JP2716248B2 - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JP2716248B2
JP2716248B2 JP2193324A JP19332490A JP2716248B2 JP 2716248 B2 JP2716248 B2 JP 2716248B2 JP 2193324 A JP2193324 A JP 2193324A JP 19332490 A JP19332490 A JP 19332490A JP 2716248 B2 JP2716248 B2 JP 2716248B2
Authority
JP
Japan
Prior art keywords
temperature
compression
stage compression
heat exchanger
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2193324A
Other languages
Japanese (ja)
Other versions
JPH0480545A (en
Inventor
完爾 羽根田
杉松 長谷川
伸二 渡辺
宏治 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2193324A priority Critical patent/JP2716248B2/en
Publication of JPH0480545A publication Critical patent/JPH0480545A/en
Application granted granted Critical
Publication of JP2716248B2 publication Critical patent/JP2716248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、単段圧縮と2段圧縮とを切り換え制御する
ヒートポンプ式空気調和機に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner that controls switching between single-stage compression and two-stage compression.

従来の技術 一般に、低温冷蔵庫やバッチ式凍結設備など、蒸発圧
力が極めて低く圧縮比の高い運転状態を必要とする冷凍
装置においては、2段圧縮式冷凍サイクルが使用されて
おり、単段の冷凍サイクルに比べてエネルギー効率の高
い冷凍サイクルを構成することができる(たとえば特開
平2−10062号公報)。
2. Description of the Related Art Generally, in a refrigerating apparatus such as a low-temperature refrigerator or a batch-type freezing equipment, which requires an operating state with a very low evaporating pressure and a high compression ratio, a two-stage compression refrigerating cycle is used, and a single-stage refrigerating cycle is used. A refrigeration cycle having higher energy efficiency than a cycle can be configured (for example, Japanese Patent Laid-Open No. 2-10062).

以下、図面を参照しながら上記従来の2段圧縮式冷凍
サイクルについて説明する。第4図は、従来の2段圧縮
式冷凍サイクル図である。第4図において、1は第1圧
縮部1aと第2圧縮部1bとを有する圧縮装置、3aは蒸発
器、4aおよび4bは第1および第2膨張弁、4cは補助膨張
弁、5は気液分離器、6aは凝縮器であり、圧縮装置1の
第2圧縮部1bの吐出側は凝縮器6a、第2膨張弁4b、気液
分離器5、第1膨張弁4a、蒸発器3aを通して圧縮装置1
の第1圧縮部1aの吸入側に接続されている。また、気液
分離器5のガス出口と、圧縮装置1の中で第1圧縮部1a
と第2圧縮部1bを連結する連結流路との間に、ガス冷媒
を第2圧縮部1bの吸入側に送るインジェクション回路を
バイパス接続して、冷凍サイクルの効率を上げることが
行なわれている。さらに凝縮器6aを出口側に冷媒の一部
を補助膨張弁4cを通してインジェクション路に導く液冷
媒導入路が設けられている。
Hereinafter, the conventional two-stage compression refrigeration cycle will be described with reference to the drawings. FIG. 4 is a diagram of a conventional two-stage compression refrigeration cycle. In FIG. 4, reference numeral 1 denotes a compression device having a first compression section 1a and a second compression section 1b; 3a, an evaporator; 4a and 4b, first and second expansion valves; The liquid separator, 6a is a condenser, and the discharge side of the second compression section 1b of the compressor 1 passes through the condenser 6a, the second expansion valve 4b, the gas-liquid separator 5, the first expansion valve 4a, and the evaporator 3a. Compression device 1
Is connected to the suction side of the first compression section 1a. Further, the gas outlet of the gas-liquid separator 5 and the first compression unit 1a in the compression device 1
An injection circuit that sends gas refrigerant to the suction side of the second compression unit 1b is bypass-connected between the refrigerant and the connection flow path that connects the second compression unit 1b, thereby increasing the efficiency of the refrigeration cycle. . Further, a liquid refrigerant introduction path for guiding a part of the refrigerant to the injection path through the auxiliary expansion valve 4c is provided on the outlet side of the condenser 6a.

この2段圧縮式冷凍サイクルにおいて、圧縮装置1の
第2圧縮部1bから吐出された冷媒を凝縮器6a、第2膨張
弁4b、気液分離器5、第1膨張弁4a、蒸発器3aを流れ
て、圧縮装置1の第1圧縮部1aに吸入される。このと
き、気液分離器5の飽和ガスはインジェクション回路を
通って第2圧縮部1bの吸入側に送られて、冷凍サイクル
の効率を向上させている。さらに、凝縮器6aから液冷媒
が補助膨張弁4cを通して気液分離器5の飽和ガス出口側
と第2圧縮部1bの吸入側に導かれる。
In this two-stage compression refrigeration cycle, the refrigerant discharged from the second compression section 1b of the compressor 1 is supplied to the condenser 6a, the second expansion valve 4b, the gas-liquid separator 5, the first expansion valve 4a, and the evaporator 3a. It flows and is sucked into the first compression section 1a of the compression device 1. At this time, the saturated gas of the gas-liquid separator 5 is sent to the suction side of the second compression section 1b through the injection circuit, thereby improving the efficiency of the refrigeration cycle. Further, the liquid refrigerant is guided from the condenser 6a to the saturated gas outlet side of the gas-liquid separator 5 and the suction side of the second compression section 1b through the auxiliary expansion valve 4c.

発明が解決しようとする課題 しかしながら、上記従来の2段圧縮式冷凍サイクルを
ヒートポンプ式空気調和機に適用する場合には、以下の
ような課題があった。すなわち、第5図に示すヒートポ
ンプ式空気調和機の暖房運転時に室内熱交換器(凝縮
器)温度もしくは室内熱交換器を通過して室内に吹き出
す空気の温度(吹き出し温度)とエネルギー効率(以下
EERと言う)の関係図および第6図に示す外気温度とEER
の関係図よりわかるように、常に2段圧縮運転を行う
と、吹き出し温度が低い場合、あるいは外気温度が高い
場合、単段圧縮運転よりEERが低下してしまうという課
題を有していた。
Problems to be Solved by the Invention However, when the above-described conventional two-stage compression refrigeration cycle is applied to a heat pump type air conditioner, there are the following problems. That is, during the heating operation of the heat pump type air conditioner shown in FIG. 5, the temperature of the indoor heat exchanger (condenser) or the temperature of the air that passes through the indoor heat exchanger and is blown into the room (blowing temperature) and the energy efficiency (hereinafter, referred to as the temperature).
EER) and the outside air temperature and EER shown in FIG.
As can be understood from the relationship diagram, when the two-stage compression operation is always performed, the EER is lower than in the single-stage compression operation when the blow-out temperature is low or when the outside air temperature is high.

本発明は上記課題を解決するもので、吹き出し温度が
低い場合、あるいは外気温度が高い場合に、単段圧縮運
転を可能にして、エネルギー利用効率の高い冷凍サイク
ルを実現できるヒートポンプ式空気調和機を提供するこ
とを目的とするものである。
The present invention solves the above-described problems, and provides a heat pump type air conditioner that can perform a single-stage compression operation when a blowing temperature is low or when an outside air temperature is high and can realize a refrigeration cycle with high energy use efficiency. It is intended to provide.

課題を解決するための手段 上記課題を解決するために本発明のヒートポンプ式空
気調和機は、第1圧縮部と第2圧縮部の2つの圧縮機構
を有する圧縮装置、室外熱交換器、減圧器、気液分離
器、室内熱交換器を連結して冷媒回路を構成し、室内熱
交換器温度もしくは室内熱交換器を通過して室内に吹き
出す空気の温度を検出する第1温度検出手段および外気
温度を検出する第2温度検出手段を設け、第1圧縮部ま
たは第2圧縮部単独でもしくは第1圧縮部と前記第2圧
縮部とを並列に連結して冷媒を圧縮する単段圧縮運転と
第1圧縮部と第2圧縮部を直列に連結して冷媒を圧縮す
る2段圧縮運転を切り換え可能とする流路切り換え手段
を設け、第1温度検出手段と第2温度検出手段とにより
検出された温度に応じて単段圧縮運転と2段圧縮運転と
を切り換え制御する制御部を設けたものである。
Means for Solving the Problems To solve the above problems, a heat pump type air conditioner of the present invention includes a compression device having two compression mechanisms of a first compression unit and a second compression unit, an outdoor heat exchanger, and a decompressor. A first temperature detecting means for detecting a temperature of the indoor heat exchanger or a temperature of air which passes through the indoor heat exchanger and is blown into the room by connecting the gas-liquid separator and the indoor heat exchanger; A single-stage compression operation for compressing a refrigerant by providing a second temperature detection means for detecting a temperature, connecting the first compression unit or the second compression unit alone or connecting the first compression unit and the second compression unit in parallel; A flow path switching means is provided for switching the two-stage compression operation for compressing the refrigerant by connecting the first compression section and the second compression section in series, and is detected by the first temperature detection section and the second temperature detection section. Single-stage compression operation and two-stage compression operation depending on the temperature And a control unit for controlling the switching between the reverse and the reverse.

また、本発明の他のヒートポンプ式空気調和機は、第
1圧縮部と第2圧縮部の2つの圧縮機構を有する圧縮装
置、室外熱交換器、減圧器、気液分離器、室内熱交換器
を連結し、室内熱交換器温度もしくは室内熱交換器を通
過して室内に吹き出す空気の温度を検出する第1温度検
出手段および外気温度を検出する第2温度検出手段と、
第1圧縮部または第2圧縮部単独でもしくは第1圧縮部
と第2圧縮部とを並列に連結して冷媒を圧縮する単段圧
縮運転と、第1圧縮部と第2圧縮部を直列に連結して冷
媒を圧縮する2段圧縮運転を切り換え可能とする流路切
り換え手段と、第1温度検出手段により検出された温度
と第2温度検出手段により検出された温度により算出さ
れる関数値により単段圧縮運転と2段圧縮運転とを切り
換え制御する制御部を設けたものである。
Further, another heat pump type air conditioner of the present invention includes a compression device having two compression mechanisms of a first compression part and a second compression part, an outdoor heat exchanger, a decompressor, a gas-liquid separator, and an indoor heat exchanger. A first temperature detecting means for detecting the temperature of the indoor heat exchanger or a temperature of air passing through the indoor heat exchanger and blowing into the room, and a second temperature detecting means for detecting an outside air temperature;
A single-stage compression operation for compressing the refrigerant by connecting the first compression unit or the second compression unit alone or by connecting the first compression unit and the second compression unit in parallel, and connecting the first compression unit and the second compression unit in series Flow path switching means for switching the two-stage compression operation for connecting and compressing the refrigerant, and a function value calculated by the temperature detected by the first temperature detection means and the temperature detected by the second temperature detection means A control unit is provided for switching between single-stage compression operation and two-stage compression operation.

作用 本発明は、上記構成により、第1温度検出手段と前記
第2温度検出手段とにより検出された温度に応じて単段
圧縮運転と2段圧縮運転とを切り換え制御し、たとえ
ば、第1温度検出手段により検出された温度が所定値よ
り低く、しかも第2温度検出手段により検出された温度
が所定値より高い場合に単段圧縮運転を行い、前記第1
温度検出手段により検出された温度が所定値より高い
か、もしくは前記第1温度検出手段により検出された温
度が所定値より低く、かつ前記第2温度検出手段により
検出された温度が所定値より低いかのいずれかの場合
に、単段圧縮運転から2段圧縮運転に切り換え制御する
ことにより、常にエネルギー効率の高い状態での運転が
実現できる。
Operation The present invention, by the above configuration, controls switching between the single-stage compression operation and the two-stage compression operation in accordance with the temperature detected by the first temperature detection unit and the second temperature detection unit. When the temperature detected by the detection means is lower than a predetermined value and the temperature detected by the second temperature detection means is higher than a predetermined value, the single-stage compression operation is performed, and the first compression operation is performed.
The temperature detected by the temperature detecting means is higher than a predetermined value, or the temperature detected by the first temperature detecting means is lower than a predetermined value, and the temperature detected by the second temperature detecting means is lower than a predetermined value. In either case, by controlling the switching from the single-stage compression operation to the two-stage compression operation, it is possible to always realize an operation with high energy efficiency.

また、第1温度検出手段により検出された温度と第2
温度検出手段により検出された温度により算出される関
数値により単段圧縮運転を2段圧縮運転とを切り換え制
御することにより、より一層効率の良い状態での運転が
可能となる。
Further, the temperature detected by the first temperature detecting means and the second
By switching and controlling the single-stage compression operation and the two-stage compression operation based on the function value calculated based on the temperature detected by the temperature detecting means, the operation in a more efficient state can be performed.

実施例 以下、本発明の一実施例について図面を参考に説明す
る。なお、本実施例を説明するにあたり、第4図に示す
従来のものと同一の機能を有するものには、同一の番号
をつけて説明を省略する。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the description of the present embodiment, components having the same functions as those of the conventional device shown in FIG.

第1図は、本発明の一実施例における冷凍サイクル図
である。第1図において、2は冷房運転と暖房運転を切
り換え制御する四方弁、3は蒸発器である室外熱交換
器、6は凝縮器である室内熱交換器、7aはインジェクシ
ョン回路に設けられた二方弁、7bは第2圧縮部1bの吸入
側に設けられた二方弁、7cは単段圧縮時の第1圧縮部1a
の吐出側い設けられた二方弁、7dは2段圧縮時の第2圧
縮部1bの吐出側に設けられた二方弁、8は室内熱交換器
6の温度もしくは室内熱交換器6を通過して室内に吹き
出す空気の温度を検出する第1温度検出手段、9は外気
温度を検出する第2温度検出手段、10は第1および第2
温度検出手段8,9で検出された温度により、二方弁7a〜7
dを制御し、単段圧縮運転と2段圧縮運転とに切り換え
る制御部である。
FIG. 1 is a refrigeration cycle diagram in one embodiment of the present invention. In FIG. 1, reference numeral 2 denotes a four-way valve for controlling switching between a cooling operation and a heating operation, 3 denotes an outdoor heat exchanger which is an evaporator, 6 denotes an indoor heat exchanger which is a condenser, and 7a denotes a two-way valve provided in an injection circuit. 7b is a two-way valve provided on the suction side of the second compression unit 1b, and 7c is a first compression unit 1a in single-stage compression.
7d is a two-way valve provided on the discharge side of the second compression unit 1b during two-stage compression, and 8 is the temperature of the indoor heat exchanger 6 or the indoor heat exchanger 6. First temperature detecting means for detecting the temperature of the air passing through and blowing into the room, 9 is second temperature detecting means for detecting the outside air temperature, and 10 is the first and second temperature detecting means.
Depending on the temperature detected by the temperature detecting means 8, 9, the two-way valves 7a to 7
The control unit controls d to switch between single-stage compression operation and two-stage compression operation.

この冷凍サイクルにおいて、冷房運転時には低負荷条
件が多く単段圧縮運転の方が効率が良いため、単段圧縮
運転を行う。すなわち、冷房暖房切り換え用四方弁2で
は実線のように流れ、補助膨張弁(第3の減圧器)4cは
閉の状態、二方弁7a,7bおよび7dは閉の状態、7cは回の
状態である。したがって、第1圧縮部1aから吐出された
冷媒は、二方弁7c、四方弁2、室外熱交換器3、第1膨
張弁(第1の減圧器)4a、気液分離器5、第2膨張弁
(第2の減圧器)4b、室内熱交換器6、四方弁2を流れ
て、第1圧縮機1aに吸入される。このように、冷房運転
時は負荷が比較的低いため、単段圧縮運転を行うことに
より、エネルギー効率の高い運転が可能である。
In the refrigeration cycle, the single-stage compression operation is performed because the low-load condition is often large and the single-stage compression operation is more efficient during the cooling operation. That is, the cooling / heating switching four-way valve 2 flows as indicated by the solid line, the auxiliary expansion valve (third decompressor) 4c is in a closed state, the two-way valves 7a, 7b, and 7d are in a closed state, and 7c is a rotating state. It is. Therefore, the refrigerant discharged from the first compression section 1a is supplied to the two-way valve 7c, the four-way valve 2, the outdoor heat exchanger 3, the first expansion valve (first decompressor) 4a, the gas-liquid separator 5, and the second The air flows through the expansion valve (second decompressor) 4b, the indoor heat exchanger 6, and the four-way valve 2 and is sucked into the first compressor 1a. As described above, since the load is relatively low during the cooling operation, the operation with high energy efficiency is possible by performing the single-stage compression operation.

次に、暖房運転時にはまず四方弁2により冷媒の流れ
る方向を転換する。そして、第1温度検出手段8により
検出された室内熱交換器6の温度もしくは室内交換器6
を通過して室内に吹き出す空気の温度(以下吹き出し温
度と言う)および第2温度検出手段9により検出された
外気温度に応じて単段圧縮運転と2段圧縮運転を切り換
えて運転する。このとき、冷房暖房切り換え用四方弁2
は破線のように接続され、補助膨張弁4cは開の状態、二
方弁7a,7bおよび7dは開の状態、7cは閉の状態にする。
そして、第5図および第6図における単段圧縮運転と2
段圧縮運転の交点をそれぞれA,Bとし、第1温度検出手
段8により検出された吹き出し温度Tf,第2温度検出手
段9により検出された外気温度をTgとしたときに、制御
部10は以下に示すような制御をするように構成されてい
る。
Next, during the heating operation, first, the flow direction of the refrigerant is changed by the four-way valve 2. Then, the temperature of the indoor heat exchanger 6 detected by the first temperature detecting means 8 or the temperature of the indoor exchanger 6
The operation is switched between a single-stage compression operation and a two-stage compression operation in accordance with the temperature of the air that passes through and is blown into the room (hereinafter referred to as the blowout temperature) and the outside air temperature detected by the second temperature detecting means 9. At this time, the four-way valve 2 for switching between cooling and heating is used.
Are connected as indicated by broken lines, the auxiliary expansion valve 4c is open, the two-way valves 7a, 7b and 7d are open, and 7c is closed.
The single-stage compression operation shown in FIGS.
When the intersections of the stage compression operation are A and B, respectively, and the outlet temperature T f detected by the first temperature detecting means 8 and the outside air temperature detected by the second temperature detecting means 9 are T g , the controller 10 Is configured to perform the following control.

Tf≦A,Tg≧Bのとき単段圧縮運転 Tf≦A,Tg<Bのとき2段圧縮運転 Tf>A,Tg≧Bのとき2段圧縮運転 Tf>A,Tg<Bのとき2段圧縮運転 すなわち、暖房運転時において、第1温度検出手段8
により検出された温度Tfが所定値Aより低く、しかも第
2温度検出手段9により検出された温度Tgが所定値Bよ
り高い場合に単段圧縮運転を行い、第1温度検出手段8
により検出された温度Tfが所定値Aより高いとき、また
は第1温度検出手段8により検出された温度Tfが所定値
Aより低くかつ第2温度検出手段9により検出された温
度Tgが所定値Bより低いときのいずれかの場合に、単段
圧縮運転から2段圧縮運転に切り換え制御することによ
り、エネルギー効率の高い状態での運転が可能となる。
T f ≦ A, T single-stage compression operation when g ≧ B T f ≦ A, T g <2 -stage compression operation T f When B> A, 2-stage compression operation T f time T g ≧ B> A, Two-stage compression operation when T g <B That is, during the heating operation, the first temperature detection means 8
Detected temperature T f is carried out single-stage compression operation in the case lower than the predetermined value A, addition temperature The T g is detected by the second temperature detecting means 9 is higher than the predetermined value B, the first temperature detecting means 8
Temperature The T g was detected detected temperature T f is is higher than the predetermined value A, or and the detected temperature T f by the first temperature detector 8 is lower than the predetermined value A by the second temperature detecting means 9 by the In any of the cases where the value is lower than the predetermined value B, by controlling to switch from the single-stage compression operation to the two-stage compression operation, the operation with high energy efficiency becomes possible.

次に、制御部10が他の動作をする場合の実施例につい
て説明する。冷房運転時は先の場合と同様である。
Next, an embodiment in which the control unit 10 performs another operation will be described. At the time of cooling operation, it is the same as the previous case.

暖房運転時の単段圧縮運転と2段圧縮運転の切り換え
制御は以下のように異なる。第2図は吹き出し温度をパ
ラメータにしたときの外気温度とEERの関係図である。
第2図において、単段圧縮運転と2段圧縮運転の交点の
描く軌跡EERtrは、吹き出し温度Tfと外気温度Tgの関数
として式(1)のように表すことができる。
Switching control between the single-stage compression operation and the two-stage compression operation during the heating operation differs as follows. FIG. 2 is a diagram showing the relationship between the outside air temperature and the EER when the blowing temperature is used as a parameter.
In FIG. 2, a locus EER tr drawn by the intersection of the single-stage compression operation and the two-stage compression operation can be expressed as a function of the blow-out temperature Tf and the outside air temperature Tg as shown in Expression (1).

EERtr=f(Tf,Tg) (1) このEERtrを吹き出し温度Tfと外気温度Tgの関係で表
すと、第3図のTftrとして表すことができ、B1〜B6の定
数を用いて外気温度Tgの多項式として式(2)のように
近似できる。
EER tr = f (T f , T g ) (1) When this EER tr is represented by the relationship between the blowing temperature T f and the outside air temperature T g , it can be represented as T ftr in FIG. 3, and B 1 to B 6 Can be approximated as equation (2) as a polynomial of the outside air temperature T g using the constant

Tftr=f(Tg) ≒B1+B2Tg+B3Tg 2 +B4Tg 3+B5Tg 4+B6Tg 5 (ただしTftrはEERtrの別表現)(2) ここで、Tftrは単段圧縮運転と2段圧縮運転のうち、
EERの良い方を示す境界となっていることがわかる。し
たがって、第1温度検出手段8によって検出された吹き
出し温度Tfおよび第2温度検出手段9によって検出され
た外気温度TgとからTf≦Tftrのときは単段圧縮運転を行
い、Tf>Tftrのときは2段圧縮運転を行うと、最もエネ
ルギー効率の良い状態で運転を行うことが可能となる。
T ftr = f (T g ) ≒ B 1 + B 2 T g + B 3 T g 2 + B 4 T g 3 + B 5 T g 4 + B 6 T g 5 (where T ftr is another expression of EER tr ) (2) here And T ftr is one of the single-stage compression operation and the two-stage compression operation.
It can be seen that the boundary shows the better EER. Therefore, when T f ≦ T ftr from the outlet temperature T f detected by the first temperature detecting means 8 and the outside air temperature T g detected by the second temperature detecting means 9, a single-stage compression operation is performed, and T f When> T ftr , performing the two-stage compression operation enables the operation to be performed in the most energy-efficient state.

なお、上記実施例において、単段圧縮運転時では、第
1圧縮部1aが単独で冷媒を圧縮する運転を行うように構
成されているが、第2圧縮部1bの単独運転であってもよ
く、また、第1圧縮部1aと第2圧縮部1bとを並列に連結
して冷媒を圧縮する運転を行うように構成してもよい。
In the above embodiment, in the single-stage compression operation, the first compression unit 1a is configured to perform the operation of independently compressing the refrigerant. However, the second compression unit 1b may be independently operated. Alternatively, the first compression section 1a and the second compression section 1b may be connected in parallel to perform an operation of compressing the refrigerant.

また、上記実施例に示した第1圧縮部1aおよび第2圧
縮部1bについては一定容量のものでも良いが、たとえ
ば、インバータを用いた周波数可変型圧縮機のような可
変容量型のものを用いても良い。この場合、大容量運転
にすることで、さらに暖房能力が向上する。
Further, the first compression section 1a and the second compression section 1b shown in the above embodiment may be of a fixed capacity, but for example, may be of a variable capacity type such as a variable frequency compressor using an inverter. May be. In this case, the heating capacity is further improved by performing the large-capacity operation.

また、上記実施例に示したたとえばステッピングモー
タなどで駆動される電動の第1、第2膨張弁4a,4bおよ
び補助膨張弁4cのような可変絞りの代わりにキャピラリ
ーチューブを用いても良い。さらに、上述の実施例で
は、流路切り換え制御手段として二方弁を用いたが、三
方弁あるいは四方弁もしくは他の切り換え装置によって
も構わない。
Further, a capillary tube may be used instead of the variable throttle such as the first and second electric expansion valves 4a and 4b and the auxiliary expansion valve 4c driven by, for example, the stepping motor shown in the above embodiment. Further, in the above-described embodiment, the two-way valve is used as the flow path switching control means. However, a three-way valve, a four-way valve, or another switching device may be used.

また、第1温度検出手段8と第2温度検出手段9によ
り検出された温度により算出される関数値として、吹き
出し温度をパラメータにした外気温度とEERの関数値を
用いたが、他の関数値でも良い。
As the function values calculated by the temperatures detected by the first temperature detecting means 8 and the second temperature detecting means 9, the function values of the outside air temperature and the EER using the blowing temperature as a parameter are used. But it is good.

発明の効果 以上のように本発明によれば、室内熱交換器温度もし
くは室内熱交換器を通過して室内に吹き出す空気の温度
を検出する第1温度検出手段および外気温度を検出する
第2温度検出手段とを有し、第1圧縮部または第2圧縮
部単独でもしくは第1圧縮部と第2圧縮部とを並列に連
結して冷媒を圧縮する単段圧縮運転と第1圧縮部と第2
圧縮部を直列に連結して冷媒を圧縮する2段圧縮運転と
を切り換え可能とする流路切り換え手段を有し、第1温
度検出手段と第2温度検出手段とにより検出された温度
に応じて単段圧縮と2段圧縮とを切り換え制御すること
により、または、室内熱交換器温度もしくは室内熱交換
器を通過して室内に吹き出す空気の温度を検出する第1
温度検出手段および外気温度を検出する第2温度検出手
段とを有し、第1圧縮部または第2圧縮部単独でもしく
は第1圧縮部と第2圧縮部とを並列に連結して冷媒を圧
縮する単段圧縮運転と第1圧縮部と第2圧縮部を直列に
連結して冷媒を圧縮する2段圧縮運転とを切り換え可能
とする流路切り換え手段を有し、第1温度検出手段によ
り検出された温度と第2温度検出手段により検出される
温度により算出される関数値により単段圧縮運転と2段
圧縮運転とを切り換え制御することにより、冷房時は単
段圧縮運転を行い、暖房時は第1温度検出手段により検
出された吹き出し温度および第2温度検出手段により検
出された外気温度により単段圧縮運転と2段圧縮運転と
を切り換え制御することができ、エネルギー利用効率の
高い冷凍サイクルを実現できる。
Effect of the Invention As described above, according to the present invention, the first temperature detecting means for detecting the temperature of the indoor heat exchanger or the temperature of the air passing through the indoor heat exchanger and blowing into the room, and the second temperature for detecting the outside air temperature A single-stage compression operation for compressing the refrigerant by detecting the first compression unit or the second compression unit alone or by connecting the first compression unit and the second compression unit in parallel with each other; 2
A flow path switching unit configured to switch between a two-stage compression operation in which the compression units are connected in series to compress the refrigerant, and according to a temperature detected by the first temperature detection unit and the second temperature detection unit; A first method for detecting a temperature of an indoor heat exchanger or a temperature of air that passes through an indoor heat exchanger and is blown into a room by controlling switching between single-stage compression and two-stage compression.
A temperature detecting means and a second temperature detecting means for detecting an outside air temperature, wherein the refrigerant is compressed by connecting the first compression section or the second compression section alone or by connecting the first compression section and the second compression section in parallel. And a flow switching means for switching between a single-stage compression operation and a two-stage compression operation in which the first compression section and the second compression section are connected in series to compress the refrigerant. The single-stage compression operation and the two-stage compression operation are switched and controlled by a function value calculated based on the detected temperature and the temperature detected by the second temperature detection means. Can switch between single-stage compression operation and two-stage compression operation based on the blow-out temperature detected by the first temperature detection means and the outside air temperature detected by the second temperature detection means, and provide a refrigeration cycle with high energy use efficiency. It can be realized.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例を示すヒートポンプ式空気
調和機の冷凍サイクル図、第2図は吹き出し温度をパラ
メータにした外気温度とEERの関係図、第3図は外気温
度と吹き出し温度より判断する単段圧縮運転と2段圧縮
運転の運転条件を定める関係図、第4図は従来の2段圧
縮式冷凍サイクル図、第5図は第1温度検出手段により
検出される室内熱交換器温度もしくは室内熱交換器を通
過して室内に吹き出す空気の吹き出し温度とEERの関係
図、第6図は第2温度検出手段により検出される外気温
度とEERの関係図である。 1……圧縮装置、1a……第1圧縮部、1b……第2圧縮
部、2……冷房暖房切り換え四方弁、3……室外熱交換
器(蒸発器)、4a,4b……第1および第2膨張弁(第1
および第2の減圧器)、4c……補助膨張弁(第3の減圧
器)、5……気液分離器、6……室内熱交換器(凝縮
器)、7a〜7d……二方弁(流路切り換え手段)、8……
第1温度検出手段、9……第2温度検出手段、10……制
御部。
FIG. 1 is a refrigeration cycle diagram of a heat pump type air conditioner showing one embodiment of the present invention, FIG. 2 is a diagram showing a relationship between an outside air temperature and an EER using a blowout temperature as a parameter, and FIG. FIG. 4 is a relational diagram for determining operating conditions of the single-stage compression operation and the two-stage compression operation to be judged more clearly, FIG. 4 is a diagram of a conventional two-stage compression refrigeration cycle, and FIG. 5 is indoor heat exchange detected by first temperature detection means. FIG. 6 is a diagram showing the relationship between the unit temperature or the temperature of the air blown out of the room through the indoor heat exchanger and the EER, and FIG. 6 is a diagram showing the relationship between the outside air temperature detected by the second temperature detecting means and the EER. DESCRIPTION OF SYMBOLS 1 ... Compression device, 1a ... 1st compression part, 1b ... 2nd compression part, 2 ... Cooling / heating switching four-way valve, 3 ... Outdoor heat exchanger (evaporator), 4a, 4b ... 1st And the second expansion valve (first
4c... Auxiliary expansion valve (third pressure reducer), 5... Gas-liquid separator, 6... Indoor heat exchanger (condenser), 7a to 7d... Two-way valve (Channel switching means), 8 ...
1st temperature detection means, 9 ... 2nd temperature detection means, 10 ... Control part.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1圧縮部と第2圧縮部の2つの圧縮機構
を有する圧縮装置、室外熱交換器、減圧器、気液分離
器、室内熱交換器を連結してなるヒートポンプ式空気調
和機であって、前記室内熱交換器温度もしくは前記室内
熱交換器を通過して室内に吹き出す空気の温度を検出す
る第1温度検出手段と、外気温度を検出する第2温度検
出手段と、前記第1圧縮部または前記第2圧縮部単独で
もしくは前記第1圧縮部と前記第2圧縮部とを並列に連
結して冷媒を圧縮する単段圧縮運転と前記第1圧縮部と
前記第2圧縮部を直列に連結して冷媒を圧縮する2段圧
縮運転を切り換え可能とする流路切り換え手段と、前記
第1温度検出手段と前記第2温度検出手段とにより検出
された温度に応じて単段圧縮運転と2段圧縮運転とを切
り換え制御する制御部を備えたヒートポンプ式空気調和
機。
1. A heat pump type air conditioner comprising a compression device having two compression mechanisms of a first compression portion and a second compression portion, an outdoor heat exchanger, a decompressor, a gas-liquid separator, and an indoor heat exchanger. A first temperature detecting means for detecting a temperature of the indoor heat exchanger or a temperature of air passing through the indoor heat exchanger and blowing into the room; a second temperature detecting means for detecting an outside air temperature; A single-stage compression operation in which the first compression section or the second compression section alone or the first compression section and the second compression section are connected in parallel to compress the refrigerant, and the first compression section and the second compression section Flow path switching means for switching between two-stage compression operation for compressing a refrigerant by connecting parts in series, and a single-stage switching means according to the temperature detected by the first temperature detection means and the second temperature detection means Control to switch between compression operation and two-stage compression operation The heat pump type air conditioner having a.
【請求項2】第1温度検出手段により検出された温度が
所定値より低く、しかも第2温度検出手段により検出さ
れた温度が所定値より高い場合に単段圧縮運転を行い、
前記第1温度検出手段により検出された温度が所定値よ
り高いか、もしくは前記第1温度検出手段により検出さ
れた温度が所定値より低く、かつ前記第2温度検出手段
により検出された温度が所定値より低いかのいずれかの
場合に、制御部は単段圧縮運転から2段圧縮運転に切り
換え制御することを特徴とする請求項1記載のヒートポ
ンプ式空気調和機。
2. A single-stage compression operation is performed when the temperature detected by the first temperature detecting means is lower than a predetermined value and the temperature detected by the second temperature detecting means is higher than a predetermined value.
The temperature detected by the first temperature detecting means is higher than a predetermined value, or the temperature detected by the first temperature detecting means is lower than a predetermined value, and the temperature detected by the second temperature detecting means is higher than a predetermined value. The heat pump type air conditioner according to claim 1, wherein the control unit controls to switch from the single-stage compression operation to the two-stage compression operation when the value is lower than the value.
【請求項3】第1圧縮部と第2圧縮部の2つの圧縮機構
を有する圧縮装置、室外熱交換器、減圧器、気液分離
器、室内熱交換器を連結してなるヒートポンプ式空気調
和機であって、前記室内熱交換器温度もしくは前記室内
熱交換器を通過して室内に吹き出す空気の温度を検出す
る第1温度検出手段と、外気温度を検出する第2温度検
出手段と、前記第1圧縮部または前記第2圧縮部単独で
もしくは前記第1圧縮部と前記第2圧縮部とを並列に連
結して冷媒を圧縮する単段圧縮運転と前記第1圧縮部と
前記第2圧縮部を直列に連結して冷媒を圧縮する2段圧
縮運転とを切り換え可能とする流路切り換え手段と、前
記第1温度検出手段により検出された温度と前記第2温
度検出手段により検出された温度により算出される関数
値により単段圧縮運転と2段圧縮運転とを切り換え制御
する制御部を備えたヒートポンプ式空気調和機。
3. A heat pump type air conditioner comprising a compression apparatus having two compression mechanisms, a first compression section and a second compression section, an outdoor heat exchanger, a decompressor, a gas-liquid separator, and an indoor heat exchanger. A first temperature detecting means for detecting a temperature of the indoor heat exchanger or a temperature of air passing through the indoor heat exchanger and blowing into the room; a second temperature detecting means for detecting an outside air temperature; A single-stage compression operation in which the first compression section or the second compression section alone or the first compression section and the second compression section are connected in parallel to compress the refrigerant, and the first compression section and the second compression section Flow path switching means for switching between a two-stage compression operation for compressing a refrigerant by connecting parts in series, a temperature detected by the first temperature detection means and a temperature detected by the second temperature detection means Single-stage compression operation based on the function value calculated by When the heat pump type air conditioner having a control unit for controlling switching between the two-stage compression operation.
JP2193324A 1990-07-20 1990-07-20 Heat pump type air conditioner Expired - Fee Related JP2716248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2193324A JP2716248B2 (en) 1990-07-20 1990-07-20 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2193324A JP2716248B2 (en) 1990-07-20 1990-07-20 Heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPH0480545A JPH0480545A (en) 1992-03-13
JP2716248B2 true JP2716248B2 (en) 1998-02-18

Family

ID=16306011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2193324A Expired - Fee Related JP2716248B2 (en) 1990-07-20 1990-07-20 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JP2716248B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11656016B2 (en) 2019-11-20 2023-05-23 Ebara Refrigeration Equipment & Systems Co., Ltd. Cooling system that comprises multiple cooling apparatus and reduces power consumption
US11703284B2 (en) 2019-11-08 2023-07-18 Ckd Corporation Temperature control system and integrated temperature control system
US11788777B2 (en) 2019-11-08 2023-10-17 Ckd Corporation Temperature control system and integrated temperature control system
US11796247B2 (en) 2019-11-20 2023-10-24 Ckd Corporation Temperature control system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630495A1 (en) * 2004-08-24 2006-03-01 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO A method and a cooling system in which a refrigerant is used as a cooling agent and/or as a defrosting agent
FR2889296B1 (en) * 2005-07-29 2013-07-05 Patrice Saillard COMPRESSION UNIT COMPRISING THESE COMPRESSORS AND THERMAL INSTALLATION COMPRISING SUCH A UNIT
JP2007298188A (en) * 2006-04-27 2007-11-15 Daikin Ind Ltd Refrigerating device
KR100845847B1 (en) * 2006-11-13 2008-07-14 엘지전자 주식회사 Control Metheod for Airconditioner
JP5383802B2 (en) * 2009-06-23 2014-01-08 三菱電機株式会社 Vapor compression cycle equipment
JP5556499B2 (en) 2010-08-18 2014-07-23 株式会社デンソー Two-stage boost refrigeration cycle
JP5659909B2 (en) * 2011-03-29 2015-01-28 株式会社富士通ゼネラル Heat pump equipment
KR101258096B1 (en) * 2011-12-28 2013-04-25 백석노 Two step compression heat pump system
DE102012111455A1 (en) * 2012-11-27 2014-05-28 Valeo Klimasysteme Gmbh Refrigerant circuit of a vehicle air conditioning system and method for air conditioning a vehicle interior
CN103954067B (en) * 2014-04-15 2016-06-08 珠海格力电器股份有限公司 Refrigerating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11703284B2 (en) 2019-11-08 2023-07-18 Ckd Corporation Temperature control system and integrated temperature control system
US11788777B2 (en) 2019-11-08 2023-10-17 Ckd Corporation Temperature control system and integrated temperature control system
US11656016B2 (en) 2019-11-20 2023-05-23 Ebara Refrigeration Equipment & Systems Co., Ltd. Cooling system that comprises multiple cooling apparatus and reduces power consumption
US11796247B2 (en) 2019-11-20 2023-10-24 Ckd Corporation Temperature control system

Also Published As

Publication number Publication date
JPH0480545A (en) 1992-03-13

Similar Documents

Publication Publication Date Title
US5467604A (en) Multiroom air conditioner and driving method therefor
US20070151268A1 (en) Air conditioner and refrigerant control method thereof
JP2716248B2 (en) Heat pump type air conditioner
EP1703230A2 (en) Multi type air-conditioner and control method thereof
KR100865093B1 (en) Air conditioning system
US20120266616A1 (en) Multi-type air conditioner and method of controlling the same
CN105758034A (en) Air conditioning system and control method thereof
CN105890081A (en) Air conditioner system and control method of air conditioner system
KR920007811B1 (en) Air conditioner
KR960034932A (en) Refrigerating apparatus, air conditioner using the refrigerating apparatus, and method of operating the air conditioner
JP2000346478A (en) Refrigerator
JPH04110576A (en) Heat pump type air conditioner
JPH0861790A (en) Air conditioner
EP1528332B1 (en) air conditioner having multiple outdoor units and control method thereof
JP2001235245A (en) Freezer
CN105698426A (en) Air conditioning system and control method of air conditioning system
JP2004278824A (en) Refrigeration cycle device and air conditioner
JP4277354B2 (en) Air conditioner
JPH10176866A (en) Refrigeration device
JPH10141785A (en) Air conditioner
JP2000154941A (en) Refrigerator
JP2810422B2 (en) Refrigeration equipment
KR100626756B1 (en) Heat pump air-conditioner
JPH09273819A (en) Refrigerating cycle
JPH03211380A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees