JP2004183913A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2004183913A
JP2004183913A JP2002347896A JP2002347896A JP2004183913A JP 2004183913 A JP2004183913 A JP 2004183913A JP 2002347896 A JP2002347896 A JP 2002347896A JP 2002347896 A JP2002347896 A JP 2002347896A JP 2004183913 A JP2004183913 A JP 2004183913A
Authority
JP
Japan
Prior art keywords
stage compressor
low
pressure
refrigerant
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002347896A
Other languages
Japanese (ja)
Other versions
JP4069733B2 (en
Inventor
Makoto Saito
信 齊藤
Toshihiko Enomoto
寿彦 榎本
Masayuki Tsunoda
昌之 角田
Tetsuji Nanatane
哲二 七種
Fumitake Unezaki
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002347896A priority Critical patent/JP4069733B2/en
Publication of JP2004183913A publication Critical patent/JP2004183913A/en
Application granted granted Critical
Publication of JP4069733B2 publication Critical patent/JP4069733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of developing sufficient heating capacity and high operating efficiency even if an outside air temperature is -10°C or under. <P>SOLUTION: This air conditioner comprises a low stage compressor allowing the regulation of rotational speed, a high stage compressor allowing the regulation of rotational speed independently of the low stage compressor, a condenser, a first pressure reducing device, and an evaporator which are connected to each other in order. An intercooler is installed between the condenser and the first pressure reducing device. Refrigerant flowing out of the condenser is branched, the refrigerant pressure-reduced to an intermediate pressure through a second pressure reducing device makes heat exchange in the intercooler and flows into the suction side of the high stage compressor to form a heat pump cycle. Thus, even when the outside air temperature is low, highly efficient heating operation can be performed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、空気熱源式ヒートポンプ空気調和機に関わり、特に外気低温時の暖房能力を向上させる空気調和機に関するものである。
【0002】
【従来の技術】
通常、外気が氷点下−10℃を下回るような寒冷地においては灯油やガス等の燃焼熱により暖房が行われている。それは、一般に外気から蒸発熱を得るヒートポンプ暖房では低外気条件において暖房能力不足および成績係数(暖房能力/消費電力)低下となって満足な暖房運転が行えないためである。しかしながら、夏季の冷房はヒートポンプによるものが広く普及しているため、設備コストや空気調和機の設置スペースの観点から、冷房暖房ともにヒートポンプにより空調を行いたいという要求が強い。この要求に応えるため、低外気条件における暖房能力向上および効率向上を目指した様々な提案が従来よりなされている。
【0003】
従来の空気調和機では、インジェクションポートを有する圧縮機を用い、低外気暖房時には液冷媒を圧縮過程途中にインジェクションすることで凝縮器側冷媒流量を増大させ、暖房能力増大および運転効率の向上を図ったものがある。(例えば、特許文献1参照)
【0004】
また、他の従来の空気調和機では、ガスインジェクションを行うヒートポンプサイクルとして、凝縮器と蒸発器の間に2つの膨張弁とそれらの膨張弁の間に気液分離器を設置し、この気液分離器により分離されたガス冷媒を圧縮過程途中にインジェクションして冷媒流量を増大させるものがある。(例えば、特許文献2参照)
【0005】
【特許文献1】
特開平8−210709号公報(第4−7頁、第2図)
【特許文献2】
特開2001−116373号公報(第3−4頁、第1図)
【0006】
【発明が解決しようとする課題】
しかしながら、圧縮機へ液冷媒をインジェクションする場合、冷媒流量の増大による暖房能力の向上効果は得られるが、インジェクションされた液冷媒を蒸発させる熱は圧縮機入力によりもたらされるため、運転効率の低下が生じる。さらに、蒸発器側の冷媒エンタルピ差としてはインジェクションをしない場合と全く等しく、外気からの吸熱量を向上させることはできない。
【0007】
そして、ガスインジェクションの場合には、気液分離により蒸発器側に流れる冷媒が中圧飽和液となるため、凝縮器出口の冷媒エンタルピより小さく、蒸発器の冷媒入口出口エンタルピ差がインジェクションをしない場合より大きくなる。これにより外気からの吸熱量を大きくすることができ、運転効率の向上効果は得られるが、圧縮機回転数変更や負荷変動などで蒸発器側と凝縮器側の冷媒循環量差に変化が生じると、気液分離器内の貯留冷媒量が変化し、液バックやガスインジェクション管に液冷媒が多量に混入したりする可能性がある。これは、2台の圧縮機で冷凍サイクルを構成し、それぞれ独立に回転数制御を行う場合にはより顕著となる。
【0008】
また、ガスインジェクションに非共沸混合冷媒を用いた際は、気液分離器内ではガス相の低沸点冷媒成分濃度が高くなるため凝縮器側は低沸点冷媒濃度が高く、一方、蒸発器側には高沸点冷媒濃度が高くなる。よって、蒸発器を流出する圧縮機吸入ガス密度が低下し、冷媒流量低下による吸熱量不足となり、運転効率が低下するという問題点が生じる。
【0009】
そこで、本発明は上記のような問題点を解決するためになされたもので、空気を熱源としたヒートポンプ空気調和機において、外気が−10℃以下であっても十分な暖房能力と高い運転効率を発揮できる空気調和機を得ることを目的とする。
【0010】
【課題を解決するための手段】
本発明に係る空気調和機は、回転数調整可能な低段側圧縮機、該低段側圧縮機とは独立に回転数調整可能な高段側圧縮機、凝縮器、第1減圧装置および蒸発器を順次接続して冷凍サイクルを構成する空気調和機において、凝縮器と第1減圧装置との間に中間冷却器を設け、凝縮器から流出した冷媒を分岐し第2減圧装置を介して中間圧力に減圧した冷媒が中間冷却器で熱交換した後、高段側圧縮機の吸入側へ流入するものである。
【0011】
【発明の実施の形態】
実施の形態1.
以下、本発明の実施の形態1に係る空気調和機を、図1〜図4に基づいて説明する。
図1はこの発明の空気調和機の構成を示す冷媒回路図である。室外ユニット1に液管3およびガス管4を介して複数台の室内ユニットが並列の配管接続されている。また、この冷凍サイクルにおいては冷媒に非共沸混合冷媒であるR407C冷媒(R32が23wt%、R125が25wt%、R134aが52wt%の混合冷媒)を用いている。
【0012】
室外ユニット1には、低段側圧縮機5から高段側圧縮機6へ直列に接続され、それぞれが独立に回転数が調整可能な2つの圧縮機を有している。この高段側圧縮機6と四方弁9との間の吐出側配管に設けられた油分離器7から分離した油を戻すために、油分離器7下部から接続された油戻し管8がキャピラリチューブなどの減圧手段を介して低段側圧縮機5の吸入側に接続される。また、低段側圧縮機5および高段側圧縮機6により圧縮されたガス冷媒は高段側圧縮機6の吐出側配管より油分離器7を経て四方弁9に流入し、そこから暖房運転の際にはガス管4を介して室内ユニット2側へ流れる。一方、冷房運転の際には四方弁9を切換えて(図1中の点線)、冷媒は暖房運転時に蒸発器そして冷房運転時に凝縮器となる室外熱交換器10へ導かれる。四方弁9からの第4の配管は低段側圧縮機5の吸入側配管に接続されたアキュムレータ16に接続されている。
【0013】
室内ユニット2の液側配管に液管3を介して接続した室外ユニット1の冷凍サイクル液側配管には、主流の冷媒の一部を分岐し、その分岐流を第2減圧装置であるインジェクション膨張弁12を介して主流の冷媒と熱交換を行う中間冷却器11を設けている。この中間冷却器11は例えば二重管熱交換器などで構成する。この分岐した冷媒はインジェクション膨張弁12により減圧された後、中間冷却器11の中間圧力側管路出口から高段側圧縮機6の吸入に接続されたインジェクション管15で圧縮機へ戻される。また、室外熱交換器10と中間冷却器11の間には、第1減圧装置である暖房時の電動膨張弁13と中間冷却器11から室外熱交換器10への流れを阻止する逆止弁14が並列配管接続にて設置構成されている。なお、上記アキュムレータ16は冷凍サイクル運転中の余剰冷媒を貯留する機能を有する。
【0014】
複数台の室内ユニット2は、それぞれガス管4側から配管接続され、暖房運転時に凝縮器そして冷房運転時に蒸発器となる室内熱交換器18と冷房時の第1減圧装置である流量調整手段の電動膨張弁17が順に直列接続し、そして室外ユニット1からの液管3へ接続される構成である。
【0015】
このように構成された本実施の形態の空気調和機では、外気温度が−20℃程度となるような低外気条件においても十分な暖房能力と高い成績係数での運転が可能となる。以下に、この空気調和機の暖房運転時の動作について、図1および図2を用いて説明する。図2は暖房運転時の冷凍サイクル動作を示すP−h線図で、横軸は比エンタルピ[kJ/kg]、縦軸は圧力[MPa]である。なお、図中のA点〜J点は図1の冷媒回路図上に示した点に対応するものである。
【0016】
暖房運転において、高段側圧縮機6から吐出される高温高圧のガス冷媒(状態A)は油分離器7にて油分離された後、四方弁9を介してガス管4へと流れ、室内ユニット2に到達する。そして室内熱交換器18にて高温高圧のガス冷媒は室内空気に放熱して凝縮液化し、高圧の液冷媒(状態B)となる。そして、全開に制御された流量調整手段である電動膨張弁17を通過し、わずかに圧力低下した液冷媒(状態C)は室内ユニット2から流出し、液管3を通って再び室外ユニット1へと戻る。
【0017】
室内および室外ユニットを接続する液管3より室外ユニット1に戻った高圧液冷媒(状態C)は、中間冷却器11を通るが、その一部の冷媒はインジェクション膨張弁12を通って中間圧力まで減圧され気液二相が混合した状態Hとなる。中間冷却器11において前記高圧液冷媒(状態C)はさらに過冷却度を増した状態(状態D)となって減圧装置である電動膨張弁13へ流れ、低圧二相冷媒(状態E)となる。そして、低圧二相冷媒(状態E)は室外熱交換器10へと流入し、低温外気より吸熱して蒸発し、低圧ガス冷媒(状態F)となる。この低圧ガス冷媒は、四方弁9を経由してアキュムレータ16ヘ流入する。アキュムレータ16を流出し、低段側圧縮機5へ吸入される際、前記油分離器7で分離された冷凍機油と合流する。低段圧縮機5により加圧し吐出される中圧ガス冷媒(状態G)は、前記中間冷却器11から流入する中圧二相冷媒(状態I)と合流し、飽和ガス前後の乾き冷媒(状態J)となって高段側圧縮機6に吸入され、再度同じサイクルを繰り返し低外気条件での暖房運転を行う。
【0018】
ここで、本実施の形態の空気調和機には、図1の冷媒回路上に示すA点、F点、I点、および図2の状態A(凝縮器内圧力に相当)、状態F(蒸発器内圧力に相当)、状態I(インジェクション回路での中間圧力)それぞれの作動冷媒圧力を検知する圧力センサと、状態A(冷媒回路のA点)の作動冷媒温度を検知する温度センサが設置されている(図示は省略)。低段側圧縮機5および高段側圧縮機6の運転状態は、前記圧力センサの検出値によりそれぞれの回転数が制御される。例えば、高段側圧縮機6では吐出圧力が所定の圧力となるように制御され、低段側圧縮機5では高段側よりも低段側の圧縮比が大きくなるように制御される。一方、インジェクション膨張弁12は現在の吐出温度(状態Aの温度センサ検出値)が、状態Aおよび状態Iの圧力と高段側圧縮機6の回転数から演算される目標となる適正吐出温度に近づくようにその開度が制御される。
【0019】
以上のような動作により、外気温度が−20℃程度の極低温であっても所定の暖房能力を発揮できる。すなわち、低外気になると蒸発圧力が低下していき、かつ暖房能力を維持しようとすると、単段圧縮の冷凍サイクルでは圧縮比が異常に大きくなるが、圧縮過程を低段側と高段側の2つに分割しているため、相対的に、低段高段それぞれの圧縮機の圧縮比が異常に大きくなることなく高い凝縮温度が得られるとともに、インジェクション膨張弁12を介して中間冷却器11を流通し熱交換させ高乾き度冷媒のインジェクション作用により高段側圧縮機における冷媒流量を増大させ、かつ吐出温度を異常上昇させることなく運転可能となるものである。
【0020】
液冷媒をインジェクションする冷凍サイクルでは、凝縮器出口冷媒(状態B)と蒸発器入口冷媒(状態E)の比エンタルピが等しいために蒸発器でのエンタルピ差が大きく取れないのに対し、本発明においては中間冷却器での熱交換により蒸発器エンタルピ差を大きく取れるので、外気より吸熱できる熱量を大きくすることができ、暖房能力を増大できるとともに運転効率を向上することができる。
【0021】
中間圧力となる気液分離器を用いたガスインジェクションサイクルでは、気液分離器内のガス相は低沸点冷媒(R32、R125)成分が多くなり、液相では高沸点冷媒(R134a)成分が多くなり、蒸発器にはR134aリッチの冷媒が流れ込むことになる。このR134aは同一温度でのガス密度がR407Cより小さいため、同一蒸発能力を得るために、同一冷媒温度とするとR134aリッチの方が低圧が低くなり圧縮機の動作差圧が増えてCOPが悪化する。しかし、本発明においては、中間圧力となる気液分離を行なわないため、高段側と低段側の冷媒組成に変化は無く、このような不具合が生じることもない。
【0022】
さらに、ガスインジェクションサイクルでは負荷変動や圧縮機回転数の変更などに対して、低段と高段の圧縮機流量と気液分離器から流出するガスと液との比にアンバランスが生じ、気液分離器内液面が不安定になるのに対し、本発明においては、冷凍サイクルの凝縮側と蒸発側との間の主減圧手段は膨張弁1個(暖房時の膨張弁17)であり、それに中間冷却器11およびインジェクション膨張弁12を用いた二段圧縮のインジェクション回路を構成しているので、このような不具合も発生しない。
【0023】
また、このとき低段側圧縮機5は高段側圧縮機6より大きな圧縮比となるように回転数が制御される。このようにすることで、低段側圧縮機5の油吐出量が高段側圧縮機6の油吐出量より大きくなり、その結果、高段側圧縮機6では吐出量より多くの油が低段側圧縮機5より供給される。また低段側圧縮機5では、高段側圧縮機6より吐出され、油分離器7で冷媒から分離された冷凍機油が油戻し管8より吸入側へ供給されるため、両者の油面が著しく低下することなく運転を行うことができる。
【0024】
また、この低段側圧縮機5は高段側圧縮機6と等しい吸入容積となっているため、吸入ガス冷媒密度の小さい低段側圧縮機5の方が高段側圧縮機6より大きな回転数で運転される。このそれぞれ異なった回転数は、高段側は室内ユニットが要求する必要能力に対応して、例えば目標室内温度と実際の室内温度との差に応じて制御される。一方、高段側と低段側の圧縮機回転数のバランスにより中間圧力が決定されるため、低段側では圧縮比が高段側より大きくなるように回転数が制御される。例えば、図3に示すように、全体の圧縮比(凝縮圧力/蒸発圧力)が大きくなるほど低段側の圧縮比(中間圧力/蒸発圧力)が大きくなるように調整される。図3は空気調和機の運転制御状態を示す高段低段圧縮比のグラフであり、横軸は空気調和機の全体圧縮比、縦軸は高段、低段の圧縮比をとり、実線が低段側圧縮比、点線が高段側圧縮比を示している。
【0025】
ただし、低段側圧縮機の回転数が上限となっても必要な暖房能力が得られない場合にはこの限りではない。図3のような関係を維持することなく、大きな能力が得られるように高段側圧縮機6が運転される。いわば、効率優先から能力優先に圧縮機の回転数制御が切換えられる。
【0026】
ここまでは、暖房運転時の動作を説明したが、次に冷房運転時の動作を図1および図4を基に説明する。冷房運転においては、四方弁9は破線方向に切換えられ、高段側圧縮機6より吐出されたガス冷媒(状態A)は、室外熱交換器10で外気に放熱して凝縮し、液冷媒(状態E)となって逆止弁14を流れる。この高圧液冷媒は中間冷却器11で、その出口より分岐され、電動膨張弁12で中間圧力まで減圧された冷媒(状態H)と熱交換を行い、さらに過冷却度を増した状態(状態C)となって液管3を経て室内ユニット2へと流れる。
【0027】
この高圧二相となった冷媒(状態C)は、室内ユニット2において電動膨張弁17により減圧され、低圧二相冷媒(状態B)となって室内熱交換器18へ流入する。ここで室内空気から吸熱し、蒸発して低圧ガス冷媒(状態F)となって再び室外ユニット1へと戻る。室外ユニット1では四方弁9を通ってアキュムレータ16へと流通し、低段側圧縮機5へと吸入されて中圧まで圧縮される。この中圧過熱ガス冷媒(状態G)はインジェクション管15より流入する中圧二相冷媒(状態I)と合流し、乾き度1程度のガス冷媒となって再び高段側圧縮機6へと吸入される。
【0028】
ここで、冷房運転における高効率化のためには、室外熱交換器10から室内熱交換器18へ向かう中間冷却器11の出口での冷媒状態Cの過冷却度を極力大きくすることが重要である。これは、蒸発器入口の冷媒状態Bと蒸発器出口の冷媒状態Fのエンタルピ差が大きくなり、同一冷房能力で比べた場合、室内ユニット2へ流れる冷媒流量が小さくなることで、ガス管4や四方弁9による低圧側の圧力損失が抑制され、高効率な運転が可能となるためである。よって、冷房運転での中間圧力は低温暖房運転時とは異なり、低段側圧縮比が小さくなるように高段低段それぞれの圧縮機回転数が制御される。
【0029】
ただし、冷房運転でも外気が異常に高温である場合、または蒸発温度が異常に低下するような運転負荷条件においてはこの限りではない。結局、図3に示した全体の圧縮比と低段および高段圧縮比との関係となるように圧縮機回転数が制御される。
【0030】
実施の形態2.
本発明の実施の形態2について図5をもとに説明する。
図5は空気調和機の構成を示す冷媒回路図である。図において、19は油分離機能をもった低圧シェルタイプの高段側圧縮機であり、前述の図1における高段側圧縮機6の出口側配管途中に油分離器7を設けた構成に対応している。また、図1と同一または相当部分には同一符号を付し、詳細な説明を省略する。なお、液管3およびガス管4に接続する室内ユニット側は実施の形態1と全く同様であるため図示を省略する。
【0031】
次に、動作について説明する。低段側圧縮機5では、アキュムレータ16より低圧ガス冷媒を吸入し、中間圧力まで圧縮して吐出する。この吐出ガスは中間冷却器11のインジェクション電動膨張弁12を通過した中間圧力側より流出する中圧二相冷媒と合流し、飽和ガスに近い状態となって高段側圧縮機19に流入する。高段圧縮機19は低圧シェルタイプであり、この容器内は中圧ガスで満たされる。また、この圧縮機シェルの底部には冷凍機油が貯留されている。そして、このシェルには油戻し管8が前記高圧側圧縮機19の所定油面高さに取り付けられており、油面がこの高さ以上に溜まるとこの油戻し管8を介して低段側圧縮機5の吸入側へ貯留した冷凍機油が戻されるようになっている。
【0032】
また、前述と同様に低段側圧縮機5の油吐出量は高段側圧縮機19の油吐出量より常に多くなるよう回転数が制御されるので、高段側圧縮機19油面が低下することなく、また、高段側圧縮機19の油面が所定以上になると低段側圧縮機5に直接給油が行われるので低段側圧縮機の油面が所定以下まで低下することもない。
【0033】
このような構成とすることで、油分離器を別途設置することなく高段側圧縮機、低段側圧縮機それぞれの油面を確保することが可能となるので、低コスト化が図れる。
【0034】
【発明の効果】
以上のように本発明に係る空気調和機は、回転数調整可能な低段側圧縮機、該低段側圧縮機とは独立に回転数調整可能な高段側圧縮機、凝縮器、第1減圧装置および蒸発器を順次接続して冷凍サイクルを構成する空気調和機において、凝縮器と第1減圧装置との間に中間冷却器を設け、凝縮器から流出した冷媒を分岐し第2減圧装置を介して中間圧力に減圧した冷媒が中間冷却器で熱交換した後、高段側圧縮機の吸入側へ流入するので、液インジェクションサイクルに比べて蒸発器エンタルピ差を大きくとれることで低外気温時においても高効率な暖房運転を行うことができると共に、またガスインジェクションとは異なり、非共沸混合冷媒を用いても低段側圧縮機に吸入される冷媒の高沸点冷媒組成が大きくなることがなく、高効率な運転を行うことができる。さらにまた、気液分離器を用いないため、冷凍サイクル内の冷媒分布が負荷変動などが生じても安定して運転が行える空気調和機が得られる。
【0035】
また、冷凍サイクル内に封入される作動流体が2種類以上の混合冷媒としたので、気液分離器によるガスインジェクションサイクルで生じる循環冷媒組成変化に起因する蒸発能力不足を回避することができ、暖房時の能力および運転効率を向上させることができる。
【0036】
また、高段側圧縮機の吐出温度を目標吐出温度となるように第2減圧装置の減圧量の調整をするので、高段側圧縮機の吐出温度の異常上昇を防止することができる。
【0037】
また、低段側圧縮機が高段側圧縮機と等しい吸入容積としたので、低温暖房時の高圧縮比運転時および比較的低圧縮比の冷房運転時のともに適正な中間圧力で運転することができる。
【0038】
また、高段側圧縮機と凝縮器の間に油分離器を設け、その油戻し管を低段側圧縮機の吸入側に接続したので、低段側圧縮機、高段側圧縮機ともに必要冷凍機油を確保することができる。
【0039】
また、高段側圧縮機が低圧シェル型の圧縮機であり、この圧縮機シェルの所定油面位置に油戻し管を有し、低段側圧縮機の吸入側へ接続されるので、別途油分離器を設けることなく低段側圧縮機および高段側圧縮機ともに必要冷凍機油量を確保でき、さらに低コストの空気調和機が得られる。
【0040】
また、凝縮圧力検知手段と蒸発圧力検知手段と中間圧力検知手段とを備え、冷房運転時には低段側圧縮機の圧縮比が高段側圧縮機の圧縮比より小さくなるように運転されるとともに、暖房運転時には低段側圧縮機の圧縮比が高段側圧縮機の圧縮比より大きくなるように運転されるので、低圧縮比運転においても高圧縮運転においても高い運転効率で冷暖房が実現できる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る空気調和機の冷媒回路図である。
【図2】本発明の実施の形態1に係る空気調和機の暖房運転動作を示すP−h線図である。
【図3】本発明の実施の形態1に係る空気調和機の運転制御状態を示す高段低段圧縮比のグラフである。
【図4】本発明の実施の形態1に係る空気調和機の冷房運転動作を示すP−h線図である。
【図5】本発明の実施の形態2に係る空気調和機の冷媒回路図である。
【符号の説明】
1 室外ユニット、 2 室内ユニット、 3 液管、 4 ガス管、 5 低段圧縮機、 6 高段圧縮機、 7 油分離器、 8 油戻し管、 9 四方弁、 10 室外熱交換器、 11 中間冷却器、 12、13 電動膨張弁、14 逆止弁、 15 インジェクション管、 16 アキュムレータ、 17 電動膨張弁、 18 室内熱交換器、 19 低圧シェルタイプ高段圧縮機。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air heat source type heat pump air conditioner, and more particularly to an air conditioner that improves the heating capacity when the outside air temperature is low.
[0002]
[Prior art]
Normally, in cold regions where the outside air is below -10 ° C, heating is performed by the combustion heat of kerosene, gas and the like. This is because, in general, in the case of heat pump heating that obtains evaporation heat from the outside air, under a low outside air condition, the heating capacity becomes insufficient and the coefficient of performance (heating capacity / power consumption) decreases, and a satisfactory heating operation cannot be performed. However, since cooling using heat pumps is widely used in summer, there is a strong demand for air conditioning and cooling both by using heat pumps from the viewpoint of equipment costs and installation space for air conditioners. In order to meet this demand, various proposals for improving the heating capacity and the efficiency under low outside air conditions have been made.
[0003]
In a conventional air conditioner, a compressor having an injection port is used. During low outside air heating, the liquid refrigerant is injected during the compression process to increase the condenser-side refrigerant flow rate, thereby increasing heating capacity and improving operating efficiency. There are things. (For example, see Patent Document 1)
[0004]
In another conventional air conditioner, as a heat pump cycle for performing gas injection, two expansion valves are provided between a condenser and an evaporator, and a gas-liquid separator is provided between the expansion valves. In some cases, the gas refrigerant separated by the separator is injected during the compression process to increase the flow rate of the refrigerant. (For example, see Patent Document 2)
[0005]
[Patent Document 1]
JP-A-8-210709 (page 4-7, FIG. 2)
[Patent Document 2]
JP 2001-116373 A (pages 3-4, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, when liquid refrigerant is injected into the compressor, the effect of improving the heating capacity by increasing the flow rate of the refrigerant is obtained.However, since the heat for evaporating the injected liquid refrigerant is provided by the compressor input, the operating efficiency is reduced. Occurs. Further, the refrigerant enthalpy difference on the evaporator side is exactly the same as the case where no injection is performed, and the amount of heat absorbed from the outside air cannot be improved.
[0007]
In the case of gas injection, since the refrigerant flowing to the evaporator side due to gas-liquid separation becomes a medium-pressure saturated liquid, the refrigerant is smaller than the refrigerant enthalpy at the outlet of the condenser, and the refrigerant enthalpy difference at the refrigerant inlet and outlet of the evaporator does not cause injection. Be larger. As a result, the amount of heat absorbed from the outside air can be increased, and the operation efficiency can be improved.However, a change in refrigerant circulation amount difference between the evaporator side and the condenser side occurs due to a change in compressor speed or load fluctuation. Then, the amount of refrigerant stored in the gas-liquid separator changes, and a large amount of liquid refrigerant may enter the liquid bag or the gas injection pipe. This becomes more remarkable when a refrigeration cycle is constituted by two compressors and the rotation speed is controlled independently of each other.
[0008]
When a non-azeotropic refrigerant mixture is used for gas injection, the concentration of the low-boiling-point refrigerant component in the gas phase in the gas-liquid separator is high, so that the low-boiling-point refrigerant concentration is high on the condenser side, while the evaporator side is high. , The high-boiling-point refrigerant concentration increases. Therefore, the density of the compressor suction gas flowing out of the evaporator decreases, and the amount of heat absorbed by the flow rate of the refrigerant becomes insufficient, resulting in a problem that the operation efficiency is reduced.
[0009]
Therefore, the present invention has been made to solve the above problems, and in a heat pump air conditioner using air as a heat source, sufficient heating capacity and high operating efficiency even when the outside air is -10 ° C or less. The aim is to obtain an air conditioner that can demonstrate
[0010]
[Means for Solving the Problems]
An air conditioner according to the present invention includes a low-stage compressor whose rotation speed can be adjusted, a high-stage compressor whose rotation speed can be adjusted independently of the low-stage compressor, a condenser, a first pressure reducing device, and an evaporator. In an air conditioner that forms a refrigeration cycle by sequentially connecting the condensers, an intercooler is provided between the condenser and the first decompression device, and the refrigerant that has flowed out of the condenser is branched and interposed through the second decompression device. The refrigerant depressurized to a pressure exchanges heat in the intercooler, and then flows into the suction side of the high-stage compressor.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, an air conditioner according to Embodiment 1 of the present invention will be described with reference to FIGS.
FIG. 1 is a refrigerant circuit diagram showing a configuration of the air conditioner of the present invention. A plurality of indoor units are connected to the outdoor unit 1 in parallel via a liquid pipe 3 and a gas pipe 4. In this refrigeration cycle, R407C refrigerant (23 wt% of R32, 25 wt% of R125, and 52 wt% of R134a) is used as the refrigerant.
[0012]
The outdoor unit 1 has two compressors that are connected in series from the low-stage compressor 5 to the high-stage compressor 6 and that can independently adjust the rotation speed. In order to return oil separated from the oil separator 7 provided on the discharge side pipe between the high-stage compressor 6 and the four-way valve 9, an oil return pipe 8 connected from the lower part of the oil separator 7 is provided with a capillary. It is connected to the suction side of the low-stage compressor 5 via a pressure reducing means such as a tube. Further, the gas refrigerant compressed by the low-stage compressor 5 and the high-stage compressor 6 flows into the four-way valve 9 from the discharge pipe of the high-stage compressor 6 via the oil separator 7, from which the heating operation is performed. In this case, the gas flows to the indoor unit 2 via the gas pipe 4. On the other hand, during the cooling operation, the four-way valve 9 is switched (dotted line in FIG. 1), and the refrigerant is guided to the outdoor heat exchanger 10 which becomes an evaporator during the heating operation and a condenser during the cooling operation. The fourth pipe from the four-way valve 9 is connected to an accumulator 16 connected to the suction pipe of the low-stage compressor 5.
[0013]
A part of the mainstream refrigerant is branched into the refrigeration cycle liquid-side pipe of the outdoor unit 1 connected to the liquid-side pipe of the indoor unit 2 via the liquid pipe 3, and the branched flow is injected into a second decompression device, the injection expansion. An intercooler 11 that exchanges heat with a mainstream refrigerant via a valve 12 is provided. This intercooler 11 is constituted by, for example, a double tube heat exchanger. After the branched refrigerant is decompressed by the injection expansion valve 12, the refrigerant is returned from the intermediate pressure side pipe outlet of the intercooler 11 to the compressor through the injection pipe 15 connected to the suction of the high-stage compressor 6. Further, between the outdoor heat exchanger 10 and the intercooler 11, there is a motor-operated expansion valve 13 as a first pressure reducing device during heating and a check valve for preventing a flow from the intercooler 11 to the outdoor heat exchanger 10. 14 is installed and configured by parallel pipe connection. The accumulator 16 has a function of storing surplus refrigerant during a refrigeration cycle operation.
[0014]
The plurality of indoor units 2 are connected by pipes from the gas pipe 4 side, respectively. An indoor heat exchanger 18 that serves as a condenser during a heating operation and an evaporator during a cooling operation, and a flow control unit that is a first decompression device during cooling. The motor-operated expansion valve 17 is connected in series in order, and is connected to the liquid pipe 3 from the outdoor unit 1.
[0015]
In the air conditioner of the present embodiment configured as described above, it is possible to operate with sufficient heating capacity and a high coefficient of performance even in a low outside air condition where the outside air temperature is about −20 ° C. Hereinafter, the operation of the air conditioner during the heating operation will be described with reference to FIGS. 1 and 2. FIG. 2 is a Ph diagram showing the refrigeration cycle operation during the heating operation. The horizontal axis represents specific enthalpy [kJ / kg], and the vertical axis represents pressure [MPa]. The points A to J in the figure correspond to the points shown on the refrigerant circuit diagram in FIG.
[0016]
In the heating operation, the high-temperature and high-pressure gas refrigerant (state A) discharged from the high-stage compressor 6 is oil-separated by the oil separator 7 and then flows through the four-way valve 9 to the gas pipe 4 to be indoors. Unit 2 is reached. In the indoor heat exchanger 18, the high-temperature and high-pressure gas refrigerant radiates heat to indoor air to be condensed and liquefied, and becomes a high-pressure liquid refrigerant (state B). Then, the liquid refrigerant (state C), which has passed through the electric expansion valve 17 which is a flow control means controlled to be fully opened and has a slight pressure drop, flows out of the indoor unit 2 and passes through the liquid pipe 3 to the outdoor unit 1 again. And return.
[0017]
The high-pressure liquid refrigerant (state C) returned from the liquid pipe 3 connecting the indoor and outdoor units to the outdoor unit 1 passes through the intercooler 11, but a part of the refrigerant passes through the injection expansion valve 12 to the intermediate pressure. The state is reduced to a state H in which the gas-liquid two phases are mixed. In the intercooler 11, the high-pressure liquid refrigerant (state C) is in a state where the degree of supercooling is further increased (state D), flows to the electric expansion valve 13 which is a pressure reducing device, and becomes a low-pressure two-phase refrigerant (state E). . Then, the low-pressure two-phase refrigerant (state E) flows into the outdoor heat exchanger 10, absorbs heat from low-temperature outside air, evaporates, and becomes a low-pressure gas refrigerant (state F). This low-pressure gas refrigerant flows into the accumulator 16 via the four-way valve 9. When it flows out of the accumulator 16 and is sucked into the low-stage compressor 5, it merges with the refrigerating machine oil separated by the oil separator 7. The medium-pressure gas refrigerant pressurized and discharged by the low-stage compressor 5 (state G) merges with the medium-pressure two-phase refrigerant (state I) flowing from the intercooler 11, and a dry refrigerant before and after a saturated gas (state G). J), the air is sucked into the high-stage compressor 6, and the same cycle is repeated again to perform the heating operation under the low outside air condition.
[0018]
Here, in the air conditioner of the present embodiment, the points A, F, and I shown on the refrigerant circuit of FIG. 1, the state A (corresponding to the internal pressure of the condenser) of FIG. A pressure sensor for detecting the working refrigerant pressure in each of the state I (intermediate pressure in the injection circuit) and state I (intermediate pressure in the injection circuit) and a temperature sensor for detecting the working refrigerant temperature in state A (point A of the refrigerant circuit) are provided. (Not shown). In the operation state of the low-stage compressor 5 and the high-stage compressor 6, the respective rotation speeds are controlled by the detection values of the pressure sensors. For example, in the high-stage compressor 6, the discharge pressure is controlled to be a predetermined pressure, and in the low-stage compressor 5, the compression ratio on the lower stage is higher than that on the higher stage. On the other hand, the injection expansion valve 12 changes the current discharge temperature (detected value of the temperature sensor in the state A) to a target appropriate discharge temperature calculated from the pressures in the states A and I and the rotation speed of the high-stage compressor 6. The opening is controlled so as to approach.
[0019]
With the above operation, a predetermined heating capacity can be exhibited even when the outside air temperature is extremely low, such as about −20 ° C. In other words, when the outside air temperature becomes low, the evaporating pressure decreases, and in order to maintain the heating capacity, the compression ratio becomes abnormally large in the single-stage compression refrigeration cycle. Since the compressor is divided into two, a relatively high compression temperature can be obtained without abnormally increasing the compression ratio of each of the compressors in the lower stage and the higher stage, and the intercooler 11 is connected via the injection expansion valve 12. And heat exchange, thereby increasing the refrigerant flow rate in the high-stage compressor by the injection action of the high-dryness refrigerant, and enabling operation without abnormally increasing the discharge temperature.
[0020]
In the refrigeration cycle in which the liquid refrigerant is injected, the specific enthalpy of the refrigerant at the outlet of the condenser (state B) is equal to the specific enthalpy of the refrigerant at the inlet of the evaporator (state E). Since the difference in evaporator enthalpy can be increased by heat exchange in the intercooler, the amount of heat that can absorb heat from the outside air can be increased, and the heating capacity can be increased and the operation efficiency can be improved.
[0021]
In a gas injection cycle using a gas-liquid separator having an intermediate pressure, the gas phase in the gas-liquid separator has a large amount of low-boiling-point refrigerant (R32, R125) components, and the liquid phase has a large amount of a high-boiling-point refrigerant (R134a) component. Thus, the R134a-rich refrigerant flows into the evaporator. Since the gas density of R134a at the same temperature is smaller than that of R407C, in order to obtain the same evaporating capacity, when the refrigerant temperature is the same, the R134a-rich gas has a lower low pressure, the operating differential pressure of the compressor increases, and the COP deteriorates. . However, in the present invention, since the gas-liquid separation at the intermediate pressure is not performed, there is no change in the refrigerant composition on the high stage side and the low stage side, and such a problem does not occur.
[0022]
Furthermore, in the gas injection cycle, when the load fluctuates or the compressor speed changes, the imbalance occurs between the flow rates of the low-stage and high-stage compressors and the ratio of gas to liquid flowing out of the gas-liquid separator. While the liquid level in the liquid separator becomes unstable, in the present invention, the main pressure reducing means between the condensing side and the evaporating side of the refrigeration cycle is one expansion valve (expansion valve 17 during heating). Since a two-stage compression injection circuit using the intercooler 11 and the injection expansion valve 12 is formed, such a problem does not occur.
[0023]
At this time, the rotation speed of the low-stage compressor 5 is controlled so as to have a higher compression ratio than that of the high-stage compressor 6. By doing so, the oil discharge amount of the low-stage compressor 5 becomes larger than the oil discharge amount of the high-stage compressor 6, and as a result, more oil than the discharge amount of the high-stage compressor 6 becomes lower. It is supplied from the stage compressor 5. In the low-stage compressor 5, the refrigerating machine oil discharged from the high-stage compressor 6 and separated from the refrigerant by the oil separator 7 is supplied from the oil return pipe 8 to the suction side. The operation can be performed without a significant decrease.
[0024]
Further, since the low-stage compressor 5 has the same suction volume as the high-stage compressor 6, the low-stage compressor 5 having a smaller suction gas refrigerant density has a larger rotation speed than the high-stage compressor 6. Driven by numbers. The different rotational speeds are controlled on the higher stage side according to the required capacity required by the indoor unit, for example, according to the difference between the target indoor temperature and the actual indoor temperature. On the other hand, since the intermediate pressure is determined by the balance between the compressor speed on the high stage side and the compressor speed on the low stage side, the rotational speed is controlled so that the compression ratio is higher on the lower stage than on the higher stage. For example, as shown in FIG. 3, the compression ratio (intermediate pressure / evaporation pressure) on the lower stage is adjusted so as to increase as the overall compression ratio (condensation pressure / evaporation pressure) increases. FIG. 3 is a graph of the high-stage low-stage compression ratio showing the operation control state of the air conditioner, in which the horizontal axis represents the overall compression ratio of the air conditioner, the vertical axis represents the high-stage and low-stage compression ratios, and the solid line represents the solid line. The low-stage compression ratio and the dotted line indicate the high-stage compression ratio.
[0025]
However, this does not apply if the required heating capacity cannot be obtained even when the rotation speed of the low-stage compressor reaches the upper limit. The high-stage compressor 6 is operated so as to obtain a large capacity without maintaining the relationship as shown in FIG. In other words, the rotational speed control of the compressor is switched from efficiency priority to capacity priority.
[0026]
Up to this point, the operation during the heating operation has been described. Next, the operation during the cooling operation will be described with reference to FIGS. 1 and 4. In the cooling operation, the four-way valve 9 is switched in the direction of the dashed line, and the gas refrigerant (state A) discharged from the high-stage compressor 6 radiates heat to the outside air in the outdoor heat exchanger 10 to condense, and the liquid refrigerant ( State E) is reached and flows through the check valve 14. The high-pressure liquid refrigerant is branched from the outlet thereof in the intercooler 11, exchanges heat with the refrigerant (state H) depressurized to the intermediate pressure by the electric expansion valve 12, and further increases the degree of supercooling (state C). ) And flows to the indoor unit 2 via the liquid pipe 3.
[0027]
The high-pressure two-phase refrigerant (state C) is decompressed by the electric expansion valve 17 in the indoor unit 2, becomes a low-pressure two-phase refrigerant (state B), and flows into the indoor heat exchanger 18. Here, heat is absorbed from the indoor air, evaporated and changed to a low-pressure gas refrigerant (state F), and returns to the outdoor unit 1 again. In the outdoor unit 1, the air flows through the four-way valve 9 to the accumulator 16, is drawn into the low-stage compressor 5, and is compressed to an intermediate pressure. The medium-pressure superheated gas refrigerant (state G) merges with the medium-pressure two-phase refrigerant (state I) flowing from the injection pipe 15 to become a gas refrigerant having a dryness of about 1 and sucked into the high-stage compressor 6 again. Is done.
[0028]
Here, in order to increase the efficiency in the cooling operation, it is important to increase the degree of supercooling of the refrigerant state C at the outlet of the intercooler 11 from the outdoor heat exchanger 10 to the indoor heat exchanger 18 as much as possible. is there. This is because the enthalpy difference between the refrigerant state B at the evaporator inlet and the refrigerant state F at the evaporator outlet becomes large, and when compared with the same cooling capacity, the flow rate of the refrigerant flowing to the indoor unit 2 becomes small. This is because the pressure loss on the low pressure side due to the four-way valve 9 is suppressed, and highly efficient operation can be performed. Therefore, the intermediate pressure in the cooling operation is different from that in the low-temperature heating operation, and the compressor speed of each of the high and low stages is controlled so that the low-stage side compression ratio becomes small.
[0029]
However, this does not apply to the case where the outside air is abnormally high in the cooling operation, or under the operating load condition where the evaporation temperature is abnormally lowered. Eventually, the compressor speed is controlled so as to have a relationship between the overall compression ratio and the low-stage and high-stage compression ratios shown in FIG.
[0030]
Embodiment 2 FIG.
Embodiment 2 of the present invention will be described with reference to FIG.
FIG. 5 is a refrigerant circuit diagram showing a configuration of the air conditioner. In the figure, reference numeral 19 denotes a low-pressure shell-type high-stage compressor having an oil separation function, which corresponds to the configuration in which the oil separator 7 is provided in the middle of the outlet pipe of the high-stage compressor 6 in FIG. are doing. The same or corresponding parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. Note that the indoor unit side connected to the liquid pipe 3 and the gas pipe 4 is completely the same as in the first embodiment, and is not shown.
[0031]
Next, the operation will be described. The low-stage compressor 5 draws low-pressure gas refrigerant from the accumulator 16, compresses it to an intermediate pressure, and discharges it. This discharge gas merges with the medium-pressure two-phase refrigerant flowing out from the intermediate pressure side that has passed through the injection electric expansion valve 12 of the intercooler 11, and flows into the high-stage compressor 19 in a state close to a saturated gas. The high-stage compressor 19 is of a low-pressure shell type, and the inside of this container is filled with medium-pressure gas. Refrigeration oil is stored at the bottom of the compressor shell. An oil return pipe 8 is attached to the shell at a predetermined oil level of the high-pressure side compressor 19, and when the oil level becomes higher than this level, the oil return pipe 8 is connected to the lower stage side through the oil return pipe 8. The refrigerating machine oil stored in the suction side of the compressor 5 is returned.
[0032]
Also, as described above, since the rotation speed is controlled so that the oil discharge amount of the low-stage compressor 5 is always larger than the oil discharge amount of the high-stage compressor 19, the oil level of the high-stage compressor 19 decreases. Also, when the oil level of the high-stage compressor 19 is higher than a predetermined level, the oil is directly supplied to the low-stage compressor 5, so that the oil level of the low-stage compressor does not drop below a predetermined level. .
[0033]
With such a configuration, it is possible to secure the oil levels of the high-stage compressor and the low-stage compressor without separately installing an oil separator, so that the cost can be reduced.
[0034]
【The invention's effect】
As described above, the air conditioner according to the present invention includes a low-stage compressor whose rotation speed can be adjusted, a high-stage compressor whose rotation speed can be adjusted independently of the low-stage compressor, a condenser, In an air conditioner that forms a refrigeration cycle by sequentially connecting a decompression device and an evaporator, an intercooler is provided between the condenser and the first decompression device, and the refrigerant flowing out of the condenser is branched to form a second decompression device. After the refrigerant decompressed to the intermediate pressure via the intercooler exchanges heat with the intercooler, it flows into the suction side of the high-stage compressor, so that the difference in evaporator enthalpy can be made larger than in the liquid injection cycle, thereby lowering the outside air temperature. It is possible to perform a high-efficiency heating operation even at the time, and, unlike gas injection, even if a non-azeotropic refrigerant mixture is used, the high-boiling-point refrigerant composition of the refrigerant drawn into the low-stage compressor increases. And high-efficiency operation It can be carried out. Furthermore, since a gas-liquid separator is not used, an air conditioner that can operate stably even when the refrigerant distribution in the refrigeration cycle has a load change or the like can be obtained.
[0035]
Further, since the working fluid enclosed in the refrigeration cycle is a mixture of two or more types of refrigerant, it is possible to avoid insufficient evaporation capacity due to a change in the composition of the circulating refrigerant generated in the gas injection cycle by the gas-liquid separator, Time capacity and operation efficiency can be improved.
[0036]
Further, since the pressure reduction amount of the second pressure reducing device is adjusted so that the discharge temperature of the high-stage compressor becomes the target discharge temperature, an abnormal increase in the discharge temperature of the high-stage compressor can be prevented.
[0037]
In addition, since the low-stage compressor has the same suction volume as the high-stage compressor, it must be operated at an appropriate intermediate pressure during both high compression ratio operation during low-temperature heating and during cooling operation at a relatively low compression ratio. Can be.
[0038]
An oil separator is installed between the high-stage compressor and the condenser, and the oil return pipe is connected to the suction side of the low-stage compressor, so both the low-stage compressor and the high-stage compressor are required. Refrigerator oil can be secured.
[0039]
Also, the high-stage compressor is a low-pressure shell-type compressor, which has an oil return pipe at a predetermined oil level of the compressor shell and is connected to the suction side of the low-stage compressor. The required amount of refrigerating machine oil can be secured for both the low-stage compressor and the high-stage compressor without providing a separator, and a low-cost air conditioner can be obtained.
[0040]
In addition, the air conditioner includes condensing pressure detecting means, evaporating pressure detecting means, and intermediate pressure detecting means, and is operated such that the compression ratio of the low-stage compressor is smaller than the compression ratio of the high-stage compressor during the cooling operation. During the heating operation, the operation is performed such that the compression ratio of the low-stage compressor is higher than the compression ratio of the high-stage compressor, so that cooling and heating can be realized with high operation efficiency both in the low compression ratio operation and in the high compression operation.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to Embodiment 1 of the present invention.
FIG. 2 is a Ph diagram showing a heating operation of the air conditioner according to Embodiment 1 of the present invention.
FIG. 3 is a graph of a high-stage low-stage compression ratio showing an operation control state of the air conditioner according to Embodiment 1 of the present invention.
FIG. 4 is a Ph diagram showing a cooling operation of the air conditioner according to Embodiment 1 of the present invention.
FIG. 5 is a refrigerant circuit diagram of an air conditioner according to Embodiment 2 of the present invention.
[Explanation of symbols]
1 outdoor unit, 2 indoor unit, 3 liquid pipe, 4 gas pipe, 5 low-stage compressor, 6 high-stage compressor, 7 oil separator, 8 oil return pipe, 9 four-way valve, 10 outdoor heat exchanger, 11 intermediate Cooler, 12, 13 Electric expansion valve, 14 Check valve, 15 Injection pipe, 16 Accumulator, 17 Electric expansion valve, 18 Indoor heat exchanger, 19 Low pressure shell type high stage compressor.

Claims (7)

回転数調整可能な低段側圧縮機、該低段側圧縮機とは独立に回転数調整可能な高段側圧縮機、凝縮器、第1減圧装置および蒸発器を順次接続して冷凍サイクルを構成する空気調和機において、前記凝縮器と前記第1減圧装置との間に中間冷却器を設け、前記凝縮器から流出した冷媒を分岐し第2減圧装置を介して中間圧力に減圧した冷媒が前記中間冷却器で熱交換した後、前記高段側圧縮機の吸入側へ流入することを特徴とする空気調和機。A refrigeration cycle by sequentially connecting a low-stage compressor whose rotation speed is adjustable, a high-stage compressor whose rotation speed is adjustable independently of the low-stage compressor, a condenser, a first pressure reducing device, and an evaporator. In the air conditioner to be configured, an intermediate cooler is provided between the condenser and the first decompression device, and the refrigerant that has flowed out of the condenser and that has been decompressed to an intermediate pressure through the second decompression device is provided. An air conditioner characterized by flowing into the suction side of the high stage compressor after heat exchange in the intercooler. 前記冷凍サイクル内に封入される作動流体が2種類以上の混合冷媒であることを特徴とする請求項1記載の空気調和機。The air conditioner according to claim 1, wherein the working fluid sealed in the refrigeration cycle is a mixed refrigerant of two or more types. 前記高段側圧縮機の吐出温度を検知する吐出温度検知手段と、前記凝縮器及び前記蒸発器の温度または圧力を検知する高低圧検知手段と、当該検知手段で得られた情報に基づいて目標吐出温度を演算する演算手段と、を備え、前記吐出温度検知手段により検知した吐出温度が前記目標吐出温度となるように前記第2減圧装置の減圧量を調整することを特徴とする請求項1または請求項2記載の空気調和機。Discharge temperature detecting means for detecting the discharge temperature of the high-stage compressor, high / low pressure detecting means for detecting the temperature or pressure of the condenser and the evaporator, and a target based on information obtained by the detecting means. Calculating means for calculating a discharge temperature, wherein the pressure reducing amount of the second pressure reducing device is adjusted so that the discharge temperature detected by the discharge temperature detecting means becomes the target discharge temperature. Or the air conditioner according to claim 2. 前記低段側圧縮機の吸入容積が前記高段側圧縮機と等しいことを特徴とする請求項1乃至請求項3のいずれかに記載の空気調和機。4. The air conditioner according to claim 1, wherein a suction volume of the low-stage compressor is equal to that of the high-stage compressor. 5. 前記高段側圧縮機と前記凝縮器の間に油分離器を設け、前記油分離器により分離された冷凍機油を前記低段側圧縮機の吸入側に戻す油戻し管を接続することを特徴とする請求項1乃至請求項4のいずれかに記載の空気調和機。An oil separator is provided between the high-stage compressor and the condenser, and an oil return pipe is connected to return the refrigerating machine oil separated by the oil separator to the suction side of the low-stage compressor. The air conditioner according to any one of claims 1 to 4, wherein 前記高段側圧縮機は、吸入冷媒をそのシェル内に充満させる低圧シェル型の圧縮機であるとともに、前記シェルの所定の油面位置に油戻し管を有し、前記油戻し管が前記低圧側圧縮機の吸入側へ接続されたことを特徴とする請求項1乃至請求項4のいずれかに記載の空気調和機。The high-stage compressor is a low-pressure shell-type compressor that fills a shell with a suction refrigerant, and has an oil return pipe at a predetermined oil level of the shell. The air conditioner according to any one of claims 1 to 4, wherein the air conditioner is connected to a suction side of a side compressor. 前記凝縮器における凝縮圧力を検知する高圧検知手段と、前記蒸発器における蒸発圧力を検知する低圧検知手段と、中間圧力を検知する中圧検知手段とを備え、冷房運転時には前記低段側圧縮機の圧縮比が前記高段側圧縮機の圧縮比より小さくなるように運転するとともに、暖房運転時には前記低段側圧縮機の圧縮比が前記高段側圧縮機の圧縮比より大きくなるように運転することを特徴とする請求項1乃至請求項6のいずれかに記載の空気調和機。High pressure detection means for detecting the condensation pressure in the condenser, low pressure detection means for detecting the evaporation pressure in the evaporator, and medium pressure detection means for detecting the intermediate pressure; Operating so that the compression ratio of the high-stage compressor becomes smaller than the compression ratio of the high-stage compressor, and operating during the heating operation so that the compression ratio of the low-stage compressor becomes larger than the compression ratio of the high-stage compressor. The air conditioner according to any one of claims 1 to 6, wherein:
JP2002347896A 2002-11-29 2002-11-29 Air conditioner Expired - Lifetime JP4069733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347896A JP4069733B2 (en) 2002-11-29 2002-11-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347896A JP4069733B2 (en) 2002-11-29 2002-11-29 Air conditioner

Publications (2)

Publication Number Publication Date
JP2004183913A true JP2004183913A (en) 2004-07-02
JP4069733B2 JP4069733B2 (en) 2008-04-02

Family

ID=32750953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347896A Expired - Lifetime JP4069733B2 (en) 2002-11-29 2002-11-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP4069733B2 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013970A1 (en) * 2004-08-06 2006-02-09 Daikin Industries, Ltd. Freezing cycle apparatus
JP2007127375A (en) * 2005-11-07 2007-05-24 Daikin Ind Ltd Refrigeration unit
JP2007155143A (en) * 2005-11-30 2007-06-21 Daikin Ind Ltd Refrigerating device
JP2007263440A (en) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp Air conditioner
JP2007263443A (en) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp Air conditioner
JP2008025905A (en) * 2006-07-20 2008-02-07 Daikin Ind Ltd Refrigerator
EP1888976A1 (en) * 2005-05-19 2008-02-20 Quantum Energy Technologies Pty Limited Heat pump system and method for heating a fluid
JP2008076017A (en) * 2006-09-25 2008-04-03 Daikin Ind Ltd Refrigerating device
JP2008215697A (en) * 2007-03-02 2008-09-18 Mitsubishi Electric Corp Air conditioning device
JP2008215773A (en) * 2007-03-07 2008-09-18 Mitsubishi Electric Corp Air conditioner
JP2009198087A (en) * 2008-02-21 2009-09-03 Mitsubishi Electric Corp Air conditioner
JP2009198099A (en) * 2008-02-22 2009-09-03 Mitsubishi Electric Corp Air conditioner
JP2009243881A (en) * 2009-07-30 2009-10-22 Mitsubishi Electric Corp Heat pump device and outdoor unit of heat pump device
JP2009243880A (en) * 2009-07-30 2009-10-22 Mitsubishi Electric Corp Heat pump device and outdoor unit of heat pump device
JP2009257756A (en) * 2009-07-30 2009-11-05 Mitsubishi Electric Corp Heat pump apparatus, and outdoor unit for heat pump apparatus
JP2009270822A (en) * 2009-08-21 2009-11-19 Mitsubishi Electric Corp Heat pump device and outdoor unit of heat pump device
US20090301117A1 (en) * 2006-11-13 2009-12-10 Daikin Industries, Ltd. Air conditioning apparatus
JP2009300041A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device and pressure loss suppressing method for refrigerating cycle device
WO2010064427A1 (en) 2008-12-05 2010-06-10 ダイキン工業株式会社 Refrigeration device
JP2010159967A (en) * 2010-04-19 2010-07-22 Mitsubishi Electric Corp Heat pump device and outdoor unit for the heat pump device
JP2010528250A (en) * 2007-05-22 2010-08-19 アンジェラントーニ インダストリエ エスピーエー Cooling device and method for circulating a cooling fluid
JP2010210205A (en) * 2009-03-12 2010-09-24 Daikin Ind Ltd Refrigerating device and method for operating the same
WO2010113372A1 (en) * 2009-03-31 2010-10-07 三菱電機株式会社 Combined system of air conditioning device and hot-water supply device
JP2011196684A (en) * 2011-06-07 2011-10-06 Mitsubishi Electric Corp Heat pump device and outdoor unit of the heat pump device
WO2012004987A1 (en) * 2010-07-07 2012-01-12 株式会社デンソー Two-stage pressure buildup refrigeration cycle system
WO2012014345A1 (en) * 2010-07-29 2012-02-02 三菱電機株式会社 Heat pump
JP2012132680A (en) * 2012-04-12 2012-07-12 Mitsubishi Electric Corp Refrigeration device
USRE43805E1 (en) 2004-10-18 2012-11-20 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
JP2012247154A (en) * 2011-05-30 2012-12-13 Denso Corp Multi-stage compression type refrigeration cycle apparatus
JP2013053849A (en) * 2012-12-17 2013-03-21 Mitsubishi Electric Corp Heat pump device, and outdoor unit thereof
WO2013039047A1 (en) * 2011-09-12 2013-03-21 ダイキン工業株式会社 Automobile temperature regulation system
JP2014119187A (en) * 2012-12-17 2014-06-30 Mitsubishi Electric Corp Refrigerator and refrigeration cycle device
US8899058B2 (en) 2006-03-27 2014-12-02 Mitsubishi Electric Corporation Air conditioner heat pump with injection circuit and automatic control thereof
JP2015132428A (en) * 2014-01-14 2015-07-23 株式会社デンソー Heat pump cycle
WO2015140879A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle device
EP3002532A1 (en) 2014-10-03 2016-04-06 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2016106211A (en) * 2016-01-20 2016-06-16 三菱電機株式会社 Air conditioner
JP2016145708A (en) * 2016-04-04 2016-08-12 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air-conditioner
JP2016191548A (en) * 2016-06-16 2016-11-10 三菱電機株式会社 Refrigeration device and refrigeration cycle device
EP2009369A4 (en) * 2006-04-11 2016-11-23 Gree Electric Appliances Inc Zhuhai A heat pump air condition system, and the steam jet system and the control method thereof
US9518754B2 (en) 2012-01-24 2016-12-13 Mitsubishi Electric Corporation Air-conditioning apparatus
US9523520B2 (en) 2011-01-31 2016-12-20 Mitsubishi Electric Corporation Air-conditioning apparatus
CN110195939A (en) * 2019-05-30 2019-09-03 天津商业大学 It is a kind of can the assembly type refrigeration system of subregion temperature control and its antistaling cabinet of application
WO2023190140A1 (en) * 2022-03-30 2023-10-05 株式会社富士通ゼネラル Air conditioner
DE102022203522A1 (en) 2022-04-07 2023-10-12 Efficient Energy Gmbh Heat pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112368523B (en) * 2018-07-06 2022-04-29 三菱重工制冷空调系统株式会社 Refrigeration cycle apparatus and control method thereof

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013970A1 (en) * 2004-08-06 2006-02-09 Daikin Industries, Ltd. Freezing cycle apparatus
USRE43805E1 (en) 2004-10-18 2012-11-20 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
USRE43998E1 (en) 2004-10-18 2013-02-19 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
EP1888976A4 (en) * 2005-05-19 2011-02-23 Quantum Energy Technologies Pty Ltd Heat pump system and method for heating a fluid
EP1888976A1 (en) * 2005-05-19 2008-02-20 Quantum Energy Technologies Pty Limited Heat pump system and method for heating a fluid
JP2007127375A (en) * 2005-11-07 2007-05-24 Daikin Ind Ltd Refrigeration unit
JP2007155143A (en) * 2005-11-30 2007-06-21 Daikin Ind Ltd Refrigerating device
US8899058B2 (en) 2006-03-27 2014-12-02 Mitsubishi Electric Corporation Air conditioner heat pump with injection circuit and automatic control thereof
JP2007263440A (en) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp Air conditioner
JP4725387B2 (en) * 2006-03-28 2011-07-13 三菱電機株式会社 Air conditioner
JP4675810B2 (en) * 2006-03-28 2011-04-27 三菱電機株式会社 Air conditioner
JP2007263443A (en) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp Air conditioner
EP2009369A4 (en) * 2006-04-11 2016-11-23 Gree Electric Appliances Inc Zhuhai A heat pump air condition system, and the steam jet system and the control method thereof
JP2008025905A (en) * 2006-07-20 2008-02-07 Daikin Ind Ltd Refrigerator
JP2008076017A (en) * 2006-09-25 2008-04-03 Daikin Ind Ltd Refrigerating device
US20090301117A1 (en) * 2006-11-13 2009-12-10 Daikin Industries, Ltd. Air conditioning apparatus
JP2008215697A (en) * 2007-03-02 2008-09-18 Mitsubishi Electric Corp Air conditioning device
JP2008215773A (en) * 2007-03-07 2008-09-18 Mitsubishi Electric Corp Air conditioner
US8505317B2 (en) 2007-05-22 2013-08-13 Angelantoni Life Science SRI Refrigerating device and method for circulating a refrigerating fluid associated with it
KR101330193B1 (en) * 2007-05-22 2013-11-18 안젤란토니 인두스트리 에스.피.에이. Refrigerating device and method for circulating a refrigerating fluid associated with it
JP2010528250A (en) * 2007-05-22 2010-08-19 アンジェラントーニ インダストリエ エスピーエー Cooling device and method for circulating a cooling fluid
JP2009198087A (en) * 2008-02-21 2009-09-03 Mitsubishi Electric Corp Air conditioner
JP2009198099A (en) * 2008-02-22 2009-09-03 Mitsubishi Electric Corp Air conditioner
JP2009300041A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device and pressure loss suppressing method for refrigerating cycle device
WO2010064427A1 (en) 2008-12-05 2010-06-10 ダイキン工業株式会社 Refrigeration device
JP2010210205A (en) * 2009-03-12 2010-09-24 Daikin Ind Ltd Refrigerating device and method for operating the same
US9003823B2 (en) 2009-03-31 2015-04-14 Mitsubishi Electric Corporation Combined air-conditioning and hot-water supply system
WO2010113372A1 (en) * 2009-03-31 2010-10-07 三菱電機株式会社 Combined system of air conditioning device and hot-water supply device
JP2010236817A (en) * 2009-03-31 2010-10-21 Mitsubishi Electric Corp Combined system of air conditioning device and hot-water supply device
JP2009243881A (en) * 2009-07-30 2009-10-22 Mitsubishi Electric Corp Heat pump device and outdoor unit of heat pump device
JP4550153B2 (en) * 2009-07-30 2010-09-22 三菱電機株式会社 Heat pump device and outdoor unit of heat pump device
JP2009257756A (en) * 2009-07-30 2009-11-05 Mitsubishi Electric Corp Heat pump apparatus, and outdoor unit for heat pump apparatus
JP2009243880A (en) * 2009-07-30 2009-10-22 Mitsubishi Electric Corp Heat pump device and outdoor unit of heat pump device
JP2009270822A (en) * 2009-08-21 2009-11-19 Mitsubishi Electric Corp Heat pump device and outdoor unit of heat pump device
JP2010159967A (en) * 2010-04-19 2010-07-22 Mitsubishi Electric Corp Heat pump device and outdoor unit for the heat pump device
JPWO2012004987A1 (en) * 2010-07-07 2013-09-02 株式会社デンソー Two-stage boost refrigeration cycle equipment
WO2012004987A1 (en) * 2010-07-07 2012-01-12 株式会社デンソー Two-stage pressure buildup refrigeration cycle system
CN102971592A (en) * 2010-07-07 2013-03-13 株式会社电装 Two-stage pressure buildup refrigeration cycle system
WO2012014345A1 (en) * 2010-07-29 2012-02-02 三菱電機株式会社 Heat pump
US9279608B2 (en) 2010-07-29 2016-03-08 Mitsubishi Electric Corporation Heat pump
JP5611353B2 (en) * 2010-07-29 2014-10-22 三菱電機株式会社 heat pump
US9523520B2 (en) 2011-01-31 2016-12-20 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2012247154A (en) * 2011-05-30 2012-12-13 Denso Corp Multi-stage compression type refrigeration cycle apparatus
JP2011196684A (en) * 2011-06-07 2011-10-06 Mitsubishi Electric Corp Heat pump device and outdoor unit of the heat pump device
JP2013060036A (en) * 2011-09-12 2013-04-04 Daikin Industries Ltd Automobile temperature regulation system
WO2013039047A1 (en) * 2011-09-12 2013-03-21 ダイキン工業株式会社 Automobile temperature regulation system
US9518754B2 (en) 2012-01-24 2016-12-13 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2012132680A (en) * 2012-04-12 2012-07-12 Mitsubishi Electric Corp Refrigeration device
JP2014119187A (en) * 2012-12-17 2014-06-30 Mitsubishi Electric Corp Refrigerator and refrigeration cycle device
JP2013053849A (en) * 2012-12-17 2013-03-21 Mitsubishi Electric Corp Heat pump device, and outdoor unit thereof
JP2015132428A (en) * 2014-01-14 2015-07-23 株式会社デンソー Heat pump cycle
WO2015107876A1 (en) * 2014-01-14 2015-07-23 株式会社デンソー Heat pump cycle
WO2015140879A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle device
CN106104172B (en) * 2014-03-17 2019-05-28 三菱电机株式会社 Refrigerating circulatory device
CN106104172A (en) * 2014-03-17 2016-11-09 三菱电机株式会社 Refrigerating circulatory device
JP2016075402A (en) * 2014-10-03 2016-05-12 三菱電機株式会社 Air conditioner
US20160097568A1 (en) * 2014-10-03 2016-04-07 Mitsubishi Electric Corporation Air-conditioning apparatus
EP3002532A1 (en) 2014-10-03 2016-04-06 Mitsubishi Electric Corporation Air-conditioning apparatus
US10082320B2 (en) 2014-10-03 2018-09-25 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2016106211A (en) * 2016-01-20 2016-06-16 三菱電機株式会社 Air conditioner
JP2016145708A (en) * 2016-04-04 2016-08-12 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air-conditioner
JP2016191548A (en) * 2016-06-16 2016-11-10 三菱電機株式会社 Refrigeration device and refrigeration cycle device
CN110195939A (en) * 2019-05-30 2019-09-03 天津商业大学 It is a kind of can the assembly type refrigeration system of subregion temperature control and its antistaling cabinet of application
WO2023190140A1 (en) * 2022-03-30 2023-10-05 株式会社富士通ゼネラル Air conditioner
JP7400857B2 (en) 2022-03-30 2023-12-19 株式会社富士通ゼネラル air conditioner
DE102022203522A1 (en) 2022-04-07 2023-10-12 Efficient Energy Gmbh Heat pump

Also Published As

Publication number Publication date
JP4069733B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP4069733B2 (en) Air conditioner
US8899058B2 (en) Air conditioner heat pump with injection circuit and automatic control thereof
US9746212B2 (en) Refrigerating and air-conditioning apparatus
JP5040104B2 (en) Refrigeration equipment
US20070074536A1 (en) Refrigeration system with bypass subcooling and component size de-optimization
JP4895883B2 (en) Air conditioner
US7225635B2 (en) Refrigerant cycle apparatus
US20100192607A1 (en) Air conditioner/heat pump with injection circuit and automatic control thereof
WO2011121634A1 (en) Air conditioning apparatus
JPWO2012104893A1 (en) Air conditioner
JP2012193897A (en) Refrigeration cycle device
KR20070046967A (en) Refrigerating apparatus
US7908878B2 (en) Refrigerating apparatus
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP2011214753A (en) Refrigerating device
AU2007262044B2 (en) Refrigeration system
JP6253370B2 (en) Refrigeration cycle equipment
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
JP4767340B2 (en) Heat pump control device
EP3165844B1 (en) Air conditioning device
JP2007155143A (en) Refrigerating device
JP2010159967A (en) Heat pump device and outdoor unit for the heat pump device
JP2011133208A (en) Refrigerating apparatus
JP2015087020A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R151 Written notification of patent or utility model registration

Ref document number: 4069733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term