JP3055854B2 - Refrigeration cycle and control method thereof - Google Patents

Refrigeration cycle and control method thereof

Info

Publication number
JP3055854B2
JP3055854B2 JP6116828A JP11682894A JP3055854B2 JP 3055854 B2 JP3055854 B2 JP 3055854B2 JP 6116828 A JP6116828 A JP 6116828A JP 11682894 A JP11682894 A JP 11682894A JP 3055854 B2 JP3055854 B2 JP 3055854B2
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
refrigeration cycle
receiver
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6116828A
Other languages
Japanese (ja)
Other versions
JPH07324833A (en
Inventor
和幹 浦田
研作 小国
久平 石羽根
剛 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6116828A priority Critical patent/JP3055854B2/en
Priority to CN94118143.XA priority patent/CN1079528C/en
Priority to US08/330,677 priority patent/US5651263A/en
Publication of JPH07324833A publication Critical patent/JPH07324833A/en
Priority to US08/766,315 priority patent/US5768902A/en
Application granted granted Critical
Publication of JP3055854B2 publication Critical patent/JP3055854B2/en
Priority to CN01117152.9A priority patent/CN1198103C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷凍サイクルとその制
御方法に係り、特に冷凍サイクル内に非共沸混合冷媒を
封入した場合の冷凍サイクル内を循環する冷媒組成の変
化を抑制し、かつ冷媒量の低減に好適な冷凍サイクルと
その制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle and a method for controlling the refrigeration cycle, and in particular, suppresses a change in refrigerant composition circulating in the refrigeration cycle when a non-azeotropic mixed refrigerant is sealed in the refrigeration cycle, and The present invention relates to a refrigeration cycle suitable for reducing the amount of refrigerant and a control method thereof.

【0002】[0002]

【従来の技術】従来、非共沸混合冷媒を用いた冷凍サイ
クルの制御技術としては、冷凍サイクルを循環する混合
冷媒の組成比を調整し、冷凍サイクルの容量制御を行う
技術が種々提案されている。
2. Description of the Related Art Hitherto, as a control technique of a refrigeration cycle using a non-azeotropic mixed refrigerant, various techniques for controlling the composition ratio of a mixed refrigerant circulating in the refrigeration cycle and controlling the capacity of the refrigeration cycle have been proposed. I have.

【0003】例えば、特開昭61−99066号公報に
記載の熱ポンプ装置によれば、非共沸混合冷媒を冷媒精
留塔へ導入する位置をその塔頂部または塔底部に切り替
え可能に設けた三方弁を経て冷媒精留塔に導入させるこ
とにより、主回路を流れる冷媒の組成を大きく変化させ
ることが可能となり、常に負荷に応じた好適な冷媒組成
を得ることができる。
For example, according to the heat pump device described in Japanese Patent Application Laid-Open No. 61-99066, a position where a non-azeotropic mixed refrigerant is introduced into a refrigerant rectification column is switchably provided at the top or bottom of the column. By introducing the refrigerant into the rectification column via the three-way valve, the composition of the refrigerant flowing through the main circuit can be changed greatly, and a suitable refrigerant composition can always be obtained according to the load.

【0004】また、特開平1−58964号公報に記載
のヒートポンプシステムによれば、室内熱交換器と室外
熱交換器の間に気液分離器を設け、吸入ガス管と熱交換
可能に設けた冷媒タンクを第1接続管で気液分離器の上
部に接続するとともに、冷媒タンクを開閉弁の介設され
た第2接続管で気液分離器の下部に接続して非共沸混合
冷媒サイクルを構成することによって、冷房運転時に前
記気液分離器の上部から流出する低沸点冷媒に富んだガ
ス冷媒が冷媒タンクに流入し、前記冷媒タンク内で凝縮
し、液冷媒として貯留することにより、冷凍サイクル内
を循環する混合冷媒の組成を高沸点冷媒が多い状態とす
ることが可能となる。
According to the heat pump system described in Japanese Patent Application Laid-Open No. 1-58964, a gas-liquid separator is provided between an indoor heat exchanger and an outdoor heat exchanger, and is provided so as to be able to exchange heat with a suction gas pipe. The refrigerant tank is connected to the upper part of the gas-liquid separator by a first connection pipe, and the refrigerant tank is connected to the lower part of the gas-liquid separator by a second connection pipe provided with an on-off valve. By configuring, the gas refrigerant rich in low boiling point refrigerant flowing out of the upper part of the gas-liquid separator during the cooling operation flows into the refrigerant tank, condenses in the refrigerant tank, and is stored as a liquid refrigerant, The composition of the mixed refrigerant circulating in the refrigeration cycle can be set to a state in which a high-boiling refrigerant is large.

【0005】一方、冷凍サイクルのメンテナンス性を向
上させるため、接続配管の最大延長分の冷媒を冷凍サイ
クル内に初期封入する冷凍サイクルシステムがある。こ
の冷凍サイクルシステムでは、接続配管が短い場合、余
剰冷媒が発生し、前記余剰冷媒を貯留するタンクを必要
とする。従来の冷凍サイクルでは、この余剰冷媒の貯留
方法として二つの方法がある。その一つの方法は、凝縮
器として作用している熱交換器の後方側の高圧部に受液
器を設け、前記受液器内に余剰冷媒を貯留する方法であ
る。他の一つの方法は、平成5年度日本冷凍協会学術講
演会講演論文集p41に記載されている方法で、冷凍サ
イクルの吸入部に配設されるアキュムレータ内に余剰冷
媒を貯留する方法である。
[0005] On the other hand, there is a refrigeration cycle system in which the refrigerant for the maximum extension of the connection pipe is initially enclosed in the refrigeration cycle in order to improve the maintainability of the refrigeration cycle. In this refrigeration cycle system, when the connection pipe is short, surplus refrigerant is generated, and a tank for storing the surplus refrigerant is required. In the conventional refrigeration cycle, there are two methods for storing the surplus refrigerant. One of the methods is a method in which a liquid receiver is provided in a high-pressure portion on the rear side of a heat exchanger acting as a condenser, and excess refrigerant is stored in the liquid receiver. Another method is a method described in 1993 Japan Refrigeration Association Academic Lecture Proceedings, p41, in which surplus refrigerant is stored in an accumulator provided in a suction part of a refrigeration cycle.

【0006】次に、前述のごとき余剰冷媒を貯留する冷
凍サイクルに非共沸混合冷媒を封入した場合について説
明する。受液器内に余剰冷媒を貯留する場合は、凝縮器
から流出される高圧の冷媒が受液器内に流入し、余剰冷
媒として貯留される。受液器内に流入する冷媒は、乾き
度が非常に小さい冷媒であるため、封入組成に近い組成
として貯留され、冷凍サイクルを循環する混合冷媒の組
成は封入組成に近い組成となる。一方、アキュムレータ
内に余剰冷媒を貯留する場合は、蒸発器から流出される
低圧の冷媒がアキュムレータ内に流入し、余剰冷媒とし
て貯留される。アキュムレータ内に流入する冷媒は、乾
き度が非常に大きい冷媒であるため、封入組成に対して
高沸点冷媒が多い組成として貯留され、冷凍サイクルを
循環する混合冷媒の組成は封入組成よりも低沸点冷媒が
多い組成となる。
Next, a case where a non-azeotropic mixed refrigerant is sealed in a refrigeration cycle for storing the surplus refrigerant as described above will be described. When storing the surplus refrigerant in the receiver, the high-pressure refrigerant flowing out of the condenser flows into the receiver and is stored as surplus refrigerant. Since the refrigerant flowing into the receiver is a refrigerant having a very low dryness, it is stored as a composition close to the filling composition, and the composition of the mixed refrigerant circulating in the refrigeration cycle is a composition close to the filling composition. On the other hand, when storing surplus refrigerant in the accumulator, low-pressure refrigerant flowing out of the evaporator flows into the accumulator and is stored as surplus refrigerant. Since the refrigerant flowing into the accumulator is a refrigerant having a very high dryness, it is stored as a composition having a high boiling point refrigerant relative to the encapsulation composition, and the composition of the mixed refrigerant circulating in the refrigeration cycle has a lower boiling point than the encapsulation composition. The composition has a large amount of refrigerant.

【0007】[0007]

【発明が解決しようとする課題】ところが、前述のごと
き混合冷媒を封入した冷凍サイクルの循環冷媒組成を可
変する方法や、混合冷媒を封入した冷凍サイクルの余剰
冷媒を貯留する方法では、室内ユニットと室外ユニット
を接続する配管の長さが変化する場合や、地球環境保護
の面に対して考慮がなされていないため、次のような問
題を有する。
However, the method of changing the circulating refrigerant composition of the refrigeration cycle in which the mixed refrigerant is filled and the method of storing the surplus refrigerant in the refrigeration cycle in which the mixed refrigerant is charged have the following problems. When the length of the pipe connecting the outdoor unit is changed, and since no consideration is given to the protection of the global environment, there are the following problems.

【0008】すなわち、精留塔を用いて冷凍サイクルの
循環冷媒組成を自由に可変できるシステムにおいて、接
続配管が長い場合等で余剰冷媒がなくなる場合は、組成
を可変するために冷媒を貯めるタンク内に冷媒を貯留で
きなくなり、混合冷媒の循環冷媒組成を可変することが
できなくなる問題が生じる。また、タンク内へ冷媒を貯
めて循環冷媒組成を可変させても、冷凍サイクル内の有
効冷媒量が減少し、冷凍サイクルの効率を低下させる問
題が生じる。さらに、冷凍サイクル内の有効冷媒量を適
正にするために冷媒量を増やした場合には、地球温暖化
現象が大きくなる等の問題が生じる。
That is, in a system in which the circulating refrigerant composition of a refrigeration cycle can be freely varied by using a rectification column, if the excess refrigerant is exhausted due to a long connection pipe or the like, a tank for storing the refrigerant to vary the composition is used. In this case, there is a problem that the refrigerant cannot be stored in the refrigerant and the circulating refrigerant composition of the mixed refrigerant cannot be changed. Further, even if the refrigerant is stored in the tank and the composition of the circulating refrigerant is changed, the amount of effective refrigerant in the refrigeration cycle is reduced, and the efficiency of the refrigeration cycle is reduced. Further, when the amount of the refrigerant is increased in order to make the effective refrigerant amount in the refrigeration cycle appropriate, problems such as an increase in the global warming phenomenon occur.

【0009】また、気液分離器により冷凍サイクルの循
環冷媒組成を可変させる方法では、冷房運転時は循環冷
媒組成を高沸点冷媒が多くなる状態にできるが、暖房運
転時は冷媒タンク内の液冷媒が蒸発し、気液分離器内に
流入するため、循環冷媒組成は低沸点冷媒が多い状態と
なり、運転モードが異なると循環冷媒組成が変化し、圧
縮機が一定速モータを搭載している場合は、暖房時と冷
房時との間で能力が大きく異なったり、運転圧力が冷凍
サイクルの耐圧限界以上となる問題が生じる。
In the method in which the composition of the circulating refrigerant in the refrigeration cycle is varied by the gas-liquid separator, the circulating refrigerant composition can be made to contain more high-boiling-point refrigerant during the cooling operation, but the liquid in the refrigerant tank can be increased during the heating operation. Since the refrigerant evaporates and flows into the gas-liquid separator, the circulating refrigerant composition has a large amount of low-boiling refrigerant, and the circulating refrigerant composition changes when the operation mode is different, and the compressor is equipped with a constant speed motor. In such a case, there arises a problem that the capacity differs greatly between the time of heating and the time of cooling, and the operating pressure becomes equal to or higher than the withstand pressure limit of the refrigeration cycle.

【0010】また、余剰冷媒を貯留する二つの方法に
は、次のような問題がある。
[0010] The two methods for storing the surplus refrigerant have the following problems.

【0011】すなわち、凝縮器出口に設けた受液器によ
り余剰冷媒を貯留する方法では、高圧の液冷媒を貯留す
るため、循環冷媒組成の変化はほとんどないが、受液器
の入口および出口の配管が満液状態となるため、冷凍サ
イクルに必要な冷媒量が多くなり、地球温暖化現象を大
きくする問題が生じる。また、アキュムレータにより余
剰冷媒を貯留する方法では、低圧の乾き度の大きい冷媒
がアキュムレータに流入し、気液分離した高沸点冷媒に
富んだ液冷媒がアキュムレータに貯留されるため、循環
冷媒組成は低沸点冷媒が多くなり、冷凍サイクルの運転
圧力を上昇させ、運転限界が冷凍サイクルの耐圧限界以
上となる問題が生じる。
That is, in the method of storing the excess refrigerant by the liquid receiver provided at the outlet of the condenser, the composition of the circulating refrigerant hardly changes because the high-pressure liquid refrigerant is stored. Since the pipe becomes full, the amount of refrigerant required for the refrigeration cycle increases, which causes a problem of increasing the global warming phenomenon. Further, in the method of storing the surplus refrigerant by the accumulator, the low-pressure, high-dryness refrigerant flows into the accumulator, and the liquid refrigerant enriched in gas-liquid separated high-boiling refrigerant is stored in the accumulator. The amount of the boiling point refrigerant increases, and the operating pressure of the refrigeration cycle increases, which causes a problem that the operation limit is equal to or higher than the pressure limit of the refrigeration cycle.

【0012】本発明の目的は、前記従来技術の問題を解
決し、冷凍サイクルを流れる混合冷媒の組成の変化を抑
制することができ、かつ冷凍サイクルの運転限界を拡大
することがことができ、しかも接続配管が長くなるよう
な場合でも、必要冷媒量を少なくすることができる冷凍
サイクルを提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, to suppress a change in the composition of the mixed refrigerant flowing through the refrigeration cycle, and to expand the operation limit of the refrigeration cycle. Moreover, it is an object of the present invention to provide a refrigeration cycle that can reduce the required amount of refrigerant even when the connection pipe is long.

【0013】本発明の他の目的は、余剰冷媒を凝縮器出
口の冷媒乾き度が非常に小さい液冷媒の状態でより良く
貯留することが可能な冷凍サイクルを提供することにあ
る。
Another object of the present invention is to provide a refrigeration cycle capable of better storing surplus refrigerant in the state of liquid refrigerant having a very low dryness of refrigerant at the outlet of the condenser.

【0014】本発明のさらに他の目的は、冷凍サイクル
の運転領域を拡大するとともに、最適運転を可能とし、
また冷凍サイクルの運転モードを空調場に最適でかつユ
ーザの所望する運転を実行し得る冷凍サイクルの制御方
法を提供することにある。
Still another object of the present invention is to expand the operation range of a refrigeration cycle and to enable optimal operation,
It is another object of the present invention to provide a method of controlling a refrigeration cycle in which the operation mode of the refrigeration cycle is optimal for an air conditioner and can execute an operation desired by a user.

【0015】[0015]

【課題を解決するための手段】前記の目的を達成するた
め、本出願の請求項1に記載の発明は、少なくとも圧縮
機、室内熱交換器、第1減圧装置、第2減圧装置、室外
熱交換器を順次配管により接続した冷凍サイクルに、沸
点の異なる少なくとも二種類の冷媒を混合した非共沸混
合冷媒を封入し、前記室内熱交換器と室外熱交換器の間
に受液器を設けた冷凍サイクルにおいて、前記受液器に
気液混合手段を設け、前記受液器の出口側の前記非共沸
混合冷媒が液とガスの混合状態である気液二相状態とな
るようにした。
In order to achieve the above object,
Therefore, the invention described in claim 1 of the present application requires at least compression
Machine, indoor heat exchanger, first decompression device, second decompression device, outdoor
The refrigeration cycle, in which heat exchangers are connected sequentially by piping,
Non-azeotropic mixture of at least two refrigerants with different points
A mixed refrigerant is sealed between the indoor heat exchanger and the outdoor heat exchanger.
In a refrigeration cycle in which a liquid receiver is provided,
Providing a gas-liquid mixing means, the non-azeotropic on the outlet side of the receiver;
The mixed refrigerant becomes a gas-liquid two-phase state in which the liquid and gas are mixed.
It was to so.

【0016】また、請求項2に記載の発明は、少なくと
も圧縮機、室内熱交換器、第1減圧装置、第2減圧装
置、室外熱交換器を順次配管により接続した冷凍サイク
ルに、沸点の異なる少なくとも二種類の冷媒を混合した
非共沸混合冷媒を封入し、前記室内熱交換器と室外熱交
換器の間に受液器を設けた冷凍サイクルにおいて、前記
受液器を前記冷凍サイクルの中間圧部に設置し、前記受
液器から流出する冷媒流体をガスと液の混合状態とする
気液混合装置を設けた。
[0016] The invention according to claim 2 is at least as follows.
Compressor, indoor heat exchanger, first decompression device, second decompression device
Refrigeration cycle in which the heat exchanger and outdoor heat exchanger are connected sequentially by piping
Mixed with at least two types of refrigerants with different boiling points
A non-azeotropic mixed refrigerant is charged, and outdoor heat exchange with the indoor heat exchanger is performed.
In a refrigeration cycle provided with a receiver between heat exchangers,
Install the receiver at the intermediate pressure section of the refrigeration cycle,
Make the refrigerant fluid flowing out of the liquid container a mixed state of gas and liquid
A gas-liquid mixing device was provided.

【0017】また、受液器の前後に設けられている第
1、第2の減圧装置の少なくとも一方を電子膨張弁とす
ることにより、より良く達成される。
[0017] Also, the first is provided before and after the liquid receiver, by at least one of the second pressure reducing device and an electronic expansion valve, is better achieved.

【0018】さらに、請求項4に記載の発明は、少なく
とも圧縮機、四方弁、室内熱交換器、第1減圧装置、受
液器、第2減圧装置、室外熱交換器を順次配管により接
続した冷凍サイクルに、沸点の異なる少なくとも二種類
の冷媒を混合した非共沸混合冷媒を封入し、前記第1減
圧装置または第2減圧装置により冷凍サイクルを制御す
る冷凍サイクルの制御方法であって、前記受液器に気液
混合手段を設け、前記冷凍サイクルを流れる冷媒の流れ
方向に対して、第1、第2減圧装置のうちの受液器の前
方に位置する減圧装置により、室内、室外熱交換器のう
ちの凝縮器として作用している熱交換器の冷媒液の過冷
却度または受液器内の圧力を制御し、受液器の後方に位
置する減圧装置により、吐出ガス過熱度または吸入ガス
過熱度を制御するようにした。
Further, the invention according to claim 4 is at least
Compressor, four-way valve, indoor heat exchanger, first decompression device,
The liquid container, the second decompression device, and the outdoor heat exchanger are sequentially connected by piping.
Continued refrigeration cycle with at least two different boiling points
Non-azeotropic mixed refrigerant mixed with
The refrigeration cycle is controlled by the pressure device or the second pressure reducing device.
A method for controlling a refrigeration cycle, comprising:
A flow of a refrigerant flowing through the refrigeration cycle, provided with mixing means;
In front of the receiver of the first and second decompression devices with respect to the direction
The indoor and outdoor heat exchangers are
Supercooling of the refrigerant liquid in the heat exchanger acting as the second condenser
Control the pressure in the receiver or the receiver
Depending on the pressure reducing device installed, the degree of superheat
The degree of superheat was controlled.

【0019】[0019]

【作用】本発明では、室内熱交換器と室外熱交換器の間
に受液器を設け、この受液器に付設する配管の冷却流体
の流れ方向に対して流出側に、気液混合装置を設けてい
る。そして、前記受液器の入口側の冷却流体がガスと液
の混合状態となるか、もしくは前記受液器内の圧力が前
記冷凍サイクルの高圧側圧力と低圧側圧力の間の圧力と
した。そこで、余剰冷媒が発生すると、気液混合装置に
より受液器に流入する冷媒の乾き度もしくは湿り液と同
じ状態かまたは乾いている状態の冷媒が受液器内から流
出するため、余剰冷媒が受液器内に貯留される。つま
り、封入冷媒組成に近い液冷媒が貯留されるため、冷凍
サイクルを循環する冷媒組成と封入冷媒組成との差が小
さくなり、冷媒組成の変化を抑制することができ、その
結果冷凍サイクルの運転圧力の上昇を抑制し、運転限界
を拡大することができる。また、受液器の前後の配管内
を流れる冷媒の状態が気液二相状態となるため、配管内
に占める冷媒の質量が低減され、したがって冷凍サイク
ル全体の冷媒量を低減することができるため、接続配管
が長くなる場合でも必要な冷媒量を少なくすることがで
き、ひいては運転効率の向上を図ることが可能となる。
According to the present invention, a liquid receiver is provided between an indoor heat exchanger and an outdoor heat exchanger, and a gas-liquid mixing device is provided on a pipe attached to the liquid receiver on an outflow side with respect to a flow direction of a cooling fluid. Is provided. Then, the cooling fluid on the inlet side of the receiver becomes a mixed state of gas and liquid, or the pressure in the receiver is a pressure between the high pressure side pressure and the low pressure side pressure of the refrigeration cycle. Therefore, when excess refrigerant is generated, the refrigerant in the same state as the dryness or wet liquid of the refrigerant flowing into the receiver by the gas-liquid mixing device or in a dry state flows out of the receiver, and the excess refrigerant is discharged. It is stored in the receiver. That is, since the liquid refrigerant close to the enclosed refrigerant composition is stored, the difference between the refrigerant composition circulating in the refrigeration cycle and the enclosed refrigerant composition is reduced, and the change in the refrigerant composition can be suppressed. As a result, the operation of the refrigeration cycle The increase in pressure can be suppressed, and the operating limit can be expanded. In addition, since the state of the refrigerant flowing in the pipes before and after the receiver becomes a gas-liquid two-phase state, the mass of the refrigerant occupying the pipes is reduced, and therefore the amount of refrigerant in the entire refrigeration cycle can be reduced. In addition, even when the connection pipe is long, the required amount of refrigerant can be reduced, and the operation efficiency can be improved.

【0020】また、本発明では前記受液器を冷凍サイク
ルの中間圧部に配設している。さらに、前記受液器から
流入または流出する冷却流体がガスと液の混合状態とな
るように、気液混合装置を配設している。その結果、こ
の発明においても、余剰冷媒を凝縮器出口の冷媒乾き度
が非常に小さい液冷媒として貯留することができるた
め、封入組成に近い組成の液冷媒が貯留されるので、冷
凍サイクルを循環する冷媒組成と封入冷媒組成との差が
小さくなり、冷媒組成の変化を抑制することができ、こ
れにより冷凍サイクルの運転圧力の上昇を抑制し、運転
限界を拡大することができる。また、受液器の前後の配
管内を流れる冷媒の状態が気液二相状態となるため、配
管内に占める冷媒の質量が低減され、したがって冷凍サ
イクル全体の冷媒量を低減することができるため、接続
配管が長くなる場合でも必要な冷媒量を少なくすること
ができ、これにより運転効率の向上を図ることが可能と
なる。
Further, in the present invention, the liquid receiver is disposed at an intermediate pressure section of the refrigeration cycle. Further, a gas-liquid mixing device is provided so that the cooling fluid flowing in or out of the liquid receiver is in a mixed state of gas and liquid. As a result, also in the present invention, since the surplus refrigerant can be stored as a liquid refrigerant having a very low dryness of the refrigerant at the outlet of the condenser, a liquid refrigerant having a composition close to the sealed composition is stored, so that the refrigeration cycle is circulated. The difference between the refrigerant composition to be filled and the enclosed refrigerant composition is reduced, and a change in the refrigerant composition can be suppressed. As a result, an increase in the operating pressure of the refrigeration cycle can be suppressed, and the operating limit can be expanded. In addition, since the state of the refrigerant flowing in the pipes before and after the receiver becomes a gas-liquid two-phase state, the mass of the refrigerant occupying the pipes is reduced, and therefore the amount of refrigerant in the entire refrigeration cycle can be reduced. In addition, even when the connection pipe is long, the required amount of refrigerant can be reduced, thereby improving the operation efficiency.

【0021】[0021]

【0022】[0022]

【0023】また、本発明では前記第1,第2減圧装置
の少なくとも一方に、電子膨張弁を用いている。これに
より、冷凍サイクル内を的確に適応制御することができ
る。
In the present invention, an electronic expansion valve is used for at least one of the first and second pressure reducing devices. Thereby, adaptive control can be accurately performed in the refrigeration cycle.

【0024】さらに、本発明では冷凍サイクルを流れる
冷媒の流れ方向に対して、冷凍サイクルを制御する第
1,第2減圧装置のうちの受液器の前方に位置する減圧
装置により、室内,室外熱交換器のうちの凝縮器として
作用している熱交換器の冷媒液過冷却度または受液器内
の圧力を制御するようにしている。また、前記冷媒の流
れ方向に対して、第1,第2減圧装置のうちの受液器の
後方に位置する減圧装置により、吐出ガス過熱度または
吸入ガス過熱度を制御するようにしている。このよう
に、冷凍サイクルを流れる冷媒の流れ方向に対して、受
液器の前方に位置する減圧装置により凝縮器の冷媒液過
冷却度または受液器内の圧力を制御し、受液器の後方に
位置する減圧装置により吐出ガス過熱度または吸入ガス
過熱度を制御するようにしているため、空気条件が高い
場合には、受液器の前方に位置する減圧装置を制御する
ことによって吐出圧力の上昇を抑えることができ、さら
に受液器の後方に位置する減圧装置を制御することによ
って圧縮機への液戻り量を最適に制御できるので、冷凍
サイクルの運転領域の拡大を図ることができ、かつ最適
運転が可能となる。また、凝縮器出口冷媒液過冷却度の
設定値または受液器内の圧力の設定値を変更することに
より、冷凍サイクルの運転モードを省エネルギー重視タ
イプや能力重視タイプとすることができるため、これら
の運転モードを選択することにより、空調場に最適でか
つユーザの所望する運転を行うことができる。
Further, in the present invention, the decompression device located in front of the receiver among the first and second decompression devices for controlling the refrigeration cycle with respect to the flow direction of the refrigerant flowing through the refrigeration cycle can be used for indoor and outdoor use. The degree of subcooling of the refrigerant liquid in the heat exchanger acting as a condenser in the heat exchanger or the pressure in the receiver is controlled. In addition, the degree of superheating of the discharge gas or the degree of superheating of the suction gas is controlled by a decompression device located behind the liquid receiver among the first and second decompression devices in the flow direction of the refrigerant. As described above, the degree of subcooling of the refrigerant liquid in the condenser or the pressure in the liquid receiver is controlled by the pressure reducing device located in front of the liquid receiver with respect to the flow direction of the refrigerant flowing through the refrigeration cycle. Since the degree of superheat of the discharge gas or the degree of superheat of the suction gas is controlled by the pressure reducing device located at the rear, when the air condition is high, the discharge pressure is controlled by controlling the pressure reducing device located in front of the receiver. Can be suppressed, and the amount of liquid returned to the compressor can be optimally controlled by controlling the pressure reducing device located behind the receiver, so that the operating range of the refrigeration cycle can be expanded. , And optimal operation becomes possible. In addition, by changing the set value of the degree of subcooling of the condenser outlet refrigerant liquid or the set value of the pressure in the receiver, the operation mode of the refrigeration cycle can be set to an energy-saving type or a capacity-oriented type. By selecting the operation mode described above, it is possible to perform an operation that is optimal for the air-conditioning station and that is desired by the user.

【0025】[0025]

【実施例】以下、本発明の実施例を図面により説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0026】図1は本発明冷凍サイクルの一実施例を示
す系統図である。
FIG. 1 is a system diagram showing one embodiment of the refrigeration cycle of the present invention.

【0027】この図1に示す実施例の冷凍サイクルは、
圧縮機1と、四方弁2と、室内熱交換器3と、第1減圧
装置4と、受液器5と、第2減圧装置6と、室外熱交換
器7とがガス接続配管9aや液接続配管9bを介して順
次接続され、閉ループに構成されている。
The refrigeration cycle of the embodiment shown in FIG.
The compressor 1, the four-way valve 2, the indoor heat exchanger 3, the first decompression device 4, the liquid receiver 5, the second decompression device 6, and the outdoor heat exchanger 7 are connected to the gas connection pipe 9a or the liquid They are sequentially connected via a connection pipe 9b and are configured as a closed loop.

【0028】前記圧縮機1には、液冷媒の戻り量を調整
するアキュムレータ8が接続されている。前記受液器5
は、室内熱交換器3側に付設された第1減圧装置4と、
室外熱交換器7側に付設された第2減圧装置6との間に
設けられており、冷凍サイクルの配管内で発生した余剰
冷媒を貯留するようになっている。前記受液器5には、
気液混合装置10が設けられている。この気液混合装置
10は、液冷媒とガス冷媒とをある一定の乾き度もしく
は湿り度に調整可能に構成されている。前記冷凍サイク
ル内には、少なくとも二種類の沸点の異なる冷媒が、最
大接続配管分封入され、図1に実線矢印および破線矢印
で示すように、冷凍サイクル内を流れるようになってい
る。
The compressor 1 is connected to an accumulator 8 for adjusting the return amount of the liquid refrigerant. The receiver 5
Is a first pressure reducing device 4 attached to the indoor heat exchanger 3 side,
The refrigerant is provided between the outdoor heat exchanger 7 and the second pressure reducing device 6 provided on the side of the outdoor heat exchanger 7 so as to store excess refrigerant generated in the piping of the refrigeration cycle. The liquid receiver 5 includes:
A gas-liquid mixing device 10 is provided. The gas-liquid mixing device 10 is configured so that the liquid refrigerant and the gas refrigerant can be adjusted to a certain degree of dryness or wetness. In the refrigeration cycle, at least two kinds of refrigerants having different boiling points are filled in the maximum number of connection pipes, and flow through the refrigeration cycle as indicated by solid arrows and broken arrows in FIG.

【0029】さらに、前記冷凍サイクルにはこれの制御
系統が連結されているが、その制御系統については後に
詳述する。
Further, a control system for the refrigeration cycle is connected to the refrigeration cycle. The control system will be described later in detail.

【0030】次に、前記冷凍サイクルにおける暖房運転
時および冷房運転時の作用について説明する。
Next, the operation during the heating operation and the cooling operation in the refrigeration cycle will be described.

【0031】(1)冷房運転時 四方弁2を実線表示のごとく切り替えることにより、冷
媒は実線矢印のように、圧縮機1−四方弁2−室外熱交
換器7−第2減圧装置6−受液器5−第1減圧装置4−
室内熱交換器3−四方弁2−アキュムレータ8と流れ
る。圧縮機1で高温高圧のガス冷媒に圧縮された混合冷
媒は、室外熱交換器7で前記室外熱交換器7を循環する
空気に放熱し、凝縮して液冷媒となる。前記室外熱交換
器7で凝縮した液冷媒は、第2減圧装置6により減圧さ
れ、気液二相状態となり、受液器5内に導かれる。つい
で、気液混合装置10により受液器5に流入する冷媒の
乾き度もしくは湿り度と同じ状態かまたは乾いている状
態で受液器5内から流出し、液接続配管9bに導かれ
る。液接続配管9bに導かれた冷媒は、第1減圧装置4
で減圧され、所定の圧力となり、室内熱交換器3に流入
し、前記室内熱交換器3を循環する空気から吸熱し、蒸
発して気液二相またはガス冷媒となり、四方弁2を経て
アキュムレータ8に流入する。そして、前記アキュムレ
ータ8では圧縮機1へ戻る冷媒の乾き度もしくは湿り度
が調整され、圧縮機1に吸入される。ここで、アキュム
レータ8内の混合冷媒の状態と、受液器5内の混合冷媒
の状態について説明する。
(1) At the time of cooling operation By switching the four-way valve 2 as indicated by the solid line, the refrigerant flows from the compressor 1 to the four-way valve 2 to the outdoor heat exchanger 7 to the second pressure reducing device 6 to the solid line as indicated by the solid line arrow. Liquid container 5-first decompression device 4-
It flows with the indoor heat exchanger 3-the four-way valve 2-the accumulator 8. The mixed refrigerant compressed into a high-temperature and high-pressure gas refrigerant by the compressor 1 radiates heat to the air circulating in the outdoor heat exchanger 7 in the outdoor heat exchanger 7 and condenses into a liquid refrigerant. The liquid refrigerant condensed in the outdoor heat exchanger 7 is decompressed by the second decompression device 6, enters a gas-liquid two-phase state, and is guided into the receiver 5. Next, the refrigerant flows out of the liquid receiver 5 in the same state as the degree of dryness or wetness of the refrigerant flowing into the liquid receiver 5 or is dried by the gas-liquid mixing device 10 and is guided to the liquid connection pipe 9b. The refrigerant guided to the liquid connection pipe 9b is supplied to the first pressure reducing device 4
At a predetermined pressure, flows into the indoor heat exchanger 3, absorbs heat from the air circulating through the indoor heat exchanger 3, evaporates to a gas-liquid two-phase or gas refrigerant, and passes through the four-way valve 2 to the accumulator. Flow into 8. Then, in the accumulator 8, the dryness or wetness of the refrigerant returning to the compressor 1 is adjusted, and the refrigerant is sucked into the compressor 1. Here, the state of the mixed refrigerant in the accumulator 8 and the state of the mixed refrigerant in the liquid receiver 5 will be described.

【0032】図2はアキュムレータ内の混合冷媒の状態
を表した気液平衡線図、図3は受液器内の混合冷媒の状
態を表した気液平衡線図である。ここでは、説明の便宜
上、沸点の異なる二種類の冷媒を混合した場合について
説明する。
FIG. 2 is a vapor-liquid equilibrium diagram showing the state of the mixed refrigerant in the accumulator, and FIG. 3 is a vapor-liquid equilibrium diagram showing the state of the mixed refrigerant in the receiver. Here, for convenience of explanation, a case where two kinds of refrigerants having different boiling points are mixed will be described.

【0033】前記アキュムレータ8に流入する冷媒は、
過熱ガス冷媒または乾き度の大きい気液二相状態の冷媒
である。このアキュムレータ8内では、液冷媒とガス冷
媒が分離して共存し、その混合比は封入冷媒組成Xに対
して、液冷媒は高沸点冷媒が多い冷媒組成XL1とな
り、ガス冷媒は封入冷媒組成Xに近い冷媒組成XG1と
なる。一方、受液器5に流入する冷媒は、乾き度の小さ
い気液二相状態の冷媒である。受液器5内では、液冷媒
とガス冷媒が分離して共存し、その混合比は封入冷媒組
成Xに対して、ガス冷媒は低沸点冷媒が多い冷媒組成X
G2となり、液冷媒は封入冷媒組成Xに近い冷媒組成X
L2となる。ここで、室内ユニットと室外ユニットを結
ぶ接続配管が短い場合は余剰冷媒が発生するが、気液混
合装置10により受液器5に流入する冷媒の乾き度もし
くは湿り度と同じ状態かまたは乾いている状態の冷媒が
受液器5内から流出するため、余剰冷媒は受液器5内に
貯留される。すなわち、受液器5内には封入冷媒組成に
近い液冷媒が貯留されるため、冷凍サイクルを循環する
冷媒組成と封入冷媒組成との差が小さくなり、冷媒組成
の変化を抑制することができる。また、液接続配管9b
を流れる冷媒の状態は、気液混合装置10により気液二
相状態となるため、液接続配管9bに占める冷媒の質量
が低減され、冷凍サイクル全体の冷媒量を低減すること
ができる。
The refrigerant flowing into the accumulator 8 is:
It is a superheated gas refrigerant or a refrigerant in a gas-liquid two-phase state with a high degree of dryness. In the accumulator 8, the liquid refrigerant and the gas refrigerant are separated and coexist, and the mixing ratio of the liquid refrigerant to the sealed refrigerant composition X is XL1, the liquid refrigerant having a large number of high boiling point refrigerants, and the gas refrigerant is the sealed refrigerant composition X. Is obtained as the refrigerant composition XG1. On the other hand, the refrigerant flowing into the liquid receiver 5 is a gas-liquid two-phase refrigerant having a low dryness. In the liquid receiver 5, the liquid refrigerant and the gas refrigerant coexist separately, and the mixing ratio of the liquid refrigerant and the refrigerant refrigerant X is higher than the refrigerant composition X having a large amount of the low-boiling refrigerant.
G2, and the liquid refrigerant is a refrigerant composition X close to the enclosed refrigerant composition X.
L2. Here, when the connection pipe connecting the indoor unit and the outdoor unit is short, excess refrigerant is generated, but the same state as the dryness or wetness of the refrigerant flowing into the receiver 5 by the gas-liquid mixing device 10 or when the refrigerant is dry. The surplus refrigerant is stored in the liquid receiver 5 because the refrigerant in the state of flowing out from the liquid receiver 5. That is, since the liquid refrigerant close to the sealed refrigerant composition is stored in the receiver 5, the difference between the refrigerant composition circulating in the refrigeration cycle and the sealed refrigerant composition is reduced, and the change in the refrigerant composition can be suppressed. . Also, the liquid connection pipe 9b
The state of the refrigerant flowing through the liquid connecting pipe 9b is changed into a gas-liquid two-phase state by the gas-liquid mixing device 10, so that the mass of the refrigerant occupying the liquid connection pipe 9b is reduced, and the refrigerant amount of the entire refrigeration cycle can be reduced.

【0034】(2)暖房運転時 四方弁2を破線表示のごとく切り替えることにより、冷
媒は破線矢印のように、圧縮機1−四方弁2−室内熱交
換器3−第1減圧装置4−受液器5−第2減圧装置6−
室外熱交換器7−四方弁2−アキュムレータ8と流れ
る。圧縮機1で高温高圧のガス冷媒に圧縮された混合冷
媒は、室内熱交換器3で前記室内熱交換器3を循環する
空気に放熱し、凝縮して液冷媒となる。前記室内熱交換
器3で凝縮した液冷媒は、第1減圧装置4により減圧さ
れ、気液二相状態となり、液接続配管9bを通り、受液
器5内に導かれる。ついで、気液混合装置10により受
液器5に流入する冷媒の乾き度もしくは湿り度と同じ状
態かまたは乾いている状態で受液器5内から流出し、第
2減圧装置6で減圧され、所定の圧力となり、室外熱交
換器7に流入する。前記室外熱交換器7に流入した気液
二相状態の冷媒は、前記室外熱交換器7を循環する空気
から吸熱して蒸発し、四方弁2を経てアキュムレータ8
に流入する。そして、前記アキュムレータ8では圧縮機
1へ戻る冷媒の乾き度もしくは湿り度が調整され、圧縮
機1に吸入される。ここで、アキュムレータ8内の混合
冷媒の状態と、受液器5内の混合冷媒の状態は、前述し
たところと同様である。ここで、室内ユニットと室外ユ
ニットを結ぶ接続配管が短い場合は余剰冷媒が発生する
が、気液混合装置10により受液器5に流入する冷媒の
乾き度もしくは湿り度と同じ状態かまたは乾いている状
態の冷媒が受液器5内から流出するため、余剰冷媒は受
液器5内に貯留される。すなわち、受液器5内には封入
冷媒組成に近い液冷媒が貯留されるため、冷凍サイクル
を循環する冷媒組成と封入冷媒組成との差が小さくな
り、冷媒組成の変化を抑制することができる。また、液
接続配管9bを流れる冷媒の状態は、第1減圧装置4に
より気液二相状態となるため、液接続配管9bに占める
冷媒の質量が低減され、冷凍サイクル全体の冷媒量を低
減することができる。
(2) At the time of heating operation By switching the four-way valve 2 as shown by the broken line, the refrigerant flows as shown by the broken line arrow in the compressor 1-the four-way valve 2-the indoor heat exchanger 3-the first pressure reducing device 4- Liquid container 5-second pressure reducing device 6
It flows with the outdoor heat exchanger 7-the four-way valve 2-the accumulator 8. The mixed refrigerant compressed into a high-temperature and high-pressure gas refrigerant by the compressor 1 radiates heat to the air circulating through the indoor heat exchanger 3 in the indoor heat exchanger 3 and condenses into a liquid refrigerant. The liquid refrigerant condensed in the indoor heat exchanger 3 is decompressed by the first decompression device 4 to be in a gas-liquid two-phase state, and is guided into the liquid receiver 5 through the liquid connection pipe 9b. Next, the refrigerant flows out of the liquid receiver 5 in the same state as the dryness or wetness of the refrigerant flowing into the liquid receiver 5 or in a dry state by the gas-liquid mixing device 10, and is depressurized by the second pressure reducing device 6. The pressure becomes a predetermined value and flows into the outdoor heat exchanger 7. The refrigerant in the gas-liquid two-phase state that has flowed into the outdoor heat exchanger 7 absorbs heat from the air circulating in the outdoor heat exchanger 7 and evaporates, passes through the four-way valve 2, and accumulates.
Flows into. Then, in the accumulator 8, the dryness or wetness of the refrigerant returning to the compressor 1 is adjusted, and the refrigerant is sucked into the compressor 1. Here, the state of the mixed refrigerant in the accumulator 8 and the state of the mixed refrigerant in the liquid receiver 5 are the same as described above. Here, when the connection pipe connecting the indoor unit and the outdoor unit is short, excess refrigerant is generated, but the same state as the dryness or wetness of the refrigerant flowing into the receiver 5 by the gas-liquid mixing device 10 or when the refrigerant is dry. The surplus refrigerant is stored in the liquid receiver 5 because the refrigerant in the state of flowing out from the liquid receiver 5. That is, since the liquid refrigerant close to the sealed refrigerant composition is stored in the receiver 5, the difference between the refrigerant composition circulating in the refrigeration cycle and the sealed refrigerant composition is reduced, and the change in the refrigerant composition can be suppressed. . Further, since the state of the refrigerant flowing through the liquid connection pipe 9b is changed to a gas-liquid two-phase state by the first pressure reducing device 4, the mass of the refrigerant occupying the liquid connection pipe 9b is reduced, and the refrigerant amount in the entire refrigeration cycle is reduced. be able to.

【0035】ここで、前記冷凍サイクルに付設される気
液混合装置の色々な実施例について、図4,図5および
図6により説明する。
Here, various embodiments of the gas-liquid mixing device attached to the refrigeration cycle will be described with reference to FIGS. 4, 5 and 6. FIG.

【0036】まず、図4に示す気液混合装置は、前記受
液器5内に冷媒液を導入または導出する冷媒液導入出管
11a,11bと、受液器5の塔頂部より冷媒ガスを導
出する冷媒ガス導出管13a,13bとが設けられてお
り、これらの管は図1に示す液接続配管9bに接続され
ている。前記冷媒液導入出管11a,11bは、その先
端が受液器5の底面部まで伸びており、冷媒ガス導出管
13a,13bとの接続部の前方に、減圧手段である乾
き度調整用減圧装置12a,12bが設けられている。
First, the gas-liquid mixing device shown in FIG. 4 is provided with refrigerant liquid inlet / outlet pipes 11 a and 11 b for introducing or discharging the refrigerant liquid into the liquid receiver 5, and refrigerant gas from the tower top of the liquid receiver 5. Outgoing refrigerant gas outlet pipes 13a and 13b are provided, and these pipes are connected to the liquid connection pipe 9b shown in FIG. The refrigerant liquid introduction / exhaust pipes 11a and 11b have their tips extending to the bottom of the liquid receiver 5, and are provided with a decompression means for reducing the degree of dryness as a decompression means in front of a connection with the refrigerant gas discharge pipes 13a and 13b. Devices 12a and 12b are provided.

【0037】そして、この図4に示す気液混合装置では
受液器5内に導かれる気液二相状態の冷媒は、冷媒液導
入出管11aを通り、受液器5内に流入する。ついで、
他の冷媒液導入出管11bを通り、乾き度調整用減圧装
置12bにより液量が調整され、受液器5より流出す
る。一方、冷媒ガス導出管13bにより受液器5内の塔
頂部にあるガス冷媒が流出し、前記冷媒液導入出管11
bを流れる液冷媒と混合される。ここで、乾き度調整用
減圧装置12bの減圧量は、冷媒液導入出管11aを流
れる気液二相状態の冷媒に対して、冷媒の乾き度もしく
は湿り度が同じ状態かまたは乾いている状態となるよう
に選定されているため、余剰冷媒が発生する場合は、受
液器5内に液冷媒を貯留することができる。
In the gas-liquid mixing device shown in FIG. 4, the refrigerant in the gas-liquid two-phase state introduced into the liquid receiver 5 flows into the liquid receiver 5 through the refrigerant liquid inlet / outlet pipe 11a. Then
The amount of the liquid passes through another refrigerant liquid inlet / outlet pipe 11b and is adjusted by a dryness adjusting pressure reducing device 12b, and flows out of the liquid receiver 5. On the other hand, the gas refrigerant at the tower top in the liquid receiver 5 flows out through the refrigerant gas outlet pipe 13b, and the refrigerant liquid inlet / outlet pipe 11
b and mixed with the liquid refrigerant flowing therethrough. Here, the depressurized amount of the dryness adjusting pressure reducing device 12b is determined based on whether the refrigerant has the same dryness or wetness as the refrigerant in the gas-liquid two-phase state flowing through the refrigerant liquid introduction / exhaust pipe 11a, or the dryness. Therefore, when surplus refrigerant is generated, the liquid refrigerant can be stored in the receiver 5.

【0038】また、図5に示す気液混合装置は、先端部
を受液器5の塔頂部内に臨ませて設けられた冷媒導入出
管15a,15bと、一端部は当該冷媒導入出管15
a,15bの先端部に接続され、他端部は受液器5内の
底部に挿入された冷媒液導出管14a,14bとを有し
て構成されている。前記冷媒導入出管15a,15b
は、図1に示す液接続配管9bに接続されている。
The gas-liquid mixing device shown in FIG. 5 has refrigerant inlet / outlet pipes 15a and 15b provided with their ends facing the tower top of the liquid receiver 5, and one end thereof has the refrigerant inlet / outlet pipe. Fifteen
a, 15b, and the other end is configured to have refrigerant liquid outlet pipes 14a, 14b inserted into the bottom of the liquid receiver 5. The refrigerant inlet / outlet pipes 15a, 15b
Is connected to the liquid connection pipe 9b shown in FIG.

【0039】この図5に示す気液混合装置では、冷媒導
入出管15a,15bのうちの一方の冷媒導入出管によ
り気液二相状態の冷媒を受液器5内に導入する。そし
て、他方の冷媒導入出管の端部開口であるガス抽出口に
より受液器5の塔頂部からガスを抽出し、また冷媒液導
出管14a,14bのうちの、ガス導出中の冷媒導入出
管側の冷媒液導出管の端部開口である液抽出口により受
液器5内の液を抽出し、当該冷媒導入出管内で前記ガス
と液とを混合させ、気液二相状態の冷媒として送り出す
ようになっている。
In the gas-liquid mixing device shown in FIG. 5, a refrigerant in a gas-liquid two-phase state is introduced into the receiver 5 through one of the refrigerant introduction / exit pipes 15a and 15b. Then, gas is extracted from the top of the receiver 5 through a gas extraction port, which is an end opening of the other refrigerant introduction / exit pipe. The liquid in the receiver 5 is extracted by a liquid extraction port, which is an end opening of the refrigerant liquid discharge pipe on the pipe side, and the gas and the liquid are mixed in the refrigerant introduction and discharge pipe to form a gas-liquid two-phase refrigerant. It is designed to be sent out.

【0040】さらに、図6に示す気液混合装置は、受液
器5内にU字管16a,16bを挿入して構成されてい
る。各U字管16a,16bには、受液器5の塔頂部内
に臨む位置にガス抽出口であるガス穴17a,17bが
設けられ、受液器5内の底部に臨む位置に液抽出口であ
る液穴18a,18bが設けられている。また、各U字
管16a,16bにおける受液器5から突出された端部
は、図1に示す液接続配管9bに接続されている。
Further, the gas-liquid mixing device shown in FIG. 6 is configured by inserting U-shaped tubes 16a and 16b into the liquid receiver 5. Each of the U-shaped tubes 16a, 16b is provided with a gas hole 17a, 17b, which is a gas extraction port, at a position facing the top of the liquid receiver 5, and a liquid extraction port at a position facing the bottom of the liquid receiver 5. The liquid holes 18a and 18b are provided. The ends of the U-shaped tubes 16a, 16b protruding from the liquid receiver 5 are connected to the liquid connection pipe 9b shown in FIG.

【0041】而して、この図6に示す気液混合装置で
は、U字管16a,16bのうちの一方のU字管より気
液二相状態の冷媒が受液器5内に導入され、また他方の
U字管のガス穴より受液器5の塔頂部内からガスが抽出
され、当該U字管の液穴より受液器5内の底部から液が
抽出され、これらガスと液とが当該U字管内で混合さ
れ、気液二相状態の冷媒として送り出される。
In the gas-liquid mixing device shown in FIG. 6, a refrigerant in a gas-liquid two-phase state is introduced into the receiver 5 from one of the U-shaped tubes 16a and 16b. Gas is extracted from the top of the receiver 5 from the gas hole of the other U-shaped pipe, and liquid is extracted from the bottom of the receiver 5 from the liquid hole of the U-shaped pipe. Are mixed in the U-shaped pipe and sent out as a refrigerant in a gas-liquid two-phase state.

【0042】これら図5および図6に示す実施例の気液
混合装置の他の作用については、前記図4に示す実施例
の気液混合装置と同様である。
The other operations of the gas-liquid mixing device of the embodiment shown in FIGS. 5 and 6 are the same as those of the gas-liquid mixing device of the embodiment shown in FIG.

【0043】次に、本発明の冷凍サイクルの運転効率に
ついて説明する。
Next, the operation efficiency of the refrigeration cycle of the present invention will be described.

【0044】図7は冷凍サイクルを流れる混合冷媒の組
成と冷凍サイクルの運転効率との関係を示した図であ
る。
FIG. 7 is a diagram showing the relationship between the composition of the mixed refrigerant flowing through the refrigeration cycle and the operating efficiency of the refrigeration cycle.

【0045】この図7において、アキュムレータ等の低
圧側に付設するタンク内に余剰冷媒を貯留した場合、余
剰冷媒として貯留される液冷媒は図2に示すごとく高沸
点冷媒が多い冷媒組成となるため、冷凍サイクルを流れ
る混合冷媒は低沸点冷媒が多い冷媒組成となり、このた
め吐出圧力の上昇を招き、冷凍サイクルの運転効率を低
下させる。一方、受液器に余剰冷媒を貯留した場合、余
剰冷媒として貯留される液冷媒は図3に示すごとく封入
冷媒組成に近いため、冷凍サイクルを流れる混合冷媒も
封入組成に近くなり、このため吐出圧力の上昇を抑え、
冷凍サイクルの運転効率の低下を抑えることが可能であ
る。
In FIG. 7, when surplus refrigerant is stored in a tank provided on the low-pressure side of an accumulator or the like, the liquid refrigerant stored as surplus refrigerant has a high refrigerant composition with a high boiling point refrigerant as shown in FIG. In addition, the mixed refrigerant flowing through the refrigeration cycle has a refrigerant composition containing a large amount of low-boiling refrigerant, which causes an increase in the discharge pressure and lowers the operation efficiency of the refrigeration cycle. On the other hand, when surplus refrigerant is stored in the receiver, the liquid refrigerant stored as surplus refrigerant is close to the enclosed refrigerant composition as shown in FIG. 3, and the mixed refrigerant flowing through the refrigeration cycle is also close to the enclosed composition. Suppress pressure rise,
It is possible to suppress a decrease in the operation efficiency of the refrigeration cycle.

【0046】以上のように構成された冷凍サイクルは、
余剰冷媒を凝縮器出口の冷媒乾き度が非常に小さい液冷
媒の状態で貯留することができるために、封入組成に近
い組成の液冷媒が貯留されるので、冷凍サイクルを流れ
る混合冷媒の変化を抑制することができ、冷凍サイクル
の運転圧力の上昇を抑制し、運転限界を拡大することが
できる。また、受液器の前後の配管内を流れる冷媒の状
態が気液二相状態であるため、液冷媒の封入量を低減す
ることができるため、接続配管が長くなる場合でも、必
要冷媒量を少なくすることができる。
The refrigeration cycle configured as described above
Since the excess refrigerant can be stored in a state of a liquid refrigerant having a very low dryness of the refrigerant at the outlet of the condenser, a liquid refrigerant having a composition close to the sealed composition is stored. It is possible to suppress the increase in the operating pressure of the refrigeration cycle, and to expand the operating limit. Further, since the state of the refrigerant flowing in the pipes before and after the receiver is a gas-liquid two-phase state, the amount of liquid refrigerant to be charged can be reduced. Can be reduced.

【0047】また、受液器に余剰冷媒を貯留し、冷凍サ
イクルを流れる混合冷媒の冷媒組成が封入組成に近くな
ることにより、冷凍サイクルの運転効率の低下を抑える
ことができる。
Further, since the excess refrigerant is stored in the liquid receiver, and the refrigerant composition of the mixed refrigerant flowing through the refrigeration cycle becomes close to the sealed composition, it is possible to suppress a decrease in the operation efficiency of the refrigeration cycle.

【0048】ここで、第1減圧装置,第2減圧装置とし
て、本実施例では電子膨張弁を用いているが、キャピラ
リチューブ,温度式膨張弁,もしくは減圧量を調整でき
る機構を備えたものであっても、また第1減圧装置と第
2減圧装置の種類が異なっている場合も、本実施例と同
様の効果がある。
Here, as the first pressure reducing device and the second pressure reducing device, an electronic expansion valve is used in the present embodiment, but a capillary tube, a temperature type expansion valve, or a mechanism capable of adjusting the pressure reduction amount is provided. Even if the first pressure reducing device and the second pressure reducing device are different in type, the same effect as in the present embodiment can be obtained.

【0049】ついで、本発明冷凍サイクルの制御方法の
一例を説明する。
Next, an example of the method for controlling the refrigeration cycle of the present invention will be described.

【0050】図1は冷凍サイクルとその制御系統を示
し、図8および図9は暖房運転時および冷房運転時のフ
ローチャートである。
FIG. 1 shows a refrigeration cycle and its control system, and FIGS. 8 and 9 are flow charts during a heating operation and a cooling operation.

【0051】まず、図1に示す第1,第2減圧装置4,
6として、この実施例では電子膨張弁を用いている。
First, the first and second decompression devices 4 and 4 shown in FIG.
6, an electronic expansion valve is used in this embodiment.

【0052】ところで、制御系統は図1に示すように、
マイクロコンピュータ20と、これに接続されたメモリ
部21と、熱交換器流入空気温度検出部22と、吐出ガ
ス過熱度検出部23と、暖房用凝縮器出口過冷却度検出
部24aと、冷房用凝縮器出口過冷却度検出部24b
と、電子膨張弁である第1,第2減圧装置4,6を各別
に駆動する膨張弁駆動回路25a,25bと、温度検出
器26a〜26eとを備えて構成されている。
The control system is as shown in FIG.
A microcomputer 20, a memory unit 21 connected thereto, a heat exchanger inflow air temperature detection unit 22, a discharge gas superheat degree detection unit 23, a heating condenser exit supercool degree detection unit 24a, Condenser outlet subcooling detection unit 24b
And expansion valve drive circuits 25a and 25b for individually driving the first and second decompression devices 4 and 6, which are electronic expansion valves, and temperature detectors 26a to 26e.

【0053】前記冷凍サイクル内には、沸点の異なる少
なくとも二種類の冷媒が混合され、封入されているが、
ここでは二種類の冷媒を混合したものを用いるものとす
る。さらに、ここでは説明の便宜上、冷凍サイクルを制
御する状態量として、凝縮器出口過冷却度と吐出ガス過
熱度を制御する場合について説明する。
In the refrigeration cycle, at least two kinds of refrigerants having different boiling points are mixed and sealed.
Here, a mixture of two kinds of refrigerants is used. Further, here, for convenience of explanation, a case will be described in which the degree of supercooling at the condenser outlet and the degree of superheating of the discharge gas are controlled as the state quantities for controlling the refrigeration cycle.

【0054】前記メモリ部21には、冷凍サイクルの状
態量を制御するための設定値が記憶され、マイクロコン
ピュータ20からの要求に応じてその設定値を送り込む
ようになっている。
Set values for controlling the state quantity of the refrigeration cycle are stored in the memory section 21, and the set values are sent in response to a request from the microcomputer 20.

【0055】前記熱交換器流入空気温度検出部22は、
温度検出器26a,26bから室内熱交換器3および室
外熱交換器7の流入空気温度の検出値を取り込み、電気
的信号に変換し、マイクロコンピュータ20に送り込
む。
The heat exchanger inflow air temperature detecting section 22 comprises:
The detected values of the inflow air temperature of the indoor heat exchanger 3 and the outdoor heat exchanger 7 are taken in from the temperature detectors 26a and 26b, converted into electric signals, and sent to the microcomputer 20.

【0056】前記吐出ガス過熱度検出部23は、温度検
出器26cより圧縮機1から吐出された吐出ガス温度の
検出値を取り込み、電気的信号に変換し、マイクロコン
ピュータ20に送り込む。
The discharged gas superheat degree detecting section 23 takes in the detected value of the temperature of the discharged gas discharged from the compressor 1 from the temperature detector 26c, converts it into an electric signal, and sends it to the microcomputer 20.

【0057】前記暖,冷房用凝縮器出口冷却度検出部2
4a,24bは、当該温度検出器26d,26eから凝
縮器として作用したときの室内熱交換器3および室外熱
交換器7よりその出口温度の検出値を取り込み、それぞ
れ電気的信号に変換してマイクロコンピュータ20に送
り込む。
Cooling / cooling condenser outlet cooling degree detecting section 2
4a and 24b take in the detected values of the outlet temperature from the indoor heat exchanger 3 and the outdoor heat exchanger 7 when they function as condensers from the temperature detectors 26d and 26e, and convert them into electrical signals to convert them into micro signals. It is sent to the computer 20.

【0058】前記マイクロコンピュータ20は、前述の
各部から検出値を取り込み、電子膨張弁である第1,第
2減圧装置4,6の開度を演算し、その演算値をそれぞ
れ膨張弁駆動回路25a,25bに送り込むようになっ
ている。
The microcomputer 20 fetches the detected values from the above-described sections, calculates the opening degrees of the first and second decompression devices 4 and 6, which are electronic expansion valves, and outputs the calculated values to the expansion valve driving circuit 25a. , 25b.

【0059】次に、暖房運転時および冷房運転時の制御
方法について説明する。
Next, a control method during the heating operation and the cooling operation will be described.

【0060】(1)暖房運転 この冷凍サイクルの暖房運転時には、図8に示すよう
に、所定の時間Δt秒経過後に吐出ガス過熱度検出部2
3により吐出ガス過熱度SHdを検出し、メモリ部21
に予め設定されている吐出ガス過熱度の設定値SHd0
からPID,ニューロ,ファジー等を用いてマイクロコ
ンピュータ20により電子膨張弁の開度PL1が演算さ
れる。前記演算された電子膨張弁への出力開度PL1
は、第2減圧装置6の膨張弁駆動回路25aに伝送さ
れ、第2減圧装置6の開度はPL1となる。一方、熱交
換器流入空気温度検出部22により室外熱交換器7へ流
入する空気温度Taoと室内熱交換器3へ流入する空気
温度Taiを検出し、メモリ部21に予め設定されてい
る凝縮器出口過冷却度の設定値SC0を室内熱交換器3
へ流入する空気温度Taiの関数fと室外熱交換器7へ
流入する空気温度Taoの関数gを用いてマイクロコン
ピュータ20で演算し、最適な凝縮器出口過冷却度の設
定値に変更し、メモリ部21に記憶する。そして、暖房
用凝縮器出口過冷却度検出部24aにより凝縮器出口過
冷却度SCを検出し、前述したメモリ部21に設定され
ている凝縮器出口過冷却度の設定値SC0からPID,
ニューロ,ファジー等を用いてマイクロコンピュータ2
0により電子膨張弁の開度PL2が演算される。前記演
算された電子膨張弁への出力開度PL2は、第1減圧装
置4の膨張弁駆動回路25bに伝送され、第1減圧装置
4の開度はPL2となる。
(1) Heating operation During the heating operation of this refrigeration cycle, as shown in FIG.
3, the degree of superheat SHd of the discharged gas is detected,
The set value SHd0 of the degree of superheat of the discharge gas which is set in advance
The microcomputer 20 calculates the opening degree PL1 of the electronic expansion valve using PID, neuro, fuzzy, and the like. The calculated output opening PL1 to the electronic expansion valve
Is transmitted to the expansion valve drive circuit 25a of the second pressure reducing device 6, and the opening degree of the second pressure reducing device 6 becomes PL1. On the other hand, the air temperature Tao flowing into the outdoor heat exchanger 7 and the air temperature Tai flowing into the indoor heat exchanger 3 are detected by the heat exchanger inflowing air temperature detection unit 22, and the condenser set in the memory unit 21 is set in advance. The set value SC0 of the degree of subcooling at the outlet is set to the indoor heat exchanger 3
The microcomputer 20 calculates using the function f of the air temperature Tai flowing into the outdoor heat exchanger 7 and the function g of the air temperature Tao flowing into the outdoor heat exchanger 7 to change to the optimal set value of the degree of supercooling at the outlet of the condenser. The information is stored in the unit 21. Then, the condenser outlet subcooling degree detection unit 24a detects the condenser outlet subcooling degree SC, and sets the PID, PID, from the condenser outlet supercooling degree set value SC0 set in the memory unit 21 described above.
Microcomputer 2 using neuro, fuzzy, etc.
Based on 0, the opening degree PL2 of the electronic expansion valve is calculated. The calculated output opening PL2 to the electronic expansion valve is transmitted to the expansion valve drive circuit 25b of the first pressure reducing device 4, and the opening of the first pressure reducing device 4 becomes PL2.

【0061】その結果、前記制御方法によれば、冷媒の
流れに対して受液器5の前方に配設された第1減圧装置
4で凝縮器出口過冷却度を制御することにより、受液器
5に流入する冷媒の乾き度もしくは湿り度を、前記受液
器5から流出する冷媒の乾き度もしくは湿り度と同等に
することができ、受液器5の液面が常に一定となり、冷
凍サイクルを循環する冷媒の組成を安定させることがで
きる。そして、受液器5の後方に配設された第2減圧装
置6で圧縮機1への液戻り量を制御するため、安定した
冷凍サイクルを提供できる。また、室内熱交換器3に流
入する空気の温度Taiが高くなる場合は、凝縮器出口
過冷却度の設定値SC0を小さくすることで吐出圧力を
低下させることが可能となり、冷凍サイクルの運転限界
を拡大することができる。また、室内熱交換器3に流入
する空気の温度Taiや室外熱交換器7に流入する空気
の温度Taoが低くなる場合は、凝縮器出口過冷却度の
設定値SC0を大きくすることで吐出圧力を上昇させる
ことができ、暖房能力の向上を図ることができる。さら
に、凝縮器出口過冷却度の設定値を小さくした場合は、
吐出圧力が低下し、圧縮機1への入力量が低下し、省エ
ネルギー運転が可能となり、凝縮器出口過冷却度の設定
値を大きくした場合は、吐出圧力が上昇し、暖房能力の
拡大を図ることができる。このため、空調場の温度が設
定値より離れている場合には、暖房能力を大きくするよ
うに凝縮器出口過冷却度の設定値を大きくし、設定値に
近づいた場合は凝縮器出口過冷却度の設定値を小さくし
て省エネルギー運転を行うようにすれば無駄のない空調
ができる。また、空調場の温度が設定値より離れている
場合でもユーザが省エネルギー運転を所望できるよう
に、リモコン等にスイッチを設けておけば、常に省エネ
ルギー運転を行うようにすることも可能となる。したが
って、これらの運転モードを選択することにより、空調
場に最適でかつユーザが所望する運転を行うことができ
る。
As a result, according to the above control method, the degree of subcooling at the condenser outlet is controlled by the first pressure reducing device 4 disposed in front of the liquid receiver 5 with respect to the flow of the refrigerant. The degree of dryness or wetness of the refrigerant flowing into the receiver 5 can be made equal to the degree of dryness or wetness of the refrigerant flowing out of the receiver 5, the liquid level of the receiver 5 is always constant, and The composition of the refrigerant circulating in the cycle can be stabilized. Then, since the amount of liquid returned to the compressor 1 is controlled by the second pressure reducing device 6 disposed behind the liquid receiver 5, a stable refrigeration cycle can be provided. Further, when the temperature Tai of the air flowing into the indoor heat exchanger 3 increases, the discharge pressure can be reduced by reducing the set value SC0 of the degree of supercooling at the outlet of the condenser, and the operating limit of the refrigeration cycle can be reduced. Can be expanded. When the temperature Tai of the air flowing into the indoor heat exchanger 3 and the temperature Tao of the air flowing into the outdoor heat exchanger 7 decrease, the discharge pressure is increased by increasing the set value SC0 of the degree of supercooling at the outlet of the condenser. And the heating capacity can be improved. Furthermore, when the set value of the condenser outlet subcooling degree is reduced,
The discharge pressure decreases, the input amount to the compressor 1 decreases, energy-saving operation becomes possible, and when the set value of the degree of supercooling at the condenser outlet is increased, the discharge pressure increases to increase the heating capacity. be able to. For this reason, when the temperature of the air conditioner is farther than the set value, the set value of the condenser outlet supercooling degree is increased so as to increase the heating capacity, and when the temperature approaches the set value, the condenser outlet supercooling is set. If the energy saving operation is performed by reducing the set value of the degree, air conditioning can be performed without waste. Further, if a switch is provided on a remote controller or the like so that the user can desire the energy-saving operation even when the temperature of the air-conditioning station is more than the set value, the energy-saving operation can be always performed. Therefore, by selecting these operation modes, it is possible to perform an operation that is optimal for the air-conditioning station and desired by the user.

【0062】(2)冷房運転 この冷房運転時には、図9に示すように、所定時間Δt
秒経過後に吐出ガス過熱度検出部23により吐出ガス過
熱度SHdを検出し、メモリ部21に予め設定されてい
る吐出ガス過熱度の設定値SHd0からPID,ニュー
ロ,ファジー等を用いてマイクロコンピュータ20によ
り電子膨張弁の開度PL1が演算される。
(2) Cooling operation During this cooling operation, as shown in FIG.
After a lapse of seconds, the discharge gas superheat degree detection unit 23 detects the discharge gas superheat degree SHd, and uses the PID, neuro, fuzzy, etc. from the microcomputer 21 using the discharge gas superheat degree set value SHd0 preset in the memory unit 21. Thus, the opening PL1 of the electronic expansion valve is calculated.

【0063】前記演算された電子膨張弁への出力開度P
L1は、第1減圧装置4の膨張弁駆動回路25bに伝送
され、第1減圧装置4の開度はPL1となる。一方、熱
交換器流入空気温度検出部22により室外熱交換器7へ
流入する空気の温度Taoと室内熱交換器3へ流入する
空気の温度Taiを検出し、メモリ部21に予め設定さ
れている凝縮器出口過冷却度の設定値SC0を室内熱交
換器3へ流入する空気の温度Taiの関数fと室外熱交
換器7へ流入する空気の温度Taoの関数gを用いてマ
イクロコンピュータ20で演算し、最適な凝縮器出口過
冷却度の設定値に変更し、メモリ部21に記憶する。そ
して、冷房用凝縮器出口過冷却度検出部24bにより凝
縮器出口過冷却度SCを検出し、前述したメモリ部21
に設定されている凝縮器出口過冷却度の設定値SC0か
らPID,ニューロ,ファジー等を用いてマイクロコン
ピュータ20により電子膨張弁の開度PL2が演算され
る。前記演算された電子膨張弁への出力開度PL2は、
第2減圧装置6の膨張弁駆動回路25aに伝送され、第
2減圧装置6の開度はPL2となる。
The calculated output opening P to the electronic expansion valve is calculated.
L1 is transmitted to the expansion valve drive circuit 25b of the first pressure reducing device 4, and the opening degree of the first pressure reducing device 4 becomes PL1. On the other hand, the temperature Tao of the air flowing into the outdoor heat exchanger 7 and the temperature Tai of the air flowing into the indoor heat exchanger 3 are detected by the heat exchanger inflow air temperature detection unit 22 and are preset in the memory unit 21. The microcomputer 20 calculates the set value SC0 of the degree of supercooling of the condenser outlet using the function f of the temperature Tai of the air flowing into the indoor heat exchanger 3 and the function g of the temperature Tao of the air flowing into the outdoor heat exchanger 7. Then, the setting value is changed to the optimum set value of the degree of supercooling at the outlet of the condenser, and is stored in the memory unit 21. Then, the condenser outlet subcooling degree detection unit 24b detects the condenser outlet subcooling degree SC, and the memory unit 21 described above.
The microcomputer 20 calculates the opening degree PL2 of the electronic expansion valve from the set value SC0 of the degree of supercooling of the condenser outlet which is set in the microcomputer 20 using PID, neuro, fuzzy and the like. The calculated output opening PL2 to the electronic expansion valve is:
It is transmitted to the expansion valve drive circuit 25a of the second pressure reducing device 6, and the opening degree of the second pressure reducing device 6 becomes PL2.

【0064】その結果、前記制御方法によれば、冷媒の
流れに対して受液器5の前方に配設された第2減圧装置
6で凝縮器出口過冷却度を制御することにより、受液器
5に流入する冷媒の乾き度もしくは湿り度を前記受液器
5から流出する冷媒の乾き度もしくは湿り度と同等にす
ることができるため、受液器5の液面が常に一定とな
り、冷凍サイクルを循環する冷媒の組成を安定させるこ
とができる。そして、受液器5の後方に配設された第1
減圧装置4で圧縮機1への液戻り量を制御するため、安
定した冷凍サイクルを提供できる。また、室内熱交換器
3に流入する空気の温度Taiが高くなる場合は、凝縮
器出口過冷却度の設定値SC0を小さくすることで吐出
圧力を低下させることが可能となり、冷凍サイクルの運
転限界を拡大することができる。さらに、凝縮器出口過
冷却度の設定値を小さくした場合は、吐出圧力が低下
し、圧縮機1への入力量が低下し、省エネルギー運転が
可能となり、凝縮器出口過冷却度の設定値を大きくした
場合は、吐出圧力が上昇し、室外熱交換器7の廃熱量が
多くなり、冷房能力の拡大を図ることができる。このた
め、空調場の温度が設定値より離れている場合には、冷
房能力を大きくするように凝縮器出口過冷却度の設定値
を大きくし、設定値に近づいた場合は凝縮器出口過冷却
度の設定値を小さくして省エネルギー運転を行うように
すれば、無駄のない空調ができる。また、空調場の温度
が設定値より離れている場合でもユーザが省エネルギー
運転を所望できるようにリモコン等にスイッチを設けて
おけば、常に省エネルギー運転を行うようにすることも
可能となる。したがって、これらの運転モードを選択す
ることにより、空調場に最適でかつユーザが所望する運
転を行うことができる。
As a result, according to the control method, the subcooling degree of the condenser outlet is controlled by the second pressure reducing device 6 disposed in front of the liquid receiver 5 with respect to the flow of the refrigerant. Since the dryness or wetness of the refrigerant flowing into the receiver 5 can be made equal to the dryness or wetness of the refrigerant flowing out of the receiver 5, the liquid level of the receiver 5 is always constant, The composition of the refrigerant circulating in the cycle can be stabilized. Then, a first device disposed behind the liquid receiver 5 is provided.
Since the amount of liquid returned to the compressor 1 is controlled by the pressure reducing device 4, a stable refrigeration cycle can be provided. Further, when the temperature Tai of the air flowing into the indoor heat exchanger 3 increases, the discharge pressure can be reduced by reducing the set value SC0 of the degree of supercooling at the outlet of the condenser, and the operating limit of the refrigeration cycle can be reduced. Can be expanded. Further, when the set value of the condenser outlet subcooling degree is reduced, the discharge pressure decreases, the input amount to the compressor 1 decreases, energy saving operation becomes possible, and the set value of the condenser outlet subcooling degree is reduced. When it is increased, the discharge pressure increases, the amount of waste heat of the outdoor heat exchanger 7 increases, and the cooling capacity can be increased. For this reason, when the temperature of the air-conditioning station is farther than the set value, the set value of the condenser outlet supercooling degree is increased so as to increase the cooling capacity, and when the temperature approaches the set value, the condenser outlet supercooling is set. If the energy saving operation is performed by reducing the set value of the degree, air conditioning can be performed without waste. In addition, even if the temperature of the air-conditioning station is farther than the set value, if a switch is provided on a remote controller or the like so that the user can desire the energy-saving operation, the energy-saving operation can be always performed. Therefore, by selecting these operation modes, it is possible to perform an operation that is optimal for the air-conditioning station and desired by the user.

【0065】以上のように、この実施例の冷凍サイクル
の制御方法では、冷媒の流れに対して受液器5の前方に
配設された減圧装置で凝縮器出口過冷却度を制御し、受
液器5の後方に配設された減圧装置で圧縮機1への液戻
り量を制御するため、受液器5の液面を常に一定とする
ことができ、安定した冷凍サイクルを提供できる。ま
た、室内熱交換器3に流入する空気の温度Taiや室外
熱交換器7に流入する空気の温度Taoにより、凝縮器
出口過冷却度の設定値SC0を変更することで、吐出圧
力を低下させたり、上昇させることができるため、運転
限界の拡大や能力の向上を図ることができる。さらに、
凝縮器出口過冷却度の設定値を変更することにより、冷
凍サイクルの運転モードを省エネルギー重視タイプや能
力重視タイプにすることができるため、これらの運転モ
ードを選択することで、空調場に最適でかつユーザの所
望する運転を行うことができる。
As described above, in the method of controlling the refrigeration cycle of this embodiment, the degree of subcooling of the condenser outlet is controlled by the decompression device disposed in front of the liquid receiver 5 with respect to the flow of the refrigerant. Since the amount of liquid returned to the compressor 1 is controlled by the decompression device disposed behind the liquid container 5, the liquid level of the liquid receiver 5 can be always constant, and a stable refrigeration cycle can be provided. Further, the discharge pressure is reduced by changing the set value SC0 of the degree of supercooling at the outlet of the condenser according to the temperature Tai of the air flowing into the indoor heat exchanger 3 and the temperature Tao of the air flowing into the outdoor heat exchanger 7. Since the operating limit can be increased, the operating limit can be expanded and the capacity can be improved. further,
By changing the setting value of the degree of subcooling at the condenser outlet, the operation mode of the refrigeration cycle can be set to the energy-saving type or the capacity-oriented type. In addition, driving desired by the user can be performed.

【0066】ここで、冷凍サイクルの制御対象として凝
縮器出口過冷却度と吐出ガス過熱度を用いたが、凝縮器
出口過冷却度の代わりとして、受液器の圧力、凝縮器出
口部の冷媒の乾き度もしくは湿り度、受液器内の液面高
さ等、吐出ガス過熱度の代わりとして、吸入ガスの過熱
度または吸入冷媒の乾き度もしくは湿り度、室外熱交換
器出口の過熱度または冷媒の乾き度もしくは湿り度等を
用いた場合も、この実施例と同等の効果がある。
Here, the supercooling degree of the condenser outlet and the superheat degree of the discharge gas were used as the control targets of the refrigeration cycle. Instead of the supercooling degree of the condenser outlet, the pressure of the receiver and the refrigerant at the outlet of the condenser were used instead. Instead of the superheat degree of the discharge gas, such as the dryness or wetness of the liquid, the liquid level in the receiver, etc., the superheat degree of the suction gas or the dryness or wetness of the suction refrigerant, the superheat degree at the outlet of the outdoor heat exchanger or Even when the degree of dryness or wetness of the refrigerant is used, the same effect as in this embodiment is obtained.

【0067】また、第1減圧装置,第2減圧装置とし
て、本実施例では電子膨張弁を用いているが、キャピラ
リチューブ,温度式膨張弁,もしくは減圧量を調整でき
る機構を備えたものであっても、また第1減圧装置と第
2減圧装置の種類が異なっている場合も、本実施例と同
様の効果がある。
In this embodiment, an electronic expansion valve is used as the first pressure reducing device and the second pressure reducing device, but the device is provided with a capillary tube, a temperature type expansion valve, or a mechanism capable of adjusting the pressure reduction amount. Even when the type of the first decompression device and the type of the second decompression device are different, the same effect as in the present embodiment is obtained.

【0068】[0068]

【発明の効果】以上説明した本出願の請求項1記載の
発明によれば、少なくとも圧縮機、室内熱交換器、第1
減圧装置、第2減圧装置、室外熱交換器を順次配管によ
り接続した冷凍サイクルに、沸点の異なる少なくとも二
種類の冷媒を混合した非共沸混合冷媒を封入し、前記室
内熱交換器と室外熱交換器の間に受液器を設けた冷凍サ
イクルにおいて、前記受液器に気液混合手段を設け、前
記受液器の出口側の前記非共沸混合冷媒が液とガスの混
合状態である気液二相状態となるようにしたので、冷房
運転時および暖房運転時に液接続配管内を流れる冷媒が
気液二相状態となり、配管内に必要とされる冷媒量を低
減することができ、冷凍サイクル全体に必要とされる冷
媒量を低減することができる。
According to the invention described in claim 1 of the present application described above, according to the present invention, at least a compressor, an indoor heat exchanger, the first
A pressure reducing device, a second pressure reducing device, and an outdoor heat exchanger are sequentially connected by piping.
At least two refrigeration cycles with different boiling points.
A non-azeotropic mixed refrigerant in which different types of refrigerants are mixed,
A refrigeration system with a receiver between the internal heat exchanger and the outdoor heat exchanger
Gas-liquid mixing means in the receiver,
The non-azeotropic refrigerant mixture on the outlet side of the receiver is a mixture of liquid and gas.
Air-liquid two-phase state
During operation and heating operation, the refrigerant flowing through the liquid connection pipe
It becomes a gas-liquid two-phase state, reducing the amount of refrigerant required in the piping.
Cooling required for the entire refrigeration cycle.
The amount of medium can be reduced.

【0069】また、本出願の請求項2記載の発明によ
れば、少なくとも圧縮機、室内熱交換器、第1減圧装
置、第2減圧装置、室外熱交換器を順次配管により接続
した冷凍サイクルに、沸点の異なる少なくとも二種類の
冷媒を混合した非共沸混合冷媒を封入し、前記室内熱交
換器と室外熱交換器の間に受液器を設けた冷凍サイクル
において、前記受液器を前記冷凍サイクルの中間圧部に
設置し、前記受液器から流出する冷媒流体をガスと液の
混合状態とする気液混合装置を設けたので、余剰冷媒
は、乾き度が非常に小さい液冷媒として受液器内に貯溜
されるため、冷媒組成の変化を抑制することができる。
これにより冷凍サイクルの運転圧力の上昇を抑制し、
運転限界を拡大するとともに、運転効率を向上させるこ
とができる。また、液配管内を流れる冷媒が気液二相状
態となり、配管内に必要とされる冷媒量を低減すること
ができ、冷凍サイクル全体に必要とされる冷媒量を低減
することができる。
According to the invention described in claim 2 of the present application , at least the compressor, the indoor heat exchanger, the first pressure reducing device
, The second decompression device, and the outdoor heat exchanger are sequentially connected by piping
At least two different boiling points
A non-azeotropic mixed refrigerant mixed with a refrigerant is enclosed, and the indoor heat exchange is performed.
Refrigeration cycle with a receiver between the heat exchanger and the outdoor heat exchanger
In the above, the receiver is provided at an intermediate pressure portion of the refrigeration cycle.
Installed, the refrigerant fluid flowing out of the receiver is
Since a gas-liquid mixing device for mixing is provided, excess refrigerant
Is stored in the receiver as a liquid refrigerant with extremely low dryness.
To be, Ru can be suppressed a change in refrigerant composition.
This suppresses an increase in the operating pressure of the refrigeration cycle,
Expand operating limits and improve operating efficiency.
Can be. In addition, the refrigerant flowing in the liquid piping is in a gas-liquid two-phase
To reduce the amount of refrigerant required in the piping
And reduces the amount of refrigerant required for the entire refrigeration cycle
can do.

【0070】[0070]

【0071】[0071]

【0072】また、本発明の請求項記載の発明によれ
ば、前記第1、第2減圧装置の少なくとも一方に、電子
膨張弁を用いており、これにより冷凍サイクル内を的確
に適応性御し得る効果がある。
Further, according to the third aspect of the present invention, an electronic expansion valve is used for at least one of the first and second pressure reducing devices, whereby the adaptive control of the refrigeration cycle can be accurately performed. There is an effect that can be done.

【0073】さらに、本出願の請求項4記載の発明に
よれば、少なくとも圧縮機、四方弁、室内熱交換器、第
1減圧装置、受液器、第2減圧装置、室外熱交換器を順
次配管により接続した冷凍サイクルに、沸点の異なる少
なくとも二種類の冷媒を混合した非共沸混合冷媒を封入
し、前記第1減圧装置または第2減圧装置により冷凍サ
イクルを制御する冷凍サイクルの制御方法であって、前
記受液器に気液混合手段を設け、前記冷凍サイクルを流
れる冷媒の流れ方向に対して、第1、第2減圧装置のう
ちの受液器の前方に位置する減圧装置により、室内、室
外熱交換器のうちの凝縮器として作用している熱交換器
の冷媒液の過冷却度または受液器内の圧力を制御し、受
液器の後方に位置する減圧装置により、吐出ガス過熱度
または吸入ガス過熱度を制御するようにしたので、冷房
運転、暖房運転等の運転モードにかかわらず、冷凍サイ
クルの運転領域を拡大するとともに、最適運転を可能と
することができる。
Further, according to the invention described in claim 4 of the present application , at least the compressor, the four-way valve, the indoor heat exchanger,
1 Decompression device, liquid receiver, 2nd decompression device, outdoor heat exchanger
In the refrigeration cycle connected by the next piping,
Non-azeotropic refrigerant mixture containing at least two types of refrigerant
Then, the first decompression device or the second decompression device makes the refrigeration
A method of controlling a refrigeration cycle for controlling a cycle,
A gas-liquid mixing means is provided in the receiver, and the refrigeration cycle flows
The first and second decompression devices correspond to the flow direction of the refrigerant to be discharged.
The decompression device located in front of the receiver
Heat exchanger acting as a condenser in the external heat exchanger
Controls the degree of subcooling of the refrigerant liquid or the pressure in the receiver, and
Decompression device located at the back of the liquid container allows the superheat degree of the discharged gas
Or, because the degree of superheat of the intake gas is controlled,
Regardless of the operation mode such as operation and heating operation,
Optimum operation is possible while expanding the operation area of the vehicle
can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明冷凍サイクルの一実施例を示す系統図で
ある。
FIG. 1 is a system diagram showing one embodiment of a refrigeration cycle of the present invention.

【図2】混合冷媒を用いた場合のアキュムレータ内の気
液平衡状態図である。
FIG. 2 is a vapor-liquid equilibrium diagram in an accumulator when a mixed refrigerant is used.

【図3】混合冷媒を用いた場合の受液器内の気液平衡図
である。
FIG. 3 is a vapor-liquid equilibrium diagram in a liquid receiver when a mixed refrigerant is used.

【図4】本発明にかかる冷凍サイクルに付設される気液
混合装置の一実施例を示す縦断面図である。
FIG. 4 is a longitudinal sectional view showing one embodiment of a gas-liquid mixing device attached to a refrigeration cycle according to the present invention.

【図5】本発明にかかる冷凍サイクルに付設される気液
混合装置の他の実施例を示す縦断面図である。
FIG. 5 is a longitudinal sectional view showing another embodiment of the gas-liquid mixing device attached to the refrigeration cycle according to the present invention.

【図6】本発明にかかる冷凍サイクルに付設される気液
混合装置のさらに他の実施例を示す縦断面図である。
FIG. 6 is a longitudinal sectional view showing still another embodiment of the gas-liquid mixing device attached to the refrigeration cycle according to the present invention.

【図7】冷凍サイクルを流れる混合冷媒の冷媒組成と冷
凍サイクルの運転効率の関係を示した図である。
FIG. 7 is a diagram showing a relationship between a refrigerant composition of a mixed refrigerant flowing through a refrigeration cycle and an operation efficiency of the refrigeration cycle.

【図8】本発明冷凍サイクルの制御方法の一実施例を示
すもので、暖房運転時のフローチャートである。
FIG. 8 is a flow chart showing an embodiment of a method for controlling a refrigeration cycle according to the present invention, in a heating operation.

【図9】同制御方法の冷房運転時のフローチャートであ
る。
FIG. 9 is a flowchart of the control method during a cooling operation.

【符号の説明】[Explanation of symbols]

1…圧縮機、3…室内熱交換器、4…第1減圧装置、5
…受液器、6…第2減圧装置、7…室外熱交換器、8…
アキュムレータ、10…気液混合装置、11a,11b
…冷媒液導入出管、12a,12b…減圧手段である乾
き度調整用減圧装置、13a,13b…冷媒ガス導出
管、14a,14b…冷媒液導出管、15a,15b…
冷媒導入出管、16a,16b…冷媒導入出用のU字
管、17a,17b…ガス穴、18a,18b…液穴、
20…マイクロコンピュータ、21…メモリ部、22…
熱交換器流入空気温度検出部、23…吐出ガス過熱度検
出部、24a…暖房用凝縮器出口過冷却度検出部、24
b…冷房用凝縮器出口過冷却度検出部、25a,25b
…膨張弁駆動回路、26a〜26e…温度検出器。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 3 ... Indoor heat exchanger, 4 ... First decompression device, 5
... Receiver, 6 ... Second decompression device, 7 ... Outdoor heat exchanger, 8 ...
Accumulator, 10 ... gas-liquid mixing device, 11a, 11b
··· Refrigerant liquid inlet / outlet pipes, 12a, 12b · · · Decompression adjusting means for reducing the degree of dryness, 13a, 13b · · · Refrigerant gas outlet pipes, 14a and 14b · · · Refrigerant liquid outlet pipes, 15a and 15b
Refrigerant inlet / outlet pipes, 16a, 16b: U-shaped pipes for refrigerant introduction / exit, 17a, 17b: gas holes, 18a, 18b: liquid holes,
Reference numeral 20: microcomputer, 21: memory unit, 22:
Heat exchanger inflow air temperature detection unit, 23 ... Discharge gas superheat degree detection unit, 24a ... Heating condenser outlet supercool degree detection unit, 24
b: Cooling condenser outlet subcooling degree detecting section, 25a, 25b
... expansion valve drive circuits, 26a to 26e ... temperature detectors.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 剛 東京都千代田区神田駿河台四丁目6番地 株式会社 日立製作所 空調システム 事業部内 (56)参考文献 特開 平6−101912(JP,A) 特開 昭60−133268(JP,A) 実開 昭61−145258(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 F25B 13/00 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takeshi Endo 4-6-6 Kanda Surugadai, Chiyoda-ku, Tokyo Hitachi, Ltd. Air Conditioning Systems Division (56) References JP-A-6-101912 (JP, A) 60-133268 (JP, A) Fully open Showa 61-145258 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 1/00 F25B 13/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも圧縮機、室内熱交換器、第1
減圧装置、第2減圧装置、室外熱交換器を順次配管によ
り接続した冷凍サイクルに、沸点の異なる少なくとも二
種類の冷媒を混合した非共沸混合冷媒を封入し、前記室
内熱交換器と室外熱交換器の間に受液器を設けた冷凍サ
イクルにおいて、前記受液器に気液混合手段を設け、前
記受液器の出口側の前記非共沸混合冷媒が液とガスの混
合状態である気液二相状態となるようにしたことを特徴
とする冷凍サイクル。
At least a compressor, an indoor heat exchanger, a first
A non-azeotropic mixed refrigerant in which at least two kinds of refrigerants having different boiling points are mixed is sealed in a refrigeration cycle in which a pressure reducing device, a second pressure reducing device, and an outdoor heat exchanger are sequentially connected by piping, and the indoor heat exchanger and the outdoor heat exchanger are sealed. In a refrigeration cycle in which a liquid receiver is provided between exchangers, gas-liquid mixing means is provided in the liquid receiver ,
The non-azeotropic refrigerant mixture on the outlet side of the receiver is a mixture of liquid and gas.
A refrigeration cycle characterized by being in a gas-liquid two-phase state which is a combined state .
【請求項2】 少なくとも圧縮機、室内熱交換器、第1
減圧装置、第2減圧装置、室外熱交換器を順次配管によ
り接続した冷凍サイクルに、沸点の異なる少なくとも二
種類の冷媒を混合した非共沸混合冷媒を封入し、前記室
内熱交換器と室外熱交換器の間に受液器を設けた冷凍サ
イクルにおいて、前記受液器を前記冷凍サイクルの中間
圧部に設置し、前記受液器から流出する冷媒流体をガス
と液の混合状態とする気液混合装置を設けたことを特徴
とする冷凍サイクル。
2. At least a compressor, an indoor heat exchanger, a first
A non-azeotropic mixed refrigerant in which at least two kinds of refrigerants having different boiling points are mixed is sealed in a refrigeration cycle in which a pressure reducing device, a second pressure reducing device, and an outdoor heat exchanger are sequentially connected by piping, and the indoor heat exchanger and the outdoor heat exchanger are sealed. in a refrigeration cycle in which a liquid receiver between the exchanger and placing the receiver in the intermediate-pressure section of the refrigeration cycle, the receiver or et flow out to the refrigerant fluid and mixed state of gas and liquid A refrigeration cycle characterized by comprising a gas-liquid mixing device.
【請求項3】 前記第1減圧装置と第2減圧装置の少な
くとも一方に、電子膨張弁を用いたことを特徴とする請
求項1または2記載の冷凍サイクル。
3. The refrigeration cycle according to claim 1, wherein an electronic expansion valve is used for at least one of the first pressure reducing device and the second pressure reducing device.
【請求項4】 少なくとも圧縮機、四方弁、室内熱交換
器、第1減圧装置、受液器、第2減圧装置、室外熱交換
器を順次配管により接続した冷凍サイクルに、沸点の異
なる少なくとも二種類の冷媒を混合した非共沸混合冷媒
を封入し、前記第1減圧装置または第2減圧装置により
冷凍サイクルを制御する冷凍サイクルの制御方法であっ
て、前記受液器に気液混合手段を設け、前記冷凍サイク
ルを流れる冷媒の流れ方向に対して、第1、第2減圧装
置のうちの受液器の前方に位置する減圧装置により、室
内、室外熱交換器のうちの凝縮器として作用している熱
交換器の冷媒液の過冷却度または受液器内の圧力を制御
し、受液器の後方に位置する減圧装置により、吐出ガス
過熱度または吸入ガス過熱度を制御することを特徴とす
る冷凍サイクルの制御方法。
4. A refrigeration cycle in which at least a compressor, a four-way valve, an indoor heat exchanger, a first decompression device, a liquid receiver, a second decompression device, and an outdoor heat exchanger are sequentially connected by piping, at least two refrigeration cycles having different boiling points. A method of controlling a refrigeration cycle in which a non-azeotropic mixed refrigerant in which different types of refrigerants are mixed is sealed and the refrigeration cycle is controlled by the first pressure reducing device or the second pressure reducing device.
The liquid receiver is provided with gas-liquid mixing means , and the decompression device located in front of the receiver among the first and second decompression devices with respect to the direction of flow of the refrigerant flowing through the refrigeration cycle. The supercooling degree of the refrigerant liquid in the heat exchanger acting as a condenser in the outdoor heat exchanger or the pressure in the receiver is controlled, and the discharge gas is controlled by a pressure reducing device located behind the receiver. A method for controlling a refrigeration cycle, comprising controlling a degree of superheating or a degree of superheating of a suction gas.
JP6116828A 1993-10-28 1994-05-30 Refrigeration cycle and control method thereof Expired - Fee Related JP3055854B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6116828A JP3055854B2 (en) 1994-05-30 1994-05-30 Refrigeration cycle and control method thereof
CN94118143.XA CN1079528C (en) 1993-10-28 1994-10-28 Refrigerant circulating and controlling method
US08/330,677 US5651263A (en) 1993-10-28 1994-10-28 Refrigeration cycle and method of controlling the same
US08/766,315 US5768902A (en) 1993-10-28 1996-12-13 Refrigeration cycle and method of controlling the same
CN01117152.9A CN1198103C (en) 1993-10-28 2001-04-27 Refrigerating circulation and controlling method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6116828A JP3055854B2 (en) 1994-05-30 1994-05-30 Refrigeration cycle and control method thereof

Publications (2)

Publication Number Publication Date
JPH07324833A JPH07324833A (en) 1995-12-12
JP3055854B2 true JP3055854B2 (en) 2000-06-26

Family

ID=14696636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6116828A Expired - Fee Related JP3055854B2 (en) 1993-10-28 1994-05-30 Refrigeration cycle and control method thereof

Country Status (1)

Country Link
JP (1) JP3055854B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135292A1 (en) 2018-01-04 2019-07-11 Cpmホールディング株式会社 Liquefaction promoting device having springs capable of oscillating and rocking
WO2021132256A1 (en) 2019-12-27 2021-07-01 Cpmホールディング株式会社 Mixed refrigerant production device, method for producing mixed refrigerant, mixed refrigerant container, method for using mixed refrigerant container, gas-liquid mixing function-equipped mixed refrigerant container, and method for using gas-liquid mixing function-equipped mixed refrigerant container

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007010645B4 (en) * 2007-03-02 2020-12-17 Stiebel Eltron Gmbh & Co. Kg Method for controlling a compression refrigeration system and a compression refrigeration system
JPWO2016051606A1 (en) * 2014-10-03 2017-04-27 三菱電機株式会社 Air conditioner
JP6635682B2 (en) * 2015-06-03 2020-01-29 日立ジョンソンコントロールズ空調株式会社 Refrigeration cycle device
JP2022157187A (en) * 2021-03-31 2022-10-14 ダイキン工業株式会社 Heat pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135292A1 (en) 2018-01-04 2019-07-11 Cpmホールディング株式会社 Liquefaction promoting device having springs capable of oscillating and rocking
WO2021132256A1 (en) 2019-12-27 2021-07-01 Cpmホールディング株式会社 Mixed refrigerant production device, method for producing mixed refrigerant, mixed refrigerant container, method for using mixed refrigerant container, gas-liquid mixing function-equipped mixed refrigerant container, and method for using gas-liquid mixing function-equipped mixed refrigerant container

Also Published As

Publication number Publication date
JPH07324833A (en) 1995-12-12

Similar Documents

Publication Publication Date Title
US5651263A (en) Refrigeration cycle and method of controlling the same
JP3331102B2 (en) Refrigeration cycle capacity control device
EP2752627B1 (en) Refrigeration device
CN102147126B (en) Air conditioner and control method thereof
JP4740984B2 (en) Refrigeration air conditioner
JP3894221B1 (en) Air conditioner
WO2019073621A1 (en) Air-conditioning device
JP2000314565A (en) Air conditioner
JP2004183913A (en) Air conditioner
EP1567814A2 (en) Refrigeration system with bypass subcooling and component size de-optimization
JP2002310520A (en) Refrigerant control method for air conditioner, and the air conditioner
JP3055854B2 (en) Refrigeration cycle and control method thereof
JPH07120076A (en) Air conditioner
JP3140923B2 (en) Refrigerant circulation system and refrigeration / air conditioner
JP2000179957A (en) Air conditioner
JP3724239B2 (en) Cooling system
JP2007155143A (en) Refrigerating device
JPH11270918A (en) Refrigerating device
JPH09273839A (en) Refrigerating cycle
JP3377846B2 (en) Thermal storage type air conditioner
JP3140908B2 (en) Refrigerant circulation system
JP2000283568A (en) Refrigerating device and control method therefor
JP3317170B2 (en) Refrigeration equipment
JP2002357353A (en) Air conditioner
JP3168496B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080414

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080414

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080414

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080414

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080414

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees