各電子膨張弁(4,6,17)の開度
を調節し、気液分離器(5) 内の冷媒圧力を所定の中間圧
力にするとともに、圧縮機構(1) の吐出側及び吸入側の
冷媒圧力を、所定の高圧及び低圧に制御している。
Hereinafter, as a typical example of the operating state of the air conditioner, a state in which the injection passage (14) is opened by two-stage compression to perform the heating operation will be described. At this time, the controller (20) operates the four-way switching valve (2) and each solenoid valve (12, 13, 1).
In addition to controlling 5), the degree of opening of each electronic expansion valve (4, 6, 17) is adjusted, the refrigerant pressure in the gas-liquid separator (5) is set to a predetermined intermediate pressure, and the compression mechanism is adjusted. In (1), the refrigerant pressure on the discharge side and the suction side is controlled to predetermined high and low pressures.

【0031】この状態で、圧縮機構(1) において2段圧
縮されたガス冷媒は、四路切換弁(2) を経た後、室内熱
交換器(3) に流入する。室内熱交換器(3) において、高
温高圧のガス冷媒は室内空気と熱交換して凝縮し、室内
空気を加熱する。凝縮した液冷媒は、第1電子膨張弁
(4) を通過する際に減圧され、一部が膨張して中間圧の
気液二相冷媒となる。気液二相冷媒は気液分離器(5) に
流入し、ガス冷媒と液冷媒とに分離される。液冷媒は気
液分離器(5) を流出した後、第2電子膨張弁(6)を通過
して低圧の二相冷媒となり、室外熱交換器(7) に流入す
る。そして、室外熱交換器(7) において、二相冷媒は室
外空気と熱交換して蒸発し、蒸発したガス冷媒は、四路
切換弁(2) を通過した後、アキュムレータ(11)を経て第
1圧縮機(1) に吸入される。
In this state, the gas refrigerant compressed in two stages in the compression mechanism (1) passes through the four-way switching valve (2) and then flows into the indoor heat exchanger (3). In the indoor heat exchanger (3), the high-temperature and high-pressure gas refrigerant exchanges heat with indoor air to condense and heat the indoor air. The condensed liquid refrigerant is supplied to the first electronic expansion valve.
When passing through (4), the pressure is reduced and a part expands to become a gas-liquid two-phase refrigerant of intermediate pressure. The gas-liquid two-phase refrigerant flows into the gas-liquid separator (5) and is separated into a gas refrigerant and a liquid refrigerant. After flowing out of the gas-liquid separator (5), the liquid refrigerant passes through the second electronic expansion valve (6), becomes a low-pressure two-phase refrigerant, and flows into the outdoor heat exchanger (7). Then, in the outdoor heat exchanger (7), the two-phase refrigerant exchanges heat with the outdoor air to evaporate, and the evaporated gas refrigerant passes through the four-way switching valve (2) and then passes through the accumulator (11). It is sucked into one compressor (1).

【0032】一方、気液分離器(5) 内のガス冷媒は、イ
ンジェクション通路(14)から電磁弁(15)を経て、第2圧
縮機(9) に吸入される。その際、室内熱交換器(3) を通
過した後の液冷媒の一部が液冷媒導入通路(16)に吸引さ
れ、第3電子膨張弁(17)を通って減圧された後にインジ
ェクション通路(14)のガス冷媒と混合して蒸発し、第2
圧縮機(9) に吸入される。このガスインジェクション動
作により、室内熱交換器(3) を流れるガス冷媒の循環量
が増大し、暖房能力が向上する。
On the other hand, the gas refrigerant in the gas-liquid separator (5) is sucked into the second compressor (9) from the injection passage (14) via the solenoid valve (15). At that time, a part of the liquid refrigerant after passing through the indoor heat exchanger (3) is sucked into the liquid refrigerant introduction passage (16), and after being depressurized through the third electronic expansion valve (17), the injection passage ( 14) mixed with the gas refrigerant and evaporated
It is sucked into the compressor (9). By this gas injection operation, the circulation amount of the gas refrigerant flowing through the indoor heat exchanger (3) increases, and the heating capacity improves.

【0033】なお、インジェクション通路(14)を閉じて
行う二段圧縮運転や、単段圧縮運転、あるいは暖房運転
とは逆サイクルで行う冷房運転について、冷媒循環動作
の詳しい説明は省略する。
A detailed description of the refrigerant circulation operation will be omitted for the two-stage compression operation performed by closing the injection passage (14), the single-stage compression operation, or the cooling operation performed in a cycle opposite to the heating operation.

【0034】次に、二段圧縮運転と単段圧縮運転の切り
換え動作について説明する。
Next, the switching operation between the two-stage compression operation and the single-stage compression operation will be described.

【0035】図5は、本実施形態の空気調和装置におけ
る暖房運転時の動作を示すフローチャートである。この
フローチャートにおいて、暖房運転が開始されると、ま
ずステップST1で外気温度(T) が基準温度(Ta)以上であ
るかどうかが判別される。そして、外気温度(T) が基準
温度(Ta)より低い場合はステップST2に進み、2段圧縮
運転が行われる。このとき、必要に応じてガスインジェ
クション動作の要否も選択される(図示せず)。
FIG. 5 is a flowchart showing the operation of the air-conditioning apparatus of this embodiment during the heating operation. In this flowchart, when the heating operation is started, first, in step ST1, it is determined whether or not the outside air temperature (T) is equal to or higher than the reference temperature (Ta). If the outside air temperature (T) is lower than the reference temperature (Ta), the process proceeds to step ST2, where a two-stage compression operation is performed. At this time, the necessity of the gas injection operation is also selected as necessary (not shown).

【0036】ステップST3では、リモートコントロール
ユニットなどによる停止信号の入力がないかどうかを検
知しており、入力のない場合はステップST1へ戻り、入
力があった場合は運転を停止する。
In step ST3, it is detected whether or not a stop signal has been input by a remote control unit or the like. If there is no input, the process returns to step ST1, and if there has been input, the operation is stopped.

【0037】ステップST1で外気温度(T) が(Ta)以上で
あることを検出した場合は、ステップST4へ進み、負荷
(Q) が、基準負荷(Qa)以上かどうかを判別する。そし
て、負荷(Q) が該基準負荷(Qa)以上であるときは、ステ
ップST2の2段圧縮運転が行われる。逆に負荷(Q) が基
準負荷(Qa)より小さいと判断されると、ステップST5へ
進んで1段圧縮運転が行われ、さらにステップST3以降
の動作が継続して行われる。
If it is detected in step ST1 that the outside air temperature (T) is equal to or higher than (Ta), the operation proceeds to step ST4, where the load is reduced.
It is determined whether (Q) is equal to or more than the reference load (Qa). When the load (Q) is equal to or larger than the reference load (Qa), the two-stage compression operation in step ST2 is performed. Conversely, when it is determined that the load (Q) is smaller than the reference load (Qa), the process proceeds to step ST5, where the one-stage compression operation is performed, and the operation after step ST3 is continuously performed.

【0038】この空気調和装置では、外気温度、室内温
度、設定温度などをコントローラで常時検知しており、
温度変化に伴って判別結果が変化すると、2段圧縮運転
と単段圧縮運転が自動的に切り替わるようになってい
る。
In this air conditioner, the outside air temperature, the indoor temperature, the set temperature, and the like are constantly detected by the controller.
When the determination result changes according to the temperature change, the two-stage compression operation and the single-stage compression operation are automatically switched.

【0039】一方、図6のフローチャートには冷房運転
時の動作を示している。このフローでは、まずステップ
ST11で外気温度(T) が基準温度(Tb)以上であるかどう
かを判別し、温度(T) が低い場合はステップST12へ進
んで単段圧縮運転を行う。ステップST13では停止信号
の入力の有無を検出しており、入力のない場合はステッ
プST11へ戻り、入力があった場合は運転を停止する。
On the other hand, the flowchart of FIG. 6 shows the operation during the cooling operation. In this flow, first step
In ST11, it is determined whether or not the outside air temperature (T) is equal to or higher than the reference temperature (Tb). If the temperature (T) is low, the process proceeds to step ST12 to perform single-stage compression operation. In step ST13, the presence or absence of a stop signal is detected. If there is no input, the process returns to step ST11, and if there is an input, the operation is stopped.

【0040】ステップST11の判別の結果、外気温度
(T) が(Tb)以上であることを検知すると、ステップST1
4へ進んで負荷(Q) の判別を行う。そして、負荷(Q) が
基準負荷(Qb)以下であればステップST12の単段圧縮運
転を行い、それより大きければステップST15へ進んで
2段圧縮運転を行うとともにステップST13以降の動作
を繰り返す。この冷房運転時にも、単段圧縮運転と2段
圧縮運転の切り換えは、外気温度、室内温度、設定温度
などの変化に伴って自動的に行われる。
As a result of the determination in step ST11, the outside air temperature
When detecting that (T) is equal to or more than (Tb), step ST1
Proceed to 4 to determine the load (Q). If the load (Q) is equal to or smaller than the reference load (Qb), the single-stage compression operation in step ST12 is performed. If the load (Q) is larger than the reference load (Qb), the process proceeds to step ST15 to perform the two-stage compression operation and repeats the operation after step ST13. Even during the cooling operation, the switching between the single-stage compression operation and the two-stage compression operation is automatically performed according to changes in the outside air temperature, the indoor temperature, the set temperature, and the like.

【0041】−実施形態の効果− 本実施形態によれば、暖房運転時は、外気温度(T) が基
準温度(Ta)よりも低いと常に2段圧縮運転で高能力の運
転を行う一方、外気温度(T) が基準温度(Ta)以上である
と、負荷(Q) が基準負荷(Qa)よりも小さいときには単段
圧縮で運転を効率よく行い、負荷(Q) が基準負荷(Qa)以
上になると2段圧縮で高能力の運転を行うことができ
る。また、冷房運転時は、外気温度(T) が基準温度(Tb)
よりも低いと常に単段圧縮で高効率の運転を行う一方、
外気温度(T) が基準温度(Tb)以上であると、負荷(Q) が
基準負荷(Qb)よりも大きいときには2段圧縮で高能力の
運転を行い、負荷(Q) が基準負荷(Qb)以下になると単段
圧縮で運転を効率よく行うことができる。
According to the present embodiment, during the heating operation, when the outside air temperature (T) is lower than the reference temperature (Ta), the high-capacity operation is always performed in the two-stage compression operation. When the outside air temperature (T) is equal to or higher than the reference temperature (Ta), when the load (Q) is smaller than the reference load (Qa), the operation is efficiently performed by single-stage compression, and the load (Q) is equal to the reference load (Qa). With the above, high-capacity operation can be performed by two-stage compression. During cooling operation, the outside air temperature (T) is equal to the reference temperature (Tb).
If it is lower than this, high efficiency operation is always performed with single-stage compression,
When the outside air temperature (T) is equal to or higher than the reference temperature (Tb), when the load (Q) is higher than the reference load (Qb), high-capacity operation is performed by two-stage compression, and the load (Q) is changed to the reference load (Qb). ) When it is less than or equal to, the operation can be efficiently performed by single-stage compression.

【0042】このように、本実施形態では、外気温度
(T) と負荷(Q) とから、必要に応じて単段圧縮と2段圧
縮をと切り換えて運転するようにしているので、常に必
要な能力で効率の良い運転を行うことができる。つま
り、暖房時、冷房時とも、能力と効率のバランスのとれ
た運転を行うことができる。
As described above, in this embodiment, the outside air temperature
Since the operation is switched between single-stage compression and two-stage compression as required based on (T) and load (Q), efficient operation can always be performed with the required capacity. That is, it is possible to perform the operation in which the capacity and the efficiency are balanced at the time of heating and at the time of cooling.

【0043】[0043]

【発明のその他の実施の形態】本発明は、上記実施形態
について、以下のような構成としてもよい。
Other Embodiments of the Invention The present invention may be configured as follows with respect to the above embodiment.

【0044】例えば、上記実施形態では、基準負荷(Qa,
Qb) は外気温度(T) に対応して直線的に変化する値とし
たが、必ずしも直線的に変化する値でなくてもよく、状
況に応じて適宜定めた値を用いればよい。
For example, in the above embodiment, the reference load (Qa,
Although Qb) is a value that changes linearly according to the outside air temperature (T), it does not necessarily need to be a value that changes linearly, and a value appropriately determined according to the situation may be used.

【0045】また、上記冷媒回路の構成は単なる一例で
あって、上記実施形態に限定されるものではない。例え
ば、ガスインジェクションの機構は必ずしも設けなくて
よいし、圧縮機構(1) の運転を単段と二段に切り換える
ための具体的な回路構成なども適宜変更してよい。さら
に、冷房運転は常時単段圧縮で行い、暖房運転を単段圧
縮と2段圧縮とを切り換えながら行うようにしてもよ
い。
The configuration of the refrigerant circuit is merely an example, and is not limited to the above embodiment. For example, a gas injection mechanism is not necessarily provided, and a specific circuit configuration for switching the operation of the compression mechanism (1) between a single stage and a two stage may be appropriately changed. Further, the cooling operation may always be performed by single-stage compression, and the heating operation may be performed while switching between single-stage compression and two-stage compression.

【0046】また、上記実施形態では暖房運転と冷房運
転とを切り換え可能な空気調和装置について説明した
が、暖房専用機あるいは冷房専用機であっても単段圧縮
運転と二段圧縮運転を切り換えるように構成することが
できる。
Although the air conditioner capable of switching between the heating operation and the cooling operation has been described in the above embodiment, the single-stage compression operation and the two-stage compression operation can be switched even for a heating-only device or a cooling-only device. Can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る空気調和装置の冷媒回
路図である。
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.

【図2】図1の空気調和装置の制御ブロック図である。FIG. 2 is a control block diagram of the air conditioner of FIG.

【図3】図1の空気調和装置での暖房運転時における圧
縮機構の運転モード切り換えを示す線図である。
FIG. 3 is a diagram showing operation mode switching of a compression mechanism during a heating operation in the air-conditioning apparatus of FIG. 1;

【図4】図1の空気調和装置での冷房運転時における圧
縮機構の運転モード切り換えを示す線図である。
FIG. 4 is a diagram showing operation mode switching of a compression mechanism during a cooling operation in the air-conditioning apparatus of FIG. 1;

【図5】図1の空気調和装置の暖房運転動作を示すフロ
ーチャートである。
FIG. 5 is a flowchart showing a heating operation operation of the air-conditioning apparatus of FIG.

【図6】図1の空気調和装置の冷房運転動作を示すフロ
ーチャートである。
FIG. 6 is a flowchart showing a cooling operation of the air-conditioning apparatus of FIG. 1;

【図7】従来の空気調和装置の暖房運転時における運転
モード切り換えを示す線図である。
FIG. 7 is a diagram showing operation mode switching during a heating operation of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

(1) 圧縮機構 (2) 四路切換弁 (3) 室内熱交換器 (4) 第1電子膨張弁 (5) 気液分離器 (6) 第2電子膨張弁 (7) 室外熱交換器 (8) 第1圧縮機 (9) 第2圧縮機 (10,11) アキュムレータ (12,13) 電磁弁 (14) インジェクション通路 (15) 電磁弁 (16) 液冷媒導入通路 (17) 第3電子膨張弁 (20) コントローラ(制御手段) (21) リモートコントロールユニット (22) センサ (23) ファン (24) バルブ (1) Compression mechanism (2) Four-way switching valve (3) Indoor heat exchanger (4) First electronic expansion valve (5) Gas-liquid separator (6) Second electronic expansion valve (7) Outdoor heat exchanger ( 8) First compressor (9) Second compressor (10,11) Accumulator (12,13) Solenoid valve (14) Injection passage (15) Solenoid valve (16) Liquid refrigerant introduction passage (17) Third electronic expansion Valve (20) Controller (control means) (21) Remote control unit (22) Sensor (23) Fan (24) Valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 義和 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshikazu Sato 1304 Kanaokacho, Sakai-shi, Osaka Daikin Industries Sakai Works Kanaoka Plant

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 2段圧縮機構(1) を備えた空気調和装置
であって、 外気温度(T) と負荷(Q) とに基づいて、単段圧縮運転と
2段圧縮運転とを切り換える制御手段(20)を備えている
空気調和装置。
An air conditioner provided with a two-stage compression mechanism (1), wherein a control for switching between a single-stage compression operation and a two-stage compression operation based on an outside air temperature (T) and a load (Q). An air conditioner comprising means (20).
【請求項2】 制御手段(20)は、暖房運転時、外気温度
(T) が予め定められた基準温度(Ta)よりも低いと2段圧
縮運転を行う一方、外気温度(T) が基準温度(Ta)以上で
あると、負荷(Q) が外気温度に対して予め定められた基
準負荷(Qa)よりも小さいときには単段圧縮運転を行い、
負荷(Q) が該基準負荷(Qa)以上であるときには2段圧縮
運転を行うように構成されている請求項1記載の空気調
和装置。
2. The control means (20) controls an outside air temperature during a heating operation.
When (T) is lower than a predetermined reference temperature (Ta), the two-stage compression operation is performed.On the other hand, when the outside air temperature (T) is higher than the reference temperature (Ta), the load (Q) increases with respect to the outside air temperature. When it is smaller than the predetermined reference load (Qa), perform single-stage compression operation,
The air conditioner according to claim 1, wherein the two-stage compression operation is performed when the load (Q) is equal to or larger than the reference load (Qa).
【請求項3】 暖房の基準負荷(Qa)は、外気温度(T) が
高くなるほど大きな値に設定されている請求項2記載の
空気調和装置。
3. The air conditioner according to claim 2, wherein the heating reference load (Qa) is set to a larger value as the outside air temperature (T) increases.
【請求項4】 制御手段(20)は、冷房運転時、外気温度
(T) が予め定められた基準温度(Tb)よりも低いと単段圧
縮運転を行う一方、外気温度(T) が基準温度(Tb)以上で
あると、負荷(Q) が外気温度に対して予め定められた基
準負荷(Qb)よりも大きいときには2段圧縮運転を行い、
負荷(Q) が該基準負荷(Qb)以下であるときには単段圧縮
運転を行うように構成されている請求項1または2記載
の空気調和装置。
4. The control means (20) controls the outside air temperature during a cooling operation.
When (T) is lower than a predetermined reference temperature (Tb), single-stage compression operation is performed.On the other hand, when the outside air temperature (T) is higher than the reference temperature (Tb), the load (Q) is When it is larger than the predetermined reference load (Qb), two-stage compression operation is performed,
3. The air conditioner according to claim 1, wherein a single-stage compression operation is performed when the load (Q) is equal to or less than the reference load (Qb).
【請求項5】 冷房の基準負荷(Qb)は、外気温度(T) が
高くなるほど小さな値に設定されている請求項4記載の
空気調和装置。
5. The air conditioner according to claim 4, wherein the cooling reference load (Qb) is set to a smaller value as the outside air temperature (T) increases.
JP12359799A 1999-04-30 1999-04-30 Air conditioner Expired - Fee Related JP4277354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12359799A JP4277354B2 (en) 1999-04-30 1999-04-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12359799A JP4277354B2 (en) 1999-04-30 1999-04-30 Air conditioner

Publications (2)

Publication Number Publication Date
JP2000314566A true JP2000314566A (en) 2000-11-14
JP4277354B2 JP4277354B2 (en) 2009-06-10

Family

ID=14864560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12359799A Expired - Fee Related JP4277354B2 (en) 1999-04-30 1999-04-30 Air conditioner

Country Status (1)

Country Link
JP (1) JP4277354B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022541A1 (en) * 2004-08-24 2006-03-02 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno A method and a cooling system in which a refrigerant is used as a cooling agent and as a defrosting agent
JP2008256280A (en) * 2007-04-05 2008-10-23 Tokyo Electric Power Co Inc:The Steam generating system
CN102748900A (en) * 2012-07-24 2012-10-24 上海伯涵热能科技有限公司 Heat pump, heat pump air conditioner and heat pump water heating unit sequentially using single/double stage compression
JP2013142537A (en) * 2012-01-10 2013-07-22 Lg Electronics Inc Cascade heat pump device
CN103502754A (en) * 2011-05-04 2014-01-08 Bsh博世和西门子家用电器有限公司 Single-circuit refrigeration device
WO2020203708A1 (en) * 2019-03-29 2020-10-08 ダイキン工業株式会社 Refrigeration cycle device
CN114111040A (en) * 2021-11-22 2022-03-01 王思哲 Industrial ultra-high temperature heat pump unit

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022541A1 (en) * 2004-08-24 2006-03-02 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno A method and a cooling system in which a refrigerant is used as a cooling agent and as a defrosting agent
JP2008256280A (en) * 2007-04-05 2008-10-23 Tokyo Electric Power Co Inc:The Steam generating system
CN103502754A (en) * 2011-05-04 2014-01-08 Bsh博世和西门子家用电器有限公司 Single-circuit refrigeration device
JP2013142537A (en) * 2012-01-10 2013-07-22 Lg Electronics Inc Cascade heat pump device
US9759454B2 (en) 2012-01-10 2017-09-12 Lg Electronics Inc. Cascade heat pump
CN102748900A (en) * 2012-07-24 2012-10-24 上海伯涵热能科技有限公司 Heat pump, heat pump air conditioner and heat pump water heating unit sequentially using single/double stage compression
CN102748900B (en) * 2012-07-24 2015-03-11 上海伯涵热能科技有限公司 Heat pump, heat pump air conditioner and heat pump water heating unit sequentially using single/double stage compression
WO2020203708A1 (en) * 2019-03-29 2020-10-08 ダイキン工業株式会社 Refrigeration cycle device
JP2020165647A (en) * 2019-03-29 2020-10-08 ダイキン工業株式会社 Refrigeration cycle apparatus
CN113677939A (en) * 2019-03-29 2021-11-19 大金工业株式会社 Refrigeration cycle device
CN113677939B (en) * 2019-03-29 2023-04-04 大金工业株式会社 Refrigeration cycle device
CN114111040A (en) * 2021-11-22 2022-03-01 王思哲 Industrial ultra-high temperature heat pump unit

Also Published As

Publication number Publication date
JP4277354B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
US8205467B2 (en) Air conditioning apparatus
WO2011048662A1 (en) Heat pump device
US20090282849A1 (en) Refrigeration System
US20090301117A1 (en) Air conditioning apparatus
CN115234993B (en) Air conditioner
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
US20060150648A1 (en) Air conditioner
AU2003281797B2 (en) Refrigeration equipment
KR20050086189A (en) A hotting drive method of heat pump multi-air conditioner
JP2716248B2 (en) Heat pump type air conditioner
KR100851906B1 (en) Multi air conditioner capable of heating and cooling simultaneously and control method thereof
US20040103676A1 (en) Method for controlling cooling/heating of heat pump system
JP2000346478A (en) Refrigerator
JP2000314566A (en) Air conditioner
CN114270111B (en) Heat source unit and refrigerating device
JPH10176866A (en) Refrigeration device
US11339997B2 (en) Air conditioning apparatus
US6669102B1 (en) Method for operating air conditioner in warming mode
KR100591310B1 (en) Drive method of capacity control type cooling System having multiple compressor
JP2003042585A (en) Air conditioner
KR100626756B1 (en) Heat pump air-conditioner
KR20010003908A (en) expansion valve control method of multitude-type air conditioner
JP3407867B2 (en) Operation control method of air conditioner
KR100757940B1 (en) Air conditioner
KR20060040190A (en) A device for controlling the compress and controlling method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees