WO2012004987A1 - Two-stage pressure buildup refrigeration cycle system - Google Patents

Two-stage pressure buildup refrigeration cycle system Download PDF

Info

Publication number
WO2012004987A1
WO2012004987A1 PCT/JP2011/003857 JP2011003857W WO2012004987A1 WO 2012004987 A1 WO2012004987 A1 WO 2012004987A1 JP 2011003857 W JP2011003857 W JP 2011003857W WO 2012004987 A1 WO2012004987 A1 WO 2012004987A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression mechanism
stage
low
refrigerant
pressure
Prior art date
Application number
PCT/JP2011/003857
Other languages
French (fr)
Japanese (ja)
Inventor
亮 瀧澤
雅巳 谷口
大輔 太田
山崎 淳
純一 桂川
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2012523527A priority Critical patent/JPWO2012004987A1/en
Priority to CN2011800336229A priority patent/CN102971592A/en
Priority to US13/808,185 priority patent/US20130104584A1/en
Publication of WO2012004987A1 publication Critical patent/WO2012004987A1/en
Priority to DKPA201370039A priority patent/DK201370039A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a two-stage boosting refrigeration cycle apparatus that includes a low-stage compression mechanism and a high-stage compression mechanism and boosts refrigerant in multiple stages.
  • Patent Document 1 a low-stage side compression mechanism that compresses and discharges low-pressure refrigerant until it becomes intermediate-pressure refrigerant, and an intermediate-pressure refrigerant discharged from the low-stage side compression mechanism is compressed and discharged until it becomes high-pressure refrigerant.
  • a two-stage booster type refrigeration cycle apparatus that includes a high-stage compression mechanism that boosts the refrigerant in multiple stages is disclosed.
  • the two-stage booster type refrigeration cycle apparatus of Patent Document 1 includes a radiator that radiates high-pressure refrigerant discharged from the high-stage compression mechanism, and a part of the high-pressure refrigerant that has flowed out of the radiator is an intermediate-pressure refrigerant.
  • An intermediate pressure expansion valve is provided that decompresses and expands to the end, and is configured as a so-called economizer refrigeration cycle apparatus that guides the intermediate pressure refrigerant decompressed by the intermediate pressure expansion valve to the suction side of the high-stage compression mechanism.
  • a high-stage compression mechanism is caused to suck a mixed refrigerant of intermediate-pressure refrigerant decompressed by an intermediate-pressure expansion valve and intermediate-pressure refrigerant discharged from a low-stage compression mechanism.
  • the mixed refrigerant having a lower temperature can be sucked into the high stage side compression mechanism than when the intermediate pressure refrigerant discharged from the low stage side compression mechanism is sucked. Efficiency can be improved.
  • the economizer refrigeration cycle apparatus employs compression mechanisms having the same compression ratio as the high-stage compression mechanism and the low-stage compression mechanism, and the pressure of the intermediate pressure refrigerant (intermediate refrigerant pressure) is changed to the pressure of the high pressure refrigerant (high pressure).
  • the coefficient of performance (COP) of the cycle can be improved by approaching the target intermediate refrigerant pressure defined by the geometric mean of the pressure of the refrigerant on the side (low-pressure refrigerant) and the pressure of the low-pressure refrigerant (low-pressure refrigerant pressure).
  • the throttle opening of the intermediate pressure expansion valve is changed so as to bring the intermediate refrigerant pressure closer to the target intermediate refrigerant pressure, thereby aiming to improve COP.
  • the target intermediate refrigerant pressure is determined based on both the high-pressure side refrigerant pressure and the low-pressure side refrigerant pressure in the two-stage boosting type refrigeration cycle apparatus disclosed in Japanese Patent Application Laid-Open No. 2006-242557.
  • Pressure detecting means for detecting the refrigerant pressure of both the pressure and the low-pressure side refrigerant pressure must be provided. Therefore, the manufacturing cost of the two-stage booster refrigeration cycle apparatus tends to increase.
  • the throttle opening of the intermediate pressure expansion valve is changed so that the intermediate refrigerant pressure approaches the target intermediate refrigerant pressure, the high-pressure side refrigerant pressure and the low-pressure side refrigerant pressure also change.
  • the control for stabilizing (converging) the ability is also complicated.
  • the intermediate pressure refrigerant flowing out of the intermediate pressure expansion valve is in a liquid phase state or a gas-liquid two phase state simply by changing the throttle opening of the intermediate pressure expansion valve so that the intermediate refrigerant pressure approaches the target intermediate refrigerant pressure. It may become.
  • the problem of liquid compression that the high-stage compression mechanism compresses the incompressible fluid occurs, and the reliability of the high-stage compression mechanism, that is, the reliability of the entire two-stage booster refrigeration cycle apparatus is impaired. Is concerned.
  • the first object of the present invention is to provide a two-stage boost type refrigeration cycle apparatus capable of improving COP with a simple configuration and control.
  • the second object of the present invention is to provide a highly reliable two-stage boost refrigeration cycle apparatus with a simple configuration and control.
  • a low-stage compression mechanism that compresses and discharges low-pressure refrigerant until it becomes intermediate-pressure refrigerant
  • a low-stage compression mechanism A high-stage compression mechanism that compresses and discharges the discharged intermediate-pressure refrigerant until it becomes a high-pressure refrigerant, a radiator that heats the high-pressure refrigerant discharged from the high-stage compression mechanism with heat from the outdoor air, and heat dissipation Low-pressure expansion valve that decompresses and expands the high-pressure refrigerant that has flowed out of the radiator until it becomes intermediate-pressure refrigerant, and flows out to the suction side of the high-stage compression mechanism, and low-pressure that expands the high-pressure refrigerant that has flowed out of the radiator to low-pressure refrigerant
  • the two-stage booster type refrigeration cycle apparatus has at least one of the outdoor air temperature of the outdoor air that exchanges heat with the high-pressure refrigerant in the radiator and the air temperature of the blown air that exchanges heat with the low-pressure refrigerant in the evaporator.
  • the first discharge capacity control unit that determines to increase the refrigerant discharge capacity of one of the high-stage compression mechanism and the low-stage compression mechanism, and the refrigerant discharge capacity of one compression mechanism
  • a second discharge capacity control unit that determines the refrigerant discharge capacity of the other compression mechanism.
  • the second discharge capacity control unit sets the discharge capacity of the high-stage compression mechanism to V1, the rotation speed of the high-stage compression mechanism to N1, the discharge capacity of the low-stage compression mechanism to V2, and the rotation of the low-stage compression mechanism.
  • the refrigerant discharge capacity of the other compression mechanism is determined so that the effective capacity ratio defined by N2 * V2 / N1 * V1 is a value within a predetermined reference range.
  • the 1st discharge capacity control part determines the refrigerant discharge capacity of one compression mechanism based on at least one value among outside temperature and air temperature, and also the 2nd discharge capacity control part Since the refrigerant discharge capacity of the other compression mechanism is determined based on the refrigerant discharge capacity of one compression mechanism, the refrigerant discharge capacity of each compression mechanism can be easily determined.
  • the second discharge capacity control unit determines the refrigerant discharge capacity of the other compression mechanism so that the effective volume ratio becomes a value within a predetermined reference range, only the reference range is set appropriately.
  • the intermediate refrigerant pressure can be substantially brought close to a value corresponding to the geometric mean of the high-pressure side refrigerant pressure and the low-pressure side refrigerant pressure.
  • the throttle opening degree of the intermediate pressure expansion valve can be determined regardless of the refrigerant discharge capacity of each compression mechanism, the intermediate pressure refrigerant flowing out from the intermediate pressure expansion valve is used as a gas-phase refrigerant to perform high-stage compression. The problem of liquid compression of the mechanism can be avoided.
  • the discharge capacity of the compression mechanism is a theoretical flow rate that the compression mechanism discharges per rotation and is a geometrically calculated flow rate.
  • the intermediate pressure expansion valve decompresses and expands one of the high-pressure refrigerants branched at the branching part that branches the flow of the high-pressure refrigerant flowing out of the radiator.
  • the low-pressure expansion valve decompresses and expands the other high-pressure refrigerant branched at the branch portion, and further, the low-pressure refrigerant decompressed and expanded at the intermediate pressure expansion valve and the other high-pressure refrigerant branched at the branch portion
  • An intermediate heat exchanger for exchanging heat is provided.
  • the intermediate heat exchanger Since the intermediate heat exchanger is provided, the intermediate-pressure refrigerant flowing out from the intermediate-pressure expansion valve can be easily heated to be a gas-phase refrigerant. As a result, the reliability of the two-stage booster refrigeration cycle apparatus can be improved more reliably.
  • the other high-pressure refrigerant branched at the branching section is cooled, the enthalpy difference between the enthalpy of the evaporator inlet side refrigerant and the enthalpy of the outlet side refrigerant is expanded, and the refrigerating capacity exhibited in the evaporator is increased. Can be increased. As a result, the COP of the two-stage booster refrigeration cycle apparatus can be further improved.
  • one compression mechanism may be a low-stage compression mechanism and the other compression mechanism may be a high-stage compression mechanism.
  • the first discharge capacity control unit determines the refrigerant discharge capacity of the low-stage compression mechanism based on at least one of the outside air temperature and the air temperature, and directly sets the refrigerant evaporation pressure of the evaporator. Can be controlled. Therefore, it is easy to adjust the air temperature of the blown air blown into the cooling target space to a desired temperature.
  • the second discharge capacity control unit is configured such that the absolute value of the temperature difference between the air temperature and the target cooling temperature of the cooling target space is equal to or less than a predetermined reference temperature difference.
  • the second discharge capacity control unit performs the refrigerant discharge capacity of the other compression mechanism until the absolute value of the temperature difference between the air temperature and the target cooling temperature of the cooling target space is equal to or less than a predetermined reference temperature difference.
  • the air temperature is higher than the target cooling temperature
  • the second discharge capacity control unit is configured to target the air temperature and the space to be cooled.
  • the refrigerant discharge capacity of the other compression mechanism may be determined based on the refrigerant discharge capacity of the one compression mechanism. Good. In this case, capacity control of both compression functions can be performed effectively.
  • the high-stage compression mechanism and the low-stage compression mechanism are composed of a fixed capacity type compression mechanism having a fixed discharge capacity, A high-stage electric motor that rotationally drives the high-stage compression mechanism and a low-stage electric motor that rotationally drives the low-stage compression mechanism, and the rotational speed of the high-stage electric motor and the low-stage electric motor
  • the number of rotations may be configured to be controllable independently of each other.
  • the discharge capacity of the high-stage compression mechanism and the discharge capacity of the low-stage compression mechanism are constant values, at least one of the rotation speed of the high-stage compression mechanism and the rotation speed of the low-stage compression mechanism
  • the effective capacity ratio can be easily set to the reference range simply by changing the value.
  • the high-stage compression mechanism and the low-stage compression mechanism are composed of variable displacement compression mechanisms whose discharge capacity can be changed.
  • the discharge capacity of the stage side compression mechanism and the discharge capacity of the low stage side compression mechanism may be configured to be changeable independently of each other.
  • the effective capacity ratio can be easily set even if the rotation speeds of both compression mechanisms are the same. It can be a reference range. Therefore, both compression mechanisms can be driven by a common driving means.
  • the second discharge capacity control unit has an effective capacity ratio of 1 ⁇ N2 ⁇ V2 / N1 ⁇ V1 ⁇ 3.
  • the refrigerant discharge capacity of the other compression mechanism may be determined.
  • 1 is an overall configuration diagram of a two-stage boost type refrigeration cycle apparatus according to a first embodiment. It is a flowchart which shows the control processing of the two-stage pressure
  • FIG. 1 is an overall configuration diagram of a two-stage booster refrigeration cycle apparatus 10 of the present embodiment.
  • the two-stage booster type refrigeration cycle apparatus 10 is applied to a refrigerator and has a function of cooling the blown air blown into a freezer, which is a space to be cooled, to an extremely low temperature of about ⁇ 30 ° C. to ⁇ 10 ° C. Fulfill.
  • the two-stage booster refrigeration cycle apparatus 10 includes two compressors, a high-stage compressor 11 and a low-stage compressor 12, and the refrigerant circulating through the cycle is multistage. It is designed to boost the pressure.
  • coolant a normal freon-type refrigerant
  • coolant for example, R404A
  • the refrigerant is mixed with refrigerating machine oil (oil) for lubricating the sliding parts in the low-stage compressor 12 and the high-stage compressor 11, and a part of the refrigerating machine oil is cycled together with the refrigerant. It is circulating.
  • the low-stage compressor 12 includes a low-stage compression mechanism 12a that compresses and discharges the low-pressure refrigerant until it becomes an intermediate-pressure refrigerant, and a low-stage electric motor 12b that rotationally drives the low-stage compression mechanism 12a. It is an electric compressor having.
  • the low-stage compression mechanism 12a is composed of a fixed capacity type compression mechanism with a fixed discharge capacity V2, and specifically, various types such as a scroll type compression mechanism, a vane type compression mechanism, a rolling piston type compression mechanism, and the like. A compression mechanism can be adopted.
  • the low-stage electric motor 12b is an AC motor whose operation (number of rotations) is controlled by an alternating current output from the low-stage inverter 22. Moreover, the low stage side inverter 22 outputs the alternating current of the frequency according to the control signal output from the refrigerator control apparatus 20 mentioned later. And by this frequency control, the refrigerant
  • the low stage electric motor 12b constitutes the discharge capacity changing means of the low stage compressor 12.
  • a DC motor may be employed as the low-stage electric motor 12b, and the rotation speed may be controlled by a control voltage output from the refrigerator control device 20.
  • the suction port side of the high-stage compressor 11 is connected to the discharge port of the low-stage compressor 12 (specifically, the low-stage compression mechanism 12a).
  • the basic configuration of the high stage compressor 11 is the same as that of the low stage compressor 12. Accordingly, the high-stage compressor 11 includes a high-stage compression mechanism 11a that compresses and discharges the intermediate-pressure refrigerant discharged from the low-stage compressor 12 until it becomes a high-pressure refrigerant, and a high-stage electric motor 11b. It is an electric compressor having.
  • the high-stage compression mechanism 11a is a fixed-capacity compression mechanism with a fixed discharge capacity V1
  • the high-stage electric motor 11b has a rotational speed controlled by an alternating current output from the high-stage inverter 21. Is done.
  • the compression ratio of the high-stage compression mechanism 11a and the compression ratio of the low-stage compression mechanism 12a of the present embodiment are substantially the same.
  • the refrigerant inlet side of the radiator 13 is connected to the discharge port of the high stage compressor 11 (specifically, the high stage compression mechanism 11a).
  • the heat dissipator 13 is a heat dissipating member that dissipates and cools the high-pressure refrigerant by heat-exchanging the high-pressure refrigerant discharged from the high-stage compressor 11 and the outside air (outdoor air) blown by the cooling fan 13a. It is a heat exchanger.
  • the cooling fan 13a is an electric blower in which the number of rotations (the amount of blown air) is controlled by a control voltage output from the refrigerator control device 20.
  • a refrigerant is used as a refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured.
  • Reference numeral 13 functions as a condenser for condensing the refrigerant.
  • a branching portion 14 for branching the flow of the refrigerant flowing out of the radiator 13 is connected to the refrigerant outlet of the radiator 13.
  • the branch portion 14 has a three-way joint structure having three inflow / outflow ports, and one of the inflow / outflow ports is a refrigerant inflow port and two of the inflow / outlet ports are refrigerant outflow ports.
  • Such a branch part 14 may be configured by joining pipes, or may be configured by providing a plurality of refrigerant passages in a metal block or a resin block.
  • the inlet side of the intermediate pressure expansion valve 15 is connected to one refrigerant outlet of the branch part 14, and the inlet side of the high-pressure refrigerant flow path 16 a of the intermediate heat exchanger 16 is connected to the other refrigerant outlet of the branch part 14.
  • the intermediate pressure expansion valve 15 is a temperature type expansion valve that decompresses and expands the high-pressure refrigerant flowing out of the radiator 13 until it becomes an intermediate-pressure refrigerant.
  • the intermediate pressure expansion valve 15 has a temperature sensing portion disposed on the outlet side of the intermediate pressure refrigerant channel 16b of the intermediate heat exchanger 16, and the temperature of the refrigerant on the outlet side of the intermediate pressure refrigerant channel 16b.
  • the degree of superheat of the refrigerant on the outlet side of the intermediate pressure refrigerant flow path 16b is detected based on the pressure, and the valve opening degree (refrigerant flow rate) is adjusted by a mechanical mechanism so that the degree of superheat becomes a predetermined value set in advance. It has become.
  • the outlet side of the intermediate pressure expansion valve 15 is connected to the inlet side of the intermediate pressure refrigerant flow path 16b.
  • the intermediate heat exchanger 16 includes an intermediate pressure refrigerant decompressed and expanded by the intermediate pressure expansion valve 15 flowing through the intermediate pressure refrigerant flow path 16b, and the other branch branched by the branch portion 14 flowing through the high pressure refrigerant flow path 16a. Heat exchange is performed with the high-pressure refrigerant. Since the temperature of the high-pressure refrigerant is reduced by reducing the pressure, in the intermediate heat exchanger 16, the intermediate-pressure refrigerant flowing through the intermediate-pressure refrigerant channel 16b is heated, and the high-pressure refrigerant flowing through the high-pressure refrigerant channel 16a is cooled. Will be.
  • intermediate heat exchanger 16 a plurality of plate-like heat transfer plate members are stacked and the intermediate pressure refrigerant flow path 16b and the high pressure refrigerant flow path 16a are alternately arranged between the heat transfer plate members.
  • a plate-type heat exchanger that is formed and exchanges heat between the high-pressure refrigerant and the intermediate-pressure refrigerant through the heat transfer plate is employed.
  • a double-pipe heat exchanger configuration in which an inner tube that forms the intermediate-pressure refrigerant channel 16b is arranged inside an outer tube that forms the high-pressure refrigerant channel 16a may be adopted.
  • the high-pressure refrigerant channel 16a may be an inner tube and the intermediate-pressure refrigerant channel 16b may be an outer tube.
  • coolant piping which forms the high pressure refrigerant flow path 16a and the intermediate pressure refrigerant flow path 16b, and heat-exchange may be employ
  • the flow direction of the high-pressure refrigerant flowing through the high-pressure refrigerant flow path 16a and the flow direction of the intermediate pressure refrigerant flowing through the intermediate-pressure refrigerant flow path 16b are the same.
  • a heat exchanger is adopted, of course, the flow direction of the high-pressure refrigerant flowing through the high-pressure refrigerant channel 16a and the flow direction of the intermediate-pressure refrigerant flowing through the intermediate-pressure refrigerant channel 16b are opposite to each other.
  • a heat exchanger may be employed.
  • the outlet of the intermediate pressure refrigerant flow path 16b of the intermediate heat exchanger 16 is sucked into the high-stage compressor 11 (specifically, the high-stage compression mechanism 11a) via a check valve (not shown).
  • the mouth side is connected. Therefore, in the high-stage compression mechanism 11a of the present embodiment, a mixed refrigerant of the intermediate-pressure refrigerant flowing out from the intermediate-pressure refrigerant flow path 16b and the intermediate-pressure refrigerant discharged from the low-stage compressor 12 is sucked.
  • the inlet side of the low-pressure expansion valve 17 is connected to the outlet side of the high-pressure refrigerant channel 16a of the intermediate heat exchanger 16.
  • the low-pressure expansion valve 17 is a temperature type expansion valve that decompresses and expands the high-pressure refrigerant flowing out of the radiator 13 until it becomes a low-pressure refrigerant.
  • the basic configuration of the low pressure expansion valve 17 is the same as that of the intermediate pressure expansion valve 15.
  • the low-pressure expansion valve 17 has a temperature sensing portion arranged on the refrigerant outlet side of the evaporator 18 described later, and the evaporator 18 is based on the temperature and pressure of the refrigerant on the outlet side of the evaporator 18.
  • the degree of superheat of the outlet side refrigerant is detected, and the valve opening degree (refrigerant flow rate) is adjusted by a mechanical mechanism so that the degree of superheat becomes a predetermined value set in advance.
  • the refrigerant inlet side of the evaporator 18 is connected to the outlet side of the low pressure expansion valve 17.
  • the evaporator 18 evaporates the low-pressure refrigerant and exhibits an endothermic effect by exchanging heat between the low-pressure refrigerant decompressed and expanded by the low-pressure expansion valve 17 and the blown air circulated through the freezer by the blower fan 18a.
  • This is an endothermic heat exchanger.
  • the blower fan 18 a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the refrigerator control device 20.
  • the refrigerant outlet of the evaporator 18 is connected to the suction port side of the low-stage compressor 12 (specifically, the low-stage compression mechanism 12a).
  • the refrigerator control device 20 outputs a control signal or control voltage to a well-known microcomputer including a CPU that performs control processing and arithmetic processing, and a storage circuit such as ROM and RAM that stores programs and data, and various control target devices. Output circuit, an input circuit to which detection signals of various sensors are input, a power supply circuit, and the like.
  • the output side of the refrigerator control device 20 is connected to the above-described low-stage inverter 22, high-stage inverter 21, cooling fan 13a, blower fan 18a, and the like as control target devices. Controls the operation of controlled devices.
  • the refrigerator control apparatus 20 controls the action
  • FIG. The configuration constitutes control means for each control target device.
  • the configuration (hardware and software) for controlling the refrigerant discharge capacity of the low-stage compression mechanism 12a by controlling the operation of the low-stage inverter 22 is the first discharge capacity controller 20a
  • the high-stage inverter A configuration (hardware and software) that controls the operation of 21 to control the refrigerant discharge capacity of the high-stage compression mechanism 11a is defined as a second discharge capacity control unit 20b.
  • the rotation speed of the low-stage side electric motor 12b and the rotation speed of the high-stage side electric motor 11b can be controlled independently of each other by the first discharge capacity control unit 20a and the second discharge capacity control unit 20b, respectively.
  • an outside air temperature sensor 23 which is an outside air temperature detecting means for detecting the outside air temperature Tam of the outside air (outdoor air) which exchanges heat with the high-pressure refrigerant by the radiator 13, an evaporation
  • An internal temperature sensor 24 that is an internal temperature detection means for detecting the air temperature Tfr of the blown air that exchanges heat with the low-pressure refrigerant in the cooler 18 is connected, and detection signals from these sensors are input to the refrigerator control device 20. Is done.
  • an operation panel 30 is connected to the input side of the refrigerator control device 20.
  • the operation panel 30 has an operation / stop switch as a request signal output means for outputting an operation request signal or a stop request signal for the refrigerator, and a temperature as a target temperature setting means for setting the internal temperature (target cooling temperature) Tset. Setting switches and the like are provided, and operation signals of these switches are input to the refrigerator control device 20.
  • FIG. 2 is a flowchart showing a control process executed by the refrigerator control device 20. This control process starts when the operation request signal is output after the operation / stop switch of the operation panel 30 is turned on.
  • step S1 flags, timers, and the like are initialized, and in the next step S2, detection signals detected by the outside air temperature sensor 23 and the inside temperature sensor 24, and operation signals such as a temperature setting switch of the operation panel 30 are displayed.
  • the operation mode is determined according to Tset set by reading and the temperature setting switch. Specifically, if the target cooling temperature Tset is ⁇ 10 ° C. or higher, a chilled mode is performed in which refrigeration is performed at a temperature suitable for suppressing a decrease in freshness of fresh foods, and the target cooling Tset is lower than ⁇ 10 ° C. If there is, set the frozen mode to freeze.
  • step S3 determines the control mode. Since the control mode is common to both the chilled mode and the frozen mode, description for each operation mode is omitted.
  • the temperature difference ⁇ T which is a value obtained by subtracting the target cooling temperature Tset set by the temperature setting switch from the air temperature Tfr read in step S2, is based on a predetermined reference temperature difference ⁇ KT.
  • a predetermined reference temperature difference ⁇ KT When the temperature difference is large, it is determined that a large capacity is necessary.
  • the temperature difference ⁇ T is equal to or less than a predetermined reference temperature difference ⁇ KT, the internal temperature is close to the set temperature Tset, and fine capacity control is performed. Is determined to be necessary.
  • the internal temperature which is the space to be cooled, is higher than the target cooling temperature Tset. Therefore, in this embodiment, a value obtained by subtracting the target cooling temperature Tset from the air temperature Tfr is used as the temperature difference ⁇ T. Of course, a value obtained by subtracting the air temperature Tfr from the target cooling temperature Tset as the temperature difference ⁇ T.
  • the absolute value of may be adopted.
  • step S3 If it is determined in step S3 that a large capacity is necessary, the process proceeds to step S4, and operation is performed in the cool-down mode.
  • step S4 the rotational speeds of the high-stage electric motor 11b and the low-stage electric motor 12b are determined so that the refrigerant discharge capacity of the low-stage compressor 12 and the refrigerant discharge capacity of the high-stage compressor 11 are substantially maximized. .
  • step S5 the control state of other control target devices in the cool-down mode of the refrigerator is determined.
  • the number of rotations is determined so that the blower capacity is substantially maximized, and the process proceeds to step S9.
  • step S6 the refrigerant discharge capacity of the low-stage compressor 12 is determined based on the detection signal and the operation signal read in step S2 this time.
  • step S6 the rotational speed of the low-stage side electric motor 12b, that is, the rotational speed N2 of the low-stage side compression mechanism 12a is determined based on elements of deviation, integration, and differentiation between the control temperature and the set temperature. To do.
  • step S7 the refrigerant discharge capacity of the high stage compressor 11 is determined based on the refrigerant discharge capacity of the low stage compressor 12 determined in step S6.
  • step S7 the rotational speed N1 of the high-stage compression mechanism 11a is determined so that the effective volume ratio defined by the following formula F1 is a value within a predetermined reference range shown by the following formula F2.
  • Effective volume ratio N2 ⁇ V2 / N1 ⁇ V1 (F1) 1 ⁇ N2 ⁇ V2 / N1 ⁇ V1 ⁇ 3 (F2)
  • V1 is the discharge capacity of the high-stage compression mechanism 11a
  • N1 is the rotational speed of the high-stage compression mechanism 11a
  • V2 is the discharge capacity of the low-stage compression mechanism 12a
  • N2 is the low-stage compression mechanism. This is the rotational speed of the mechanism 12a.
  • step S8 the control state of the other control target device is determined.
  • the rotational speed is determined so that the blowing capacity increases as the rotational speed N2 of the low-stage compression mechanism 12a determined in step S6 increases. Proceed to step S9.
  • step S9 a control signal is output from the refrigerator control device 20 to the control target device connected to the output side so that the control state determined in steps S4 to S8 is obtained. Proceed to step S10.
  • step S10 when the stop request signal from the operation panel 30 is output to the refrigerator control device 20, the operation of each control target device is stopped and the entire system of the refrigerator is stopped. On the other hand, if the stop request signal is not output, the process returns to step S2 after waiting for a predetermined control period ⁇ .
  • the high-stage compressor 11 causes the intermediate-pressure refrigerant discharged from the low-stage compressor 12 and the intermediate heat to be discharged.
  • the mixed refrigerant with the intermediate pressure refrigerant flowing out from the intermediate pressure refrigerant flow path 16b of the exchanger 16 is sucked, compressed and discharged.
  • the high-temperature and high-pressure refrigerant discharged from the high-stage compressor 11 flows into the radiator 13 and is cooled by exchanging heat with outside air blown by the cooling fan 13a.
  • the flow of the high-pressure refrigerant that has flowed out of the radiator 13 is branched at the branching section 14. Then, the high-pressure refrigerant that has flowed into the intermediate pressure expansion valve 15 from the branch portion 14 is decompressed and expanded until it becomes an intermediate pressure refrigerant.
  • the throttle opening of the intermediate pressure expansion valve 15 is adjusted so that the degree of superheat of the intermediate pressure refrigerant passage 16b outlet side refrigerant of the intermediate heat exchanger 16 becomes a predetermined value. Further, the intermediate pressure refrigerant decompressed by the intermediate pressure expansion valve 15 flows into the intermediate pressure refrigerant flow path 16b of the intermediate heat exchanger 16, and flows from the branch portion 14 to the high pressure refrigerant flow path 16a of the intermediate heat exchanger 16. Heat exchanged with the high-pressure refrigerant that has flowed in is heated and sucked into the high-stage compressor 11.
  • the high-pressure refrigerant that has flowed into the high-pressure refrigerant flow path 16a of the intermediate heat exchanger 16 from the branch portion 14 is cooled by the intermediate heat exchanger 16.
  • the high-pressure refrigerant that has flowed out of the high-pressure refrigerant channel 16a flows into the low-pressure expansion valve 17 and is decompressed and expanded until it becomes a low-pressure refrigerant.
  • the throttle opening degree of the low-pressure expansion valve 17 is adjusted so that the degree of superheat of the refrigerant on the outlet side of the evaporator 18 becomes a predetermined value.
  • the low-pressure refrigerant decompressed by the low-pressure expansion valve 17 flows into the evaporator 18 and absorbs heat from the blown air circulated by the blower fan 18a to evaporate. Thereby, the ventilation air sent in the freezer which is space to be cooled is cooled. The refrigerant that has flowed out of the evaporator 18 is sucked into the low-stage compressor 12.
  • the two-stage booster refrigeration cycle apparatus 10 of the present embodiment operates as described above, not only can the above-described economizer refrigeration cycle apparatus be configured to improve the compression efficiency of the high-stage compression mechanism, The following excellent effects can be exhibited.
  • the refrigerant discharge capacity of the low-stage compression mechanism 12a is determined based on the outside air temperature Tam, the air temperature Tfr, and the set temperature Tset, and the refrigerant discharge of the determined low-stage compression mechanism 12a is further determined. Based on the capability, the refrigerant discharge capability of the high-stage compression mechanism 11a is determined. Therefore, the refrigerant discharge capacities of the respective compression mechanisms 11b and 12b can be easily determined.
  • the refrigerant discharge capacity of the high-stage compression mechanism 11a is determined so that the effective volume ratio satisfies the above formula F2, the high-pressure side refrigerant pressure, the intermediate refrigerant pressure, or the low-pressure side refrigerant pressure is detected.
  • the coefficient of performance (COP) of the cycle can be improved with a simple configuration that does not require the pressure detection means and extremely easy control.
  • FIG. 3 is a graph showing a change in the COP ratio with respect to a change in the effective volume ratio
  • the COP ratio is the COP of the two-stage boost refrigeration cycle apparatus 10 of the present embodiment relative to the COP when the intermediate refrigerant pressure is set to a predetermined value different from the geometric mean of the high-pressure side refrigerant pressure and the low-pressure side refrigerant pressure. Is the ratio.
  • COP can be improved with a simple configuration and extremely easy control. Note that the peak value of the COP ratio is present in the vicinity of the effective volume ratio of 2 under any of the conditions. Therefore, in the control step S7, the effective volume ratio is set within the range of 1.5 to 2.5. Thus, the COP can be further improved.
  • the pressure difference between the high-pressure side refrigerant pressure and the low-pressure side refrigerant pressure is larger than the refrigeration cycle applied to the air conditioner.
  • the power consumption of the compressor tends to increase. Therefore, it is extremely effective to improve COP in a refrigeration cycle applied to a refrigerator.
  • the refrigerant on the outlet side of the intermediate pressure refrigerant flow path 16b of the intermediate heat exchanger 16 has a superheat degree regardless of the refrigerant discharge capacity of the high stage compression mechanism 11a and the low stage compression mechanism 12a. Since the throttle opening degree of the intermediate pressure expansion valve 15 is adjusted, the problem of liquid compression of the high stage side compression mechanism 11a can be avoided. Moreover, since the throttle opening degree of the low-pressure expansion valve 17 is adjusted so that the refrigerant on the outlet side of the evaporator 18 has a superheat degree, the problem of liquid compression of the low-stage compression mechanism 12a can be avoided.
  • the refrigerant discharge capacity of the low-stage compression mechanism 12a is determined based on the outside air temperature Tam or the like
  • the refrigerant evaporation pressure of the evaporator 18 is directly set based on the outside air temperature Tam or the like. Can be determined. Therefore, the air temperature Tfr of the blown air blown into the freezer is easily brought close to the set temperature Tset.
  • the two-stage booster type refrigeration cycle apparatus 10 of the present embodiment includes the intermediate heat exchanger 16, the intermediate pressure refrigerant that has flowed out of the intermediate pressure expansion valve 15 is separated by the high-pressure refrigerant that is branched at the branch portion 14. It can be heated and easily converted into a gas phase refrigerant. As a result, the reliability of the two-stage booster refrigeration cycle apparatus can be improved more reliably.
  • the high-pressure refrigerant branched by the branching section 14 can be cooled by the intermediate-pressure refrigerant flowing out from the intermediate-pressure expansion valve 15, the enthalpy difference between the enthalpy of the evaporator 18 inlet side refrigerant and the enthalpy of the outlet side refrigerant is increased.
  • the refrigerating capacity exhibited by the evaporator 18 can be increased.
  • the COP of the two-stage booster refrigeration cycle apparatus can be further improved.
  • coolant discharge capability of the high stage compression mechanism 11a is based on the refrigerant
  • the respective discharge capacities V1 and V2 can be set to constant values. Therefore, after determining the rotational speed N2 of the low-stage compression mechanism 12a, the effective capacity ratio can be easily set to a value within a desired range by simply adjusting the rotational speed N1 of the high-stage compression mechanism 11a. .
  • a swash plate type variable displacement compression mechanism is employed as the high-stage compression mechanism 11a and the low-stage compression mechanism 12a.
  • the swash plate type variable displacement compression mechanism is a swash plate type compression mechanism in which the control angle Pc in the swash plate chamber is changed to change the tilt angle of the swash plate to change the stroke of the piston. Is continuously changed in a range of approximately 0% to 100%.
  • the control pressure Pc in the swash plate chamber of the high-stage compression mechanism 11a and the low-stage compression mechanism 12a is a high pressure refrigerant and a low pressure introduced into the swash plate chamber by changing the valve opening degree of the electromagnetic capacity control valves 11c and 12c, respectively. It is adjusted by changing the introduction ratio of the refrigerant.
  • the operation of the electromagnetic capacity control valves 11c and 12c is controlled by control currents output from the first and second discharge capacity control units 20a and 20b of the refrigerator control device 20, respectively.
  • the electric motor 19 is an AC motor whose operation (number of rotations) is controlled by an AC current output from the inverter 25, similarly to the high-stage electric motor 11b and the low-stage electric motor 12b of the first embodiment. is there.
  • the inverter 25 outputs an alternating current having a frequency corresponding to the control signal output from the refrigerator control device 20.
  • the rotational driving force output from the electric motor 19 of the present embodiment is transmitted to both compression mechanisms 11a and 12a via pulleys and belts. Therefore, the rotational speed ratio N2 / N1 between the rotational speed N2 of the low-stage compression mechanism 12a and the rotational speed N1 of the high-stage compression mechanism 11a of the present embodiment is always a constant value.
  • the rotational speed ratio N2 / N1 is set to approximately 1, and the rotational speed N2 of the low-stage compression mechanism 12a is made equal to the rotational speed N1 of the high-stage compression mechanism 11a.
  • the coefficient of performance (COP) of the cycle can be improved with a simple configuration and extremely easy control as in the first embodiment. it can. Furthermore, the reliability of the high-stage compression mechanism 11a and the low-stage compression mechanism 12a, that is, the reliability of the entire two-stage booster refrigeration cycle apparatus can be improved with a simple configuration.
  • variable displacement compression mechanisms are employed as the high-stage compression mechanism 11a and the low-stage compression mechanism 12a
  • the discharge capacities V1 and V2 of the respective compression mechanisms 11a and 12a are independently set. Can be changed. Accordingly, the effective capacity ratio (N2 ⁇ V2 / N1 ⁇ V1) can be easily changed to a desired value even if the rotational speeds N1 and N2 of both the compression mechanisms 11a and 12a have the same value.
  • both the compression mechanisms 11a and 12a can be driven by a common drive source (electric motor 19), the cycle configuration can be further simplified.
  • the cycle configuration employing the intermediate heat exchanger 16 has been described, but the cycle configuration of the two-stage booster refrigeration cycle apparatus of the present invention is not limited to this.
  • the intermediate heat exchanger 16 may be eliminated, and an intermediate gas-liquid separator that separates the gas-liquid refrigerant flowing out from the intermediate-pressure expansion valve 15 may be provided.
  • the gas-phase refrigerant separated by the intermediate gas-liquid separator may be sucked into the high-stage compressor 11.
  • the intermediate pressure expansion valve 15 may be eliminated and a fixed throttle may be employed.
  • the economizer type refrigeration cycle apparatus may be configured such that the liquid phase refrigerant separated by the intermediate gas-liquid separator is made to flow into the low-pressure expansion valve 17 by eliminating the branch portion 14.
  • the refrigerant discharge capacity of the low-stage compressor 12 is determined based on the outside air temperature Tam or the like in the control step S6 of FIG.
  • coolant discharge capability of the high stage side compressor 11 is similarly in control step S6.
  • the refrigerant discharge capacity of the low-stage compressor 12 may be determined.
  • the refrigerant discharge capacity of the low-stage compressor 12 is determined based on the outside air temperature Tam, the air temperature Tfr, and the set temperature Tset has been described.
  • the outside air temperature Tam, the air temperature Tfr, the setting The refrigerant discharge capacity of the low-stage compressor 12 may be determined using at least one of the temperatures Tset.
  • detection means for detecting the temperature and pressure of the refrigerant on the outlet side of the intermediate pressure refrigerant flow path 16b is added so that the degree of superheat of the refrigerant on the outlet side of the intermediate pressure refrigerant flow path 16b becomes a predetermined value set in advance.
  • the operation of the intermediate pressure expansion valve 15 may be controlled.
  • detection means for detecting the temperature and pressure of the refrigerant on the outlet side of the evaporator 18 is added to operate the low pressure expansion valve 17 so that the superheat degree of the refrigerant on the outlet side of the evaporator 18 becomes a predetermined value. You may control.
  • the two-stage boost type refrigeration cycle apparatus 10 of the present invention is applied to a refrigerator
  • the application of the present invention is not limited to this.
  • the present invention may be applied to refrigerated / frozen containers such as mobile bodies (vehicles, ships).
  • the operation / stop switch is turned on (ON)
  • first in the control mode in which the rotational speeds of both the compression mechanisms 11a and 12a are determined so that the difference between the air temperature Tfr and the target cooling temperature Tset is reduced.
  • the temperature change amount ⁇ Tfr of the air temperature Tfr per unit time is larger than the predetermined reference temperature change amount ⁇ KTfr, it is determined that the refrigerator has just been started, and ⁇ Tfr is equal to or less than the predetermined reference temperature change amount ⁇ KTfr.
  • the temperature difference between the inlet side refrigerant temperature of the intermediate pressure refrigerant flow path 16b and the outlet side refrigerant temperature of the intermediate pressure refrigerant flow path 16b is detected, and this temperature
  • the valve opening degree (refrigerant flow rate) of the intermediate pressure expansion valve 15 may be adjusted so that the difference becomes a predetermined value set in advance.
  • the surface temperature of the refrigerant pipe connecting the intermediate pressure refrigerant flow path 16b and another device may be used.
  • control of the other devices is performed according to the control mode.
  • the cooling fan 13a and the blower fan 18a may be controlled to be substantially maximized in the chilled mode, and the blower fan 13a and the blower fan 18a may be controlled to have a low air volume in the frozen mode.
  • the mode in which the rotation speed of the low-stage electric motor 12b is controlled by the so-called PID control using the control temperature and the set temperature in Step 6 has been described, but the outside air temperature Tam, the air temperature With reference to the control map stored in advance in the storage circuit of the refrigerator control device 20 based on the Tfr and the set temperature Tset, as the outside air temperature Tam rises, the air temperature Tfr rises, and further, the set temperature Tset falls
  • the rotational speed of the low-stage electric motor 12b that is, the rotational speed N2 of the low-stage compression mechanism 12a may be determined so that the refrigerant discharge capacity of the low-stage compressor 12 is increased.

Abstract

Disclosed is a two-stage pressure buildup refrigeration cycle system which includes a higher-stage compressor mechanism (11a) and a lower-stage compressor mechanism (12a), the refrigerant delivery capacities of which are independently controllable. The refrigerant delivery capacity of the lower-stage compressor mechanism (12a) is determined on the basis of an outside air temperature (Tam), an air temperature (Tfr), and a temperature setting (Tset). The refrigerant delivery capacity of the higher-stage compressor mechanism (11a) is determined based on the determined refrigerant delivery capacity of the lower-stage compressor mechanism (12a) so that the effective capacity ratio is equal to or greater than one and equal to or less than three. This simplified construction and control can provide an improved COP for the two-stage pressure buildup refrigeration cycle system.

Description

二段昇圧式冷凍サイクル装置Two-stage boost refrigeration cycle equipment 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2010年7月7日に出願された日本特許出願2010-154680を基にしている。 This application is based on Japanese Patent Application 2010-154680 filed on July 7, 2010, the disclosure of which is incorporated herein by reference.
 本発明は、低段側圧縮機構と高段側圧縮機構とを備え、冷媒を多段階に昇圧させる二段昇圧式冷凍サイクル装置に関する。 The present invention relates to a two-stage boosting refrigeration cycle apparatus that includes a low-stage compression mechanism and a high-stage compression mechanism and boosts refrigerant in multiple stages.
 従来、特許文献1に、低圧冷媒を中間圧冷媒となるまで圧縮して吐出する低段側圧縮機構と、低段側圧縮機構から吐出された中間圧冷媒を高圧冷媒となるまで圧縮して吐出する高段側圧縮機構とを備え、冷媒を多段階に昇圧させる二段昇圧式冷凍サイクル装置が開示されている。 Conventionally, in Patent Document 1, a low-stage side compression mechanism that compresses and discharges low-pressure refrigerant until it becomes intermediate-pressure refrigerant, and an intermediate-pressure refrigerant discharged from the low-stage side compression mechanism is compressed and discharged until it becomes high-pressure refrigerant. A two-stage booster type refrigeration cycle apparatus that includes a high-stage compression mechanism that boosts the refrigerant in multiple stages is disclosed.
 より詳細には、特許文献1の二段昇圧式冷凍サイクル装置は、高段側圧縮機構から吐出された高圧冷媒を放熱させる放熱器、放熱器から流出した高圧冷媒の一部を中間圧冷媒となるまで減圧膨張させる中間圧膨張弁を備えており、中間圧膨張弁にて減圧された中間圧冷媒を高段側圧縮機構の吸入側へ導く、いわゆるエコノマイザ式冷凍サイクル装置として構成されている。 More specifically, the two-stage booster type refrigeration cycle apparatus of Patent Document 1 includes a radiator that radiates high-pressure refrigerant discharged from the high-stage compression mechanism, and a part of the high-pressure refrigerant that has flowed out of the radiator is an intermediate-pressure refrigerant. An intermediate pressure expansion valve is provided that decompresses and expands to the end, and is configured as a so-called economizer refrigeration cycle apparatus that guides the intermediate pressure refrigerant decompressed by the intermediate pressure expansion valve to the suction side of the high-stage compression mechanism.
 この種のエコノマイザ式冷凍サイクル装置では、高段側圧縮機構に、中間圧膨張弁にて減圧された中間圧冷媒と低段側圧縮機構から吐出された中間圧冷媒との混合冷媒を吸入させることができる。これにより、高段側圧縮機構に、低段側圧縮機構から吐出された中間圧冷媒のみを吸入させる場合に対して温度の低い混合冷媒を吸入させることができるので、高段側圧縮機構の圧縮効率を向上させることができる。 In this type of economizer refrigeration cycle apparatus, a high-stage compression mechanism is caused to suck a mixed refrigerant of intermediate-pressure refrigerant decompressed by an intermediate-pressure expansion valve and intermediate-pressure refrigerant discharged from a low-stage compression mechanism. Can do. As a result, the mixed refrigerant having a lower temperature can be sucked into the high stage side compression mechanism than when the intermediate pressure refrigerant discharged from the low stage side compression mechanism is sucked. Efficiency can be improved.
 さらに、エコノマイザ式冷凍サイクル装置では、高段側圧縮機構および低段側圧縮機構として互いに圧縮比の等しい圧縮機構を採用し、中間圧冷媒の圧力(中間冷媒圧力)を、高圧冷媒の圧力(高圧側冷媒圧力)と低圧冷媒の圧力(低圧側冷媒圧力)との相乗平均で定義される目標中間冷媒圧力に近づけることで、サイクルの成績係数(COP)を向上できる。 Further, the economizer refrigeration cycle apparatus employs compression mechanisms having the same compression ratio as the high-stage compression mechanism and the low-stage compression mechanism, and the pressure of the intermediate pressure refrigerant (intermediate refrigerant pressure) is changed to the pressure of the high pressure refrigerant (high pressure). The coefficient of performance (COP) of the cycle can be improved by approaching the target intermediate refrigerant pressure defined by the geometric mean of the pressure of the refrigerant on the side (low-pressure refrigerant) and the pressure of the low-pressure refrigerant (low-pressure refrigerant pressure).
 そこで、特許文献1の二段昇圧式冷凍サイクル装置では、中間冷媒圧力を目標中間冷媒圧力に近づけるように中間圧膨張弁の絞り開度を変化させて、COPの向上を狙っている。 Therefore, in the two-stage booster type refrigeration cycle apparatus of Patent Document 1, the throttle opening of the intermediate pressure expansion valve is changed so as to bring the intermediate refrigerant pressure closer to the target intermediate refrigerant pressure, thereby aiming to improve COP.
特開2006-242557号公報 しかしながら、特許文献1の二段昇圧式冷凍サイクル装置では、高圧側冷媒圧力および低圧側冷媒圧力の双方に基づいて目標中間冷媒圧力を決定しているので、高圧側冷媒圧力および低圧側冷媒圧力の双方の冷媒圧力を検出するための圧力検出手段を設けなければならない。従って、二段昇圧式冷凍サイクル装置の製造コストが増加してしまいやすい。However, since the target intermediate refrigerant pressure is determined based on both the high-pressure side refrigerant pressure and the low-pressure side refrigerant pressure in the two-stage boosting type refrigeration cycle apparatus disclosed in Japanese Patent Application Laid-Open No. 2006-242557. Pressure detecting means for detecting the refrigerant pressure of both the pressure and the low-pressure side refrigerant pressure must be provided. Therefore, the manufacturing cost of the two-stage booster refrigeration cycle apparatus tends to increase.
 さらに、中間冷媒圧力を目標中間冷媒圧力に近づけるように中間圧膨張弁の絞り開度を変化させると、高圧側冷媒圧力および低圧側冷媒圧力も変化してしまうため、それぞれの圧縮機構の冷媒吐出能力を安定化(収束)させるための制御も複雑化してしまう。 Furthermore, if the throttle opening of the intermediate pressure expansion valve is changed so that the intermediate refrigerant pressure approaches the target intermediate refrigerant pressure, the high-pressure side refrigerant pressure and the low-pressure side refrigerant pressure also change. The control for stabilizing (converging) the ability is also complicated.
 また、単に、中間冷媒圧力を目標中間冷媒圧力に近づけるように中間圧膨張弁の絞り開度を変化させるだけでは、中間圧膨張弁から流出する中間圧冷媒が液相状態あるいは気液二相状態となってしまうことがある。その結果、高段側圧縮機構が非圧縮性流体を圧縮してしまう液圧縮の問題が生じ、高段側圧縮機構の信頼性、すなわち二段昇圧式冷凍サイクル装置全体としての信頼性を損なうことが懸念される。 Moreover, the intermediate pressure refrigerant flowing out of the intermediate pressure expansion valve is in a liquid phase state or a gas-liquid two phase state simply by changing the throttle opening of the intermediate pressure expansion valve so that the intermediate refrigerant pressure approaches the target intermediate refrigerant pressure. It may become. As a result, the problem of liquid compression that the high-stage compression mechanism compresses the incompressible fluid occurs, and the reliability of the high-stage compression mechanism, that is, the reliability of the entire two-stage booster refrigeration cycle apparatus is impaired. Is concerned.
 本発明は、上記点に鑑み、簡素な構成および制御でCOPを向上させることのできる二段昇圧式冷凍サイクル装置を提供することを第1の目的とする。 In view of the above points, the first object of the present invention is to provide a two-stage boost type refrigeration cycle apparatus capable of improving COP with a simple configuration and control.
 また、本発明は、簡素な構成および制御で信頼性の高い二段昇圧式冷凍サイクル装置を提供することを第2の目的とする。 The second object of the present invention is to provide a highly reliable two-stage boost refrigeration cycle apparatus with a simple configuration and control.
 上記目的を達成するため、本発明の第1例の二段昇圧式冷凍サイクル装置では、低圧冷媒を中間圧冷媒となるまで圧縮して吐出する低段側圧縮機構と、低段側圧縮機構から吐出された中間圧冷媒を高圧冷媒となるまで圧縮して吐出する高段側圧縮機構と、高段側圧縮機構から吐出された高圧冷媒を室外空気と熱交換させて放熱させる放熱器と、放熱器から流出した高圧冷媒を中間圧冷媒となるまで減圧膨張させて高段側圧縮機構吸入側へ流出する中間圧膨張弁と、放熱器から流出した高圧冷媒を低圧冷媒となるまで減圧膨張させる低圧膨張弁と、低圧膨張弁にて減圧膨張された低圧冷媒を冷却対象空間に送風される送風空気と熱交換させて蒸発させ、低段側圧縮機構吸入側へ流出する蒸発器とを備える。 さらに、二段昇圧式冷凍サイクル装置は、放熱器にて高圧冷媒と熱交換する室外空気の外気温度および蒸発器にて低圧冷媒と熱交換する送風空気の空気温度のうち、少なくとも一方の温度の上昇に伴って、高段側圧縮機構および低段側圧縮機構のうち一方の圧縮機構の冷媒吐出能力を増加させるように決定する第1吐出能力制御部と、一方の圧縮機構の冷媒吐出能力に基づいて、他方の圧縮機構の冷媒吐出能力を決定する第2吐出能力制御部とを備える。さらに、第2吐出能力制御部は、高段側圧縮機構の吐出容量をV1、高段側圧縮機構の回転数をN1、低段側圧縮機構の吐出容量をV2、低段側圧縮機構の回転数をN2とした場合、N2×V2/N1×V1にて定義される実効容量比が予め定めた基準範囲内の値となるように、他方の圧縮機構の冷媒吐出能力を決定する。 In order to achieve the above object, in the two-stage boost type refrigeration cycle apparatus of the first example of the present invention, a low-stage compression mechanism that compresses and discharges low-pressure refrigerant until it becomes intermediate-pressure refrigerant, and a low-stage compression mechanism A high-stage compression mechanism that compresses and discharges the discharged intermediate-pressure refrigerant until it becomes a high-pressure refrigerant, a radiator that heats the high-pressure refrigerant discharged from the high-stage compression mechanism with heat from the outdoor air, and heat dissipation Low-pressure expansion valve that decompresses and expands the high-pressure refrigerant that has flowed out of the radiator until it becomes intermediate-pressure refrigerant, and flows out to the suction side of the high-stage compression mechanism, and low-pressure that expands the high-pressure refrigerant that has flowed out of the radiator to low-pressure refrigerant An expansion valve, and an evaporator for evaporating the low-pressure refrigerant decompressed and expanded by the low-pressure expansion valve through heat exchange with the blown air blown into the space to be cooled and flowing out to the low-stage compression mechanism suction side are provided. Furthermore, the two-stage booster type refrigeration cycle apparatus has at least one of the outdoor air temperature of the outdoor air that exchanges heat with the high-pressure refrigerant in the radiator and the air temperature of the blown air that exchanges heat with the low-pressure refrigerant in the evaporator. Along with the rise, the first discharge capacity control unit that determines to increase the refrigerant discharge capacity of one of the high-stage compression mechanism and the low-stage compression mechanism, and the refrigerant discharge capacity of one compression mechanism And a second discharge capacity control unit that determines the refrigerant discharge capacity of the other compression mechanism. Further, the second discharge capacity control unit sets the discharge capacity of the high-stage compression mechanism to V1, the rotation speed of the high-stage compression mechanism to N1, the discharge capacity of the low-stage compression mechanism to V2, and the rotation of the low-stage compression mechanism. When the number is N2, the refrigerant discharge capacity of the other compression mechanism is determined so that the effective capacity ratio defined by N2 * V2 / N1 * V1 is a value within a predetermined reference range.
 これによれば、第1吐出能力制御部が、外気温度および空気温度のうち、少なくとも一方の値に基づいて、一方の圧縮機構の冷媒吐出能力を決定し、さらに、第2吐出能力制御部が、一方の圧縮機構の冷媒吐出能力に基づいて、他方の圧縮機構の冷媒吐出能力を決定するので、それぞれの圧縮機構の冷媒吐出能力を容易に決定できる。 According to this, the 1st discharge capacity control part determines the refrigerant discharge capacity of one compression mechanism based on at least one value among outside temperature and air temperature, and also the 2nd discharge capacity control part Since the refrigerant discharge capacity of the other compression mechanism is determined based on the refrigerant discharge capacity of one compression mechanism, the refrigerant discharge capacity of each compression mechanism can be easily determined.
 この際、実効容積比が予め定めた基準範囲内の値となるように、第2吐出能力制御部が他方の圧縮機構の冷媒吐出能力を決定しているので、基準範囲を適切に設定するだけで、実質的に中間冷媒圧力を、高圧側冷媒圧力と低圧側冷媒圧力との相乗平均に相当する値に近づけることができる。 At this time, since the second discharge capacity control unit determines the refrigerant discharge capacity of the other compression mechanism so that the effective volume ratio becomes a value within a predetermined reference range, only the reference range is set appropriately. Thus, the intermediate refrigerant pressure can be substantially brought close to a value corresponding to the geometric mean of the high-pressure side refrigerant pressure and the low-pressure side refrigerant pressure.
 従って、高価な圧力検出手段を設ける必要のない簡素な構成で、かつ、極めて容易な制御で、二段昇圧式冷凍サイクル装置のCOPを向上させることができる。 Therefore, it is possible to improve the COP of the two-stage booster type refrigeration cycle apparatus with a simple configuration that does not require an expensive pressure detection means and extremely easy control.
 さらに、それぞれの圧縮機構の冷媒吐出能力によらず、中間圧膨張弁の絞り開度を決定することができるので、中間圧膨張弁から流出する中間圧冷媒を気相冷媒として、高段側圧縮機構の液圧縮の問題を回避できる。 Furthermore, since the throttle opening degree of the intermediate pressure expansion valve can be determined regardless of the refrigerant discharge capacity of each compression mechanism, the intermediate pressure refrigerant flowing out from the intermediate pressure expansion valve is used as a gas-phase refrigerant to perform high-stage compression. The problem of liquid compression of the mechanism can be avoided.
 従って、簡素な構成で高段側圧縮機構の信頼性、すなわち二段昇圧式冷凍サイクル装置全体としての信頼性を向上させることができる。なお、圧縮機構の吐出容量とは、圧縮機構が一回転あたりに吐出する理論流量であって、幾何学的に算出される流量である。 Therefore, it is possible to improve the reliability of the high-stage compression mechanism with a simple configuration, that is, the reliability of the entire two-stage booster refrigeration cycle apparatus. The discharge capacity of the compression mechanism is a theoretical flow rate that the compression mechanism discharges per rotation and is a geometrically calculated flow rate.
 例えば、本発明の第2例の二段昇圧式冷凍サイクル装置では、中間圧膨張弁は、放熱器から流出した高圧冷媒の流れを分岐する分岐部にて分岐された一方の高圧冷媒を減圧膨張させ、低圧膨張弁は、分岐部にて分岐された他方の高圧冷媒を減圧膨張させ、さらに、中間圧膨張弁にて減圧膨張された低圧冷媒と分岐部にて分岐された他方の高圧冷媒とを熱交換させる中間熱交換器を備える。 For example, in the two-stage booster type refrigeration cycle apparatus of the second example of the present invention, the intermediate pressure expansion valve decompresses and expands one of the high-pressure refrigerants branched at the branching part that branches the flow of the high-pressure refrigerant flowing out of the radiator. The low-pressure expansion valve decompresses and expands the other high-pressure refrigerant branched at the branch portion, and further, the low-pressure refrigerant decompressed and expanded at the intermediate pressure expansion valve and the other high-pressure refrigerant branched at the branch portion An intermediate heat exchanger for exchanging heat is provided.
 中間熱交換器を備えているので、中間圧膨張弁から流出した中間圧冷媒を加熱して容易に気相冷媒とすることができる。その結果、より一層確実に、二段昇圧式冷凍サイクル装置の信頼性を向上させることができる。 Since the intermediate heat exchanger is provided, the intermediate-pressure refrigerant flowing out from the intermediate-pressure expansion valve can be easily heated to be a gas-phase refrigerant. As a result, the reliability of the two-stage booster refrigeration cycle apparatus can be improved more reliably.
 また、分岐部にて分岐された他方の高圧冷媒が冷却されて、蒸発器入口側冷媒のエンタルピと出口側冷媒のエンタルピとのエンタルピ差を拡大して、蒸発器にて発揮される冷凍能力を増大することができる。その結果、より一層、二段昇圧式冷凍サイクル装置のCOPを向上させることができる。 In addition, the other high-pressure refrigerant branched at the branching section is cooled, the enthalpy difference between the enthalpy of the evaporator inlet side refrigerant and the enthalpy of the outlet side refrigerant is expanded, and the refrigerating capacity exhibited in the evaporator is increased. Can be increased. As a result, the COP of the two-stage booster refrigeration cycle apparatus can be further improved.
 例えば、本発明の第3例の二段昇圧式冷凍サイクル装置では、一方の圧縮機構は、低段側圧縮機構であり、他方の圧縮機構は、高段側圧縮機構であってもよい。 For example, in the second-stage booster type refrigeration cycle apparatus of the third example of the present invention, one compression mechanism may be a low-stage compression mechanism and the other compression mechanism may be a high-stage compression mechanism.
 これによれば、第1吐出能力制御部が、外気温度および空気温度のうち、少なくとも一方の値に基づいて、低段側圧縮機構の冷媒吐出能力を決定し、蒸発器の冷媒蒸発圧力を直接制御することができる。従って、冷却対象空間に送風される送風空気の空気温度を所望の温度に調整しやすい。 According to this, the first discharge capacity control unit determines the refrigerant discharge capacity of the low-stage compression mechanism based on at least one of the outside air temperature and the air temperature, and directly sets the refrigerant evaporation pressure of the evaporator. Can be controlled. Therefore, it is easy to adjust the air temperature of the blown air blown into the cooling target space to a desired temperature.
 本発明の第4例の二段昇圧式冷凍サイクル装置では、第2吐出能力制御部は、空気温度と冷却対象空間の目標冷却温度との温度差の絶対値が予め定めた基準温度差以下となったときに、一方の圧縮機構の冷媒吐出能力に基づいて、他方の圧縮機構の冷媒吐出能力を決定してもよい。 In the second-stage booster type refrigeration cycle apparatus of the fourth example of the present invention, the second discharge capacity control unit is configured such that the absolute value of the temperature difference between the air temperature and the target cooling temperature of the cooling target space is equal to or less than a predetermined reference temperature difference. When it becomes, based on the refrigerant | coolant discharge capability of one compression mechanism, you may determine the refrigerant | coolant discharge capability of the other compression mechanism.
 この場合、前記第2吐出能力制御部が、空気温度と冷却対象空間の目標冷却温度との温度差の絶対値が予め定めた基準温度差以下となるまでは、他方の圧縮機構の冷媒吐出能力を一方の圧縮機構の冷媒吐出能力によらずに制御することができる。従って、例えば、二段昇圧式冷凍サイクル装置の起動時に冷却対象空間を急速に冷却する運転モードを実行することもできる。 In this case, the second discharge capacity control unit performs the refrigerant discharge capacity of the other compression mechanism until the absolute value of the temperature difference between the air temperature and the target cooling temperature of the cooling target space is equal to or less than a predetermined reference temperature difference. Can be controlled regardless of the refrigerant discharge capacity of one of the compression mechanisms. Therefore, for example, it is possible to execute an operation mode in which the space to be cooled is rapidly cooled when the two-stage booster type refrigeration cycle apparatus is started.
 本発明の第5例の二段昇圧式冷凍サイクル装置では、前記空気温度が前記標冷却温度よりも高温であり、かつ前記第2吐出能力制御部は、前記空気温度と前記冷却対象空間の目標冷却温度との温度差の絶対値が予め定めた基準温度差以下となったときに、前記一方の圧縮機構の冷媒吐出能力に基づいて、前記他方の圧縮機構の冷媒吐出能力を決定してもよい。この場合、両方の圧縮機能の能力制御を有効に行うことができる。 In the two-stage booster type refrigeration cycle apparatus of the fifth example of the present invention, the air temperature is higher than the target cooling temperature, and the second discharge capacity control unit is configured to target the air temperature and the space to be cooled. When the absolute value of the temperature difference with the cooling temperature is equal to or less than a predetermined reference temperature difference, the refrigerant discharge capacity of the other compression mechanism may be determined based on the refrigerant discharge capacity of the one compression mechanism. Good. In this case, capacity control of both compression functions can be performed effectively.
 また、本発明の第6例の二段昇圧式冷凍サイクル装置では、高段側圧縮機構および低段側圧縮機構は、その吐出容量が固定された固定容量型圧縮機構で構成されており、さらに、高段側圧縮機構を回転駆動する高段側電動モータと、低段側圧縮機構を回転駆動する低段側電動モータとを備え、高段側電動モータの回転数および低段側電動モータの回転数は、互いに独立して制御可能に構成されてもよい。 Moreover, in the two-stage booster type refrigeration cycle apparatus of the sixth example of the present invention, the high-stage compression mechanism and the low-stage compression mechanism are composed of a fixed capacity type compression mechanism having a fixed discharge capacity, A high-stage electric motor that rotationally drives the high-stage compression mechanism and a low-stage electric motor that rotationally drives the low-stage compression mechanism, and the rotational speed of the high-stage electric motor and the low-stage electric motor The number of rotations may be configured to be controllable independently of each other.
 この場合、高段側圧縮機構の吐出容量および低段側圧縮機構の吐出容量が一定の値となるので、高段側圧縮機構の回転数および低段側圧縮機構の回転数のうち、少なくとも一方を変更するだけで容易に実効容量比を基準範囲とすることができる。 In this case, since the discharge capacity of the high-stage compression mechanism and the discharge capacity of the low-stage compression mechanism are constant values, at least one of the rotation speed of the high-stage compression mechanism and the rotation speed of the low-stage compression mechanism The effective capacity ratio can be easily set to the reference range simply by changing the value.
 また、本発明の第7例の二段昇圧式冷凍サイクル装置では、高段側圧縮機構および低段側圧縮機構は、その吐出容量を変更可能な可変容量型圧縮機構で構成されており、高段側圧縮機構の吐出容量および低段側圧縮機構の吐出容量は、互いに独立して変更可能に構成されてもよい。 In the two-stage booster type refrigeration cycle apparatus of the seventh example of the present invention, the high-stage compression mechanism and the low-stage compression mechanism are composed of variable displacement compression mechanisms whose discharge capacity can be changed. The discharge capacity of the stage side compression mechanism and the discharge capacity of the low stage side compression mechanism may be configured to be changeable independently of each other.
 この場合、高段側圧縮機構の吐出容量および低段側圧縮機構の吐出容量を独立して変更することができるので、双方の圧縮機構の回転数を同じ値としても、容易に実効容量比を基準範囲とすることができる。従って、双方の圧縮機構を共通する駆動手段にて駆動することもできる。 In this case, since the discharge capacity of the high-stage compression mechanism and the discharge capacity of the low-stage compression mechanism can be changed independently, the effective capacity ratio can be easily set even if the rotation speeds of both compression mechanisms are the same. It can be a reference range. Therefore, both compression mechanisms can be driven by a common driving means.
 さらに、上記の何れかの二段昇圧式冷凍サイクル装置において、第2吐出能力制御部は、実効容量比が、1≦N2×V2/N1×V1≦3
となるように、他方の圧縮機構の冷媒吐出能力を決定するようになっていてもよい。
Furthermore, in any one of the above-described two-stage booster type refrigeration cycle apparatuses, the second discharge capacity control unit has an effective capacity ratio of 1 ≦ N2 × V2 / N1 × V1 ≦ 3.
In other words, the refrigerant discharge capacity of the other compression mechanism may be determined.
第1実施形態の二段昇圧式冷凍サイクル装置の全体構成図である。1 is an overall configuration diagram of a two-stage boost type refrigeration cycle apparatus according to a first embodiment. 第1実施形態の二段昇圧式冷凍サイクル装置の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the two-stage pressure | voltage rise refrigerating-cycle apparatus of 1st Embodiment. 実効容積比の変化に対するCOP比の変化を示すグラフであり、(a)は、所定の条件Aにおけるグラフであり、(b)は、別の条件Bにおけるグラフである。It is a graph which shows the change of COP ratio with respect to the change of an effective volume ratio, (a) is a graph in the predetermined condition A, (b) is a graph in another condition B. 第2実施形態の二段昇圧式冷凍サイクル装置の全体構成図である。It is a whole block diagram of the 2 step | paragraph pressure | voltage rise type refrigerating-cycle apparatus of 2nd Embodiment.
 (第1実施形態)
 図1~3により、本発明の第1実施形態を説明する。図1は、本実施形態の二段昇圧式冷凍サイクル装置10の全体構成図である。この二段昇圧式冷凍サイクル装置10は、冷凍機に適用されており、冷却対象空間である冷凍庫内へ送風される送風空気を-30℃~-10℃程度の極低温となるまで冷却する機能を果たす。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an overall configuration diagram of a two-stage booster refrigeration cycle apparatus 10 of the present embodiment. The two-stage booster type refrigeration cycle apparatus 10 is applied to a refrigerator and has a function of cooling the blown air blown into a freezer, which is a space to be cooled, to an extremely low temperature of about −30 ° C. to −10 ° C. Fulfill.
 まず、二段昇圧式冷凍サイクル装置10は、図1に示すように、高段側圧縮機11および低段側圧縮機12の2つの圧縮機を備えており、サイクルを循環する冷媒を多段階に昇圧するようになっている。なお、この冷媒としては、通常のフロン系冷媒(例えば、R404A)を採用することができる。さらに、冷媒には、低段側圧縮機12および高段側圧縮機11内の摺動部位を潤滑するための冷凍機油(オイル)が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 First, as shown in FIG. 1, the two-stage booster refrigeration cycle apparatus 10 includes two compressors, a high-stage compressor 11 and a low-stage compressor 12, and the refrigerant circulating through the cycle is multistage. It is designed to boost the pressure. In addition, as this refrigerant | coolant, a normal freon-type refrigerant | coolant (for example, R404A) is employable. Further, the refrigerant is mixed with refrigerating machine oil (oil) for lubricating the sliding parts in the low-stage compressor 12 and the high-stage compressor 11, and a part of the refrigerating machine oil is cycled together with the refrigerant. It is circulating.
 まず、低段側圧縮機12は、低圧冷媒を中間圧冷媒となるまで圧縮して吐出する低段側圧縮機構12a、および、低段側圧縮機構12aを回転駆動する低段側電動モータ12bを有する電動圧縮機である。低段側圧縮機構12aは、その吐出容量V2が固定された固定容量型圧縮機構で構成されており、具体的には、スクロール型圧縮機構、ベーン型圧縮機構、ローリングピストン型圧縮機構等の各種圧縮機構を採用できる。 First, the low-stage compressor 12 includes a low-stage compression mechanism 12a that compresses and discharges the low-pressure refrigerant until it becomes an intermediate-pressure refrigerant, and a low-stage electric motor 12b that rotationally drives the low-stage compression mechanism 12a. It is an electric compressor having. The low-stage compression mechanism 12a is composed of a fixed capacity type compression mechanism with a fixed discharge capacity V2, and specifically, various types such as a scroll type compression mechanism, a vane type compression mechanism, a rolling piston type compression mechanism, and the like. A compression mechanism can be adopted.
 低段側電動モータ12bは、低段側インバータ22から出力される交流電流によって、その作動(回転数)が制御される交流モータである。また、低段側インバータ22は、後述する冷凍機制御装置20から出力される制御信号に応じた周波数の交流電流を出力する。そして、この周波数制御によって低段側圧縮機12(具体的には、低段側圧縮機構12a)の冷媒吐出能力が変更される。 The low-stage electric motor 12b is an AC motor whose operation (number of rotations) is controlled by an alternating current output from the low-stage inverter 22. Moreover, the low stage side inverter 22 outputs the alternating current of the frequency according to the control signal output from the refrigerator control apparatus 20 mentioned later. And by this frequency control, the refrigerant | coolant discharge capability of the low stage side compressor 12 (specifically, the low stage side compression mechanism 12a) is changed.
 従って、本実施形態では、低段側電動モータ12bが低段側圧縮機12の吐出能力変更手段を構成している。もちろん、低段側電動モータ12bとして、直流モータを採用し、冷凍機制御装置20から出力される制御電圧によって、その回転数を制御するようにしてもよい。また、低段側圧縮機12(具体的には、低段側圧縮機構12a)の吐出口には、高段側圧縮機11の吸入口側が接続されている。 Therefore, in the present embodiment, the low stage electric motor 12b constitutes the discharge capacity changing means of the low stage compressor 12. Of course, a DC motor may be employed as the low-stage electric motor 12b, and the rotation speed may be controlled by a control voltage output from the refrigerator control device 20. Further, the suction port side of the high-stage compressor 11 is connected to the discharge port of the low-stage compressor 12 (specifically, the low-stage compression mechanism 12a).
 高段側圧縮機11の基本的構成は、低段側圧縮機12と同様である。従って、高段側圧縮機11は、低段側圧縮機12から吐出された中間圧冷媒を高圧冷媒となるまで圧縮して吐出する高段側圧縮機構11a、および、高段側電動モータ11bを有する電動圧縮機である。 The basic configuration of the high stage compressor 11 is the same as that of the low stage compressor 12. Accordingly, the high-stage compressor 11 includes a high-stage compression mechanism 11a that compresses and discharges the intermediate-pressure refrigerant discharged from the low-stage compressor 12 until it becomes a high-pressure refrigerant, and a high-stage electric motor 11b. It is an electric compressor having.
 さらに、高段側圧縮機構11aは、吐出容量V1が固定された固定容量型圧縮機構で構成され、高段側電動モータ11bは、高段側インバータ21から出力される交流電流によって回転数が制御される。また、本実施形態の高段側圧縮機構11aの圧縮比および低段側圧縮機構12aの圧縮比は略同等となっている。 Further, the high-stage compression mechanism 11a is a fixed-capacity compression mechanism with a fixed discharge capacity V1, and the high-stage electric motor 11b has a rotational speed controlled by an alternating current output from the high-stage inverter 21. Is done. Further, the compression ratio of the high-stage compression mechanism 11a and the compression ratio of the low-stage compression mechanism 12a of the present embodiment are substantially the same.
 高段側圧縮機11(具体的には、高段側圧縮機構11a)の吐出口には、放熱器13の冷媒入口側が接続されている。放熱器13は、高段側圧縮機11から吐出された高圧冷媒と冷却ファン13aにより送風される庫外空気(室外空気)とを熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。 The refrigerant inlet side of the radiator 13 is connected to the discharge port of the high stage compressor 11 (specifically, the high stage compression mechanism 11a). The heat dissipator 13 is a heat dissipating member that dissipates and cools the high-pressure refrigerant by heat-exchanging the high-pressure refrigerant discharged from the high-stage compressor 11 and the outside air (outdoor air) blown by the cooling fan 13a. It is a heat exchanger.
 冷却ファン13aは、冷凍機制御装置20から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。なお、本実施形態の二段昇圧式冷凍サイクル装置10では、冷媒としてフロン系冷媒を採用し、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているので、放熱器13は冷媒を凝縮させる凝縮器として機能する。 The cooling fan 13a is an electric blower in which the number of rotations (the amount of blown air) is controlled by a control voltage output from the refrigerator control device 20. In the two-stage boost type refrigeration cycle apparatus 10 of the present embodiment, a refrigerant is used as a refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured. Reference numeral 13 functions as a condenser for condensing the refrigerant.
 放熱器13の冷媒出口には、放熱器13から流出した冷媒の流れを分岐する分岐部14が接続されている。分岐部14は、3つの流入出口を有する三方継手構造のもので、流入出口のうち1つを冷媒流入口とし、2つを冷媒流出口としたものである。このような分岐部14は、配管を接合して構成してもよいし、金属ブロックや樹脂ブロックに複数の冷媒通路を設けて構成してもよい。 A branching portion 14 for branching the flow of the refrigerant flowing out of the radiator 13 is connected to the refrigerant outlet of the radiator 13. The branch portion 14 has a three-way joint structure having three inflow / outflow ports, and one of the inflow / outflow ports is a refrigerant inflow port and two of the inflow / outlet ports are refrigerant outflow ports. Such a branch part 14 may be configured by joining pipes, or may be configured by providing a plurality of refrigerant passages in a metal block or a resin block.
 分岐部14の一方の冷媒出口には中間圧膨張弁15の入口側が接続され、分岐部14の他方の冷媒出口には中間熱交換器16の高圧冷媒流路16aの入口側が接続されている。中間圧膨張弁15は、放熱器13から流出した高圧冷媒を中間圧冷媒となるまで減圧膨張させる温度式膨張弁である。 The inlet side of the intermediate pressure expansion valve 15 is connected to one refrigerant outlet of the branch part 14, and the inlet side of the high-pressure refrigerant flow path 16 a of the intermediate heat exchanger 16 is connected to the other refrigerant outlet of the branch part 14. The intermediate pressure expansion valve 15 is a temperature type expansion valve that decompresses and expands the high-pressure refrigerant flowing out of the radiator 13 until it becomes an intermediate-pressure refrigerant.
 より具体的には、中間圧膨張弁15は、中間熱交換器16の中間圧冷媒流路16b出口側に配置された感温部を有し、中間圧冷媒流路16b出口側冷媒の温度と圧力とに基づいて中間圧冷媒流路16b出口側冷媒の過熱度を検知し、この過熱度が予め設定された所定値となるように機械的機構により弁開度(冷媒流量)を調整するようになっている。また、中間圧膨張弁15の出口側には、中間圧冷媒流路16bの入口側が接続されている。 More specifically, the intermediate pressure expansion valve 15 has a temperature sensing portion disposed on the outlet side of the intermediate pressure refrigerant channel 16b of the intermediate heat exchanger 16, and the temperature of the refrigerant on the outlet side of the intermediate pressure refrigerant channel 16b. The degree of superheat of the refrigerant on the outlet side of the intermediate pressure refrigerant flow path 16b is detected based on the pressure, and the valve opening degree (refrigerant flow rate) is adjusted by a mechanical mechanism so that the degree of superheat becomes a predetermined value set in advance. It has become. Further, the outlet side of the intermediate pressure expansion valve 15 is connected to the inlet side of the intermediate pressure refrigerant flow path 16b.
 中間熱交換器16は、中間圧冷媒流路16bを流通する中間圧膨張弁15にて減圧膨張された中間圧冷媒と、高圧冷媒流路16aを流通する分岐部14にて分岐された他方の高圧冷媒との間で熱交換を行うものである。なお、高圧冷媒は減圧されることによって温度低下するので、中間熱交換器16では、中間圧冷媒流路16bを流通する中間圧冷媒が加熱され、高圧冷媒流路16aを流通する高圧冷媒が冷却されることになる。 The intermediate heat exchanger 16 includes an intermediate pressure refrigerant decompressed and expanded by the intermediate pressure expansion valve 15 flowing through the intermediate pressure refrigerant flow path 16b, and the other branch branched by the branch portion 14 flowing through the high pressure refrigerant flow path 16a. Heat exchange is performed with the high-pressure refrigerant. Since the temperature of the high-pressure refrigerant is reduced by reducing the pressure, in the intermediate heat exchanger 16, the intermediate-pressure refrigerant flowing through the intermediate-pressure refrigerant channel 16b is heated, and the high-pressure refrigerant flowing through the high-pressure refrigerant channel 16a is cooled. Will be.
 また、中間熱交換器16の具体的構成としては、板状の伝熱プレート部材を複数枚積層配置して各伝熱プレート部材間に中間圧冷媒流路16bおよび高圧冷媒流路16aを交互に形成し、伝熱プレートとを介して高圧冷媒と中間圧冷媒とを熱交換させるプレート式熱交換器を採用している。 Further, as a specific configuration of the intermediate heat exchanger 16, a plurality of plate-like heat transfer plate members are stacked and the intermediate pressure refrigerant flow path 16b and the high pressure refrigerant flow path 16a are alternately arranged between the heat transfer plate members. A plate-type heat exchanger that is formed and exchanges heat between the high-pressure refrigerant and the intermediate-pressure refrigerant through the heat transfer plate is employed.
 また、高圧冷媒流路16aを形成する外側管の内側に中間圧冷媒流路16bを形成する内側管を配置する二重管方式の熱交換器構成を採用してもよい。もちろん、高圧冷媒流路16aを内側管として、中間圧冷媒流路16bを外側管としてもよい。さらに、高圧冷媒流路16aと中間圧冷媒流路16bとを形成する冷媒配管同士を接合して熱交換させる構成等を採用してもよい。 Alternatively, a double-pipe heat exchanger configuration in which an inner tube that forms the intermediate-pressure refrigerant channel 16b is arranged inside an outer tube that forms the high-pressure refrigerant channel 16a may be adopted. Of course, the high-pressure refrigerant channel 16a may be an inner tube and the intermediate-pressure refrigerant channel 16b may be an outer tube. Furthermore, the structure etc. which join the refrigerant | coolant piping which forms the high pressure refrigerant flow path 16a and the intermediate pressure refrigerant flow path 16b, and heat-exchange may be employ | adopted.
 なお、図1に示す中間熱交換器16では、高圧冷媒流路16aを流通する高圧冷媒の流れ方向と中間圧冷媒流路16bを流通する中間圧冷媒の流れ方向が同一となる並行流型の熱交換器を採用しているが、もちろん、高圧冷媒流路16aを流通する高圧冷媒の流れ方向と中間圧冷媒流路16bを流通する中間圧冷媒の流れ方向が逆方向となる対交流型の熱交換器を採用してもよい。 In the intermediate heat exchanger 16 shown in FIG. 1, the flow direction of the high-pressure refrigerant flowing through the high-pressure refrigerant flow path 16a and the flow direction of the intermediate pressure refrigerant flowing through the intermediate-pressure refrigerant flow path 16b are the same. Although a heat exchanger is adopted, of course, the flow direction of the high-pressure refrigerant flowing through the high-pressure refrigerant channel 16a and the flow direction of the intermediate-pressure refrigerant flowing through the intermediate-pressure refrigerant channel 16b are opposite to each other. A heat exchanger may be employed.
 中間熱交換器16の中間圧冷媒流路16bの出口側には、図示しない逆止弁を介して、前述の高段側圧縮機11(具体的には、高段側圧縮機構11a)の吸入口側が接続されている。従って、本実施形態の高段側圧縮機構11aでは、中間圧冷媒流路16bから流出した中間圧冷媒と低段側圧縮機12から吐出された中間圧冷媒との混合冷媒を吸入する。 The outlet of the intermediate pressure refrigerant flow path 16b of the intermediate heat exchanger 16 is sucked into the high-stage compressor 11 (specifically, the high-stage compression mechanism 11a) via a check valve (not shown). The mouth side is connected. Therefore, in the high-stage compression mechanism 11a of the present embodiment, a mixed refrigerant of the intermediate-pressure refrigerant flowing out from the intermediate-pressure refrigerant flow path 16b and the intermediate-pressure refrigerant discharged from the low-stage compressor 12 is sucked.
 一方、中間熱交換器16の高圧冷媒流路16aの出口側には、低圧膨張弁17の入口側が接続されている。低圧膨張弁17は、放熱器13から流出した高圧冷媒を低圧冷媒となるまで減圧膨張させる温度式膨張弁である。この低圧膨張弁17の基本的構成は、中間圧膨張弁15と同様である。 On the other hand, the inlet side of the low-pressure expansion valve 17 is connected to the outlet side of the high-pressure refrigerant channel 16a of the intermediate heat exchanger 16. The low-pressure expansion valve 17 is a temperature type expansion valve that decompresses and expands the high-pressure refrigerant flowing out of the radiator 13 until it becomes a low-pressure refrigerant. The basic configuration of the low pressure expansion valve 17 is the same as that of the intermediate pressure expansion valve 15.
 より具体的には、低圧膨張弁17は、後述する蒸発器18の冷媒流出口側に配置された感温部を有し、蒸発器18出口側冷媒の温度と圧力とに基づいて蒸発器18出口側冷媒の過熱度を検知し、この過熱度が予め設定された所定値となるように機械的機構により弁開度(冷媒流量)を調整するようになっている。 More specifically, the low-pressure expansion valve 17 has a temperature sensing portion arranged on the refrigerant outlet side of the evaporator 18 described later, and the evaporator 18 is based on the temperature and pressure of the refrigerant on the outlet side of the evaporator 18. The degree of superheat of the outlet side refrigerant is detected, and the valve opening degree (refrigerant flow rate) is adjusted by a mechanical mechanism so that the degree of superheat becomes a predetermined value set in advance.
 低圧膨張弁17の出口側には、蒸発器18の冷媒流入口側が接続されている。蒸発器18は、低圧膨張弁17にて減圧膨張された低圧冷媒と、送風ファン18aによって冷凍庫内を循環送風される送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。送風ファン18aは、冷凍機制御装置20から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。 The refrigerant inlet side of the evaporator 18 is connected to the outlet side of the low pressure expansion valve 17. The evaporator 18 evaporates the low-pressure refrigerant and exhibits an endothermic effect by exchanging heat between the low-pressure refrigerant decompressed and expanded by the low-pressure expansion valve 17 and the blown air circulated through the freezer by the blower fan 18a. This is an endothermic heat exchanger. The blower fan 18 a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the refrigerator control device 20.
 さらに、蒸発器18の冷媒流出口には、低段側圧縮機12(具体的には、低段側圧縮機構12a)の吸入口側が接続されている。 Furthermore, the refrigerant outlet of the evaporator 18 is connected to the suction port side of the low-stage compressor 12 (specifically, the low-stage compression mechanism 12a).
 次に、本実施形態の電気制御部について説明する。冷凍機制御装置20は、制御処理や演算処理を行うCPUおよびプログラムやデータ等を記憶するROMおよびRAM等の記憶回路を含む周知のマイクロコンピュータ、各種制御対象機器への制御信号あるいは制御電圧を出力する出力回路、各種センサの検出信号が入力される入力回路、並びに、電源回路等から構成されている。 Next, the electric control unit of this embodiment will be described. The refrigerator control device 20 outputs a control signal or control voltage to a well-known microcomputer including a CPU that performs control processing and arithmetic processing, and a storage circuit such as ROM and RAM that stores programs and data, and various control target devices. Output circuit, an input circuit to which detection signals of various sensors are input, a power supply circuit, and the like.
 冷凍機制御装置20の出力側には、制御対象機器として上述の低段側インバータ22、高段側インバータ21、冷却ファン13a、送風ファン18a等が接続され、冷凍機制御装置20は、これらの制御対象機器の作動を制御する。 The output side of the refrigerator control device 20 is connected to the above-described low-stage inverter 22, high-stage inverter 21, cooling fan 13a, blower fan 18a, and the like as control target devices. Controls the operation of controlled devices.
 なお、冷凍機制御装置20は、これらの制御対象機器の作動を制御する制御手段が一体に構成されたものであるが、冷凍機制御装置20のうち、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の制御手段を構成している。 In addition, although the control means which controls the action | operation of these control object apparatuses is integrated, the refrigerator control apparatus 20 controls the action | operation of each control object apparatus among the refrigerator control apparatuses 20. FIG. The configuration (hardware and software) constitutes control means for each control target device.
 本実施形態では、低段側インバータ22の作動を制御して低段側圧縮機構12aの冷媒吐出能力を制御する構成(ハードウェアおよびソフトウェア)を第1吐出能力制御部20aとし、高段側インバータ21の作動を制御して高段側圧縮機構11aの冷媒吐出能力を制御する構成(ハードウェアおよびソフトウェア)を第2吐出能力制御部20bとする。 In the present embodiment, the configuration (hardware and software) for controlling the refrigerant discharge capacity of the low-stage compression mechanism 12a by controlling the operation of the low-stage inverter 22 is the first discharge capacity controller 20a, and the high-stage inverter A configuration (hardware and software) that controls the operation of 21 to control the refrigerant discharge capacity of the high-stage compression mechanism 11a is defined as a second discharge capacity control unit 20b.
 従って、低段側電動モータ12bの回転数および高段側電動モータ11bの回転数は、それぞれ第1吐出能力制御部20aおよび第2吐出能力制御部20bによって、互いに独立して制御できるようになっている。もちろん、第1、第2吐出能力制御部20a、20bを、冷凍機制御装置20に対してそれぞれ別体の制御装置として構成してもよい。 Accordingly, the rotation speed of the low-stage side electric motor 12b and the rotation speed of the high-stage side electric motor 11b can be controlled independently of each other by the first discharge capacity control unit 20a and the second discharge capacity control unit 20b, respectively. ing. Of course, you may comprise the 1st, 2nd discharge capacity control parts 20a and 20b as a separate control apparatus with respect to the refrigerator control apparatus 20, respectively.
 一方、冷凍機制御装置20の入力側には、放熱器13にて高圧冷媒と熱交換する庫外空気(室外空気)の外気温度Tamを検出する外気温度検出手段である外気温センサ23、蒸発器18にて低圧冷媒と熱交換する送風空気の空気温度Tfrを検出する庫内温度検出手段である庫内温度センサ24等が接続され、これらのセンサの検出信号が冷凍機制御装置20へ入力される。 On the other hand, on the input side of the refrigerator control device 20, an outside air temperature sensor 23 which is an outside air temperature detecting means for detecting the outside air temperature Tam of the outside air (outdoor air) which exchanges heat with the high-pressure refrigerant by the radiator 13, an evaporation An internal temperature sensor 24 that is an internal temperature detection means for detecting the air temperature Tfr of the blown air that exchanges heat with the low-pressure refrigerant in the cooler 18 is connected, and detection signals from these sensors are input to the refrigerator control device 20. Is done.
 さらに、冷凍機制御装置20の入力側には、操作パネル30が接続されている。この操作パネル30には、冷凍機の作動要求信号あるいは停止要求信号を出力する要求信号出力手段としての作動・停止スイッチ、庫内温度(目標冷却温度)Tsetを設定する目標温度設定手段としての温度設定スイッチ等が設けられ、これらのスイッチの操作信号が冷凍機制御装置20へ入力される。 Furthermore, an operation panel 30 is connected to the input side of the refrigerator control device 20. The operation panel 30 has an operation / stop switch as a request signal output means for outputting an operation request signal or a stop request signal for the refrigerator, and a temperature as a target temperature setting means for setting the internal temperature (target cooling temperature) Tset. Setting switches and the like are provided, and operation signals of these switches are input to the refrigerator control device 20.
 次に、上記構成における本実施形態の二段昇圧式冷凍サイクル装置10の作動を、図2に基づいて説明する。まず、図2は、冷凍機制御装置20が実行する制御処理を示すフローチャートである。この制御処理は、操作パネル30の作動・停止スイッチが投入(ON)されて作動要求信号が出力されるとスタートする。 Next, the operation of the two-stage step-up refrigeration cycle apparatus 10 of the present embodiment having the above configuration will be described with reference to FIG. First, FIG. 2 is a flowchart showing a control process executed by the refrigerator control device 20. This control process starts when the operation request signal is output after the operation / stop switch of the operation panel 30 is turned on.
 まず、ステップS1ではフラグ、タイマ等の初期化がなされ、次のステップS2で外気温センサ23および庫内温度センサ24等により検出された検出信号および操作パネル30の温度設定スイッチ等の操作信号を読み込み、温度設定スイッチによって設定されたTsetに応じて運転モードを決定する。具体的には、目標冷却温度Tsetが-10℃以上であれば生鮮食品などの鮮度の低下を抑制に適した温度での冷蔵を行うチルドモードとし、目標冷却Tsetが-10℃よりも低温であれば冷凍を行うフローズンモードとする。 First, in step S1, flags, timers, and the like are initialized, and in the next step S2, detection signals detected by the outside air temperature sensor 23 and the inside temperature sensor 24, and operation signals such as a temperature setting switch of the operation panel 30 are displayed. The operation mode is determined according to Tset set by reading and the temperature setting switch. Specifically, if the target cooling temperature Tset is −10 ° C. or higher, a chilled mode is performed in which refrigeration is performed at a temperature suitable for suppressing a decrease in freshness of fresh foods, and the target cooling Tset is lower than −10 ° C. If there is, set the frozen mode to freeze.
 続いて、ステップS3へ進み、制御モードを判定する。なお、制御モードは、チルドモード、フローズンモードとも共通であるため、運転モードごとでの説明は省略する。 Subsequently, the process proceeds to step S3 to determine the control mode. Since the control mode is common to both the chilled mode and the frozen mode, description for each operation mode is omitted.
 具体的には、ステップS3では、ステップS2で読み込んだ空気温度Tfrから、温度設定スイッチにて設定された目標冷却温度Tsetを減算した値である温度差ΔTが、予め定めた基準温度差ΔKTより大きいときは大能力が必要であると判定し、温度差ΔTが、予め定めた基準温度差ΔKT以下となっているときは庫内温度が設定温度Tsetに近づいた状態であり、細かな能力制御が必要な状態になっていると判定する。 Specifically, in step S3, the temperature difference ΔT, which is a value obtained by subtracting the target cooling temperature Tset set by the temperature setting switch from the air temperature Tfr read in step S2, is based on a predetermined reference temperature difference ΔKT. When the temperature difference is large, it is determined that a large capacity is necessary. When the temperature difference ΔT is equal to or less than a predetermined reference temperature difference ΔKT, the internal temperature is close to the set temperature Tset, and fine capacity control is performed. Is determined to be necessary.
 なお、ほとんどの場合、冷凍機の起動直後には、冷却対象空間である庫内温度が目標冷却温度Tsetよりも高くなっている。そのため、本実施形態では、温度差ΔTとして、空気温度Tfrから目標冷却温度Tsetを減算した値を採用しているが、もちろん、温度差ΔTとして、目標冷却温度Tsetから空気温度Tfrを減算した値の絶対値を採用してもよい。 In most cases, immediately after the start-up of the refrigerator, the internal temperature, which is the space to be cooled, is higher than the target cooling temperature Tset. Therefore, in this embodiment, a value obtained by subtracting the target cooling temperature Tset from the air temperature Tfr is used as the temperature difference ΔT. Of course, a value obtained by subtracting the air temperature Tfr from the target cooling temperature Tset as the temperature difference ΔT. The absolute value of may be adopted.
 ステップS3にて、大能力が必要であると判定された場合は、ステップS4へ進み、クールダウンモードでの運転を行う。ステップS4では、低段側圧縮機12の冷媒吐出能力および高段側圧縮機11の冷媒吐出能力が略最大となる高段側電動モータ11bおよび低段側電動モータ12bの回転数が決定される。 If it is determined in step S3 that a large capacity is necessary, the process proceeds to step S4, and operation is performed in the cool-down mode. In step S4, the rotational speeds of the high-stage electric motor 11b and the low-stage electric motor 12b are determined so that the refrigerant discharge capacity of the low-stage compressor 12 and the refrigerant discharge capacity of the high-stage compressor 11 are substantially maximized. .
 続くステップS5では、冷凍機のクールダウンモードにおけるその他の制御対象機器の制御状態を決定する。例えば、冷却ファン13aおよび送風ファン18aについては、その送風能力が略最大となるように回転数が決定されて、ステップS9へ進む。 In the subsequent step S5, the control state of other control target devices in the cool-down mode of the refrigerator is determined. For example, for the cooling fan 13a and the blower fan 18a, the number of rotations is determined so that the blower capacity is substantially maximized, and the process proceeds to step S9.
 一方、ステップS3にて、冷凍機の細かな能力制御が必要と判定された場合は、ステップS6へ進み、能力制御モードでの運転を行う。ステップS6では、今回ステップS2で読み込んだ検出信号および操作信号に基づいて、低段側圧縮機12の冷媒吐出能力を決定する。 On the other hand, if it is determined in step S3 that fine capacity control of the refrigerator is necessary, the process proceeds to step S6, and operation is performed in the capacity control mode. In step S6, the refrigerant discharge capacity of the low-stage compressor 12 is determined based on the detection signal and the operation signal read in step S2 this time.
 より具体的には、ステップS6では、制御温度と設定温度の偏差、積分、微分の要素に基づいて、低段側電動モータ12bの回転数、すなわち低段側圧縮機構12aの回転数N2を決定する。 More specifically, in step S6, the rotational speed of the low-stage side electric motor 12b, that is, the rotational speed N2 of the low-stage side compression mechanism 12a is determined based on elements of deviation, integration, and differentiation between the control temperature and the set temperature. To do.
 続くステップS7では、ステップS6にて決定された低段側圧縮機12の冷媒吐出能力に基づいて、高段側圧縮機11の冷媒吐出能力を決定する。 In subsequent step S7, the refrigerant discharge capacity of the high stage compressor 11 is determined based on the refrigerant discharge capacity of the low stage compressor 12 determined in step S6.
 具体的には、ステップS7では、下記数式F1によって定義される実効容積比が、下記数式F2に示す予め定めた基準範囲内の値となるように高段側圧縮機構11aの回転数N1を決定する。
実効容積比=N2×V2/N1×V1…(F1)
1≦N2×V2/N1×V1≦3…(F2)
 なお、V1は高段側圧縮機構11aの吐出容量であり、N1は高段側圧縮機構11aの回転数であり、V2は低段側圧縮機構12aの吐出容量であり、N2は低段側圧縮機構12aの回転数である。
Specifically, in step S7, the rotational speed N1 of the high-stage compression mechanism 11a is determined so that the effective volume ratio defined by the following formula F1 is a value within a predetermined reference range shown by the following formula F2. To do.
Effective volume ratio = N2 × V2 / N1 × V1 (F1)
1 ≦ N2 × V2 / N1 × V1 ≦ 3 (F2)
V1 is the discharge capacity of the high-stage compression mechanism 11a, N1 is the rotational speed of the high-stage compression mechanism 11a, V2 is the discharge capacity of the low-stage compression mechanism 12a, and N2 is the low-stage compression mechanism. This is the rotational speed of the mechanism 12a.
 続くステップS8では、その他の制御対象機器の制御状態を決定する。例えば、冷却ファン13aおよび送風ファン18aについては、ステップS6にて決定された低段側圧縮機構12aの回転数N2の増加に伴って、その送風能力が増加するように回転数が決定されて、ステップS9へ進む。 In subsequent step S8, the control state of the other control target device is determined. For example, for the cooling fan 13a and the blower fan 18a, the rotational speed is determined so that the blowing capacity increases as the rotational speed N2 of the low-stage compression mechanism 12a determined in step S6 increases. Proceed to step S9.
 次に、ステップS9では、ステップS4~S8にて決定された制御状態が得られるように、冷凍機制御装置20から、その出力側に接続された制御対象機器に対して制御信号が出力されてステップS10へ進む。 Next, in step S9, a control signal is output from the refrigerator control device 20 to the control target device connected to the output side so that the control state determined in steps S4 to S8 is obtained. Proceed to step S10.
 ステップS10では、操作パネル30からの停止要求信号が冷凍機制御装置20へ出力されている場合は、各制御対象機器の作動を停止させて、冷凍機のシステム全体を停止させる。一方、停止要求信号が出力されていない場合は、予め定めた制御周期τの経過を待って、ステップS2に戻る。 In step S10, when the stop request signal from the operation panel 30 is output to the refrigerator control device 20, the operation of each control target device is stopped and the entire system of the refrigerator is stopped. On the other hand, if the stop request signal is not output, the process returns to step S2 after waiting for a predetermined control period τ.
 従って、操作パネル30の作動・停止スイッチが投入されると、二段昇圧式冷凍サイクル装置10では、高段側圧縮機11が、低段側圧縮機12から吐出された中間圧冷媒と中間熱交換器16の中間圧冷媒流路16bから流出した中間圧冷媒との混合冷媒を吸入し、圧縮して吐出する。 Therefore, when the operation / stop switch of the operation panel 30 is turned on, in the two-stage booster type refrigeration cycle apparatus 10, the high-stage compressor 11 causes the intermediate-pressure refrigerant discharged from the low-stage compressor 12 and the intermediate heat to be discharged. The mixed refrigerant with the intermediate pressure refrigerant flowing out from the intermediate pressure refrigerant flow path 16b of the exchanger 16 is sucked, compressed and discharged.
 そして、高段側圧縮機11から吐出された高温高圧冷媒が、放熱器13へ流入し、冷却ファン13aにより送風された庫外空気と熱交換して冷却される。放熱器13から流出した高圧冷媒の流れは、分岐部14にて分岐される。そして、分岐部14から中間圧膨張弁15へ流入した高圧冷媒は、中間圧冷媒となるまで減圧膨張される。 The high-temperature and high-pressure refrigerant discharged from the high-stage compressor 11 flows into the radiator 13 and is cooled by exchanging heat with outside air blown by the cooling fan 13a. The flow of the high-pressure refrigerant that has flowed out of the radiator 13 is branched at the branching section 14. Then, the high-pressure refrigerant that has flowed into the intermediate pressure expansion valve 15 from the branch portion 14 is decompressed and expanded until it becomes an intermediate pressure refrigerant.
 この際、中間圧膨張弁15の絞り開度は、中間熱交換器16の中間圧冷媒流路16b出口側冷媒の過熱度が予め定めた所定値となるように調整される。さらに、中間圧膨張弁15にて減圧された中間圧冷媒は、中間熱交換器16の中間圧冷媒流路16bへ流入して、分岐部14から中間熱交換器16の高圧冷媒流路16aへ流入した高圧冷媒と熱交換して加熱され、高段側圧縮機11に吸入される。 At this time, the throttle opening of the intermediate pressure expansion valve 15 is adjusted so that the degree of superheat of the intermediate pressure refrigerant passage 16b outlet side refrigerant of the intermediate heat exchanger 16 becomes a predetermined value. Further, the intermediate pressure refrigerant decompressed by the intermediate pressure expansion valve 15 flows into the intermediate pressure refrigerant flow path 16b of the intermediate heat exchanger 16, and flows from the branch portion 14 to the high pressure refrigerant flow path 16a of the intermediate heat exchanger 16. Heat exchanged with the high-pressure refrigerant that has flowed in is heated and sucked into the high-stage compressor 11.
 一方、分岐部14から中間熱交換器16の高圧冷媒流路16aへ流入した高圧冷媒は、中間熱交換器16にて冷却される。高圧冷媒流路16aから流出した高圧冷媒は、低圧膨張弁17へ流入して、低圧冷媒となるまで減圧膨張される。この際、低圧膨張弁17の絞り開度は、蒸発器18出口側冷媒の過熱度が予め定めた所定値となるように調整される。 On the other hand, the high-pressure refrigerant that has flowed into the high-pressure refrigerant flow path 16a of the intermediate heat exchanger 16 from the branch portion 14 is cooled by the intermediate heat exchanger 16. The high-pressure refrigerant that has flowed out of the high-pressure refrigerant channel 16a flows into the low-pressure expansion valve 17 and is decompressed and expanded until it becomes a low-pressure refrigerant. At this time, the throttle opening degree of the low-pressure expansion valve 17 is adjusted so that the degree of superheat of the refrigerant on the outlet side of the evaporator 18 becomes a predetermined value.
 さらに、低圧膨張弁17にて減圧された低圧冷媒は、蒸発器18へ流入して、送風ファン18aによって循環送風された送風空気から吸熱して蒸発する。これにより、冷却対象空間である冷凍庫内に送風される送風空気が冷却される。蒸発器18から流出した冷媒は、低段側圧縮機12に吸入される。 Further, the low-pressure refrigerant decompressed by the low-pressure expansion valve 17 flows into the evaporator 18 and absorbs heat from the blown air circulated by the blower fan 18a to evaporate. Thereby, the ventilation air sent in the freezer which is space to be cooled is cooled. The refrigerant that has flowed out of the evaporator 18 is sucked into the low-stage compressor 12.
 本実施形態の二段昇圧式冷凍サイクル装置10は、上記の如く作動するので、前述したエコノマイザ式冷凍サイクル装置を構成して、高段側圧縮機構の圧縮効率を向上させることができるだけでなく、以下のような優れた効果を発揮することができる。 Since the two-stage booster refrigeration cycle apparatus 10 of the present embodiment operates as described above, not only can the above-described economizer refrigeration cycle apparatus be configured to improve the compression efficiency of the high-stage compression mechanism, The following excellent effects can be exhibited.
 まず、本実施形態では、外気温度Tam、空気温度Tfrおよび設定温度Tsetに基づいて、低段側圧縮機構12aの冷媒吐出能力を決定し、さらに、決定された低段側圧縮機構12aの冷媒吐出能力に基づいて、高段側圧縮機構11aの冷媒吐出能力を決定している。従って、それぞれの圧縮機構11b、12bの冷媒吐出能力を容易に決定できる。 First, in the present embodiment, the refrigerant discharge capacity of the low-stage compression mechanism 12a is determined based on the outside air temperature Tam, the air temperature Tfr, and the set temperature Tset, and the refrigerant discharge of the determined low-stage compression mechanism 12a is further determined. Based on the capability, the refrigerant discharge capability of the high-stage compression mechanism 11a is determined. Therefore, the refrigerant discharge capacities of the respective compression mechanisms 11b and 12b can be easily determined.
 この際、実効容積比が上記式F2を満たすように、高段側圧縮機構11aの冷媒吐出能力を決定しているので、高圧側冷媒圧力、中間冷媒圧力あるいは低圧側冷媒圧力を検出するための圧力検出手段を設ける必要のない簡素な構成で、かつ、極めて容易な制御で、サイクルの成績係数(COP)を向上させることができる。 At this time, since the refrigerant discharge capacity of the high-stage compression mechanism 11a is determined so that the effective volume ratio satisfies the above formula F2, the high-pressure side refrigerant pressure, the intermediate refrigerant pressure, or the low-pressure side refrigerant pressure is detected. The coefficient of performance (COP) of the cycle can be improved with a simple configuration that does not require the pressure detection means and extremely easy control.
 このことを図3を用いて、より詳細に説明する。図3は、実効容積比の変化に対するCOP比の変化を示すグラフであって、図3(a)は、外気温度Tam=38℃、設定温度Tset=-10℃の条件Aにおけるグラフであり、図3(b)は、外気温度Tam=10℃、設定温度Tset=-25℃の条件Bにおけるグラフである。 This will be described in more detail with reference to FIG. FIG. 3 is a graph showing a change in the COP ratio with respect to a change in the effective volume ratio, and FIG. 3A is a graph in the condition A where the outside air temperature Tam = 38 ° C. and the set temperature Tset = −10 ° C. FIG. 3B is a graph in Condition B where the outside air temperature Tam = 10 ° C. and the set temperature Tset = −25 ° C.
 また、COP比は、中間冷媒圧力を、高圧側冷媒圧力と低圧側冷媒圧力との相乗平均とは異なる所定値とした場合のCOPに対する本実施形態の二段昇圧式冷凍サイクル装置10のCOPの比である。 The COP ratio is the COP of the two-stage boost refrigeration cycle apparatus 10 of the present embodiment relative to the COP when the intermediate refrigerant pressure is set to a predetermined value different from the geometric mean of the high-pressure side refrigerant pressure and the low-pressure side refrigerant pressure. Is the ratio.
 図3から明らかなように、いずれの条件においても、実効容積比が1以上、3以下となる範囲でCOP比にピークが現れる。このことは、実効容積比を1以上、3以下の範囲とすることで、中間冷媒圧力を、高圧側冷媒圧力と低圧側冷媒圧力との相乗平均に近づけることができることを意味している。 As is clear from FIG. 3, a peak appears in the COP ratio in the range where the effective volume ratio is 1 or more and 3 or less under any condition. This means that the intermediate refrigerant pressure can be made close to the geometric mean of the high-pressure side refrigerant pressure and the low-pressure side refrigerant pressure by setting the effective volume ratio in the range of 1 or more and 3 or less.
 従って、本実施形態の二段昇圧式冷凍サイクル装置10によれば、簡素な構成で、かつ、極めて容易な制御で、COPを向上させることができる。なお、いずれの条件においても、COP比のピーク値は実効容積比が2の近傍に存在しているので、制御ステップS7において、実効容積比を1.5以上、2.5以下の範囲とすれば、より一層COPを向上できる。 Therefore, according to the two-stage boost type refrigeration cycle apparatus 10 of the present embodiment, COP can be improved with a simple configuration and extremely easy control. Note that the peak value of the COP ratio is present in the vicinity of the effective volume ratio of 2 under any of the conditions. Therefore, in the control step S7, the effective volume ratio is set within the range of 1.5 to 2.5. Thus, the COP can be further improved.
 また、本実施形態のように冷凍機に適用される冷凍サイクルでは、例えば、空調装置に適用される冷凍サイクルに対して、高圧側冷媒圧力と低圧側冷媒圧力との圧力差が大きくなるので、圧縮機の消費動力が増大しやすい。従って、冷凍機に適用される冷凍サイクルにおいてCOPを向上できることは、極めて有効である。 Further, in the refrigeration cycle applied to the refrigerator as in the present embodiment, for example, the pressure difference between the high-pressure side refrigerant pressure and the low-pressure side refrigerant pressure is larger than the refrigeration cycle applied to the air conditioner. The power consumption of the compressor tends to increase. Therefore, it is extremely effective to improve COP in a refrigeration cycle applied to a refrigerator.
 さらに、本実施形態では、高段側圧縮機構11aおよび低段側圧縮機構12aの冷媒吐出能力によらず、中間熱交換器16の中間圧冷媒流路16b出口側冷媒が過熱度を有するように中間圧膨張弁15の絞り開度が調整されるので、高段側圧縮機構11aの液圧縮の問題を回避できる。また、蒸発器18出口側冷媒が過熱度を有するように低圧膨張弁17の絞り開度が調整されるので、低段側圧縮機構12aの液圧縮の問題を回避できる。 Further, in the present embodiment, the refrigerant on the outlet side of the intermediate pressure refrigerant flow path 16b of the intermediate heat exchanger 16 has a superheat degree regardless of the refrigerant discharge capacity of the high stage compression mechanism 11a and the low stage compression mechanism 12a. Since the throttle opening degree of the intermediate pressure expansion valve 15 is adjusted, the problem of liquid compression of the high stage side compression mechanism 11a can be avoided. Moreover, since the throttle opening degree of the low-pressure expansion valve 17 is adjusted so that the refrigerant on the outlet side of the evaporator 18 has a superheat degree, the problem of liquid compression of the low-stage compression mechanism 12a can be avoided.
 従って、簡素な構成で高段側圧縮機構11aおよび低段側圧縮機構12aの信頼性、すなわち二段昇圧式冷凍サイクル装置全体としての信頼性を向上させることができる。 Therefore, it is possible to improve the reliability of the high-stage compression mechanism 11a and the low-stage compression mechanism 12a with a simple structure, that is, the reliability of the entire two-stage booster refrigeration cycle apparatus.
 また、本実施形態では、外気温度Tam等に基づいて、低段側圧縮機構12aの冷媒吐出能力を決定しているので、外気温度Tam等に基づいて蒸発器18の冷媒蒸発圧力を直接的に決定することができる。従って、冷凍庫内に送風される送風空気の空気温度Tfrを、設定温度Tsetに近づけやすい。 In this embodiment, since the refrigerant discharge capacity of the low-stage compression mechanism 12a is determined based on the outside air temperature Tam or the like, the refrigerant evaporation pressure of the evaporator 18 is directly set based on the outside air temperature Tam or the like. Can be determined. Therefore, the air temperature Tfr of the blown air blown into the freezer is easily brought close to the set temperature Tset.
 また、本実施形態の二段昇圧式冷凍サイクル装置10では、中間熱交換器16を備えているので、中間圧膨張弁15から流出した中間圧冷媒を分岐部14にて分岐された高圧冷媒によって加熱し、容易に気相冷媒とすることができる。その結果、より一層確実に、二段昇圧式冷凍サイクル装置の信頼性を向上させることができる。 Further, since the two-stage booster type refrigeration cycle apparatus 10 of the present embodiment includes the intermediate heat exchanger 16, the intermediate pressure refrigerant that has flowed out of the intermediate pressure expansion valve 15 is separated by the high-pressure refrigerant that is branched at the branch portion 14. It can be heated and easily converted into a gas phase refrigerant. As a result, the reliability of the two-stage booster refrigeration cycle apparatus can be improved more reliably.
 さらに、分岐部14にて分岐された高圧冷媒を中間圧膨張弁15から流出した中間圧冷媒によって冷却できるので、蒸発器18入口側冷媒のエンタルピと出口側冷媒のエンタルピとのエンタルピ差を拡大して、蒸発器18にて発揮される冷凍能力を増大することができる。その結果、より一層、二段昇圧式冷凍サイクル装置のCOPを向上させることができる。 Furthermore, since the high-pressure refrigerant branched by the branching section 14 can be cooled by the intermediate-pressure refrigerant flowing out from the intermediate-pressure expansion valve 15, the enthalpy difference between the enthalpy of the evaporator 18 inlet side refrigerant and the enthalpy of the outlet side refrigerant is increased. Thus, the refrigerating capacity exhibited by the evaporator 18 can be increased. As a result, the COP of the two-stage booster refrigeration cycle apparatus can be further improved.
 また、本実施形態では、制御ステップS3にて、冷凍機の起動直後ではないと判定された場合に、高段側圧縮機構11aの冷媒吐出能力を低段側圧縮機構12aの冷媒吐出能力に基づいて決定するようにしている。従って、冷凍機の起動直後には、低段側圧縮機構12aの冷媒吐出能力および高段側圧縮機構11aの冷媒吐出能力を略最大として、冷却対象空間を急速に冷却する運転モードを実行することができる。 Moreover, in this embodiment, when it determines with it not being immediately after starting of a refrigerator in control step S3, the refrigerant | coolant discharge capability of the high stage compression mechanism 11a is based on the refrigerant | coolant discharge capability of the low stage compression mechanism 12a. To decide. Accordingly, immediately after starting the refrigerator, the operation mode for rapidly cooling the cooling target space is executed with the refrigerant discharge capacity of the low-stage compression mechanism 12a and the refrigerant discharge capacity of the high-stage compression mechanism 11a being substantially maximized. Can do.
 また、本実施形態では、高段側圧縮機構11aおよび低段側圧縮機構12aとして固定容量型圧縮機構を採用しているので、それぞれの吐出容量V1、V2を一定の値とすることができる。従って、低段側圧縮機構12aの回転数N2を決定した後に、高段側圧縮機構11aの回転数N1を調整するだけで、実効容量比を容易に所望の範囲内の値とすることができる。 Further, in the present embodiment, since the fixed displacement type compression mechanism is adopted as the high stage side compression mechanism 11a and the low stage side compression mechanism 12a, the respective discharge capacities V1 and V2 can be set to constant values. Therefore, after determining the rotational speed N2 of the low-stage compression mechanism 12a, the effective capacity ratio can be easily set to a value within a desired range by simply adjusting the rotational speed N1 of the high-stage compression mechanism 11a. .
 (第2実施形態)
 第2実施形態では、図4の全体構成図に示すように、第1実施形態に対して、高段側圧縮機構11aおよび低段側圧縮機構12aを可変容量型圧縮機構で構成した例を説明する。さらに、本実施形態では、高段側電動モータ11bおよび低段側電動モータ12bを廃止して、双方の圧縮機構11a、12aを共通する電動モータ19にて回転駆動している。なお、図4では、第1実施形態と同一もしくは均等部分には同一の符号を付している。
(Second Embodiment)
In the second embodiment, as shown in the overall configuration diagram of FIG. 4, an example in which the high-stage compression mechanism 11a and the low-stage compression mechanism 12a are configured with a variable displacement compression mechanism is described with respect to the first embodiment. To do. Furthermore, in this embodiment, the high stage side electric motor 11b and the low stage side electric motor 12b are abolished, and both compression mechanisms 11a and 12a are rotationally driven by the common electric motor 19. In FIG. 4, the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals.
 より具体的には、本実施形態では、高段側圧縮機構11aおよび低段側圧縮機構12aとして、斜板式可変容量型圧縮機構を採用している。斜板式可変容量型圧縮機構は、斜板式の圧縮機構において、斜板室内の制御圧力Pcを変化させることによって、斜板の傾斜角度を可変してピストンのストロークを変化させ、これにより、吐出容量を略0%~100%の範囲で連続的に変化させるようになっている。 More specifically, in this embodiment, a swash plate type variable displacement compression mechanism is employed as the high-stage compression mechanism 11a and the low-stage compression mechanism 12a. The swash plate type variable displacement compression mechanism is a swash plate type compression mechanism in which the control angle Pc in the swash plate chamber is changed to change the tilt angle of the swash plate to change the stroke of the piston. Is continuously changed in a range of approximately 0% to 100%.
 高段側圧縮機構11aおよび低段側圧縮機構12aの斜板室内の制御圧力Pcは、それぞれ電磁式容量制御弁11c、12cの弁開度を変化させて、斜板室へ導入させる高圧冷媒および低圧冷媒の導入割合を変化させることによって調整される。これら電磁式容量制御弁11c、12cは、それぞれ冷凍機制御装置20の第1、第2吐出能力制御部20a、20bから出力される制御電流によって、その作動が制御される。 The control pressure Pc in the swash plate chamber of the high-stage compression mechanism 11a and the low-stage compression mechanism 12a is a high pressure refrigerant and a low pressure introduced into the swash plate chamber by changing the valve opening degree of the electromagnetic capacity control valves 11c and 12c, respectively. It is adjusted by changing the introduction ratio of the refrigerant. The operation of the electromagnetic capacity control valves 11c and 12c is controlled by control currents output from the first and second discharge capacity control units 20a and 20b of the refrigerator control device 20, respectively.
 電動モータ19は、第1実施形態の高段側電動モータ11bおよび低段側電動モータ12bと同様に、インバータ25から出力される交流電流によって、その作動(回転数)が制御される交流モータである。インバータ25は、冷凍機制御装置20から出力される制御信号に応じた周波数の交流電流を出力する。 The electric motor 19 is an AC motor whose operation (number of rotations) is controlled by an AC current output from the inverter 25, similarly to the high-stage electric motor 11b and the low-stage electric motor 12b of the first embodiment. is there. The inverter 25 outputs an alternating current having a frequency corresponding to the control signal output from the refrigerator control device 20.
 さらに、本実施形態の電動モータ19が出力する回転駆動力は、プーリおよびベルトを介して、双方の圧縮機構11a、12aへ伝達される。従って、本実施形態の低段側圧縮機構12aの回転数N2と高段側圧縮機構11aの回転数N1との回転数比N2/N1は、常に一定の値となる。本実施形態では、回転数比N2/N1を略1として、低段側圧縮機構12aの回転数N2と高段側圧縮機構11aの回転数N1を同等としている。 Furthermore, the rotational driving force output from the electric motor 19 of the present embodiment is transmitted to both compression mechanisms 11a and 12a via pulleys and belts. Therefore, the rotational speed ratio N2 / N1 between the rotational speed N2 of the low-stage compression mechanism 12a and the rotational speed N1 of the high-stage compression mechanism 11a of the present embodiment is always a constant value. In the present embodiment, the rotational speed ratio N2 / N1 is set to approximately 1, and the rotational speed N2 of the low-stage compression mechanism 12a is made equal to the rotational speed N1 of the high-stage compression mechanism 11a.
 その他の構成および作動は、第1実施形態と同様である。従って、本実施形態の二段昇圧式冷凍サイクル装置10においても、第1実施形態と同様に、簡素な構成で、かつ、極めて容易な制御で、サイクルの成績係数(COP)を向上させることができる。さらに、簡素な構成で、高段側圧縮機構11aおよび低段側圧縮機構12aの信頼性、すなわち二段昇圧式冷凍サイクル装置全体としての信頼性を向上させることができる。 Other configurations and operations are the same as those in the first embodiment. Therefore, also in the two-stage boost type refrigeration cycle apparatus 10 of the present embodiment, the coefficient of performance (COP) of the cycle can be improved with a simple configuration and extremely easy control as in the first embodiment. it can. Furthermore, the reliability of the high-stage compression mechanism 11a and the low-stage compression mechanism 12a, that is, the reliability of the entire two-stage booster refrigeration cycle apparatus can be improved with a simple configuration.
 また、本実施形態では、高段側圧縮機構11aおよび低段側圧縮機構12aとして可変容量型圧縮機構を採用しているので、それぞれの圧縮機構11a、12aの吐出容量V1、V2を独立して変更することができる。従って、双方の圧縮機構11a、12aの回転数N1、N2が同じ値になっていても、容易に実効容量比(N2×V2/N1×V1)を所望の値に変化させることができる。 In the present embodiment, since variable displacement compression mechanisms are employed as the high-stage compression mechanism 11a and the low-stage compression mechanism 12a, the discharge capacities V1 and V2 of the respective compression mechanisms 11a and 12a are independently set. Can be changed. Accordingly, the effective capacity ratio (N2 × V2 / N1 × V1) can be easily changed to a desired value even if the rotational speeds N1 and N2 of both the compression mechanisms 11a and 12a have the same value.
 さらに、双方の圧縮機構11a、12aを共通する駆動源(電動モータ19)にて駆動することができるので、サイクル構成をより一層簡素な構成とすることができる。 Furthermore, since both the compression mechanisms 11a and 12a can be driven by a common drive source (electric motor 19), the cycle configuration can be further simplified.
 (他の実施形態)
 本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present invention.
 (1)上述の実施形態では、中間熱交換器16を採用したサイクル構成について説明したが、本発明の二段昇圧式冷凍サイクル装置のサイクル構成は、これに限定されない。例えば、中間熱交換器16を廃止して、中間圧膨張弁15から流出した冷媒の気液を分離する中間気液分離器を設けてもよい。 (1) In the above-described embodiment, the cycle configuration employing the intermediate heat exchanger 16 has been described, but the cycle configuration of the two-stage booster refrigeration cycle apparatus of the present invention is not limited to this. For example, the intermediate heat exchanger 16 may be eliminated, and an intermediate gas-liquid separator that separates the gas-liquid refrigerant flowing out from the intermediate-pressure expansion valve 15 may be provided.
 そして、中間気液分離器にて分離された気相冷媒を高段側圧縮機11へ吸入させるようにしてもよい。この場合は、中間圧膨張弁15を廃止して、固定絞りを採用してもよい。さらに、分岐部14を廃止して中間気液分離器にて分離された液相冷媒を低圧膨張弁17へ流入させるようにしてエコノマイザ式冷凍サイクル装置として構成してもよい。 Then, the gas-phase refrigerant separated by the intermediate gas-liquid separator may be sucked into the high-stage compressor 11. In this case, the intermediate pressure expansion valve 15 may be eliminated and a fixed throttle may be employed. Further, the economizer type refrigeration cycle apparatus may be configured such that the liquid phase refrigerant separated by the intermediate gas-liquid separator is made to flow into the low-pressure expansion valve 17 by eliminating the branch portion 14.
 (2)上述の実施形態では、図2の制御ステップS6にて、外気温度Tam等に基づいて、低段側圧縮機12の冷媒吐出能力を決定し、さらに制御ステップS7にて、低段側圧縮機12の冷媒吐出能力に基づいて、高段側圧縮機11の冷媒吐出能力を決定した例を説明したが、もちろん、同様に、制御ステップS6にて高段側圧縮機11の冷媒吐出能力を決定し、制御ステップS7にて、低段側圧縮機12の冷媒吐出能力を決定してもよい。 (2) In the above-described embodiment, the refrigerant discharge capacity of the low-stage compressor 12 is determined based on the outside air temperature Tam or the like in the control step S6 of FIG. Although the example which determined the refrigerant | coolant discharge capability of the high stage side compressor 11 based on the refrigerant | coolant discharge capability of the compressor 12 was demonstrated, of course, similarly, the refrigerant | coolant discharge capability of the high stage side compressor 11 is similarly in control step S6. In step S7, the refrigerant discharge capacity of the low-stage compressor 12 may be determined.
 さらに、制御ステップS6では、外気温度Tam、空気温度Tfrおよび設定温度Tsetに基づいて、低段側圧縮機12の冷媒吐出能力を決定した例を説明したが、外気温度Tam、空気温度Tfr、設定温度Tsetのうち少なくとも1つを用いて、低段側圧縮機12の冷媒吐出能力を決定してもよい。 Furthermore, in the control step S6, the example in which the refrigerant discharge capacity of the low-stage compressor 12 is determined based on the outside air temperature Tam, the air temperature Tfr, and the set temperature Tset has been described. However, the outside air temperature Tam, the air temperature Tfr, the setting The refrigerant discharge capacity of the low-stage compressor 12 may be determined using at least one of the temperatures Tset.
 (3)上述の実施形態では、中間圧膨張弁15および低圧膨張弁17として、温度式膨張弁を採用した例を説明したが、中間圧膨張弁15および低圧膨張弁17として、電気式膨張弁を採用してもよい。 (3) In the above-described embodiment, the example in which the temperature type expansion valve is used as the intermediate pressure expansion valve 15 and the low pressure expansion valve 17 has been described. However, as the intermediate pressure expansion valve 15 and the low pressure expansion valve 17, the electric expansion valve is used. May be adopted.
 そして、例えば、中間圧冷媒流路16b出口側冷媒の温度と圧力とを検出する検出手段を追加して、中間圧冷媒流路16b出口側冷媒の過熱度が予め設定された所定値となるように中間圧膨張弁15の作動を制御してもよい。また、蒸発器18出口側冷媒の温度と圧力とを検出する検出手段を追加して、蒸発器18出口側冷媒の過熱度が予め設定された所定値となるように低圧膨張弁17の作動を制御してもよい。 For example, detection means for detecting the temperature and pressure of the refrigerant on the outlet side of the intermediate pressure refrigerant flow path 16b is added so that the degree of superheat of the refrigerant on the outlet side of the intermediate pressure refrigerant flow path 16b becomes a predetermined value set in advance. In addition, the operation of the intermediate pressure expansion valve 15 may be controlled. Further, detection means for detecting the temperature and pressure of the refrigerant on the outlet side of the evaporator 18 is added to operate the low pressure expansion valve 17 so that the superheat degree of the refrigerant on the outlet side of the evaporator 18 becomes a predetermined value. You may control.
 (4)上述の実施形態では、本発明の二段昇圧式冷凍サイクル装置10を冷凍機に適用した例を説明したが、本発明の適用はこれに限定されない。例えば、空調装置、冷蔵庫等に適用してもよい。さらに、移動体(車両、船舶)等の冷蔵・冷凍コンテナに適用してもよい。 (4) In the above-described embodiment, the example in which the two-stage boost type refrigeration cycle apparatus 10 of the present invention is applied to a refrigerator has been described, but the application of the present invention is not limited to this. For example, you may apply to an air conditioner, a refrigerator, etc. Furthermore, the present invention may be applied to refrigerated / frozen containers such as mobile bodies (vehicles, ships).
 定置型の空調装置、冷蔵・冷凍庫では、商用電源等から圧縮機11、12の駆動用エネルギを入手しやすいが、この種の移動体に適用される冷蔵・冷凍コンテナでは、駆動用エネルギが限られていることから、本発明の二段昇圧式冷凍サイクル装置10のようにCOPを向上できることは、効果的である。 In stationary air conditioners and refrigerators / freezers, it is easy to obtain driving energy for the compressors 11 and 12 from a commercial power source or the like. However, in a refrigerator / freezer container applied to this type of mobile body, the driving energy is limited. Therefore, it is effective that the COP can be improved as in the two-stage boost type refrigeration cycle apparatus 10 of the present invention.
 (5)上述の制御ステップS3では、温度差ΔTと基準温度差ΔKTとを比較することで、大能力が必要か否かを判定した例を説明したが、判定方法はこれに限定されない。 (5) In the control step S3 described above, an example has been described in which it is determined whether or not a large capacity is necessary by comparing the temperature difference ΔT and the reference temperature difference ΔKT, but the determination method is not limited to this.
 例えば、作動・停止スイッチが投入(ON)された後に、まず、空気温度Tfrと目標冷却温度Tsetとの差が縮小するように、双方の圧縮機構11a、12aの回転数を決定する制御態様において、単位時間あたりの空気温度Tfrの温度変化量ΔTfrが、予め定めた基準温度変化量ΔKTfrより大きいときは冷凍機の起動直後であると判定し、ΔTfrが、予め定めた基準温度変化量ΔKTfr以下となっているときは冷凍機が定常状態になっていると判定するようにしてもよい。
(6)冷媒として共沸冷媒もしくは擬似共沸冷媒を用いる場合、中間圧冷媒流路16bの入口側冷媒温度と中間圧冷媒流路16bの出口側冷媒温度との温度差を検知し、この温度差が予め設定された所定値となるように中間圧膨張弁15の弁開度(冷媒流量)を調整してもよい。
For example, after the operation / stop switch is turned on (ON), first, in the control mode in which the rotational speeds of both the compression mechanisms 11a and 12a are determined so that the difference between the air temperature Tfr and the target cooling temperature Tset is reduced. When the temperature change amount ΔTfr of the air temperature Tfr per unit time is larger than the predetermined reference temperature change amount ΔKTfr, it is determined that the refrigerator has just been started, and ΔTfr is equal to or less than the predetermined reference temperature change amount ΔKTfr. When it is, it may be determined that the refrigerator is in a steady state.
(6) When an azeotropic refrigerant or a pseudo-azeotropic refrigerant is used as the refrigerant, the temperature difference between the inlet side refrigerant temperature of the intermediate pressure refrigerant flow path 16b and the outlet side refrigerant temperature of the intermediate pressure refrigerant flow path 16b is detected, and this temperature The valve opening degree (refrigerant flow rate) of the intermediate pressure expansion valve 15 may be adjusted so that the difference becomes a predetermined value set in advance.
 また、冷媒温度として、中間圧冷媒流路16bと他の機器を接続する冷媒配管の表面温度を用いてもよい。 Also, as the refrigerant temperature, the surface temperature of the refrigerant pipe connecting the intermediate pressure refrigerant flow path 16b and another device may be used.
 (7)上述の第1実施形態では、ステップS5およびステップS7において、低段側圧縮機、高段側圧縮機以外の他の機器(冷却ファン13aおよび送風ファン18a)を制御モードに応じた制御とする実施形態について述べたが、運転モードに応じてこれらの機器を制御する形態としてもよい。たとえば、チルドモード時には冷却ファン13aおよび送風ファン18aの送風能力が略最大となるように制御し、フローズンモード時には冷却ファン13aおよび送風ファン18aの送風能力を低風量となるように制御してもよい。 (7) In the first embodiment described above, in step S5 and step S7, control of the other devices (the cooling fan 13a and the blower fan 18a) other than the low-stage compressor and the high-stage compressor is performed according to the control mode. However, it may be configured to control these devices according to the operation mode. For example, the cooling fan 13a and the blower fan 18a may be controlled to be substantially maximized in the chilled mode, and the blower fan 13a and the blower fan 18a may be controlled to have a low air volume in the frozen mode. .
 (8)上述の実施形態では、ステップ6において低段側電動モータ12bの回転数を制御温度と設定温度とを用いた、いわゆるPID制御で制御する形態について述べたが、外気温度Tam、空気温度Tfr、設定温度Tsetに基づいて、予め冷凍機制御装置20の記憶回路に記憶されている制御マップを参照して、外気温Tamの上昇、空気温度Tfrの上昇、さらに設定温度Tsetの低下に伴って、低段側圧縮機12の冷媒吐出能力が増加するように低段側電動モータ12bの回転数、すなわち低段側圧縮機構12aの回転数N2を決定してもよい。 (8) In the above-described embodiment, the mode in which the rotation speed of the low-stage electric motor 12b is controlled by the so-called PID control using the control temperature and the set temperature in Step 6 has been described, but the outside air temperature Tam, the air temperature With reference to the control map stored in advance in the storage circuit of the refrigerator control device 20 based on the Tfr and the set temperature Tset, as the outside air temperature Tam rises, the air temperature Tfr rises, and further, the set temperature Tset falls Thus, the rotational speed of the low-stage electric motor 12b, that is, the rotational speed N2 of the low-stage compression mechanism 12a may be determined so that the refrigerant discharge capacity of the low-stage compressor 12 is increased.
 (9)上述の第2実施形態では、1つの電動モータ19を駆動手段として、高段側圧縮機構11aおよび低段側圧縮機構12aの双方を駆動した例を説明したが、もちろん、それぞれの圧縮機構11a、12aに対して、別々の駆動手段を採用してもよいし、駆動手段としてエンジン(内燃機関)を採用してもよい。
 
(9) In the above-described second embodiment, an example in which both the high-stage compression mechanism 11a and the low-stage compression mechanism 12a are driven using one electric motor 19 as a drive unit has been described. Separate mechanisms may be employed for the mechanisms 11a and 12a, and an engine (internal combustion engine) may be employed as the mechanism.

Claims (8)

  1.  低圧冷媒を中間圧冷媒となるまで圧縮して吐出する低段側圧縮機構(12a)と、
     前記低段側圧縮機構(12a)から吐出された中間圧冷媒を高圧冷媒となるまで圧縮して吐出する高段側圧縮機構(11a)と、
     前記高段側圧縮機構(11a)から吐出された高圧冷媒を室外空気と熱交換させて放熱させる放熱器(13)と、
     前記放熱器(13)から流出した高圧冷媒を中間圧冷媒となるまで減圧膨張させて前記高段側圧縮機構(11a)吸入側へ流出する中間圧膨張弁(15)と、
     前記放熱器(13)から流出した高圧冷媒を低圧冷媒となるまで減圧膨張させる低圧膨張弁(17)と、
     前記低圧膨張弁(17)にて減圧膨張された低圧冷媒を冷却対象空間に送風される送風空気と熱交換させて蒸発させ、前記低段側圧縮機構(12a)吸入側へ流出する蒸発器(18)とを備える二段昇圧式冷凍サイクル装置であって、
     前記放熱器(13)にて前記高圧冷媒と熱交換する前記室外空気の外気温度(Tam)および前記蒸発器(18)にて前記低圧冷媒と熱交換する前記送風空気の空気温度(Tfr)のうち、少なくとも一方の温度の上昇に伴って、前記高段側圧縮機構(11a)および前記低段側圧縮機構(12a)のうち一方の圧縮機構の冷媒吐出能力を増加させるように決定する第1吐出能力制御部(20a)と、
     前記一方の圧縮機構の冷媒吐出能力に基づいて、前記他方の圧縮機構の冷媒吐出能力を決定する第2吐出能力制御部(20b)とを備え、
     前記第2吐出能力制御部(20b)は、前記高段側圧縮機構(11a)の吐出容量をV1、前記高段側圧縮機構(11a)の回転数をN1、前記低段側圧縮機構(12a)の吐出容量をV2、前記低段側圧縮機構(12a)の回転数をN2とした場合、N2×V2/N1×V1にて定義される実効容量比が予め定めた基準範囲内の値となるように、前記他方の圧縮機構の冷媒吐出能力を決定することを特徴とする二段昇圧式冷凍サイクル装置。
    A low-stage compression mechanism (12a) that compresses and discharges the low-pressure refrigerant until it becomes an intermediate-pressure refrigerant;
    A high-stage compression mechanism (11a) that compresses and discharges the intermediate-pressure refrigerant discharged from the low-stage compression mechanism (12a) until it becomes a high-pressure refrigerant;
    A radiator (13) for exchanging heat by exchanging heat between the high-pressure refrigerant discharged from the high-stage compression mechanism (11a) and outdoor air;
    An intermediate pressure expansion valve (15) that decompresses and expands the high-pressure refrigerant flowing out of the radiator (13) until it becomes an intermediate-pressure refrigerant, and flows out to the suction side of the high-stage compression mechanism (11a);
    A low-pressure expansion valve (17) for decompressing and expanding the high-pressure refrigerant flowing out of the radiator (13) until it becomes a low-pressure refrigerant;
    The low pressure refrigerant decompressed and expanded by the low pressure expansion valve (17) is evaporated by exchanging heat with the blown air blown into the space to be cooled and flowing out to the suction side of the low stage compression mechanism (12a) ( 18) a two-stage boost type refrigeration cycle apparatus comprising:
    The outdoor air temperature (Tam) of the outdoor air that exchanges heat with the high-pressure refrigerant in the radiator (13) and the air temperature (Tfr) of the blown air that exchanges heat with the low-pressure refrigerant in the evaporator (18). Of these, as the temperature rises, at least one of the high-stage compression mechanism (11a) and the low-stage compression mechanism (12a) is determined to increase the refrigerant discharge capacity of one of the compression mechanisms. A discharge capacity controller (20a);
    A second discharge capacity control unit (20b) that determines the refrigerant discharge capacity of the other compression mechanism based on the refrigerant discharge capacity of the one compression mechanism;
    The second discharge capacity control unit (20b) has a discharge capacity of the high-stage compression mechanism (11a) as V1, a rotation speed of the high-stage compression mechanism (11a) as N1, and the low-stage compression mechanism (12a). ) Discharge capacity is V2, and the rotation speed of the low-stage compression mechanism (12a) is N2, the effective capacity ratio defined by N2 × V2 / N1 × V1 is a value within a predetermined reference range. Thus, the two-stage boosting type refrigeration cycle apparatus is characterized in that the refrigerant discharge capacity of the other compression mechanism is determined.
  2.  前記中間圧膨張弁(15)は、前記放熱器(13)から流出した高圧冷媒の流れを分岐する分岐部(14)にて分岐された一方の高圧冷媒を減圧膨張させ、
     前記低圧膨張弁(17)は、前記分岐部(14)にて分岐された他方の高圧冷媒を減圧膨張させ、
     さらに、前記中間圧膨張弁(15)にて減圧膨張された低圧冷媒と前記分岐部(14)にて分岐された他方の高圧冷媒とを熱交換させる中間熱交換器(16)を備えることを特徴とする請求項1に記載の二段昇圧式冷凍サイクル装置。
    The intermediate pressure expansion valve (15) decompresses and expands one of the high-pressure refrigerants branched at the branching part (14) that branches the flow of the high-pressure refrigerant flowing out of the radiator (13),
    The low-pressure expansion valve (17) decompresses and expands the other high-pressure refrigerant branched at the branch portion (14),
    And an intermediate heat exchanger (16) for exchanging heat between the low pressure refrigerant decompressed and expanded by the intermediate pressure expansion valve (15) and the other high pressure refrigerant branched by the branch section (14). The two-stage booster type refrigeration cycle apparatus according to claim 1, wherein
  3.  前記一方の圧縮機構は、前記低段側圧縮機構(12a)であり、
     前記他方の圧縮機構は、前記高段側圧縮機構(11a)であることを特徴とする請求項1または2に記載の二段昇圧式冷凍サイクル装置。
    The one compression mechanism is the low-stage compression mechanism (12a),
    The two-stage booster type refrigeration cycle apparatus according to claim 1 or 2, wherein the other compression mechanism is the high-stage compression mechanism (11a).
  4.  前記第2吐出能力制御部(20b)は、前記空気温度(Tfr)と前記冷却対象空間の目標冷却温度(Tset)との温度差(ΔT)の絶対値が予め定めた基準温度差(ΔKT)以下となったときに、前記一方の圧縮機構の冷媒吐出能力に基づいて、前記他方の圧縮機構の冷媒吐出能力を決定することを特徴とする請求項1ないし3のいずれか1つに記載の二段昇圧式冷凍サイクル装置。 The second discharge capacity control unit (20b) has a reference temperature difference (ΔKT) in which an absolute value of a temperature difference (ΔT) between the air temperature (Tfr) and a target cooling temperature (Tset) of the space to be cooled is predetermined. 4. The refrigerant discharge capacity of the other compression mechanism is determined based on the refrigerant discharge capacity of the one compression mechanism when it becomes the following. 5. Two-stage booster refrigeration cycle equipment.
  5.  前記空気温度(Tfr)が前記標冷却温度(Tset)よりも高温であり、かつ前記第2吐出能力制御部(20b)は、前記空気温度(Tfr)と前記冷却対象空間の目標冷却温度(Tset)との温度差(ΔT)の絶対値が予め定めた基準温度差(ΔKT)以下となったときに、前記一方の圧縮機構の冷媒吐出能力に基づいて、前記他方の圧縮機構の冷媒吐出能力を決定することを特徴とする請求項4に記載の二段昇圧式冷凍サイクル装置。 The air temperature (Tfr) is higher than the target cooling temperature (Tset), and the second discharge capacity control unit (20b) determines the air temperature (Tfr) and the target cooling temperature (Tset) of the space to be cooled. ), When the absolute value of the temperature difference (ΔT) is equal to or less than a predetermined reference temperature difference (ΔKT), the refrigerant discharge capacity of the other compression mechanism is based on the refrigerant discharge capacity of the one compression mechanism. The two-stage booster type refrigeration cycle apparatus according to claim 4, wherein:
  6.  前記高段側圧縮機構(11a)および前記低段側圧縮機構(12a)は、その吐出容量(V2、V1)が固定された固定容量型圧縮機構で構成されており、
     さらに、前記高段側圧縮機構(11a)を回転駆動する高段側電動モータ(11a)と、
     前記低段側圧縮機構(12a)を回転駆動する低段側電動モータ(12b)とを備え、
     前記高段側電動モータ(11a)の回転数および前記低段側電動モータ(12b)の回転数は、互いに独立して制御可能に構成されていることを特徴とする請求項1ないし5のいずれか1つに記載の二段昇圧式冷凍サイクル装置。
    The high-stage compression mechanism (11a) and the low-stage compression mechanism (12a) are configured by a fixed capacity compression mechanism having a fixed discharge capacity (V2, V1).
    Furthermore, a high-stage electric motor (11a) that rotationally drives the high-stage compression mechanism (11a),
    A low-stage electric motor (12b) that rotationally drives the low-stage compression mechanism (12a),
    The rotational speed of the high stage side electric motor (11a) and the rotational speed of the low stage side electric motor (12b) are configured to be controllable independently of each other. The two-stage booster type refrigeration cycle apparatus according to claim 1.
  7.  前記高段側圧縮機構(11a)および前記低段側圧縮機構(12a)は、その吐出容量(V2、V1)を変更可能な可変容量型圧縮機構で構成されており、
     前記高段側圧縮機構(11a)の吐出容量(V1)および前記低段側圧縮機構(12a)の吐出容量(V2)は、互いに独立して制御可能に構成されていることを特徴とする請求項1ないし5のいずれか1つに記載の二段昇圧式冷凍サイクル装置。
    The high-stage compression mechanism (11a) and the low-stage compression mechanism (12a) are composed of variable displacement compression mechanisms that can change their discharge capacities (V2, V1).
    The discharge capacity (V1) of the high-stage compression mechanism (11a) and the discharge capacity (V2) of the low-stage compression mechanism (12a) are configured to be controllable independently of each other. Item 6. The two-stage boost type refrigeration cycle apparatus according to any one of Items 1 to 5.
  8.  前記第2吐出能力制御部(20b)は、前記実効容量比が、
     1≦N2×V2/N1×V1≦3
     となるように、前記他方の圧縮機構の冷媒吐出能力を決定することを特徴とする請求項1ないし7のいずれか1つに記載の二段昇圧式冷凍サイクル装置。
     
    The second discharge capacity control unit (20b) has an effective capacity ratio of
    1 ≦ N2 × V2 / N1 × V1 ≦ 3
    The two-stage booster type refrigeration cycle apparatus according to any one of claims 1 to 7, wherein the refrigerant discharge capacity of the other compression mechanism is determined so that
PCT/JP2011/003857 2010-07-07 2011-07-06 Two-stage pressure buildup refrigeration cycle system WO2012004987A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012523527A JPWO2012004987A1 (en) 2010-07-07 2011-07-06 Two-stage boost refrigeration cycle equipment
CN2011800336229A CN102971592A (en) 2010-07-07 2011-07-06 Two-stage pressure buildup refrigeration cycle system
US13/808,185 US20130104584A1 (en) 2010-07-07 2011-07-06 Two-stage pressurising refrigeration cycle device
DKPA201370039A DK201370039A (en) 2010-07-07 2013-01-25 Two-stage pressurising refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-154680 2010-07-07
JP2010154680 2010-07-07

Publications (1)

Publication Number Publication Date
WO2012004987A1 true WO2012004987A1 (en) 2012-01-12

Family

ID=45440976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003857 WO2012004987A1 (en) 2010-07-07 2011-07-06 Two-stage pressure buildup refrigeration cycle system

Country Status (5)

Country Link
US (1) US20130104584A1 (en)
JP (1) JPWO2012004987A1 (en)
CN (1) CN102971592A (en)
DK (1) DK201370039A (en)
WO (1) WO2012004987A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035302A1 (en) * 2014-09-05 2016-03-10 株式会社デンソー Two-stage pressure buildup refrigeration cycle apparatus
WO2017047354A1 (en) * 2015-09-15 2017-03-23 株式会社デンソー Multi-stage compression refrigeration cycle device
JP7436727B1 (en) 2023-04-24 2024-02-22 コベルコ・コンプレッサ株式会社 refrigeration system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9797640B2 (en) * 2013-03-15 2017-10-24 Daikin Applied Americas Inc. Refrigerating apparatus and corresponding control device
KR102122499B1 (en) * 2013-07-02 2020-06-12 엘지전자 주식회사 A cooling system and a control method the same
US9696067B2 (en) * 2013-09-07 2017-07-04 Trane International Inc. Apparatus and method for controlling indoor airflow for heat pumps
WO2015037208A1 (en) * 2013-09-11 2015-03-19 株式会社デンソー Expansion valve
JP6207958B2 (en) * 2013-10-07 2017-10-04 サンデンホールディングス株式会社 Air conditioner for vehicles
CN106595107A (en) * 2016-12-13 2017-04-26 湖南凯利制冷设备有限公司 Intermediate cooling device and double-stage compression refrigerating system
CN110118422B (en) * 2018-02-07 2021-07-13 台达电子工业股份有限公司 Air conditioning system and operation method thereof
CN110500801A (en) * 2019-08-28 2019-11-26 西安陕鼓动力股份有限公司 Industrial refrigeration system design method
CN110553834B (en) * 2019-09-09 2021-02-09 广州兰石技术开发有限公司 Accelerated life test system for refrigeration valve
CN113983712B (en) * 2021-10-22 2023-05-02 珠海格力节能环保制冷技术研究中心有限公司 Unit operation control method and device, two-stage unit and refrigeration equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140477A (en) * 1988-11-18 1990-05-30 Hitachi Ltd Two-stage compressor
JPH05203270A (en) * 1992-01-27 1993-08-10 Matsushita Electric Ind Co Ltd Two-stage compressi0n type refrigerating cycle apparatus
JPH06229637A (en) * 1993-01-29 1994-08-19 Sanyo Electric Co Ltd Device for two-stage compression refrigeration
JP2002327690A (en) * 2001-04-27 2002-11-15 Daikin Ind Ltd Two-stage compressor
JP2004183913A (en) * 2002-11-29 2004-07-02 Mitsubishi Electric Corp Air conditioner
JP2004278824A (en) * 2003-03-13 2004-10-07 Hitachi Ltd Refrigeration cycle device and air conditioner
JP2008032336A (en) * 2006-07-31 2008-02-14 Sanyo Electric Co Ltd Two-stage expansion refrigeration apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389271B1 (en) * 2001-03-17 2003-06-27 진금수 Heat pump apparatus
JP2004101145A (en) * 2002-09-12 2004-04-02 Denso Corp Vapor compression type refrigerator and sticking detector for compressor
US6931871B2 (en) * 2003-08-27 2005-08-23 Shaw Engineering Associates, Llc Boosted air source heat pump
JP2008106738A (en) * 2006-09-29 2008-05-08 Fujitsu General Ltd Rotary compressor and heat pump system
JP5018496B2 (en) * 2008-01-16 2012-09-05 ダイキン工業株式会社 Refrigeration equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140477A (en) * 1988-11-18 1990-05-30 Hitachi Ltd Two-stage compressor
JPH05203270A (en) * 1992-01-27 1993-08-10 Matsushita Electric Ind Co Ltd Two-stage compressi0n type refrigerating cycle apparatus
JPH06229637A (en) * 1993-01-29 1994-08-19 Sanyo Electric Co Ltd Device for two-stage compression refrigeration
JP2002327690A (en) * 2001-04-27 2002-11-15 Daikin Ind Ltd Two-stage compressor
JP2004183913A (en) * 2002-11-29 2004-07-02 Mitsubishi Electric Corp Air conditioner
JP2004278824A (en) * 2003-03-13 2004-10-07 Hitachi Ltd Refrigeration cycle device and air conditioner
JP2008032336A (en) * 2006-07-31 2008-02-14 Sanyo Electric Co Ltd Two-stage expansion refrigeration apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035302A1 (en) * 2014-09-05 2016-03-10 株式会社デンソー Two-stage pressure buildup refrigeration cycle apparatus
JP2016056972A (en) * 2014-09-05 2016-04-21 株式会社デンソー Two-stage pressure rise type refrigeration cycle device
CN106796061A (en) * 2014-09-05 2017-05-31 株式会社电装 Two grades of boosting type refrigeration EGRs
US10495351B2 (en) 2014-09-05 2019-12-03 Denso Corporation Two-stage pressure buildup refrigeration cycle apparatus
WO2017047354A1 (en) * 2015-09-15 2017-03-23 株式会社デンソー Multi-stage compression refrigeration cycle device
JP7436727B1 (en) 2023-04-24 2024-02-22 コベルコ・コンプレッサ株式会社 refrigeration system

Also Published As

Publication number Publication date
US20130104584A1 (en) 2013-05-02
JPWO2012004987A1 (en) 2013-09-02
CN102971592A (en) 2013-03-13
DK201370039A (en) 2013-01-25

Similar Documents

Publication Publication Date Title
WO2012004987A1 (en) Two-stage pressure buildup refrigeration cycle system
JP5287831B2 (en) Two-stage boost refrigeration cycle
US8528359B2 (en) Economized refrigeration cycle with expander
CN106796061B (en) Two-stage boosting type refrigeration cycle device
US10527329B2 (en) Ejector-type refrigeration cycle device
US20100281894A1 (en) Capacity modulation of refrigerant vapor compression system
US20030177782A1 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
JP5018724B2 (en) Ejector refrigeration cycle
WO2015182057A1 (en) Ejector refrigeration cycle
WO2009128271A1 (en) Ejector-type refrigeration cycle device
JP5359231B2 (en) Ejector refrigeration cycle
JP2013181736A (en) Refrigerating apparatus for container
WO2010047420A1 (en) Gas injection refrigeration system
EP3862651B1 (en) Refrigeration cycle device
JP6447165B2 (en) Refrigeration equipment
JP5003665B2 (en) Ejector refrigeration cycle
JP6443557B2 (en) Multistage compression refrigeration cycle equipment
JP2010159967A (en) Heat pump device and outdoor unit for the heat pump device
JP5018756B2 (en) Ejector refrigeration cycle
JP2009002649A (en) Ejector type refrigerating cycle
KR20170139947A (en) A refrigerator and a control method the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180033622.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803324

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012523527

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13808185

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803324

Country of ref document: EP

Kind code of ref document: A1