JPH109718A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH109718A
JPH109718A JP8165583A JP16558396A JPH109718A JP H109718 A JPH109718 A JP H109718A JP 8165583 A JP8165583 A JP 8165583A JP 16558396 A JP16558396 A JP 16558396A JP H109718 A JPH109718 A JP H109718A
Authority
JP
Japan
Prior art keywords
refrigerant
indoor
heat exchanger
outdoor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8165583A
Other languages
Japanese (ja)
Inventor
Satoshi Hori
智 堀
Yasuhiro Naito
靖浩 内藤
Hiromi Kawaguchi
博己 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Shimizu Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP8165583A priority Critical patent/JPH109718A/en
Publication of JPH109718A publication Critical patent/JPH109718A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate the need of particular provision of a pressure reduce by providing with a pressure reducing function a site-laid refrigerant piping connecting between an outdoor heat exchanger and an indoor heat exchanger. SOLUTION: In cooling operation, a four-way valve 2 is operated into a state where connection ports A and D, B and C thereof are interlly connected. High temperature high pressure refrigerant vapor discharged from the compressor 1 flows onto the outdoor heat exchanger 3 after passage through the connection ports A, D, and radiates heat to outdoor air sent form an outdoor fan 8. The refrigerant which has radiated the heat is condensed and liquefied into a liquid refrigerant, and enters a refrigerant liquid connection piping 4. Herein, the refrigerant liquid connection piping 4 is reduced in pressure under the indications that the piping 4 is provided with a pressure reducing function, and becomes a two phase flow of gas/liquid mixture. The low temperature low pressure refrigerant as the two phase flow is guided to an indoor machine, and enters an indoor heat exchanger 6 to effect heat exchange with indoor air sent from the indoor fan 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空気調和装置に関す
る。
[0001] The present invention relates to an air conditioner.

【0002】[0002]

【従来の技術】従来、空気調和装置で、冷凍サイクルの
減圧装置として最も安価なキャピラリチューブを用い構
成しているのが一般的であった。また、従来の別の空気
調和装置では、特開昭60−226667号公報に記載のよう
に、電気式膨脹弁を用い減圧量を調整する機能を有した
ものもある。また、従来の別の空気調和装置では、特願
平5−2570 号公報に記載のように、第1の減圧装置であ
るキャピラリチューブで一旦減圧し液冷媒を気液二相流
化し、第2の減圧装置である電気式膨脹弁で減圧するこ
とで現地で接続される冷媒配管が長距離であっても冷媒
量を削減可能な冷凍サイクルを構成したものもある。
2. Description of the Related Art Heretofore, it has been general that an air conditioner is configured by using a cheapest capillary tube as a decompression device of a refrigeration cycle. Another conventional air conditioner has a function of adjusting the pressure reduction amount using an electric expansion valve as described in Japanese Patent Application Laid-Open No. 60-226667. In another conventional air conditioner, as described in Japanese Patent Application No. 5-2570, the pressure of the liquid refrigerant is temporarily reduced by a capillary tube as a first pressure reducing device to convert the liquid refrigerant into a gas-liquid two-phase flow. There is also a refrigeration cycle that can reduce the amount of refrigerant even if the refrigerant pipe connected locally is long by reducing the pressure with an electric expansion valve that is a pressure reducing device.

【0003】[0003]

【発明が解決しようとする課題】減圧装置をキャピラリ
チューブで構成する場合、比較的安価となる反面、キャ
ピラリチューブ入口の冷媒の状態を液相に保つために現
地の冷媒液接続配管を太径化する必要がある。このこと
により接続配管内の冷媒量も大となり現地施工を含めた
システム全体では安価とは言えない。また、現地の接続
配管長さに見合った冷媒量を封入するために、冷媒封入
量の大きな誤差が発生し易く、それによる影響で冷凍サ
イクルが不安定となりやすいという問題があった。
When the pressure reducing device is constituted by a capillary tube, it is relatively inexpensive, but on the other hand, the diameter of the refrigerant liquid connection pipe at the site is increased in order to keep the state of the refrigerant at the inlet of the capillary tube in the liquid phase. There is a need to. As a result, the amount of refrigerant in the connection pipe becomes large, and it cannot be said that the whole system including the local construction is inexpensive. In addition, since the amount of the refrigerant corresponding to the length of the connection pipe at the site is charged, a large error in the amount of the charged refrigerant is likely to occur, and the refrigeration cycle tends to be unstable due to the influence.

【0004】また、冷凍サイクルの安定化を保つ構成と
して、減圧装置をキャピラリチューブの替わりに電気式
膨張弁等で冷媒流量を変えられる構成もあるが、これは
価格的な問題が顕著となってしまう。
In order to stabilize the refrigerating cycle, there is a structure in which the pressure reducing device can change the flow rate of the refrigerant by an electric expansion valve or the like instead of the capillary tube. However, this has a significant cost problem. I will.

【0005】また、冷媒量を小とするため、キャピラリ
チューブで一旦減圧することにより液冷媒を気液二相流
化し、現地の冷媒液接続配管内の冷媒量を削減させた構
成もあるが、冷暖房兼用機では暖房運転時にこのキャピ
ラリチューブをバイパスする逆止弁の必要が生じる。
In order to reduce the amount of the refrigerant, there is also a configuration in which the refrigerant is once depressurized by a capillary tube to form a gas-liquid two-phase flow, thereby reducing the amount of the refrigerant in the local refrigerant liquid connection pipe. In the case of the cooling / heating machine, a check valve is required to bypass the capillary tube during the heating operation.

【0006】[0006]

【課題を解決するための手段】上記問題を解決するた
め、本発明は圧縮機,室外熱交換器,室内熱交換器及び
アキュムレータを順に冷媒配管により接続した冷凍サイ
クルを含んで構成される空気調和装置で、室外熱交換器
と室内熱交換器を接続する現地の冷媒配管に減圧機能を
有した構成とすることを特徴とする。
In order to solve the above-mentioned problems, the present invention provides an air conditioner including a refrigeration cycle in which a compressor, an outdoor heat exchanger, an indoor heat exchanger, and an accumulator are connected in order by a refrigerant pipe. The apparatus is characterized in that a refrigerant pipe on the site connecting the outdoor heat exchanger and the indoor heat exchanger has a pressure reducing function.

【0007】また、電動式膨張弁を併用することで、現
地の冷媒配管の差異をも吸収できるように冷媒流量を調
整可能とさせてもよい。
Further, by using an electric expansion valve together, the flow rate of the refrigerant may be adjusted so as to absorb the difference in the refrigerant pipe at the site.

【0008】さらに、現地の冷媒配管が長い場合のみそ
の冷媒配管の影響をうけ減圧され、液冷媒配管内の冷媒
量を削減させた構成とすることを特徴とする。
Further, the present invention is characterized in that the pressure is reduced under the influence of the refrigerant pipe only when the local refrigerant pipe is long, and the amount of refrigerant in the liquid refrigerant pipe is reduced.

【0009】なお、現地の冷媒配管に減圧機能を有した
構成とは、例えば ・現地の冷媒液接続配管の途中に急縮小した形状の配管
を接続する(現地調達または製品に付属)。
[0009] The configuration in which the local refrigerant pipe has a decompression function includes, for example: (1) connecting a rapidly reduced pipe in the middle of the local refrigerant liquid connection pipe (locally supplied or attached to the product);

【0010】・現地の冷媒液接続配管の径を配管長さに
より変更する。
[0010] The diameter of the on-site refrigerant liquid connection pipe is changed according to the length of the pipe.

【0011】などが挙げられるが、ここでは特に規定し
ない。
[0011] These are not specified here.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施例を、図1な
いし図3を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0013】図1は本発明の第1の実施例を示す空気調
和装置の系統図である。なお、特に規定しないがここで
は冷暖房兼用機の例で説明する。図示の冷凍サイクル
は、圧縮機1を含む室内機と、この室内機に接続された
室外機とからなっている。
FIG. 1 is a system diagram of an air conditioner showing a first embodiment of the present invention. Although not particularly specified, an example of a cooling / heating device will be described here. The illustrated refrigeration cycle includes an indoor unit including the compressor 1 and an outdoor unit connected to the indoor unit.

【0014】室内機は、冷媒蒸気を圧縮する圧縮機1
と、この圧縮機1の吐出口にその第1の接続ポートAを
接続して配置された四方弁2と、四方弁2の第2の接続
ポートBに一端を接続された室内熱交換器6とで構成さ
れる。一方、圧縮機1の吸い込み側はアキュムレータ7
の出口側に接続され、その入口側を四方弁2の第3の接
続ポートCに接続し、室内熱交換器6に室内空気を送風
する室内側送風機9とを含んで構成されている。
The indoor unit comprises a compressor 1 for compressing refrigerant vapor.
A four-way valve 2 arranged with its first connection port A connected to a discharge port of the compressor 1; and an indoor heat exchanger 6 having one end connected to a second connection port B of the four-way valve 2. It is composed of On the other hand, the suction side of the compressor 1 is
And an indoor blower 9 that connects the inlet side to the third connection port C of the four-way valve 2 and blows indoor air to the indoor heat exchanger 6.

【0015】室外機は、室外熱交換器3に外気を送風す
る室外送風機8とで構成されている。
The outdoor unit includes an outdoor blower 8 for blowing outside air to the outdoor heat exchanger 3.

【0016】また、室内機と室外機は現地で室内熱交換
器6と室外熱交換器3は冷媒液接続配管4で、室外熱交
換器3と前記四方弁2の第4の接続ポートDは冷媒ガス
接続配管5でそれぞれ接続されている。
The indoor unit and the outdoor unit are locally connected to the indoor heat exchanger 6 and the outdoor heat exchanger 3 by the refrigerant liquid connection pipe 4, and the outdoor heat exchanger 3 and the fourth connection port D of the four-way valve 2 are connected to each other. Each is connected by a refrigerant gas connection pipe 5.

【0017】次に本実施例の動作について説明する。Next, the operation of this embodiment will be described.

【0018】冷房運転時には、四方弁2は、その接続ポ
ートAとD,BとCがそれぞれ内部で連通する状態に操
作される。図の実線の矢印が冷房運転時の冷媒の流れの
方向を示す。圧縮機1から吐出された高温,高圧の冷媒
蒸気は四方弁2の接続ポートA,Dを経て室外熱交換器
3に流入し、室外側送風機8によって送風される室外空
気に熱を放出する。室外空気に熱を放出した冷媒は凝縮
液化して液冷媒となり、冷媒液接続配管4に流入する。
この時この冷媒液接続配管4は減圧機能を有したものを
採用することを条件に減圧され、気液混合の二相流とな
る。この減圧機能とは、例えば (1)現地の冷媒液接続配管4の途中に急縮小した形状
の配管を接続する。これれによりオリフィスの機能を有
することになる。
During the cooling operation, the four-way valve 2 is operated such that the connection ports A and D, and B and C respectively communicate internally. The solid arrows in the drawing indicate the direction of the flow of the refrigerant during the cooling operation. The high-temperature and high-pressure refrigerant vapor discharged from the compressor 1 flows into the outdoor heat exchanger 3 through the connection ports A and D of the four-way valve 2 and releases heat to the outdoor air blown by the outdoor blower 8. The refrigerant that has released heat to the outdoor air is condensed and liquefied to become a liquid refrigerant, and flows into the refrigerant liquid connection pipe 4.
At this time, the refrigerant liquid connection pipe 4 is decompressed on condition that a pipe having a decompression function is adopted, and becomes a two-phase flow of gas-liquid mixing. The decompression function is, for example, (1) connecting a rapidly reduced pipe in the middle of the on-site refrigerant liquid connection pipe 4. This has the function of an orifice.

【0019】(2)(1)の代案として現地の冷媒液接
続配管4の径全体を縮小する。これも(1)同様の効果
が得られる。また、室内機と室外機の設置場所(配管接
続長さおよび高低差)により配管径を選定することも可
能となる。
(2) As an alternative to (1), the entire diameter of the on-site refrigerant liquid connection pipe 4 is reduced. This also provides the same effect as (1). Further, it is also possible to select the pipe diameter according to the installation location of the indoor unit and the outdoor unit (pipe connection length and height difference).

【0020】などが挙げられるが、ここでは特に規定し
ない。
There are no particular restrictions here.

【0021】気液混合の二相流となった低温低圧の冷媒
は室内機に導かれ、室内熱交換器6に流入し、室内側送
風機9によって送風される室内空気と熱交換する。室内
空気との熱交換で室内空気を冷却して冷房を行った冷媒
は、室内空気の熱で蒸発して冷媒蒸気となり、四方弁2
の接続ポートB,Cを経てアキュムレータ7に入り、次
いで圧縮機1に戻る。
The low-temperature, low-pressure refrigerant that has become a two-phase flow of gas-liquid mixture is guided to the indoor unit, flows into the indoor heat exchanger 6, and exchanges heat with the indoor air blown by the indoor blower 9. The refrigerant that has been cooled by cooling the indoor air by heat exchange with the indoor air is evaporated by the heat of the indoor air into refrigerant vapor, and the four-way valve 2
And enters the accumulator 7 through the connection ports B and C, and then returns to the compressor 1.

【0022】暖房運転時には、四方弁2は、その接続ポ
ートAとB,CとDがそれぞれ内部で連通する状態に操
作される。これにより冷房運転時とは逆向きに冷媒が流
れ、室内側送風機9によって送風される室内空気に熱を
放出して暖房を行うことになる。図の破線の矢印が暖房
運転時の冷媒の流れの方向を示す。
During the heating operation, the four-way valve 2 is operated such that the connection ports A and B, and C and D respectively communicate internally. As a result, the refrigerant flows in the opposite direction to that during the cooling operation, and heat is released by releasing heat to the indoor air blown by the indoor blower 9. The dashed arrow in the figure indicates the direction of the flow of the refrigerant during the heating operation.

【0023】次に、図2は本発明の第2の実施例を示す
空気調和装置の系統図である。
Next, FIG. 2 is a system diagram of an air conditioner showing a second embodiment of the present invention.

【0024】この図に示す第2の実施例では、現地で室
内機と室外機を接続する冷媒配管のうち冷媒液接続配管
4に減圧機能を有し、なお且つ減圧装置としてキャピラ
リチューブ10を設置するように構成されている。
In the second embodiment shown in this figure, of the refrigerant pipes connecting the indoor unit and the outdoor unit on site, the refrigerant liquid connection pipe 4 has a decompression function, and the capillary tube 10 is installed as a decompression device. It is configured to be.

【0025】そして、この第2の実施例では冷房運転時
に現地の冷媒液接続配管4で減圧し、さらに室内機のキ
ャピラリチューブ10で減圧することになるが、これは
冷媒液接続配管4が長距離の場合に冷媒が二相流化し、
冷媒保有量を削減するために働く。また逆に冷媒液接続
配管4が短距離の場合には、現地で封入する冷媒量で調
整することもできるが、チャージレスサイクル(最長距
離時の必要冷媒量をあらかじめ封入し、現地での冷媒封
入作業を不要とした冷凍サイクル)では、長距離の場合
と同一配管径またはそれ以上の径であっても短距離のた
め冷媒液接続配管4内に占める気相冷媒量は少なく、逆
に余剰冷媒を冷媒液接続配管4内に保有することができ
る。これは、本来、余剰冷媒を保有する器(本実施例で
はアキュムレータ7)の小容量化が可能となる有効な手
段である。
In the second embodiment, during the cooling operation, the pressure is reduced by the on-site refrigerant liquid connection pipe 4 and further reduced by the capillary tube 10 of the indoor unit. In the case of distance, refrigerant will flow into two phases,
Works to reduce refrigerant holdings. Conversely, when the refrigerant liquid connection pipe 4 is short, the amount of refrigerant to be charged at the site can be adjusted. However, the chargeless cycle (the required amount of refrigerant at the longest distance is charged in advance and the In a refrigeration cycle that does not require a filling operation, the amount of gas-phase refrigerant occupying the refrigerant liquid connection pipe 4 is small due to the short distance even if the pipe diameter is the same as or larger than that in the case of long distance, and conversely surplus A refrigerant can be held in the refrigerant liquid connection pipe 4. This is an effective means that can reduce the capacity of the container (accumulator 7 in the present embodiment) that holds the surplus refrigerant.

【0026】なお、この第2の実施例の他の構成,作用
については、第1の実施例と同様である。
The other structure and operation of the second embodiment are the same as those of the first embodiment.

【0027】ついで、図3は本発明の第3の実施例を示
す空気調和装置の系統図である。
FIG. 3 is a system diagram of an air conditioner showing a third embodiment of the present invention.

【0028】この図に示す第3の実施例では、現地で室
内機と室外機を接続する冷媒配管のうち冷媒液接続配管
4に減圧機能を有し、なお且つ減圧装置として電気式膨
張弁11を設置するように構成されている。
In the third embodiment shown in this figure, the refrigerant liquid connecting pipe 4 among the refrigerant pipes connecting the indoor unit and the outdoor unit on site has a pressure reducing function, and the electric expansion valve 11 is used as a pressure reducing device. Is configured to be installed.

【0029】そして、この第3の実施例では冷房運転時
に現地の冷媒液接続配管4で減圧し、さらに室内機の電
気式膨脹弁11で減圧する。これは冷媒液接続配管4が
長距離の場合に冷媒が二相流化し、冷媒保有量を削減す
るために働くことと、さらに減圧量を電気式膨脹弁11
により微調整させるために働く。また、短距離の場合に
は、第2の実施例のように冷媒液接続配管4による減圧
量が減り、冷媒液接続配管4内に占める冷媒量は増加す
るが電気式膨脹弁11により最適な減圧量を調整でき
る。また、現地で封入する冷媒量で調整してもよいが、
チャージレスサイクルでは、第2の実施例と同様な効果
が得られる。さらに本実施例では、現地の冷媒配管長さ
の差異の他に、冷房運転と暖房運転の必要冷媒量の差異
を電気式膨脹弁11で調整できる。また、さらに冷房ま
たは暖房時における運転状態の変動、例えば、室内また
は室外空気温度,送風量の変動により発生する冷凍サイ
クルの圧力変動を電気式膨脹弁11で調整できる。ま
た、さらに暖房運転時の除霜運転では、四方弁2の動作
を冷房運転時に戻す逆サイクル除霜を実施するのが一般
的であるが、この時の最適減圧量を電気式膨脹弁11で
調整することもできる。
In the third embodiment, the pressure is reduced at the local refrigerant liquid connection pipe 4 during the cooling operation, and further reduced by the electric expansion valve 11 of the indoor unit. This is because when the refrigerant liquid connection pipe 4 is a long distance, the refrigerant flows into two phases and works to reduce the refrigerant holding amount.
Work to make fine adjustments. In the case of a short distance, as in the second embodiment, the amount of pressure reduction by the refrigerant liquid connection pipe 4 decreases, and the amount of refrigerant occupying the refrigerant liquid connection pipe 4 increases. The amount of reduced pressure can be adjusted. Also, it may be adjusted by the amount of refrigerant charged locally,
In the chargeless cycle, the same effect as in the second embodiment can be obtained. Further, in the present embodiment, in addition to the difference in the length of the refrigerant pipe at the site, the difference in the amount of refrigerant required for the cooling operation and the heating operation can be adjusted by the electric expansion valve 11. Further, the electric expansion valve 11 can adjust fluctuations in the operating state during cooling or heating, for example, fluctuations in the pressure of the refrigeration cycle caused by fluctuations in the indoor or outdoor air temperature and the air flow rate. Further, in the defrosting operation at the time of the heating operation, it is general to perform the reverse cycle defrosting that returns the operation of the four-way valve 2 at the time of the cooling operation, but the optimal pressure reduction amount at this time is determined by the electric expansion valve 11. It can also be adjusted.

【0030】なお、この第3の実施例の他の構成,作用
については、前記第1の実施例と同様である。
The other structure and operation of the third embodiment are the same as those of the first embodiment.

【0031】[0031]

【発明の効果】本発明の請求項1に記載の発明によれ
ば、空気調和装置の冷凍サイクルにおける減圧機構を現
地で室内機と室外機を接続する冷媒液配管にもたせ、特
別に減圧装置を装備する必要がなくなる。
According to the first aspect of the present invention, the decompression mechanism in the refrigeration cycle of the air conditioner is provided on the site to the refrigerant liquid pipe connecting the indoor unit and the outdoor unit, and the decompression device is specially provided. There is no need to equip.

【0032】また、本発明の請求項2に記載の発明によ
れば、室内機と室外機を接続する冷媒液配管内の冷媒の
状態を気液二相流化し、必要冷媒量を削減した空気調和
機で、二相流化するための減圧装置(冷暖房兼用機では
暖房時にこれをバイパスする逆止弁を含む)を特別に必
要とせずに達成できる。
According to the second aspect of the present invention, the state of the refrigerant in the refrigerant liquid pipe connecting the indoor unit and the outdoor unit is changed to a gas-liquid two-phase flow, and the amount of the required refrigerant is reduced. The conditioner can be achieved without specially requiring a pressure reducing device for two-phase flow (including a check valve which bypasses the device during heating in the case of a cooling / heating device).

【0033】さらに、本発明の請求項3記載の発明によ
れば、開度を自在に変えられる電気式膨脹弁を使用すれ
ば、室内機と室外機を接続する冷媒配管の距離の長短に
かかわらず、また、現地で冷媒封入を不要としたチャー
ジレスサイクルでも安定した冷凍サイクルを構成でき、
冷媒配管の距離が短い場合の余剰冷媒を液配管に保有で
きることから、従来これを保有していた器の小容量化が
可能となる。
Further, according to the third aspect of the present invention, if an electric expansion valve whose opening can be freely changed is used, the distance of the refrigerant pipe connecting the indoor unit and the outdoor unit can be reduced. In addition, a stable refrigeration cycle can be configured even in a chargeless cycle that does not require refrigerant charging on site,
Since the excess refrigerant in the case where the distance of the refrigerant pipe is short can be stored in the liquid pipe, it is possible to reduce the capacity of a vessel that conventionally has the refrigerant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の空気調和装置の冷凍サ
イクルを示す系統図。
FIG. 1 is a system diagram showing a refrigeration cycle of an air conditioner according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の空気調和装置の冷凍サ
イクルを示す系統図。
FIG. 2 is a system diagram showing a refrigeration cycle of an air conditioner according to a second embodiment of the present invention.

【図3】本発明の第3の実施例の空気調和装置の冷凍サ
イクルを示す系統図。
FIG. 3 is a system diagram showing a refrigeration cycle of an air conditioner according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…四方弁、3…室外熱交換器、4…冷媒
液接続配管、5…冷媒ガス接続配管、6…室内側熱交換
器、7…アキュムレータ、8…室外側送風機、9…室内
側送風機、11…電気式膨張弁。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... Refrigerant liquid connection piping, 5 ... Refrigerant gas connection piping, 6 ... Indoor heat exchanger, 7 ... Accumulator, 8 ... Outdoor blower, 9 ... indoor side blower, 11 ... electric expansion valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川口 博己 静岡県清水市村松390番地 日立清水エン ジニアリング株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiromi Kawaguchi 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Within Hitachi Shimizu Engineering Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機,室外熱交換器,室内熱交換器及び
アキュムレータを順に冷媒配管により接続した冷凍サイ
クルを含んで構成される空気調和装置において、前記室
外熱交換器と前記室内熱交換器を接続する現地の冷媒配
管に減圧機能を有することを特徴とする空気調和装置。
1. An air conditioner comprising a refrigeration cycle in which a compressor, an outdoor heat exchanger, an indoor heat exchanger, and an accumulator are sequentially connected by a refrigerant pipe, wherein the outdoor heat exchanger and the indoor heat exchanger are provided. An air conditioner characterized by having a decompression function in a local refrigerant pipe connecting the air conditioner.
JP8165583A 1996-06-26 1996-06-26 Air conditioner Pending JPH109718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8165583A JPH109718A (en) 1996-06-26 1996-06-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8165583A JPH109718A (en) 1996-06-26 1996-06-26 Air conditioner

Publications (1)

Publication Number Publication Date
JPH109718A true JPH109718A (en) 1998-01-16

Family

ID=15815120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8165583A Pending JPH109718A (en) 1996-06-26 1996-06-26 Air conditioner

Country Status (1)

Country Link
JP (1) JPH109718A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007880A (en) * 2008-06-24 2010-01-14 Csc:Kk Air conditioning device, and warm water and cold water supply system utilizing the same
DE102010014773A1 (en) 2009-04-14 2010-11-25 J. Morita Manufacturing Corporation Medical cutting device and medical cutting device
WO2016051606A1 (en) * 2014-10-03 2016-04-07 三菱電機株式会社 Air conditioning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007880A (en) * 2008-06-24 2010-01-14 Csc:Kk Air conditioning device, and warm water and cold water supply system utilizing the same
DE102010014773A1 (en) 2009-04-14 2010-11-25 J. Morita Manufacturing Corporation Medical cutting device and medical cutting device
WO2016051606A1 (en) * 2014-10-03 2016-04-07 三菱電機株式会社 Air conditioning device
JPWO2016051606A1 (en) * 2014-10-03 2017-04-27 三菱電機株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
US6595012B2 (en) Climate control system
US20060179868A1 (en) Multi type air-conditioner and control method thereof
US7257964B2 (en) Air conditioner
CN102109202B (en) Air conditioner
US20160003499A1 (en) Regenerative air-conditioning apparatus and method of controlling the same
US20010037649A1 (en) Air conditioner using flammable refrigerant
JP2005226950A (en) Refrigerating air conditioner
JPH07120076A (en) Air conditioner
JP3434993B2 (en) Air conditioner
JPH10205933A (en) Air conditioner
JPH109718A (en) Air conditioner
JP3055854B2 (en) Refrigeration cycle and control method thereof
JPH10232073A (en) Air conditioner
JP2800428B2 (en) Air conditioner
KR100441008B1 (en) Cooling and heating air conditioning system
JPH10148412A (en) Refrigerating system
JPH08128760A (en) Air conditioner
JP2002243295A (en) Air conditioner
KR100606277B1 (en) heat-pump air-conditioner
WO2023223539A1 (en) Air conditioning device
JPH04268165A (en) Double-stage compression and freezing cycle device
JP3354244B2 (en) Refrigeration equipment
JPH04350472A (en) Air conditioner
JPH10288407A (en) Supercooling cycle
JPH0771831A (en) Direct air-conditioning type heat pump device