JPH10141785A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH10141785A
JPH10141785A JP29995596A JP29995596A JPH10141785A JP H10141785 A JPH10141785 A JP H10141785A JP 29995596 A JP29995596 A JP 29995596A JP 29995596 A JP29995596 A JP 29995596A JP H10141785 A JPH10141785 A JP H10141785A
Authority
JP
Japan
Prior art keywords
accumulator
compressors
oil
compressor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29995596A
Other languages
Japanese (ja)
Other versions
JP3434993B2 (en
Inventor
Susumu Nakayama
進 中山
Kensaku Kokuni
研作 小国
Hiroshi Yasuda
弘 安田
Yasutaka Yoshida
康孝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29995596A priority Critical patent/JP3434993B2/en
Publication of JPH10141785A publication Critical patent/JPH10141785A/en
Application granted granted Critical
Publication of JP3434993B2 publication Critical patent/JP3434993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To supply a discharged refrigerant gas to a refrigerating cycle without bypassing it to the suction side even when the number of operation units of compressors decreases by securing a necessary amount of oil for the compressor. SOLUTION: In a refrigerating cycle in which two compressors 105a and 105b, an outdoor heat exchanger, a decompressor, a room heat exchanger and an accumulator 104 are connected by a refrigerant piping, oil separators 108a and 108b and check valves 109a and 109b are arranged on the respective delivery sides of the compressors 105a and 105b. Oil return tubes 110a and 110b are provided to connect the bottom parts of the oil separators 108a and 108b to the accumulator 104 and suction pipings 111a and 111b with which the accumulator 104 is connected to the compressors 105a and 105b are connected to the accumulator 104. The number of the pipings should be equal to the number of the compressors.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和装置に係
り、密閉形圧縮機を複数台用い複数の室内を空調するマ
ルチエアコンにおける、特に圧縮機構部が収納された密
閉容器内の油を必要量確保する圧縮機まわりの構造に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to a multi-air conditioner for air-conditioning a plurality of rooms using a plurality of hermetic compressors, and particularly requires oil in a hermetic container containing a compression mechanism. It relates to the structure around the compressor to secure the quantity.

【0002】[0002]

【従来の技術】密閉形圧縮機を複数台用いた、例えばマ
ルチエアコンでは、その冷凍サイクルにおける圧縮機の
必要油量を確保することが重要な技術課題である。例え
ば、特公平7−122522号公報記載の冷凍装置は、
各圧縮機の適正油量位置に連通する均油管を設け、各圧
縮機の吐出側にオイルセパレータを設けて吐出冷媒ガス
と油とを分離し、分離された油を油戻し管を通してそれ
ぞれの圧縮機の吸入管に戻すようにしている。
2. Description of the Related Art For example, in a multi-air conditioner using a plurality of hermetic compressors, it is an important technical problem to secure a required oil amount of the compressor in a refrigeration cycle. For example, a refrigeration apparatus described in Japanese Patent Publication No. 7-122522
An oil equalizing pipe communicating with the appropriate oil amount position of each compressor is provided, and an oil separator is provided on the discharge side of each compressor to separate the discharged refrigerant gas and oil, and the separated oil is compressed through an oil return pipe. It is returned to the suction pipe of the machine.

【0003】また、例えば、特公平2−22873号公
報記載の空気調和装置は、各圧縮機の吐出管を一つのオ
イルセパレータに導き、オイルセパレータで吐出冷媒ガ
スと油とを分離し、分離された油を電磁弁を備えた油戻
し管を通して、アキュムレータに戻すようにしている。
For example, in the air conditioner described in Japanese Patent Publication No. 2-22873, the discharge pipe of each compressor is led to one oil separator, and the refrigerant gas and oil discharged are separated by the oil separator. The returned oil is returned to the accumulator through an oil return pipe provided with a solenoid valve.

【0004】さらに、例えば、特開平8−5169号公
報記載の空気調和機は、各圧縮機の密閉容器の適正油量
位置と吸入配管とを連結する油回収回路を設け、ある圧
縮機に生じた余剰油を他の圧縮機に振り分けるようにし
ている。
Further, for example, the air conditioner described in Japanese Patent Application Laid-Open No. 8-5169 is provided with an oil recovery circuit for connecting an appropriate oil amount position of a closed vessel of each compressor to a suction pipe, and a certain compressor is provided with an oil recovery circuit. The surplus oil is distributed to other compressors.

【0005】[0005]

【発明が解決しようとする課題】上記一つ目の特公平7
−122522号公報記載の従来技術は、油を溜めた密
閉容器内が吸入圧力になる場合には、各圧縮機の適正油
量位置に連通する均油管によって油量が確保される。す
なわち、圧縮機においては、運転容量が多いほど、油は
密閉容器内から出て行き油量が減るが、運転容量が多い
ほど密閉容器内の圧力は下がるため、均油管を通して他
の圧縮機の油を油量の減った圧縮機に供給することで油
量が確保される。
[Problems to be Solved by the Invention]
According to the prior art described in JP-A-122522, when the pressure inside the closed container storing the oil becomes the suction pressure, the oil amount is secured by the oil equalizing pipe communicating with the appropriate oil amount position of each compressor. In other words, in a compressor, as the operating capacity increases, the oil flows out of the closed vessel and the amount of oil decreases, but as the operating capacity increases, the pressure in the closed vessel decreases. By supplying the oil to the compressor having a reduced oil amount, the oil amount is secured.

【0006】また、冷凍サイクル内に保有される油量は
オイルセパレータによって減少されるようになってい
る。これを、密閉容器内が吐出圧力になるものに適用す
ると、運転容量が多いほど、密閉容器内の圧力が高いの
で、溜っている油は均油管を通して他の圧縮機へ移動
し、さらに、運転を続けると、圧縮機は運転容量の多い
ほど油が密閉容器内から出て行くので、油量が減少し、
圧縮機の油量の確保ができなくなるという問題があっ
た。
[0006] The amount of oil held in the refrigeration cycle is reduced by an oil separator. If this is applied to the case where the pressure inside the closed vessel becomes the discharge pressure, the larger the operating capacity, the higher the pressure inside the closed vessel, so the accumulated oil moves to another compressor through the oil equalizing pipe, and When the compressor continues to operate, the larger the operating capacity, the more the oil flows out of the closed container, so the amount of oil decreases,
There was a problem that the oil amount of the compressor could not be secured.

【0007】二つ目の特公平2−22873号公報記載
の従来技術は、圧縮機の始動時の所定時間だけ油戻し管
の電磁弁を開いて、オイルセパレータで分離された油を
アキュムレータに戻している。しかし、始動時以外の定
常運転時においても密閉容器から出ていく油が多い場合
には、オイルセパレータから油を戻せないので圧縮機の
油量の確保ができなくなる。定常運転時も電磁弁を開い
てオイルセパレータで分離された油をアキュムレータに
戻せばよいが、オイルセパレータからの油戻し量を変え
ることができないので、圧縮機の運転台数が減少したと
き、戻す油量が減って吐出冷媒ガスが油と一緒にアキュ
ムレータに流れ、冷凍サイクルへ流れる冷媒循環量が減
少するという問題があった。
According to the second prior art disclosed in Japanese Patent Publication No. 22873/1990, the solenoid valve of the oil return pipe is opened for a predetermined time when the compressor is started, and the oil separated by the oil separator is returned to the accumulator. ing. However, when a large amount of oil flows out of the sealed container even during a steady operation other than the start operation, the oil cannot be returned from the oil separator, so that the oil amount of the compressor cannot be secured. It is sufficient to open the solenoid valve and return the oil separated by the oil separator to the accumulator during steady operation, but the amount of oil returned from the oil separator cannot be changed. There is a problem in that the amount of refrigerant discharged decreases and the refrigerant gas flows to the accumulator together with the oil, and the amount of refrigerant circulating to the refrigeration cycle decreases.

【0008】三つ目の特開平8−5169号公報記載の
従来技術は、各吸入配管の圧力は吸入配管の長さ、配管
径および各吸入配管を流れる冷媒循環量によって変化す
る。そのため、各吸入配管の圧力によって油回収回路か
ら各圧縮機に分配される油流量が変化し、圧縮機に必要
な油流量が戻らず、圧縮機の油量が確保できないという
問題があった。
In the third prior art disclosed in Japanese Patent Application Laid-Open No. 8-5169, the pressure of each suction pipe changes depending on the length and diameter of the suction pipe and the amount of refrigerant circulating through each suction pipe. For this reason, the flow rate of oil distributed from the oil recovery circuit to each compressor changes due to the pressure of each suction pipe, and the oil flow rate required for the compressor does not return, so that there is a problem that the oil amount of the compressor cannot be secured.

【0009】本発明は、上記従来技術の問題点を解決す
るためになされたもので、その目的は、密閉容器内が吐
出圧力になる密閉形圧縮機を複数台並列に接続した圧縮
機について、圧縮機に必要な油量を確保するとともに、
圧縮機の運転台数が減少した場合でも、吐出冷媒ガスを
吸入側にバイパスさせることなく冷凍サイクルへ供給し
うる空気調和装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a compressor in which a plurality of hermetic compressors in which the discharge pressure in the hermetic container is connected in parallel are provided. While securing the oil amount required for the compressor,
It is an object of the present invention to provide an air conditioner capable of supplying a discharged refrigerant gas to a refrigeration cycle without bypassing the refrigerant gas to a suction side even when the number of operating compressors decreases.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の空気調和装置に係る第一の発明の構成は、
密閉容器内に電動機部および圧縮機構部を収納し、密閉
容器内が吐出圧力になる密閉形圧縮機を複数台並列に接
続し、これら複数台の圧縮機と、凝縮器、減圧装置、蒸
発器およびアキュムレータとを冷媒配管で接続して冷凍
サイクルを構成した空気調和装置において、前記複数台
の圧縮機のそれぞれの吐出側にオイルセパレータと当該
オイルセパレータの出口側に逆止弁とを備え、前記各オ
イルセパレータ底部と前記アキュムレータとを接続する
油戻し管を備え、前記アキュムレータと前記複数台の圧
縮機とを接続する吸入配管を、前記複数台の圧縮機の台
数と同じ数、前記アキュムレータに接続したものであ
る。
Means for Solving the Problems In order to achieve the above object, the configuration of the first invention according to the air conditioner of the present invention is as follows.
A motor unit and a compression mechanism unit are housed in a sealed container, and a plurality of hermetic compressors are connected in parallel to each other so that the inside of the hermetic container has a discharge pressure. The plurality of compressors, a condenser, a decompression device, and an evaporator And an accumulator connected with a refrigerant pipe to form a refrigeration cycle, comprising an oil separator on the discharge side of each of the plurality of compressors and a check valve on an outlet side of the oil separator, An oil return pipe connecting the bottom of each oil separator and the accumulator is provided, and suction pipes connecting the accumulator and the plurality of compressors are connected to the accumulators in the same number as the number of the plurality of compressors. It was done.

【0011】上記構成によって、オイルセパレータで圧
縮機から吐出された冷媒と油を分離し、分離された油を
油戻し管でアキュムレータに戻し、アキュムレータでは
各圧縮機に接続した各吸入配管がオイルセパレータから
の油を冷媒とともに吸い込み、各圧縮機へ分配する。ま
た、一部の圧縮機が停止されたとき、停止圧縮機のオイ
ルセパレータ出口に設けた逆止弁が閉じて、運転圧縮機
からの吐出冷媒ガスが停止圧縮機側へ流れ込むのを防止
する。
With the above construction, the oil and the refrigerant discharged from the compressor are separated by the oil separator, and the separated oil is returned to the accumulator by the oil return pipe. In the accumulator, each suction pipe connected to each compressor is connected to the oil separator. And the refrigerant is sucked together with the refrigerant and distributed to each compressor. Further, when some of the compressors are stopped, the check valve provided at the outlet of the oil separator of the stopped compressor is closed to prevent refrigerant gas discharged from the operating compressor from flowing into the stopped compressor.

【0012】上記目的を達成するために、本発明の空気
調和装置に係る第二の発明の構成は、密閉容器内に電動
機部および圧縮機構部を収納した密閉形圧縮機を複数台
並列に接続し、これら複数台の圧縮機と、凝縮器、減圧
装置、蒸発器およびアキュムレータとを冷媒配管で接続
して冷凍サイクルを構成した空気調和装置において、前
記圧縮機の吐出側にオイルセパレータを少なくとも一つ
備え、前記オイルセパレータ底部と前記アキュムレータ
とを接続する油戻し管を、前記オイルセパレータに接続
された前記複数台の圧縮機の台数と同じ数備え、前記油
戻し管の一つを除く油戻し管に電磁弁を設け、前記アキ
ュムレータと前記複数台の圧縮機とを接続する吸入配管
を、前記複数台の圧縮機の台数と同じ数、前記アキュム
レータに接続したものである。
[0012] In order to achieve the above object, a second aspect of the invention relates to an air conditioner of the present invention, wherein a plurality of hermetic compressors in which a motor section and a compression mechanism section are housed in a closed container are connected in parallel. In an air conditioner in which a plurality of compressors, a condenser, a decompression device, an evaporator, and an accumulator are connected by a refrigerant pipe to constitute a refrigeration cycle, at least one oil separator is provided on the discharge side of the compressor. Oil return pipes connecting the bottom of the oil separator and the accumulator, the same number as the number of the plurality of compressors connected to the oil separator, and excluding one of the oil return pipes. An electromagnetic valve was provided in the pipe, and the same number of suction pipes as the number of the plurality of compressors were connected to the accumulator, and suction pipes connecting the accumulator and the plurality of compressors were connected. Than it is.

【0013】上記構成によって、オイルセパレータで圧
縮機から吐出された冷媒と油を分離し、分離された油を
油戻し管でアキュムレータに戻し、アキュムレータでは
各圧縮機に接続した各吸入配管がオイルセパレータから
の油を冷媒とともに吸い込み、各圧縮機へ分配する。ま
た、一部の圧縮機が停止されたとき、停止された圧縮機
の台数と同じ数の油戻し管に設けた電磁弁を閉じること
によって、必要な油流量だけを戻し、吐出冷媒ガスが油
戻し管からアキュムレータへ流れるのを防止する。
With the above arrangement, the oil and the refrigerant discharged from the compressor are separated by the oil separator, and the separated oil is returned to the accumulator by the oil return pipe. In the accumulator, each suction pipe connected to each compressor is connected to the oil separator. And the refrigerant is sucked together with the refrigerant and distributed to each compressor. Further, when some of the compressors are stopped, by closing the solenoid valves provided on the same number of oil return pipes as the number of stopped compressors, only the required oil flow is returned, and the discharged refrigerant gas is discharged. Prevents the return pipe from flowing to the accumulator.

【0014】上記目的を達成するために、本発明の空気
調和装置に係る第三の発明の構成は、密閉容器内に電動
機部および圧縮機構部を収納し、密閉容器内が吐出圧力
になる密閉形圧縮機を複数台並列に接続し、これら複数
台の圧縮機と、凝縮器、減圧装置、蒸発器およびアキュ
ムレータとを冷媒配管で接続して冷凍サイクルを構成し
た空気調和装置において、前記複数台の圧縮機のそれぞ
れの吐出側に逆止弁を備え、前記複数台の圧縮機の各密
閉容器の適正油量位置と前記アキュムレータとを接続す
る第二の油戻し管を備え、前記アキュムレータと前記複
数台の圧縮機とを接続する吸入配管を、前記複数台の圧
縮機の台数と同じ数、前記アキュムレータに接続したも
のである。
In order to achieve the above object, a third aspect of the present invention relates to an air conditioner of the present invention in which a motor unit and a compression mechanism are housed in a closed container, and the closed container has a discharge pressure. A plurality of compressors are connected in parallel, and the plurality of compressors, a condenser, a decompression device, an evaporator, and an accumulator are connected by refrigerant piping to form a refrigeration cycle. A check valve is provided on each discharge side of the compressor, and a second oil return pipe that connects an appropriate oil amount position of each closed vessel of the plurality of compressors and the accumulator is provided, and the accumulator and the The same number of suction pipes as the number of the plurality of compressors are connected to the accumulators.

【0015】上記構成によって、圧縮機の余剰油を第2
の油戻し管でアキュムレータへ流し、アキュムレータで
は各圧縮機に接続した各吸入配管が第2の油戻し管から
の油を冷媒とともに吸い込み、各圧縮機へ分配する。ま
た、一部の圧縮機が停止されたとき、停止圧縮機の逆止
弁が閉じて、運転圧縮機からの吐出冷媒ガスが停止圧縮
機側へ流れ込むのを防止する。
[0015] With the above configuration, the surplus oil of the compressor is discharged to the second
In the accumulator, each suction pipe connected to each compressor draws in the oil from the second oil return pipe together with the refrigerant and distributes the oil to each compressor. Further, when some of the compressors are stopped, the check valve of the stopped compressor is closed to prevent the refrigerant gas discharged from the operating compressor from flowing into the stopped compressor.

【0016】上記第一,第二,第三の発明において、前
記アキュムレータは、前記複数台の圧縮機と接続する吸
入配管を並列に取り付けており、これら複数の吸入配管
はいずれもアキュムレータ内でU字状をなし、そのU字
状曲部の最下端にそれぞれ油戻し穴を有するとともに、
前記吸入配管のアキュムレータ内出口付近にそれぞれ均
圧穴を有するものである。上記構成により、複数の吸入
配管を流れる冷媒循環量に比例した油流量をそれぞれの
油戻し穴から吸い込み、圧縮機に送ることができる。ど
のくらいの油流量を吸い込むかは、油戻し穴と均圧穴の
穴径により選択できる。
In the first, second, and third inventions, the accumulator has a plurality of suction pipes connected to the plurality of compressors, which are connected in parallel. It is shaped like a letter, and has an oil return hole at the lowermost end of its U-shaped curved part,
Each of the suction pipes has an equalizing hole near an outlet inside the accumulator. According to the above configuration, an oil flow rate proportional to the amount of circulating refrigerant flowing through the plurality of suction pipes can be sucked from each oil return hole and sent to the compressor. The amount of oil flow to be sucked can be selected depending on the diameter of the oil return hole and the equalizing hole.

【0017】[0017]

【発明の実施の形態】以下本発明の各実施の形態を図1
ないし図8を参照して説明する。 〔実施の形態 1〕第1の実施の形態を図1ないし図5
を参照して説明する。図1は、本発明の実施形態を示す
空気調和装置の冷凍サイクル系統図、図2は、図1の冷
凍サイクルにおける圧縮機の運転方法の説明図、図3
は、本発明の第1実施形態に係る圧縮機まわりの系統
図、図4は、本発明の実施形態におけるアキュムレータ
の構成図、図5は、本発明の実施形態における圧縮機の
油吐出率の特性線図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG.
This will be described with reference to FIG. Embodiment 1 FIGS. 1 to 5 show a first embodiment.
This will be described with reference to FIG. FIG. 1 is a refrigeration cycle system diagram of an air conditioner showing an embodiment of the present invention, FIG. 2 is an explanatory diagram of an operation method of a compressor in the refrigeration cycle of FIG. 1, and FIG.
Is a system diagram around the compressor according to the first embodiment of the present invention, FIG. 4 is a configuration diagram of an accumulator according to the embodiment of the present invention, and FIG. 5 is a diagram illustrating an oil discharge rate of the compressor according to the embodiment of the present invention. FIG. 6 is a characteristic diagram.

【0018】図1に示す空気調和機の冷凍サイクルは、
室外機100と2台の室内機200,300が冷媒ガス
配管121と冷媒液配管122によって接続されている
ものである。室外機100は、圧縮機105、四方弁1
06、室外熱交換器101、室外冷媒流量調整弁10
2、室外ファン103、アキュムレータ104、アキュ
ムレータ導入管114、吸入配管111a,111b、
レシーバ107および室外制御器151で構成されてい
る。
The refrigeration cycle of the air conditioner shown in FIG.
The outdoor unit 100 and two indoor units 200 and 300 are connected by a refrigerant gas pipe 121 and a refrigerant liquid pipe 122. The outdoor unit 100 includes a compressor 105, a four-way valve 1
06, outdoor heat exchanger 101, outdoor refrigerant flow control valve 10
2, outdoor fan 103, accumulator 104, accumulator introduction pipe 114, suction pipes 111a, 111b,
It comprises a receiver 107 and an outdoor controller 151.

【0019】ここで、圧縮機105は、モータ回転数が
可変できるインバータ圧縮機105aとモータ回転数が
一定の一定速圧縮機105bで構成されている。そし
て、圧縮機105は、図示して説明しないが、密閉容器
内に電動機部および圧縮機構部を収納し、密閉容器内が
吐出圧力になる密閉形圧縮機である。
Here, the compressor 105 is composed of an inverter compressor 105a whose motor speed can be varied and a constant speed compressor 105b whose motor speed is constant. Although not shown and described, the compressor 105 is a hermetic compressor in which an electric motor section and a compression mechanism section are housed in a hermetically sealed container, and the inside of the hermetically sealed container has a discharge pressure.

【0020】この圧縮機105は、図2に示す能力を発
揮するものである。図2は、横軸を圧縮機105への要
求能力、縦軸を圧縮機105の能力を示すもので、回転
数が可変できるインバータ圧縮機105aは、要求能力
小(a)から中(d)の間で最低周波数bから最高周波
数cの能力を発揮する。すなわち、その能力はabcd
領域で表される。また、一定速圧縮機105bは、要求
能力中(d)から大(g)の間で一定周波数eからfの
能力を発揮する。すなわち、その能力はdefg領域で
表される。
The compressor 105 exhibits the capability shown in FIG. FIG. 2 shows the required capacity of the compressor 105 on the horizontal axis and the capacity of the compressor 105 on the vertical axis. The inverter compressor 105a whose rotation speed can be varied has a small required capacity (a) to a medium required (d). Between the lowest frequency b and the highest frequency c. That is, its ability is abcd
It is represented by an area. Further, the constant speed compressor 105b exhibits the capability of the constant frequency e to f from the required capacity (d) to the large (g). That is, the capability is represented by a defg area.

【0021】インバータ圧縮機105aと一定速圧縮機
105bを並列に同時運転することにより、要求能力中
(d)から大(g)の間で最低周波数cから最高周波数
hの能力を発揮する。すなわち、その能力はcdgh領
域で表される。また、室外制御器151は、インバータ
圧縮機105aおよび一定速圧縮機105bのオンオ
フ、インバータ圧縮機105aのモータの回転数および
室外冷媒流量調整弁102の弁開度を制御する。
By simultaneously operating the inverter compressor 105a and the constant speed compressor 105b in parallel, the capacity from the lowest frequency c to the highest frequency h is exhibited between the required capacity (d) and the large capacity (g). That is, the ability is represented by the cdgh region. Further, the outdoor controller 151 controls the on / off of the inverter compressor 105a and the constant speed compressor 105b, the rotation speed of the motor of the inverter compressor 105a, and the opening degree of the outdoor refrigerant flow control valve 102.

【0022】室内機200は、室内熱交換器201、室
内冷媒流量調整弁202、室内ファン203、吸い込み
空気温度を検知する温度検出器204および室内制御器
208で構成されている。ここで、室内制御器208に
は、温度検出器204の信号が入力されており、また、
室内制御器208は室内冷媒流量調整弁202の開度を
制御している。
The indoor unit 200 includes an indoor heat exchanger 201, an indoor refrigerant flow control valve 202, an indoor fan 203, a temperature detector 204 for detecting the temperature of intake air, and an indoor controller 208. Here, the signal of the temperature detector 204 is input to the indoor controller 208, and
The indoor controller 208 controls the opening of the indoor refrigerant flow control valve 202.

【0023】室内機300は、室内熱交換器301、室
内冷媒流量調整弁302、室内ファン303、吸い込み
空気温度を検知する温度検出器304および室内制御器
308で構成されている。ここで、室内制御器308に
は、温度検出器304の信号が入力されており、また、
室内制御器308は室内冷媒流量調整弁302の開度を
制御している。室内制御器208,308と室外制御器
151は伝送線123によって接続されている。
The indoor unit 300 comprises an indoor heat exchanger 301, an indoor refrigerant flow control valve 302, an indoor fan 303, a temperature detector 304 for detecting the temperature of intake air, and an indoor controller 308. Here, the signal of the temperature detector 304 is input to the indoor controller 308, and
The indoor controller 308 controls the opening of the indoor refrigerant flow control valve 302. The indoor controllers 208 and 308 and the outdoor controller 151 are connected by a transmission line 123.

【0024】次に、冷房運転時の冷媒の流れを説明す
る。図1において、冷媒ガス配管121および冷媒液配
管122部に示す実線矢印は冷媒の流れ方向を示す。ま
た、室内機200,300内の実線矢印は空気の流れ方
向を表す。図1に示すように、圧縮機105(105
a,105b)から吐出された高温高圧の冷媒ガスは四
方弁106を通って、室外熱交換器101へ入り、室外
ファン103によって送られる室外空気と熱交換されて
凝縮する。その後、凝縮した冷媒は、全開の室外冷媒流
量調整弁102を通り、レシーバ107で気液分離され
る。そして液冷媒が室外機100を出て、冷媒液配管1
22を経て、室内機200,300へ送られる。
Next, the flow of the refrigerant during the cooling operation will be described. In FIG. 1, solid arrows shown in the refrigerant gas pipe 121 and the refrigerant liquid pipe 122 indicate the flow direction of the refrigerant. Solid arrows in the indoor units 200 and 300 indicate the direction of air flow. As shown in FIG. 1, the compressor 105 (105
The high-temperature and high-pressure refrigerant gas discharged from a, 105b) passes through the four-way valve 106, enters the outdoor heat exchanger 101, and exchanges heat with outdoor air sent by the outdoor fan 103 to condense. Thereafter, the condensed refrigerant passes through the outdoor refrigerant flow control valve 102 which is fully opened, and is separated into gas and liquid by the receiver 107. Then, the liquid refrigerant exits the outdoor unit 100, and the refrigerant liquid pipe 1
After passing through 22, it is sent to indoor units 200 and 300.

【0025】室内機200に入った液冷媒は室内冷媒流
量調整弁202で減圧され、室内熱交換器201へ入
り、室内ファン203によって送られる室内空気と熱交
換されて蒸発する。このとき室内空気は冷却され室内機
200から吹き出される。蒸発した低温低圧のガス冷媒
は室内機200を出る。一方、室内機300に入った冷
媒は、前述の室内機200と同様に、室内冷媒流量調整
弁302で減圧され、室内熱交換器301へ入り、室内
ファン303によって送られる室内空気と熱交換されて
蒸発する。このとき室内空気は冷却され室内機300か
ら吹き出される。
The liquid refrigerant entering the indoor unit 200 is depressurized by the indoor refrigerant flow control valve 202, enters the indoor heat exchanger 201, and exchanges heat with the indoor air sent by the indoor fan 203 to evaporate. At this time, the indoor air is cooled and blown out from the indoor unit 200. The evaporated low-temperature low-pressure gas refrigerant exits the indoor unit 200. On the other hand, the refrigerant that has entered the indoor unit 300 is reduced in pressure by the indoor refrigerant flow control valve 302, enters the indoor heat exchanger 301, and exchanges heat with the indoor air sent by the indoor fan 303, similarly to the indoor unit 200 described above. And evaporate. At this time, the indoor air is cooled and blown out from the indoor unit 300.

【0026】蒸発した低温低圧のガス冷媒は室内機30
0を出て、室内機200から出てきた冷媒と合流し、冷
媒ガス配管121を通って、室外機100へ送られる。
室外機100に入った冷媒は四方弁106、アキュムレ
ータ導入管114、アキュムレータ104、吸入配管1
11a,111bを通って圧縮機105に吸入され、圧
縮されて再び吐出され、以下このサイクルを繰り返す。
The evaporated low-temperature low-pressure gas refrigerant is supplied to the indoor unit 30.
After exiting 0, the refrigerant merges with the refrigerant coming out of the indoor unit 200 and is sent to the outdoor unit 100 through the refrigerant gas pipe 121.
The refrigerant that has entered the outdoor unit 100 is supplied to the four-way valve 106, the accumulator introduction pipe 114, the accumulator 104, and the suction pipe 1.
It is sucked into the compressor 105 through 11a and 111b, compressed and discharged again, and this cycle is repeated thereafter.

【0027】次に、暖房運転時の冷媒の流れを説明す
る。図1において、冷媒ガス配管121および冷媒液配
管122部に示す破線矢印は冷媒の流れ方向を示す。圧
縮機105(105a,105b)から吐出された高温
高圧の冷媒ガスは四方弁106を通って、ガス配管12
1へ入り、室内機200,300へ送られる。室内機2
00に入った冷媒は室内熱交換器201へ入り、室内フ
ァン203によって送られる室内空気と熱交換されて凝
縮する。このとき、室内空気が温められる。その後、凝
縮した冷媒は室内冷媒流量調整弁202を通って室内機
200を出る。一方、室内機300に入った冷媒も室内
機200と同様に凝縮して室内機300を出る。室内機
200,300を出た冷媒は合流し、液配管122を通
って室外機100へ入る。
Next, the flow of the refrigerant during the heating operation will be described. In FIG. 1, dashed arrows shown in the refrigerant gas pipe 121 and the refrigerant liquid pipe 122 indicate the flow direction of the refrigerant. The high-temperature and high-pressure refrigerant gas discharged from the compressor 105 (105a, 105b) passes through the four-way valve 106 and passes through the gas pipe 12
1 and is sent to the indoor units 200 and 300. Indoor unit 2
00 enters the indoor heat exchanger 201 and exchanges heat with the indoor air sent by the indoor fan 203 to condense. At this time, the room air is warmed. Then, the condensed refrigerant exits the indoor unit 200 through the indoor refrigerant flow control valve 202. On the other hand, the refrigerant that has entered the indoor unit 300 condenses similarly to the indoor unit 200 and exits the indoor unit 300. The refrigerants that have exited the indoor units 200 and 300 join and enter the outdoor unit 100 through the liquid pipe 122.

【0028】室外機100へ入った冷媒は、まず、レシ
ーバ107へ入って気液分離され、液冷媒がレシーバ1
07を出て室内冷媒流量調整弁102によって減圧さ
れ、室外熱交換器101へ入り、室外ファン103によ
って送られる室外空気と熱交換されて蒸発し、低温低圧
のガス冷媒となって四方弁106、アキュムレータ導入
管114、アキュムレータ104、吸入配管111a,
111bを通って圧縮機105に吸入され、圧縮されて
再び吐出される、以下このサイクルを繰り返す。
The refrigerant that has entered the outdoor unit 100 first enters the receiver 107 and is separated into gas and liquid.
07, is decompressed by the indoor refrigerant flow control valve 102, enters the outdoor heat exchanger 101, exchanges heat with outdoor air sent by the outdoor fan 103, evaporates, becomes a low-temperature low-pressure gas refrigerant, and becomes a four-way valve 106. Accumulator introduction pipe 114, accumulator 104, suction pipe 111a,
It is sucked into the compressor 105 through 111b, compressed and discharged again. This cycle is repeated thereafter.

【0029】次に、図1の空気調和装置の冷凍サイクル
における圧縮機まわりの構成を図3を参照して説明す
る。アキュムレータ104と圧縮機105a,105b
とは、並列に設けた吸入配管111a,111bによっ
てそれぞれ接続されている。圧縮機105a,105b
の吐出側にはそれぞれオイルセパレータ108a,10
8bが並列に設けられ、該オイルセパレータ108a,
108bの出口にはそれぞれ逆止弁109a,109b
が設けられている。オイルセパレータ108a,108
bの底部とアキュムレータ導入管114とはキャピラリ
チューブを備えた油戻し管110a,110bによって
接続されている。
Next, the structure around the compressor in the refrigeration cycle of the air conditioner of FIG. 1 will be described with reference to FIG. Accumulator 104 and compressors 105a and 105b
Are connected by suction pipes 111a and 111b provided in parallel. Compressors 105a, 105b
Oil separators 108a, 108a
8b are provided in parallel, and the oil separators 108a,
Check valves 109a, 109b are provided at the outlet of 108b, respectively.
Is provided. Oil separators 108a, 108
The bottom of b and the accumulator introduction pipe 114 are connected by oil return pipes 110a and 110b provided with a capillary tube.

【0030】アキュムレータ104は、図4に示すよう
に、該アキュムレータ104内の吸入配管111a,1
11bはUパイプ状になっており、曲がり部の最下端部
に油戻し穴116a,116bがそれぞれ穿孔されてお
り、アキュムレータ104出口付近には均圧穴115
a,115bが穿孔されている。なお、油戻し穴116
a,116bは同じ水平面の位置に穿孔されている。
As shown in FIG. 4, the accumulator 104 is provided with suction pipes 111a, 1a in the accumulator 104.
Reference numeral 11b denotes a U-pipe shape, and oil return holes 116a and 116b are respectively drilled at the lowermost end of the bent portion, and a pressure equalizing hole 115 is provided near the outlet of the accumulator 104.
a, 115b are perforated. The oil return hole 116
a and 116b are perforated at the same horizontal position.

【0031】このような構成によって、吸入配管111
a,111bを流れる冷媒循環量に比例した油流量をそ
れぞれの油戻し穴116a,116bから吸い込み、圧
縮機104a,105bに送ることができる。どのくら
いの油流量を吸い込むかは油戻し穴116a,116b
と均圧穴115a,115bの穴径によって選択でき
る。
With this configuration, the suction pipe 111
The oil flow rate proportional to the amount of circulating refrigerant flowing through the oil return holes 116a and 116b can be sucked from the oil return holes 116a and 116b and sent to the compressors 104a and 105b. The amount of oil flow to be sucked is determined by oil return holes 116a and 116b.
And the diameter of the equalizing holes 115a and 115b.

【0032】次に、上記実施形態における圧縮機の油量
確保の動作について説明する。圧縮機105a,105
bから吐出された冷媒ガスと油は、オイルセパレータ1
08a,108bに入って気液分離され、冷媒ガスは逆
止弁109a,109bを通って冷凍サイクルへ流れ
る。オイルセパレータ108a,108bで分離された
油は、油戻し管110a,110bを通ってアキュムレ
ータ導入管114に流れアキュムレータ104へ入る。
Next, the operation for securing the oil amount of the compressor in the above embodiment will be described. Compressors 105a, 105
b and the oil discharged from the oil separator 1
08a and 108b, gas-liquid separation is performed, and the refrigerant gas flows through the check valves 109a and 109b to the refrigeration cycle. The oil separated by the oil separators 108a and 108b flows into the accumulator introduction pipe 114 through the oil return pipes 110a and 110b, and enters the accumulator 104.

【0033】アキュムレータ104へ入った油は、圧縮
機105a,105bの吐出冷媒量に比例した油流量を
それぞれの油戻し穴116a,116bから吸い込み、
吸入配管111a,111bを通ってそれぞれ圧縮機1
05a,105bへ送る。ここで、圧縮機の油吐出率
(=圧縮機から出る油量/圧縮機の吐出冷媒量)は、図
5に示すように圧縮機内の油量が多いほど多くなる。ま
た、圧縮機の吐出冷媒量が多いほど油吐出率は多くな
る。インバータ圧縮機105aのモータが最低回転数で
運転されると冷媒吐出量が減り油吐出率も小さくなる。
一定速圧縮機105bはインバータ圧縮機105aに比
べ冷媒吐出量が多いので油吐出率は大きくなる。
The oil that has entered the accumulator 104 draws in an oil flow proportional to the amount of refrigerant discharged from the compressors 105a and 105b from the respective oil return holes 116a and 116b.
Each of the compressors 1 passes through the suction pipes 111a and 111b.
05a, 105b. Here, the oil discharge rate of the compressor (= the amount of oil discharged from the compressor / the amount of refrigerant discharged from the compressor) increases as the amount of oil in the compressor increases, as shown in FIG. Further, the oil discharge rate increases as the amount of refrigerant discharged from the compressor increases. When the motor of the inverter compressor 105a is operated at the minimum number of revolutions, the refrigerant discharge rate decreases and the oil discharge rate also decreases.
The constant speed compressor 105b has a larger refrigerant discharge amount than the inverter compressor 105a, and therefore has a higher oil discharge rate.

【0034】例えば、それぞれの圧縮機の運転前の圧縮
機内の油量がV0であったとすると、運転直後のインバ
ータ圧縮機105aの油吐出率はa点になり、一定速圧
縮機105bの油吐出率はb点になる。吐出された油は
前述のように、オイルセパレータ108a,108bで
分離され、アキュムレータ104からそれぞれの圧縮機
に吐出冷媒量に比例した油流量が分配される。したがっ
て、インバータ圧縮機105aの油量は増加し、一定速
圧縮機105bの油量は減少し、それぞれa´,b´点
で安定する。b´点が最低油量Vminより少なくなる
ようなときは油を追加すればよい。
For example, assuming that the oil amount in the compressor before the operation of each compressor is V0, the oil discharge rate of the inverter compressor 105a immediately after the operation becomes point a, and the oil discharge rate of the constant speed compressor 105b. The rate is point b. The discharged oil is separated by the oil separators 108a and 108b as described above, and an oil flow proportional to the discharged refrigerant amount is distributed from the accumulator 104 to each compressor. Therefore, the oil amount of the inverter compressor 105a increases, and the oil amount of the constant speed compressor 105b decreases, and is stabilized at points a 'and b', respectively. When the point b 'becomes smaller than the minimum oil amount Vmin, oil may be added.

【0035】一定速圧縮機105bが停止したときは、
逆止弁109bによって高圧側と遮断され、圧縮機10
5bおよびオイルセパレータ108bは低圧圧力にな
り、冷媒および油は流れなくなる。インバータ圧縮機1
05aが吐出した油はオイルセパレータ108aで分離
され、分離された油は、油戻し管110a、アキュムレ
ータ導入管114を通ってアキュムレータ104へ入
り、吸入配管111aからインバータ圧縮機105aへ
戻り、インバータ圧縮機105aの油量が確保される。
本実施形態によれば、停止圧縮機が低圧圧力になるので
圧縮機内に冷媒が凝縮することがなくなるので、冷媒不
足を生じることがない。
When the constant speed compressor 105b stops,
The high pressure side is shut off by the check valve 109b, and the compressor 10
5b and the oil separator 108b have a low pressure, and the refrigerant and the oil stop flowing. Inverter compressor 1
The oil discharged by 05a is separated by an oil separator 108a, and the separated oil enters the accumulator 104 through the oil return pipe 110a and the accumulator introduction pipe 114, returns to the inverter compressor 105a from the suction pipe 111a, and returns to the inverter compressor 105a. The oil amount of 105a is secured.
According to the present embodiment, since the stop compressor has a low pressure, the refrigerant does not condense in the compressor, so that the shortage of the refrigerant does not occur.

【0036】〔実施の形態 2〕図6は、本発明の第2
実施形態に係る圧縮機まわりの系統図である。図中、図
3と同一符号のものは先の第1実施形態と同等部であ
り、図6の適用される空気調和機の冷凍サイクルは、図
1と同じである。アキュムレータ104と圧縮機105
a,105bは並列に設けた吸入配管111a,111
bによってそれぞれ接続されている。
[Embodiment 2] FIG. 6 shows a second embodiment of the present invention.
It is a system diagram around a compressor concerning an embodiment. In the drawing, those having the same reference numerals as those in FIG. 3 are the same as those in the first embodiment, and the refrigeration cycle of the air conditioner applied in FIG. 6 is the same as that in FIG. Accumulator 104 and compressor 105
a and 105b are suction pipes 111a and 111 provided in parallel.
b.

【0037】圧縮機105a、105bの吐出側にはオ
イルセパレータ108が設けられ、オイルセパレータ1
08の出口には逆止弁109が設けられている。オイル
セパレータ108の底部とアキュムレータ導入管114
とはキャピラリを備えた油戻し管110a,110bに
よって接続されている。また、油戻し管110bには電
磁弁112が取り付けられている。なお、アキュムレー
タ104の構成は図4と同じである。
An oil separator 108 is provided on the discharge side of the compressors 105a and 105b.
A check valve 109 is provided at the outlet of 08. The bottom of the oil separator 108 and the accumulator introduction pipe 114
Are connected by oil return pipes 110a and 110b provided with capillaries. Further, a solenoid valve 112 is attached to the oil return pipe 110b. The configuration of the accumulator 104 is the same as that in FIG.

【0038】次に、図6の実施形態における圧縮機の油
量確保の動作について説明する。2台の圧縮機105
a,105bが運転されているときは電磁弁112が開
かれる。圧縮機105a,105bから吐出された冷媒
ガスと油はオイルセパレータ108に入って気液分離さ
れ、冷媒ガスは逆止弁109を通って冷凍サイクルへ流
れる。オイルセパレータ108で分離された油は、油戻
し管110a,110bを通ってアキュムレータ導入管
114に流れアキュムレータ104へ入り、図3の実施
例と同様の動作によって圧縮機の油量が確保される。
Next, the operation for securing the oil amount of the compressor in the embodiment of FIG. 6 will be described. Two compressors 105
When a and 105b are operating, the solenoid valve 112 is opened. The refrigerant gas and oil discharged from the compressors 105a and 105b enter the oil separator 108 and are separated into gas and liquid. The refrigerant gas flows through the check valve 109 to the refrigeration cycle. The oil separated by the oil separator 108 flows through the oil return pipes 110a and 110b, flows into the accumulator introduction pipe 114, enters the accumulator 104, and the oil amount of the compressor is secured by the same operation as in the embodiment of FIG.

【0039】一定速圧縮機105bが停止したときは電
磁弁112が閉じられる。インバータ圧縮機105aが
吐出した油はオイルセパレータ108で分離され、分離
された油は、油戻し管110a、アキュムレータ導入管
114を通ってアキュムレータ104へ入り、吸入配管
111aからインバータ圧縮機105aへ戻り、インバ
ータ圧縮機105aの油量が確保される。
When the constant speed compressor 105b stops, the solenoid valve 112 is closed. The oil discharged from the inverter compressor 105a is separated by the oil separator 108, and the separated oil enters the accumulator 104 through the oil return pipe 110a and the accumulator introduction pipe 114, and returns to the inverter compressor 105a from the suction pipe 111a. The oil amount of the inverter compressor 105a is secured.

【0040】〔実施の形態 3〕図7は、本発明の第3
実施形態に係る圧縮機まわりの系統図である。図中、図
3と同一符号のものは先の第1実施形態と同等部であ
り、図7の適用される空気調和機の冷凍サイクルは、図
1と同じである。アキュムレータ104と圧縮機105
a,105bは並列に設けた吸入配管111a,111
bによってそれぞれ接続されている。圧縮機105a,
105bの吐出側には並列に逆止弁109a,109b
が設けられている。また、圧縮機105a,105bの
適正油量位置とアキュムレータ導入管114とはキャピ
ラリを備えた第2の油戻し管113a,113bによっ
て接続されている。なお、アキュムレータ104の構成
は図4と同じである。
[Embodiment 3] FIG. 7 shows a third embodiment of the present invention.
It is a system diagram around a compressor concerning an embodiment. In the figure, those having the same reference numerals as those in FIG. 3 are the same as those in the first embodiment, and the refrigeration cycle of the air conditioner applied in FIG. 7 is the same as that in FIG. Accumulator 104 and compressor 105
a and 105b are suction pipes 111a and 111 provided in parallel.
b. Compressor 105a,
Check valves 109a, 109b are connected in parallel to the discharge side of 105b.
Is provided. Further, the appropriate oil amount positions of the compressors 105a and 105b and the accumulator introduction pipe 114 are connected by second oil return pipes 113a and 113b having capillaries. The configuration of the accumulator 104 is the same as that in FIG.

【0041】次に、図7の実施形態における圧縮機の油
量確保の動作について説明する。図3および図6の実施
形態で説明したように、圧縮機105a,105bの油
量は圧縮機の吐出冷媒量などによって偏りを生じるが、
適正油量より多く溜った油は第2の油戻し管113a,
113bによってアキュムレータ104へ流れ、それぞ
れの圧縮機105a,105bに分配されるので、偏り
によって減少した圧縮機の油量は増加することができ、
圧縮機の油量は確保される。
Next, the operation for securing the oil amount of the compressor in the embodiment of FIG. 7 will be described. As described in the embodiments of FIGS. 3 and 6, the oil amounts of the compressors 105a and 105b are biased by the amount of refrigerant discharged from the compressors.
The oil that has accumulated more than the appropriate oil amount is stored in the second oil return pipe 113a,
113b, the oil flows to the accumulator 104 and is distributed to the respective compressors 105a and 105b, so that the oil amount of the compressor reduced by the bias can be increased,
The oil volume of the compressor is secured.

【0042】一定速圧縮機105bが停止したときは逆
止弁109bによって高圧側と遮断され、圧縮機105
bは低圧圧力になり、冷媒および油は流れなくなる。イ
ンバータ圧縮機105aが吐出した油は冷凍サイクルを
一巡してアキュムレータ導入管114を通ってアキュム
レータ104へ入り、吸入配管111aからインバータ
圧縮機105aへ戻り、インバータ圧縮機105aの油
量が確保される。本実施形態によれば、停止圧縮機が低
圧圧力になるので圧縮機内に冷媒が凝縮することがなく
なるので、冷媒不足を生じることがない。
When the constant speed compressor 105b stops, the check valve 109b shuts off the high pressure side.
b becomes a low pressure, and the refrigerant and the oil stop flowing. The oil discharged from the inverter compressor 105a goes through the refrigeration cycle, enters the accumulator 104 through the accumulator introduction pipe 114, returns to the inverter compressor 105a from the suction pipe 111a, and secures the oil amount of the inverter compressor 105a. According to the present embodiment, since the stop compressor has a low pressure, the refrigerant does not condense in the compressor, so that the shortage of the refrigerant does not occur.

【0043】〔実施の形態 4〕次に、図8は、本発明
の第4実施形態に係る圧縮機まわりの系統図である。図
中、図3と同一符号のものは先の第1実施形態と同等部
である。図8の実施形態は、図7に示した実施形態にお
ける圧縮機2台の構成を4台の構成にしたものである。
また、圧縮機105aと逆止弁109aとの間にオイル
セパレータ108aを設け、オイルセパレータ108a
の底部とアキュムレータ導入管114とはキャピラリを
備えた油戻し管110aによって接続されている。
Fourth Embodiment FIG. 8 is a system diagram around a compressor according to a fourth embodiment of the present invention. In the figure, those having the same reference numerals as those in FIG. 3 are the same as those in the first embodiment. In the embodiment of FIG. 8, two compressors in the embodiment shown in FIG. 7 are replaced with four compressors.
An oil separator 108a is provided between the compressor 105a and the check valve 109a.
Is connected to the accumulator introduction pipe 114 by an oil return pipe 110a having a capillary.

【0044】次に、図8の実施形態における圧縮機の油
量確保の動作について説明する。適正油量より多く溜っ
た油は第2の油戻し管113a,113b,113c,
113dによってアキュムレータ104へ流れる。ま
た、インバータ圧縮機105aが吐出した油はオイルセ
パレータ108aで分離され、分離された油は、油戻し
管110a、アキュムレータ導入管114を通ってアキ
ュムレータ104へ入り、第2の油戻し管を通ってきた
油とともにそれぞれの圧縮機105a,105b,10
5c,105dに分配され、圧縮機の油量は確保され
る。図8の実施形態は、図7の実施形態に比べて、オイ
ルセパレータがあるので、冷凍サイクルへ入る油量が減
少でき、その分、圧縮機の油量が増加し、油量確保がし
やすくなる。
Next, the operation for securing the oil amount of the compressor in the embodiment of FIG. 8 will be described. The oil that has accumulated more than the appropriate amount is the second oil return pipe 113a, 113b, 113c,
It flows to the accumulator 104 by 113d. The oil discharged from the inverter compressor 105a is separated by the oil separator 108a, and the separated oil enters the accumulator 104 through the oil return pipe 110a and the accumulator introduction pipe 114, and passes through the second oil return pipe. Compressor 105a, 105b, 10
5c and 105d, and the oil amount of the compressor is secured. The embodiment of FIG. 8 has an oil separator compared to the embodiment of FIG. 7, so that the amount of oil entering the refrigeration cycle can be reduced, the oil amount of the compressor increases accordingly, and the oil amount can be easily secured. Become.

【0045】上記のごとく、本実施形態の冷凍サイクル
では以下の効果がある。オイルセパレータで吐出冷媒に
混じった油を分離することによって、冷凍サイクル内に
溜る油を減少させ、分離した油をアキュムレータに戻す
ことによって、アキュムレータが各圧縮機の吐出量に比
例した油を分配する。これによって、圧縮機の油量が確
保される。また、吐出側の逆止弁によって、停止圧縮機
に他の運転圧縮機からの吐出冷媒が流れ込み、油戻し管
を通して低圧側へ流れて、冷凍サイクルへ流れる冷媒循
環量を減少させるとことがない。
As described above, the refrigeration cycle of this embodiment has the following effects. The oil separator separates the oil mixed with the discharged refrigerant to reduce the amount of oil accumulated in the refrigeration cycle, and returns the separated oil to the accumulator, so that the accumulator distributes oil proportional to the discharge amount of each compressor. . Thereby, the oil amount of the compressor is secured. Further, the check valve on the discharge side does not cause the refrigerant discharged from the other operating compressor to flow into the stop compressor, flow to the low-pressure side through the oil return pipe, and reduce the refrigerant circulation amount flowing to the refrigeration cycle. .

【0046】また、オイルセパレータからの複数の油戻
し管に電磁弁を設け、圧縮機停止時に停止圧縮機と同じ
数の電磁弁を閉じることによって、適正な油流量を他の
油戻し管からアキュムレータに流し、前述と同様に運転
圧縮機の油量が確保されるとともに、電磁弁を閉じるこ
とによって吐出冷媒がその油戻し管から低圧側へ流れる
ことを防止し、冷凍サイクルへ流れる冷媒循環量を確保
する。さらに、第2の油戻し管で圧縮機に溜った余剰な
油をアキュムレータに流し、その油を各圧縮機に分配す
ることによって、圧縮機の油量が確保される。
Also, solenoid valves are provided on a plurality of oil return pipes from the oil separator, and when the compressor is stopped, the same number of solenoid valves as the stopped compressor are closed, so that an appropriate oil flow can be obtained from the other oil return pipes. As described above, the amount of oil in the operating compressor is secured as described above, and by closing the solenoid valve, the discharged refrigerant is prevented from flowing from the oil return pipe to the low pressure side, and the refrigerant circulation amount flowing to the refrigeration cycle is reduced. Secure. Further, the excess oil accumulated in the compressor through the second oil return pipe flows into the accumulator, and the oil is distributed to the compressors, so that the oil amount of the compressor is ensured.

【0047】[0047]

【発明の効果】以上詳細に説明したように、本発明によ
れば、密閉容器内が吐出圧力になる密閉形圧縮機を複数
台並列に接続した圧縮機について、圧縮機に必要な油量
を確保するとともに、圧縮機の運転台数が減少した場合
でも、吐出冷媒ガスを吸入側にバイパスさせることなく
冷凍サイクルへ供給しうる空気調和装置を提供すること
ができる。
As described above in detail, according to the present invention, for a compressor in which a plurality of hermetic compressors are connected in parallel, the discharge pressure in the hermetic container is reduced, the amount of oil required for the compressor is reduced. In addition to this, it is possible to provide an air conditioner capable of supplying the refrigerant gas to the refrigeration cycle without bypassing the refrigerant gas discharged to the suction side even when the number of operating compressors decreases.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す空気調和装置の冷凍サ
イクル系統図である。
FIG. 1 is a refrigeration cycle system diagram of an air conditioner showing an embodiment of the present invention.

【図2】図1の冷凍サイクルにおける圧縮機の運転方法
の説明図である。
FIG. 2 is an explanatory diagram of an operation method of a compressor in the refrigeration cycle of FIG.

【図3】本発明の第1実施形態に係る圧縮機まわりの系
統図である。
FIG. 3 is a system diagram around a compressor according to the first embodiment of the present invention.

【図4】本発明の実施形態におけるアキュムレータの構
成図である。
FIG. 4 is a configuration diagram of an accumulator according to the embodiment of the present invention.

【図5】本発明の実施形態における圧縮機の油吐出率の
特性線図である。
FIG. 5 is a characteristic diagram of an oil discharge rate of the compressor according to the embodiment of the present invention.

【図6】本発明の第2実施形態に係る圧縮機まわりの系
統図である。
FIG. 6 is a system diagram around a compressor according to a second embodiment of the present invention.

【図7】本発明の第3実施形態に係る圧縮機まわりの系
統図である。
FIG. 7 is a system diagram around a compressor according to a third embodiment of the present invention.

【図8】本発明の第4実施形態に係る圧縮機まわりの系
統図である。
FIG. 8 is a system diagram around a compressor according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

100…室外機、101…室外熱交換器、104…アキ
ュムレータ、105,105a,105b,105c,
105d…圧縮機、106…四方弁、108,108
a,108b…オイルセパレータ、109,109a,
109b,109c,109d…逆止弁、110a,1
10b…油戻し管、111a,111b,111c,1
11d…吸入配管、112…電磁弁、113a,113
b,113c,113d…第2の油戻し管、121…冷
媒ガス配管、122…冷媒液配管、200,300…室
内機、201,301…室内熱交換器。
100: outdoor unit, 101: outdoor heat exchanger, 104: accumulator, 105, 105a, 105b, 105c,
105d: compressor, 106: four-way valve, 108, 108
a, 108b ... oil separator, 109, 109a,
109b, 109c, 109d ... check valve, 110a, 1
10b ... oil return pipe, 111a, 111b, 111c, 1
11d: suction pipe, 112: solenoid valve, 113a, 113
b, 113c, 113d: second oil return pipe, 121: refrigerant gas pipe, 122: refrigerant liquid pipe, 200, 300: indoor unit, 201, 301: indoor heat exchanger.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 康孝 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yasutaka Yoshida 390 Muramatsu, Shimizu-shi, Shizuoka Pref. Air Conditioning Systems Division, Hitachi, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 密閉容器内に電動機部および圧縮機構部
を収納し、密閉容器内が吐出圧力になる密閉形圧縮機を
複数台並列に接続し、これら複数台の圧縮機と、凝縮
器、減圧装置、蒸発器およびアキュムレータとを配管で
接続して冷凍サイクルを構成した空気調和装置におい
て、 前記複数台の圧縮機のそれぞれの吐出側にオイルセパレ
ータと当該オイルセパレータの出口側に逆止弁とをそれ
ぞれ並列に備え、 前記各オイルセパレータの底部と前記アキュムレータと
を接続する油戻し管を備え、 前記アキュムレータと前記複数台の圧縮機とを接続する
吸入配管を、前記複数台の圧縮機の台数と同じ数だけ並
列に、前記アキュムレータに接続したことを特徴とする
空気調和装置。
An electric motor section and a compression mechanism section are housed in a closed container, and a plurality of hermetic compressors are connected in parallel so that the discharge pressure in the closed container is obtained. In an air conditioner configured by connecting a pressure reducing device, an evaporator, and an accumulator with a pipe to form a refrigeration cycle, an oil separator on a discharge side of each of the plurality of compressors and a check valve on an outlet side of the oil separator. Respectively provided in parallel, an oil return pipe connecting the bottom of each oil separator and the accumulator, a suction pipe connecting the accumulator and the plurality of compressors, the number of the plurality of compressors An air conditioner characterized by being connected to the accumulator in the same number as that of the accumulator.
【請求項2】 密閉容器内に電動機部および圧縮機構部
を収納した密閉形圧縮機を複数台並列に接続し、これら
複数台の圧縮機と、凝縮器、減圧装置、蒸発器およびア
キュムレータとを配管で接続して冷凍サイクルを構成し
た空気調和装置において、 前記複数台の圧縮機の吐出側にオイルセパレータを少な
くとも一つ備え、 前記オイルセパレータ底部と前記アキュムレータとを接
続する油戻し管を、前記オイルセパレータに接続された
前記複数台の圧縮機の台数と同じ数備え、 前記油戻し管の一つを除く油戻し管に、前記複数台の圧
縮機のうちの1台が停止したときに閉弁する電磁弁を設
け、 前記アキュムレータと前記複数台の圧縮機とを接続する
吸入配管を、前記複数台の圧縮機の台数と同じ数だけ並
列に、前記アキュムレータに接続したことを特徴とする
空気調和装置。
2. A plurality of hermetic compressors each containing a motor section and a compression mechanism section in a closed vessel are connected in parallel, and the plurality of compressors are connected to a condenser, a decompression device, an evaporator, and an accumulator. An air conditioner configured with a refrigeration cycle connected by piping, comprising at least one oil separator on the discharge side of the plurality of compressors, and an oil return pipe connecting the bottom of the oil separator and the accumulator, The same number as the number of the plurality of compressors connected to the oil separator is provided, and the oil return pipe except one of the oil return pipes is closed when one of the plurality of compressors stops. Providing an electromagnetic valve for valve connection, the suction pipe connecting the accumulator and the plurality of compressors is connected to the accumulator in parallel by the same number as the number of the plurality of compressors. An air conditioning apparatus, characterized in that.
【請求項3】 密閉容器内に電動機部および圧縮機構部
を収納し、密閉容器内が吐出圧力になる密閉形圧縮機を
複数台並列に接続し、これら複数台の圧縮機と、凝縮
器、減圧装置、蒸発器およびアキュムレータとを配管で
接続して冷凍サイクルを構成した空気調和装置におい
て、 前記複数台の圧縮機のそれぞれの吐出側に逆止弁を備
え、 前記複数台の圧縮機の各密閉容器の適正油量位置と前記
アキュムレータとを接続する第二の油戻し管を備え、 前記アキュムレータと前記複数台の圧縮機とを接続する
吸入配管を、前記複数台の圧縮機の台数と同じ数だけ並
列に、前記アキュムレータに接続したことを特徴とする
空気調和装置。
3. A closed casing housings an electric motor section and a compression mechanism section, and a plurality of hermetic compressors having a discharge pressure in the closed vessel are connected in parallel, and the plurality of compressors, the condenser, In an air conditioner configured by connecting a pressure reducing device, an evaporator, and an accumulator with piping to form a refrigeration cycle, a check valve is provided on each discharge side of the plurality of compressors, and each of the plurality of compressors is provided. A second oil return pipe connecting the proper oil amount position of the closed container and the accumulator, and a suction pipe connecting the accumulator and the plurality of compressors, the same number of the plurality of compressors An air conditioner, wherein the air conditioner is connected to the accumulator in number.
【請求項4】 前記アキュムレータは、前記複数台の圧
縮機と接続する吸入配管を並列に取り付けており、これ
ら複数の吸入配管はいずれもアキュムレータ内でU字状
をなし、そのU字状曲部の最下端にそれぞれ油戻し穴を
有するとともに、前記吸入配管のアキュムレータ内出口
付近にそれぞれ均圧穴を有することを特徴とする請求項
1ないし3記載のもののいずれかの空気調和装置。
4. The accumulator has a plurality of suction pipes connected to the plurality of compressors connected in parallel, and each of the plurality of suction pipes has a U-shape in the accumulator, and has a U-shaped curved portion. The air conditioner according to any one of claims 1 to 3, further comprising an oil return hole at the lowermost end of each of the first and second holes, and an equalizing hole near each of the accumulator outlets of the suction pipe.
JP29995596A 1996-11-12 1996-11-12 Air conditioner Expired - Fee Related JP3434993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29995596A JP3434993B2 (en) 1996-11-12 1996-11-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29995596A JP3434993B2 (en) 1996-11-12 1996-11-12 Air conditioner

Publications (2)

Publication Number Publication Date
JPH10141785A true JPH10141785A (en) 1998-05-29
JP3434993B2 JP3434993B2 (en) 2003-08-11

Family

ID=17878988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29995596A Expired - Fee Related JP3434993B2 (en) 1996-11-12 1996-11-12 Air conditioner

Country Status (1)

Country Link
JP (1) JP3434993B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036188A1 (en) * 2001-10-19 2003-05-01 Toshiba Carrier Corporation Refrigerating equipment
KR20040051050A (en) * 2002-12-11 2004-06-18 위니아만도 주식회사 Dual Type Structure Capillary of Cooling system
KR100643687B1 (en) 2004-09-21 2006-11-10 주식회사 대우일렉트로닉스 Air Conditioning Unit Using Multiple Compressors
KR100685768B1 (en) * 2006-02-27 2007-02-22 주식회사 대우일렉트로닉스 Air Conditioner with Multiple Compressors
CN1302236C (en) * 2003-11-14 2007-02-28 Lg电子株式会社 Air-conditioner having multiple compressors
KR100744774B1 (en) 2006-07-28 2007-08-01 삼성전자주식회사 Air conditioner
CN101915477A (en) * 2010-07-01 2010-12-15 大连三洋压缩机有限公司 Novel energy-saving refrigerating unit and working method thereof
DE102015107719A1 (en) * 2015-05-18 2016-11-24 Denso Automotive Deutschland Gmbh Refrigerant accumulator for a refrigerant circuit and refrigerant circuit with such a refrigerant accumulator
JP2021032454A (en) * 2019-08-22 2021-03-01 ダイキン工業株式会社 Branch unit and refrigeration device including the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036188A1 (en) * 2001-10-19 2003-05-01 Toshiba Carrier Corporation Refrigerating equipment
CN100406815C (en) * 2001-10-19 2008-07-30 东芝开利株式会社 freezer
KR20040051050A (en) * 2002-12-11 2004-06-18 위니아만도 주식회사 Dual Type Structure Capillary of Cooling system
CN1302236C (en) * 2003-11-14 2007-02-28 Lg电子株式会社 Air-conditioner having multiple compressors
KR100643687B1 (en) 2004-09-21 2006-11-10 주식회사 대우일렉트로닉스 Air Conditioning Unit Using Multiple Compressors
KR100685768B1 (en) * 2006-02-27 2007-02-22 주식회사 대우일렉트로닉스 Air Conditioner with Multiple Compressors
KR100744774B1 (en) 2006-07-28 2007-08-01 삼성전자주식회사 Air conditioner
CN101915477A (en) * 2010-07-01 2010-12-15 大连三洋压缩机有限公司 Novel energy-saving refrigerating unit and working method thereof
DE102015107719A1 (en) * 2015-05-18 2016-11-24 Denso Automotive Deutschland Gmbh Refrigerant accumulator for a refrigerant circuit and refrigerant circuit with such a refrigerant accumulator
JP2021032454A (en) * 2019-08-22 2021-03-01 ダイキン工業株式会社 Branch unit and refrigeration device including the same

Also Published As

Publication number Publication date
JP3434993B2 (en) 2003-08-11

Similar Documents

Publication Publication Date Title
JP4123829B2 (en) Refrigeration cycle equipment
US8205467B2 (en) Air conditioning apparatus
US7155928B2 (en) Refrigerating apparatus
EP2728278B1 (en) Refrigeration cycle device and air conditioner
EP0715132A1 (en) Oil balancing operation control device for an air conditioner
JP2974179B2 (en) Multi-room air conditioner
US7908878B2 (en) Refrigerating apparatus
US6826924B2 (en) Heat pump apparatus
JP3263579B2 (en) Multi-room type air conditioner and heating method
JP3434993B2 (en) Air conditioner
US20060123834A1 (en) Air conditioner
US20060123817A1 (en) Air conditioner
JP2000346478A (en) Refrigerator
WO2002046664A1 (en) Refrigerator
JP3161347B2 (en) Refrigeration equipment
JP2001056156A (en) Air conditioning apparatus
CN114251718A (en) Multi-split air conditioner for refrigerating, heating and ventilating
JPS602505Y2 (en) air conditioner
CN115143658B (en) Double-working-condition water chilling unit and control method thereof
JPH04313647A (en) Heat pump type air conditioner
JP2002310464A (en) Heat carrier and air conditioner using it
CN218154501U (en) Air conditioning system
JP3268967B2 (en) Air conditioner
JPH109718A (en) Air conditioner
KR100510851B1 (en) Condenser Structure Of Outdoor Unit For Air Conditioner

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080530

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080530

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080530

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090530

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100530

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110530

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees