WO2015107876A1 - Heat pump cycle - Google Patents

Heat pump cycle Download PDF

Info

Publication number
WO2015107876A1
WO2015107876A1 PCT/JP2015/000069 JP2015000069W WO2015107876A1 WO 2015107876 A1 WO2015107876 A1 WO 2015107876A1 JP 2015000069 W JP2015000069 W JP 2015000069W WO 2015107876 A1 WO2015107876 A1 WO 2015107876A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
phase refrigerant
gas
liquid
pressure
Prior art date
Application number
PCT/JP2015/000069
Other languages
French (fr)
Japanese (ja)
Inventor
道夫 西川
稲葉 淳
紘明 河野
桑原 幹治
祐一 加見
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015107876A1 publication Critical patent/WO2015107876A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/024Compressor control by controlling the electric parameters, e.g. current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0252Compressor control by controlling speed with two speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This disclosure relates to a heat pump cycle.
  • Patent Documents 1 and 2 disclose heat pump cycles that are applied to this type of vehicle air conditioner and that can switch between a refrigerant circuit during cooling operation and a refrigerant circuit during heating operation.
  • the refrigerant is boosted in multiple stages by two compression mechanisms, a low-stage compression mechanism and a high-stage compression mechanism, and the intermediate-pressure gas-phase refrigerant of the cycle is discharged from the low-stage compression mechanism.
  • the operation is switched to a so-called gas injection cycle (economizer refrigeration cycle) in which the discharged refrigerant is combined and sucked into the high-stage compression mechanism.
  • the cycle efficiency (COP) at the time of heating operation is improved.
  • the heat pump cycle disclosed in Patent Documents 1 and 2 includes a high-stage expansion valve, a gas-liquid separator, a gas-phase refrigerant passage, a fixed throttle (that is, a low-stage decompression section), a liquid-phase refrigerant passage.
  • the high stage side expansion valve depressurizes the high-pressure refrigerant until it becomes an intermediate-pressure refrigerant.
  • the gas-liquid separator separates the gas-liquid of the refrigerant decompressed by the high stage side expansion valve.
  • the gas-phase refrigerant passage guides the gas-phase refrigerant separated by the gas-liquid separator to the intermediate pressure port of the compressor.
  • the fixed throttle depressurizes the liquid-phase refrigerant separated by the gas-liquid separator.
  • the liquid phase refrigerant passage allows the liquid phase refrigerant separated by the gas-liquid separator to flow through the fixed throttle.
  • the evaporator evaporates the refrigerant flowing out from the fixed throttle and the liquid phase refrigerant passage.
  • the bypass valve opens and closes the liquid phase refrigerant passage.
  • the gas phase refrigerant control valve opens and closes the gas phase refrigerant passage.
  • the bypass valve and the gas-phase refrigerant control valve are integrated, and the gas-phase refrigerant control valve is operated by utilizing the pressure change caused by the on-off valve operation of the bypass valve.
  • the bypass valve closes the liquid phase refrigerant passage, and the gas phase refrigerant control valve opens the gas phase refrigerant passage.
  • the heat pump cycle disclosed in Patent Document 2 uses an electromagnetic valve type bypass valve and an electromagnetic valve type gas phase refrigerant control valve.
  • the bypass valve closes the liquid phase refrigerant passage, and the gas phase refrigerant control valve opens the gas phase refrigerant passage.
  • the diameter of the fixed throttle is such that an appropriate amount of refrigerant flows to the evaporator through the fixed throttle in a steady operation state where the bypass valve closes the liquid-phase refrigerant passage. Is designed. For this reason, in a transient operation region where the rotation speed of the compressor suddenly increases in the gas injection operation state, the balance between the amount of refrigerant flowing through the fixed throttle and the amount of refrigerant flowing into the gas-liquid separator is temporarily The liquid phase refrigerant accumulates in the gas-liquid separator.
  • the liquid phase refrigerant accumulated in the gas-liquid separator flows into the intermediate pressure port of the compressor through the gas phase refrigerant passage.
  • the refrigeration oil in a compressor is washed out and the sliding part of a compressor will be in a poor lubrication state.
  • the sliding portion of the compressor may be worn out or even locked.
  • the present disclosure provides a heat pump cycle capable of preventing liquid-phase refrigerant from flowing into a compressor and improving cycle efficiency (COP) by gas injection operation in a heat pump cycle performing gas injection operation.
  • the purpose is to do.
  • the heat pump cycle of the present disclosure compresses the low-pressure refrigerant sucked from the suction port, discharges it as a high-pressure refrigerant from the discharge port, and introduces an intermediate-pressure port that flows in the intermediate-pressure refrigerant in the cycle and joins the refrigerant in the compression process.
  • a high-pressure refrigerant discharged from the discharge port and a high-pressure refrigerant discharged from the discharge port to heat-exchange the heat-exchange target fluid and a high-pressure refrigerant flowing out of the use-side heat exchanger A high-stage decompression unit that decompresses the refrigerant until it becomes an intermediate-pressure refrigerant, a gas-liquid separation unit that separates the gas-liquid of the intermediate-pressure refrigerant decompressed by the high-stage decompression unit, and a gas separated by the gas-liquid separation unit
  • a gas-phase refrigerant passage for guiding the phase refrigerant to the intermediate pressure port, a gas-phase refrigerant control valve for opening and closing the gas-phase refrigerant passage, a low-stage decompression section for decompressing the liquid-phase refrigerant separated in the gas-liquid separation section, Refrigerant depressurized in the low-stage decompression section An evaporator that evaporates and flows out as
  • a refrigerant state determination unit that determines whether or not a refrigerant containing a refrigerant flows; and a refrigerant state determination unit that determines whether or not a refrigerant containing a liquid phase refrigerant flows into the gas phase refrigerant passage; And an inflow suppressing part for suppressing the flow of the refrigerant flowing into the intermediate pressure port.
  • the gas injection operation can be continued to improve the cycle efficiency (COP).
  • the heat pump cycle 10 provided with the integrated valve 14 of this indication is applied to the vehicle air conditioner 1 of the electric vehicle which obtains the driving force for vehicle travel from the travel electric motor.
  • the heat pump cycle 10 is a vapor compression refrigeration cycle. This heat pump cycle 10 cools or heats the air blown into the vehicle interior, which is a space to be air-conditioned, in the vehicle air conditioner 1. Therefore, the heat exchange target fluid of this embodiment is air.
  • the heat pump cycle 10 is shown in the overall configuration diagram of FIG. 1, the refrigerant circuit in the cooling operation mode (cooling operation mode for cooling air) for cooling the vehicle interior, and the overall configuration diagram of FIGS. 2 and 3.
  • the refrigerant circuit in the heating operation mode (heating operation mode for heating air) for heating the vehicle interior can be switched.
  • the refrigerant flow in each operation mode is indicated by solid arrows.
  • the heat pump cycle 10 employs an HFC refrigerant (specifically, R134a) as the refrigerant, and constitutes a vapor compression subcritical refrigeration cycle in which the high-pressure refrigerant pressure does not exceed the refrigerant critical pressure.
  • An HFO refrigerant for example, R1234yf
  • refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigeration oil circulates in the cycle together with the refrigerant.
  • the compressor 11 is located in the hood of the vehicle, and inhales, compresses and discharges the refrigerant in the heat pump cycle 10.
  • the compressor 11 accommodates two compression mechanisms, a low-stage compression mechanism and a high-stage compression mechanism, and an electric motor that rotationally drives both compression mechanisms in a housing that forms an outer shell thereof. Is a two-stage booster type electric compressor configured as described above.
  • the housing of the compressor 11 has a suction port 11a for sucking low-pressure refrigerant from the outside of the housing into the low-stage compression mechanism, and an intermediate-pressure refrigerant flows from the outside of the housing to the inside of the housing to compress from low pressure to high pressure.
  • An intermediate pressure port 11b for joining the refrigerant and a discharge port 11c for discharging the high-pressure refrigerant discharged from the high-stage compression mechanism to the outside of the housing are provided.
  • the intermediate pressure port 11b is connected to the refrigerant discharge port of the low-stage compression mechanism (that is, the refrigerant suction port of the high-stage compression mechanism).
  • the low-stage compression mechanism that is, the refrigerant suction port of the high-stage compression mechanism.
  • Various types such as a scroll type compression mechanism, a vane type compression mechanism, and a rolling piston type compression mechanism can be adopted as the low stage side compression mechanism and the high stage side compressor.
  • the operation (rotation speed) of the electric motor is controlled by a control signal output from a control device (air conditioning control device) 40 described later.
  • a control device air conditioning control device
  • the electric motor either an AC motor or a DC motor may be adopted.
  • coolant discharge capability of the compressor 11 is changed by controlling rotation speed. Therefore, in this embodiment, the electric motor constitutes the discharge capacity changing unit of the compressor 11.
  • the compressor 11 which accommodated two compression mechanisms in one housing is employ
  • adopted the format of a compressor is not limited to this. That is, if the intermediate pressure refrigerant can be introduced from the intermediate pressure port 11b and merged with the refrigerant in the compression process from low pressure to high pressure, one fixed capacity type compression mechanism and the compression mechanism are provided inside the housing.
  • An electric compressor configured to accommodate an electric motor that rotationally drives the motor may be used.
  • two compressors are connected in series, and the suction port of the low-stage compressor disposed on the low-stage side serves as the suction port 11a, and the discharge port of the high-stage compressor disposed on the high-stage side serves as the suction port 11a.
  • the discharge port 11c may be used.
  • the intermediate pressure port 11b is provided at the connection portion connecting the discharge port of the low-stage compressor and the suction port of the high-stage compressor, and both the low-stage compressor and the high-stage compressor are used.
  • One two-stage booster compressor is configured.
  • the refrigerant inlet of the indoor condenser 12 is connected to the discharge port 11 c of the compressor 11.
  • the indoor condenser 12 is located in a case (air conditioning case) 31 of an air conditioning unit (indoor air conditioning unit) 30 of the vehicle air conditioner 1 to be described later, and from the compressor 11 (specifically, a high stage compression mechanism). It functions as a radiator that radiates the discharged high-temperature and high-pressure refrigerant. That is, the indoor condenser 12 is a use side heat exchanger that heats air that has passed through an indoor evaporator 23 described later.
  • the refrigerant outlet of the indoor condenser 12 is connected to an inlet of a high stage side expansion valve 13 as a high stage side pressure reducing section that decompresses the high pressure refrigerant flowing out of the indoor condenser 12 until it becomes an intermediate pressure refrigerant.
  • the high-stage expansion valve 13 is an electric variable throttle mechanism having a valve body that can change the throttle opening degree and an electric actuator that includes a stepping motor that changes the throttle opening degree of the valve body.
  • the throttle opening changes within a range where the cross-sectional area of the throttle passage becomes an equivalent diameter ⁇ 0.5 to ⁇ 3 mm. Furthermore, when the throttle opening is fully opened, the cross-sectional area of the throttle passage can be ensured to have an equivalent diameter of about 10 mm so that the refrigerant decompression action is not exhibited.
  • the operation of the high stage side expansion valve 13 is controlled by a control signal output from the control device 40.
  • a refrigerant inlet 141 a of the integrated valve 14 is connected to the outlet of the high stage side expansion valve 13.
  • the integrated valve 14 includes a gas-liquid separation unit (gas-liquid separation space 141b), a gas-phase refrigerant-side valve element (gas-phase-side valve element) 18, a valve (first bypass valve 15), and a decompression unit, which are integrated with each other. (Aperture 17) or the like.
  • the gas-liquid separation space 141 b separates the gas-liquid refrigerant flowing out from the high stage expansion valve 13.
  • the gas phase side valve element 18 opens and closes a gas phase refrigerant passage through which the gas phase refrigerant separated in the gas-liquid separation space 141b flows.
  • the first bypass valve 15 opens and closes a liquid-phase refrigerant passage through which the liquid-phase refrigerant separated in the gas-liquid separation space 141b flows.
  • the throttle 17 depressurizes the liquid-phase refrigerant separated in the gas-liquid separation space 141b.
  • the integrated valve 14 a part of the constituent devices necessary for causing the heat pump cycle 10 to function as a gas injection cycle is integrated. Furthermore, the integrated valve 14 is a refrigerant circuit switching part which switches the refrigerant circuit of the refrigerant
  • FIGS. 4 and 5 indicate the up and down directions in a state where the integrated valve 14 is mounted on the vehicle air conditioner 1.
  • the integrated valve 14 includes a body 140 that accommodates the gas-phase side valve body 18 as the gas-phase refrigerant control valve, the first bypass valve 15 and the like and forms an outer shell of the integrated valve 14.
  • the body 140 includes a lower body 141 located on the lower side of the integrated valve 14 and an upper body 142 attached and fixed to the lower body 141 so as to be located above the lower body 141.
  • the lower body 141 is formed of a substantially bottomed cylindrical metal block whose axial direction extends in the vertical direction.
  • a refrigerant inlet 141a Through the outer wall surface of the lower body 141, there is formed a refrigerant inlet 141a through which the refrigerant flowing out from the high stage side expansion valve 13 flows into the inside.
  • the refrigerant inlet 141 a communicates with a gas-liquid separation space 141 b formed inside the lower body 141.
  • the gas-liquid separation space 141b is formed in a substantially cylindrical shape whose axial direction extends in the vertical direction.
  • the refrigerant passage extending from the refrigerant inlet 141a to the gas-liquid separation space 141b has a circular cross section when viewed from the axial direction (vertical direction in the present embodiment) of the gas-liquid separation space 141b. It extends in the tangential direction of the inner wall surface. Therefore, the refrigerant that has flowed into the gas-liquid separation space 141b from the refrigerant inlet 141a flows so as to swirl along the inner wall surface having a circular cross section of the gas-liquid separation space 141b.
  • the gas-liquid separation space 141b of the present embodiment constitutes a centrifugal gas-liquid separation unit.
  • the diameter of the gas-liquid separation space 141b is set to a diameter that is 1.5 times or more and about 3 times or less the diameter of the refrigerant pipe connected to the refrigerant inlet 141a, for example. Is miniaturized.
  • the internal volume of the gas-liquid separation space 141b of the present embodiment is necessary for the cycle to exert its maximum capacity from the enclosed refrigerant volume when the amount of refrigerant enclosed in the cycle is converted into the liquid phase. It is set smaller than the surplus refrigerant volume obtained by subtracting the required maximum refrigerant volume when the refrigerant amount is converted into the liquid phase. For this reason, the internal volume of the gas-liquid separation space 141b of the present embodiment is a volume that cannot substantially store surplus refrigerant even if a load fluctuation occurs in the cycle and the refrigerant circulation flow rate circulating in the cycle fluctuates. It has become.
  • a separated liquid phase refrigerant outlet hole 141c through which the separated liquid phase refrigerant flows out to the first liquid phase refrigerant passage 141d side is formed.
  • the first liquid-phase refrigerant passage 141d is positioned below the gas-liquid separation space 141b and guides the liquid-phase refrigerant separated in the gas-liquid separation space 141b to the liquid-phase refrigerant outlet 141e side that allows the liquid-phase refrigerant to flow out of the integrated valve 14. It is a refrigerant passage.
  • the first liquid-phase refrigerant passage 141d is a through-hole having a circular cross section that extends in a direction perpendicular to the axial direction of the gas-liquid separation space 141b (horizontal direction in the present embodiment).
  • the first liquid-phase refrigerant passage 141d is formed so as to pass through the center of the lower body 141 and penetrate the lower body 141.
  • the first liquid phase refrigerant passage 141d extends perpendicular to the axial direction of the gas-liquid separation space 141b, and the refrigerant flowing into the first liquid phase refrigerant passage 141d from the separation liquid phase refrigerant outlet hole 141c is substantially perpendicular.
  • the flow direction is changed to flow toward the liquid-phase refrigerant outlet 141e and the throttle 17 side.
  • the opening on one end side of the through hole constitutes a liquid-phase refrigerant outlet 141e.
  • the diaphragm 17 corresponds to the low-stage decompression unit of the present disclosure.
  • the first liquid phase refrigerant passage 141d has a first bypass valve 15 that opens and closes the first liquid phase refrigerant passage 141d, and a first bypass valve 15 toward the side where the first liquid phase refrigerant passage 141d is closed.
  • a spring (elastic member) 15a made of a coil spring for applying a load is accommodated.
  • the spring 15a is a valve seat portion 141f formed in a first liquid-phase refrigerant passage 141d with a resinous annular seal member 15b located at the tip of the first bypass valve 15. Apply a load in the direction to improve the sealing performance.
  • the valve seat 141f is formed in an annular shape that fits the seal member 15b.
  • the first bypass valve 15 is connected to an operating member (armature) of the solenoid actuator 16 through a shaft 15c.
  • the solenoid actuator 16 is simply referred to as a solenoid 16.
  • the solenoid 16 is an electromagnetic mechanism that generates electromagnetic force by supplying electric power and displaces the operating member. The operation of the solenoid 16 is controlled by a control voltage output from the control device 40.
  • the solenoid 16, the first bypass valve 15, the valve seat portion 141f of the first liquid phase refrigerant passage 141d, and the like of this embodiment constitute a so-called normally closed electromagnetic valve. Further, the solenoid 16 also functions as a closing member that closes the opening on the other end side of the through hole that constitutes the first liquid-phase refrigerant passage 141d described above.
  • the liquid-phase refrigerant separated in the gas-liquid separation space 141b is depressurized to the liquid-phase refrigerant outlet 141e side.
  • a throttle 17 is formed to flow out to the bottom. More specifically, the throttle 17 is disposed in parallel with the refrigerant passage formed in the valve seat portion 141f.
  • a nozzle or an orifice having a fixed throttle opening can be used as the throttle 17, a nozzle or an orifice having a fixed throttle opening.
  • a fixed throttle such as a nozzle or an orifice
  • the sectional area of the throttle passage suddenly decreases or expands rapidly, so that the fixed throttle is changed as the pressure difference between the upstream side and the downstream side (differential pressure between the inlet and outlet) changes.
  • the flow rate of the passing refrigerant and the dryness of the fixed throttle upstream refrigerant can be self-adjusted (balanced).
  • the upstream refrigerant of the throttle 17 A dry degree X of which is self-adjusted to 0.1 or less is employed.
  • the upper body 142 is formed of a substantially cylindrical metal block body having an outer diameter equivalent to that of the lower body 141.
  • a gas-phase refrigerant passage 142b that leads the gas-phase refrigerant separated in the gas-liquid separation space 141b to the gas-phase refrigerant outlet 142a that flows out of the integrated valve 14 and the gas-liquid separation space 141b and the gas are separated.
  • a separated gas-phase refrigerant outflow pipe portion 142c and the like are provided to communicate with the phase refrigerant passage 142b.
  • the separated gas-phase refrigerant outflow pipe portion 142c is formed in a round tubular shape, and is located coaxially with the gas-liquid separation space 141b when the upper body 142 and the lower body 141 are integrated. Therefore, the refrigerant that has flowed into the gas-liquid separation space 141b swirls around the separated gas-phase refrigerant outflow pipe portion 142c.
  • the lowermost end portion of the separated gas-phase refrigerant outflow pipe portion 142c extends so as to be positioned inside the gas-liquid separation space 141b, and the gas-liquid separation space 141b is separated from the lowermost end portion.
  • a separated gas-phase refrigerant outlet hole 142d through which the phase refrigerant flows out is formed. Therefore, the first liquid-phase refrigerant passage 141d and the throttle 17 are located below the separated vapor-phase refrigerant outlet hole 142d.
  • the gas-phase refrigerant passage 142b is located above the gas-liquid separation space 141b and the separated gas-phase refrigerant outflow pipe portion 142c. Similarly to the first liquid-phase refrigerant passage 141d, the gas-phase refrigerant passage 142b is a through-hole having a circular cross section that extends in a direction perpendicular to the axial direction of the gas-liquid separation space 141b (horizontal direction in the present embodiment). The gas-phase refrigerant passage 142d is formed so as to pass through the center of the upper body 142 and penetrate the upper body 142.
  • the opening on one end side of the through hole constitutes a gas-phase refrigerant outlet 142a.
  • a gas phase side valve body 18 for opening and closing the gas phase refrigerant passage 142b is accommodated in the gas phase refrigerant passage 142b.
  • the gas-phase side valve element 18 is configured by a differential pressure valve that is displaced by a pressure difference between the refrigerant pressure on the liquid-phase refrigerant outlet 141e side and the refrigerant pressure on the gas-phase refrigerant passage 142b side.
  • the through hole is partitioned by a body portion 18a of the gas phase side valve body 18 into a space forming the gas phase refrigerant passage 142b and a space forming the back pressure chamber 142e.
  • the refrigerant pressure on the liquid-phase refrigerant outlet 141e side is guided to the back pressure chamber 142e via the pressure introduction passage 19.
  • the body portion 18a is formed in a columnar shape, receives the refrigerant pressure on the gas phase refrigerant passage 142b side at the end face on one end side in the axial direction (gas phase refrigerant outlet 142a side), and on the end face on the other end side in the axial direction.
  • the refrigerant pressure on the back pressure chamber 142e side is received.
  • the outer diameter of the body portion 18a is slightly smaller than the inner diameter of the gas-phase refrigerant passage 142b, and both are in a clearance fit. Thereby, the gas phase side valve element 18 can be displaced in the gas phase refrigerant passage 142b.
  • the pressure introduction passage 19 is formed by a communication passage formed in both the lower body 141 and the upper body 142 when the upper body 142 and the lower body 141 are integrated. Furthermore, the longitudinal direction of the pressure introducing passage 19 is parallel to the axial direction of the gas-liquid separation space 141b and the separated gas-phase refrigerant outflow pipe portion 142c. Thereby, the pressure introduction passage 19 is not made into a complicated passage shape, and the integrated valve 14 as a whole is reduced in size.
  • a spring (elastic member) 18b and a stopper (regulating member) 18c are accommodated in the back pressure chamber 142e.
  • the spring 18b is a coil spring that applies a load to the gas-phase side valve element 18 on the side where the gas-phase refrigerant passage 142b is closed.
  • the stopper 18c restricts the displacement of the gas phase side valve element 18 when the gas phase side valve element 18 opens the gas phase refrigerant passage 142b.
  • the spring 18b is a tapered valve seat portion formed in the gas-phase refrigerant passage 142b with a seal member 18d made of an O-ring located at the tip of the gas-phase side valve body 18 with respect to the gas-phase side valve body 18.
  • a load is applied in a direction to increase the sealing performance by pressing against 142f.
  • the direction in which the sealing property is improved is the direction in which the gas phase side valve element 18 closes the gas phase refrigerant passage 142b.
  • the stopper 18c regulates the displacement of the gas phase side valve body 18 to prevent the body portion 18a of the gas phase side valve body 18 from closing the pressure introduction passage 19, and the gas phase It is a closing member that closes the opening on the other end side of the through hole that forms the refrigerant passage 142b.
  • the refrigerant pressure in the gas-phase refrigerant passage 142b indicated by P2 in FIG. 5 becomes the pressure of the gas-phase refrigerant separated in the gas-liquid separation space 141b, and is indicated by P3.
  • the refrigerant pressure on the liquid phase refrigerant outlet 141e side is the pressure of the liquid phase refrigerant separated in the gas-liquid separation space 141b.
  • the refrigerant pressure P2 on the gas-phase refrigerant passage 142b side and the refrigerant pressure P3 on the liquid-phase refrigerant outlet 141e side are substantially equal.
  • the gas-phase side valve element 18 closes the gas-phase refrigerant passage 142b by the load Fsp received from the spring 18b.
  • the intermediate pressure port 11b of the compressor 11 is connected to the gas-phase refrigerant outlet 142a of the integrated valve 14.
  • the gas phase side valve element 18 closes the gas phase refrigerant passage 142b during the operation of the compressor 11, the refrigerant pressure P1 on the gas phase refrigerant outlet 142a side becomes the suction pressure of the compressor 11. Therefore, in FIG. 5, the relationship of P1 ⁇ P2 is established.
  • the refrigerant pressure on the gas-phase refrigerant outlet 142a side indicated by P1 in FIG. 6 becomes the refrigerant pressure on the intermediate pressure port 11b side of the compressor 11, and the gas-phase refrigerant indicated by P2
  • the refrigerant pressure in the passage 142b becomes an intermediate pressure reduced by the high stage side expansion valve 13, and the refrigerant pressure on the liquid-phase refrigerant outlet 141e side (refrigerant pressure in the back pressure chamber 142e) indicated by P3 is reduced by the throttle 17. It becomes the pressure after being done.
  • the pressure difference between the refrigerant pressure P2 in the gas-phase refrigerant passage 142b and the refrigerant pressure P3 on the liquid-phase refrigerant outlet 141e side is expanded to satisfy the relationship shown in the following formula F1, whereby the gas-phase side valve body 18 is The gas phase refrigerant passage 142b starts to open.
  • S ⁇ b> 1 is an area when the gas-phase refrigerant outlet 142 a is projected in the axial direction of the gas-phase side valve body 18.
  • S ⁇ b> 2 is a cross-sectional area of an axially vertical cross section of the body portion 18 a of the gas phase side valve body 18.
  • Ffr is a frictional force (friction) when the gas phase side valve element 18 is displaced.
  • the gas-phase side valve body 18 opens the gas-phase refrigerant passage 142b
  • the refrigerant pressure on the gas-phase refrigerant outlet 142a side indicated by P1 in FIG. 7 and the refrigerant pressure in the gas-phase refrigerant passage 142b indicated by P2 are gas-liquid.
  • the pressure of the gas-phase refrigerant separated in the separation space 141b becomes the pressure after the pressure in the liquid refrigerant outlet 141e side indicated by P3 (the refrigerant pressure in the back pressure chamber 142e) is reduced by the throttle 17. It becomes.
  • the refrigerant pressure P3 in the back pressure chamber 142e is lower than the refrigerant pressure P2 in the gas phase refrigerant passage 142b, and the relationship shown by the following formula F2 is established, so that the gas phase side valve body 18 passes through the gas phase refrigerant passage 142b. The open state is maintained.
  • the refrigerant pipe extending from the gas phase refrigerant outlet 142a of the integrated valve 14 to the intermediate pressure port 11b of the compressor 11 only allows the refrigerant to flow from the integrated valve 14 to the intermediate pressure port 11b of the compressor 11.
  • Not check valve is arranged. This prevents the refrigerant from flowing backward from the compressor 11 side to the integrated valve 14 side.
  • This check valve may be integrated with the integrated valve 14 or the compressor 11.
  • the refrigerant inlet of the outdoor heat exchanger 20 is connected to the liquid-phase refrigerant outlet 141e of the integrated valve 14. Therefore, the refrigerant that has flowed out of the first liquid-phase refrigerant passage 141d and the refrigerant that has flowed out of the throttle 17 flow into the outdoor heat exchanger 20.
  • the outdoor heat exchanger 20 is located in the bonnet and exchanges heat between the refrigerant circulating inside and the outside air blown from the blower fan 21.
  • the outdoor heat exchanger 20 functions as an evaporator that evaporates low-pressure refrigerant and exerts an endothermic effect at least in the heating operation mode, and functions as a radiator that radiates high-pressure refrigerant in the cooling operation mode and the like. It is an exchanger.
  • the refrigerant inlet of the cooling expansion valve 22 is connected to the refrigerant outlet of the outdoor heat exchanger 20.
  • the cooling expansion valve 22 decompresses the refrigerant that flows out of the outdoor heat exchanger 20 and flows into the indoor evaporator 23 in the cooling operation mode or the like.
  • the basic configuration of the cooling expansion valve 22 is the same as that of the high-stage expansion valve 13, and its operation is controlled by a control signal output from the control device 40.
  • the refrigerant inlet of the indoor evaporator 23 is connected to the outlet of the cooling expansion valve 22.
  • the indoor evaporator 23 is located in the case 31 of the air conditioning unit 30 upstream of the air flow of the indoor condenser 12.
  • the indoor evaporator 23 is a heat exchanger that functions as an evaporator that cools the air by evaporating the refrigerant that circulates in the cooling operation mode, the dehumidifying and heating operation mode, and the like to exert a heat absorbing action.
  • the inlet of the accumulator 24 is connected to the outlet of the indoor evaporator 23.
  • the accumulator 24 is a low-pressure side gas-liquid separator that separates the gas-liquid refrigerant flowing into the accumulator 24 and stores excess refrigerant.
  • the suction port 11 a of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 24. Accordingly, the indoor evaporator 23 is connected so that the refrigerant flows out toward the suction port 11 a of the compressor 11.
  • an expansion valve bypass passage 25 is connected to the refrigerant outlet of the outdoor heat exchanger 20 to guide the refrigerant flowing out of the outdoor heat exchanger 20 to the inlet of the accumulator 24 by bypassing the cooling expansion valve 22 and the indoor evaporator 23.
  • a bypass passage opening / closing valve 27 is disposed in the expansion valve bypass passage 25.
  • the bypass passage opening / closing valve 27 is an electromagnetic valve that opens and closes the expansion valve bypass passage 25, and its opening / closing operation is controlled by a control voltage output from the control device 40.
  • the pressure loss that occurs when the refrigerant passes through the bypass passage opening / closing valve 27 is extremely smaller than the pressure loss that occurs when the refrigerant passes through the cooling expansion valve 22.
  • the refrigerant flowing out of the outdoor heat exchanger 20 flows into the accumulator 24 via the expansion valve bypass passage 25 when the bypass passage opening / closing valve 27 is open. At this time, the throttle opening degree of the cooling expansion valve 22 may be fully closed.
  • bypass passage opening / closing valve 27 when the bypass passage opening / closing valve 27 is closed, it flows into the indoor evaporator 23 via the cooling expansion valve 22. Thereby, the bypass passage opening / closing valve 27 can switch the refrigerant circuit of the heat pump cycle 10. Therefore, the bypass passage opening / closing valve 27 of this embodiment forms a refrigerant circuit switching unit together with the integrated valve 14.
  • the air conditioning unit 30 is located inside the instrument panel (instrument panel) at the foremost part of the vehicle interior, and forms an outer shell of the air conditioning unit 30 and also forms an air passage for air blown into the vehicle interior in the interior.
  • a case 31 is provided.
  • the air blower 32, the above-mentioned indoor condenser 12, the indoor evaporator 23, etc. are accommodated in this air passage.
  • the inside / outside air switching device 33 for switching and introducing vehicle interior air (inside air) and outside air is located at the most upstream part of the air flow of the case 31.
  • the inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the case 31 and the outside air introduction port for introducing the outside air by the inside / outside air switching door.
  • the air volume ratio with the air volume is continuously changed.
  • a blower 32 that blows air sucked through the inside / outside air switching device 33 toward the passenger compartment is located downstream of the air flow of the inside / outside air switching device 33.
  • the blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (the amount of blown air) is controlled by a control voltage output from the control device 40.
  • the indoor evaporator 23 and the indoor condenser 12 are arranged in the order of the indoor evaporator 23 and the indoor condenser 12 in the air flow direction downstream of the air flow of the blower 32. In other words, the indoor evaporator 23 is located upstream of the air flow of the indoor condenser 12.
  • a bypass passage 35 through which the air after passing through the indoor evaporator 23 flows around the indoor condenser 12. Further, an air mix door 34 is located in the case 31 on the downstream side of the air flow of the indoor evaporator 23 and upstream of the air flow of the indoor condenser 12.
  • the air mix door 34 of this embodiment adjusts the air volume ratio between the air volume passing through the indoor condenser 12 and the air volume passing through the bypass passage 35 among the air after passing through the indoor evaporator 23. It is a flow rate adjusting unit that adjusts the flow rate (air volume) of the air flowing into the indoor condenser 12. The air mix door 34 adjusts the heat exchange capability of the indoor condenser 12.
  • a space 36 is provided downstream of the air flow of the indoor condenser 12 and the bypass passage 35.
  • the air mix door 34 adjusts the air volume ratio between the air volume that passes through the indoor condenser 12 and the air volume that passes through the bypass passage 35, thereby adjusting the temperature of the air in the merging space 36.
  • the air mix door 34 is driven by a servo motor (not shown) whose operation is controlled by a control signal output from the control device 40.
  • the most downstream part of the air flow of the case 31 has an opening hole for blowing out the air merged in the merge space 36 into the vehicle interior that is the space to be cooled.
  • a defroster opening hole 37a that blows conditioned air toward the inner side surface of the vehicle front window glass
  • a face opening hole 37b that blows conditioned air toward the upper body of the passenger in the vehicle interior
  • the foot opening hole 37c which blows air-conditioning wind toward is provided.
  • the defroster door 38a for adjusting the opening area of the defroster opening hole 37a and the face for adjusting the opening area of the face opening hole 37b, respectively.
  • a foot door 38c for adjusting the opening area of the door 38b and the foot opening hole 37c is located.
  • the defroster door 38a, the face door 38b, and the foot door 38c constitute an air outlet mode switching unit that opens and closes the respective opening holes 37a to 37c and switches the air outlet mode. It is driven by a servo motor (not shown) whose operation is controlled by a control signal output from the control device 40.
  • the air flow downstream side of the defroster opening hole 37a, the face opening hole 37b, and the foot opening hole 37c is respectively connected to a face air outlet, a foot air outlet, and a defroster air outlet provided in the vehicle interior via ducts that form air passages. Connected to the exit.
  • the outlet mode includes a face mode, a bi-level mode, a foot mode, and the like.
  • face mode the face opening hole 37b is fully opened, and air is blown out from the face outlet toward the upper body of the passenger in the passenger compartment.
  • bi-level mode both the face opening hole 37b and the foot opening hole 37c are opened, and air is blown out toward the upper body and the feet of the passengers in the passenger compartment.
  • foot mode the foot opening hole 37c is fully opened and the defroster opening hole 37a is opened by a small opening, and air is mainly blown out from the foot outlet.
  • the control device 40 is composed of a well-known microcomputer including a CPU, a ROM, a RAM and the like and its peripheral circuits.
  • the control device 40 performs various calculations and processes based on the air conditioning control program stored in the ROM, and controls the operation of various air conditioning control devices connected to the output side.
  • the various air conditioning control devices are, for example, the compressor 11, the integrated valve 14, the bypass passage opening / closing valve 27, and the blower 32.
  • an inside air sensor detects the vehicle interior temperature.
  • the outside air sensor detects the outside air temperature.
  • the solar radiation sensor detects the amount of solar radiation in the passenger compartment.
  • the evaporator temperature sensor detects the temperature of the air blown from the indoor evaporator 23 (evaporator temperature).
  • the blown air temperature sensor detects an actual blown air temperature that is the temperature of the air blown into the vehicle interior from the blower outlet.
  • the discharge pressure sensor detects the pressure of the high-pressure refrigerant discharged from the compressor 11.
  • the discharge temperature sensor detects the temperature of the high-pressure refrigerant.
  • the condenser temperature sensor detects the temperature of the refrigerant that has flowed out of the indoor condenser 12.
  • the suction pressure sensor detects the pressure of the low-pressure refrigerant sucked from the suction port 11 a of the compressor 11.
  • the suction temperature sensor detects the temperature of the low-pressure refrigerant.
  • the liquid phase refrigerant sensor detects whether or not there is a liquid phase refrigerant equal to or greater than a threshold value in the gas phase refrigerant passage 142b.
  • an operation panel (not shown) arranged near the instrument panel in front of the vehicle interior is connected to the input side of the control device 40, and an operation signal is input from an air conditioning operation switch group 42 provided on the operation panel.
  • the air conditioning operation switch group 42 includes an operation switch of the vehicle air conditioner 1, a vehicle interior temperature setting switch for setting the vehicle interior temperature, an air flow setting switch for setting the air flow into the vehicle interior, and a cooling operation mode. And a mode selection switch for selecting the heating operation mode.
  • control apparatus 40 is comprised (hardware and software) which controls the operation
  • the configuration (hardware and software) for controlling the operation of the electric motor of the compressor 11 constitutes the discharge capacity control unit
  • the configuration for controlling the operation of the integrated valve 14 and the bypass passage opening / closing valve 27 constitute the refrigerant circuit control unit.
  • the discharge capacity control unit, the refrigerant circuit control unit, and the like may be configured as a separate control device from the control device 40.
  • the operation of the vehicle air conditioner 1 of the present embodiment having the above configuration will be described.
  • the vehicle air conditioner 1 of the present embodiment can be switched to the cooling operation mode for cooling the vehicle interior or the heating operation mode for heating the vehicle interior.
  • the liquid refrigerant inflow prevention process is executed.
  • the operation in each operation mode and the liquid-phase refrigerant inflow prevention process will be described.
  • Air-cooling operation mode is started when the air-conditioning operation switch group 42 is turned on (ON) and the air-conditioning operation mode is selected by the mode selection switch.
  • the control device 40 fully opens the high stage side expansion valve 13, sets the solenoid 16 of the integrated valve 14 to the energized state, sets the cooling expansion valve 22 to a throttled state that exerts a pressure reducing action, and further bypasses.
  • the passage opening / closing valve 27 is closed.
  • the first bypass valve 15 opens the first liquid-phase refrigerant passage 141d, and the gas-phase side valve body 18 closes the gas-phase refrigerant passage 142b.
  • the cycle 10 is switched to the refrigerant circuit through which the refrigerant flows as shown by the solid arrows in FIG.
  • the control device 40 reads the detection signal of the air conditioning control sensor group 41 and the operation signal of the air conditioning operation switch group 42 described above. And the target blowing temperature TAO which is the target temperature of the air which blows off into a vehicle interior is calculated based on the value of a detection signal and an operation signal. Furthermore, based on the calculated target blowing temperature TAO and the detection signal of the sensor group, the operating states of various air conditioning control devices connected to the output side of the control device 40 are determined.
  • the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target evaporator outlet temperature TEO of the indoor evaporator 23 is determined based on the target outlet temperature TAO with reference to a control map stored in the control device 40 in advance.
  • the blowing air temperature from the indoor evaporator 23 is determined using a feedback control method.
  • a control signal output to the electric motor of the compressor 11 is determined so as to approach the target evaporator outlet temperature TEO.
  • control signal output to the cooling expansion valve 22 causes the supercooling degree of the refrigerant flowing into the cooling expansion valve 22 to approach a target supercooling degree that has been determined in advance so that the COP approaches a substantially maximum value. To be determined.
  • control signal output to the servo motor of the air mix door 34 indicates that the air mix door 34 closes the air passage of the indoor condenser 12 and the total air flow after passing through the indoor evaporator 23 passes through the bypass passage 35. To be decided.
  • control signals determined as described above are output to various air conditioning control devices. Thereafter, until the operation of the vehicle air conditioner is requested to be stopped by the operation switch of the air conditioning operation switch group 42, the above-described detection signal and operation signal are read, the target blowing temperature TAO is calculated, and various air conditionings are performed every predetermined control cycle. Control routines such as determining the operating state of the control device, outputting the control voltage and the control signal are repeated. Such a control routine is repeated in the other operation modes.
  • the high-pressure refrigerant discharged from the discharge port 11 c of the compressor 11 flows into the indoor condenser 12.
  • the air mix door 34 closes the air passage of the indoor condenser 12
  • the refrigerant flowing into the indoor condenser 12 flows out from the indoor condenser 12 without radiating heat to the air.
  • the refrigerant that has flowed out from the indoor condenser 12 flows out with almost no pressure reduction at the high-stage side expansion valve 13, and the refrigerant inlet 141 a of the integrated valve 14. Flows into the gas-liquid separation space 141b.
  • the gas-liquid refrigerant flowing into the integrated valve 14 is in a superheated gas phase, the gas-liquid refrigerant is not separated in the gas-liquid separation space 141b of the integrated valve 14, and the gas-phase refrigerant is in the first liquid phase. It flows into the refrigerant passage 141d. Furthermore, since the first bypass valve 15 opens the first liquid phase refrigerant passage 141d, the gas phase refrigerant flowing into the first liquid phase refrigerant passage 141d is not decompressed by the throttle 17 and is discharged from the liquid phase refrigerant outlet. 141e flows out.
  • the refrigerant flowing into the integrated valve 14 flows out from the liquid-phase refrigerant outlet 141e with almost no pressure loss.
  • the refrigerant pressure on the liquid-phase refrigerant outlet 141e side is guided to the back pressure chamber 142e through the pressure introduction passage 19, so that the gas-phase side valve element 18 closes the gas-phase refrigerant passage 142b. Therefore, the refrigerant does not flow out from the gas-phase refrigerant outlet 142a.
  • the refrigerant flowing out of the outdoor heat exchanger 20 is isoenthalpy until it flows into the cooling expansion valve 22 in the throttled state and becomes a low-pressure refrigerant because the bypass passage opening / closing valve 27 is closed. Inflated to a reduced pressure.
  • the low-pressure refrigerant decompressed by the cooling expansion valve 22 flows into the indoor evaporator 23 and absorbs heat from the air blown from the blower 32 to evaporate. Thereby, air is cooled.
  • the refrigerant that has flowed out of the indoor evaporator 23 flows into the accumulator 24 and is separated into gas and liquid.
  • the separated gas-phase refrigerant is sucked from the suction port 11a of the compressor 11, flows through the low-stage compression mechanism and the high-stage compression mechanism in this order, and is compressed again.
  • the separated liquid-phase refrigerant is stored in the accumulator 24 as surplus refrigerant that is not necessary for exhibiting the refrigerating capacity required for the cycle.
  • heating operation mode is demonstrated.
  • the first heating operation mode and the second heating operation mode can be executed as the heating operation mode.
  • the heating operation mode is started when the heating operation mode is selected by the mode selection switch while the operation switch of the air conditioning operation switch group 42 is turned on (ON).
  • the control device 40 reads the detection signal of the sensor group 41 for air conditioning control and the operation signal of the air conditioning operation switch group 42, and the refrigerant discharge capacity of the compressor 11 (the rotation of the compressor 11). Number).
  • (B) -1 First Heating Operation Mode
  • the control device 40 sets the high stage side expansion valve 13 to the throttle state, sets the solenoid 16 of the integrated valve 14 to the non-energized state, sets the cooling expansion valve 22 to the fully closed state, Further, the bypass passage opening / closing valve 27 is opened.
  • the first bypass valve 15 closes the first liquid-phase refrigerant passage 141d and the gas-phase side valve element 18 opens the gas-phase refrigerant passage 142b.
  • the cycle 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the solid arrows in FIG.
  • the gas-phase refrigerant separated in the gas-liquid separation space 141b flows into the intermediate pressure port 11b of the compressor 11, and a so-called gas injection operation (GI operation) is performed.
  • GI operation gas injection operation
  • the control device 40 reads the detection signal of the air conditioning control sensor group 41 and the operation signal of the air conditioning operation switch group 42 in the same manner as in the cooling operation mode, and the target blowout temperature TAO and Based on the detection signal of the sensor group, the operating states of various air conditioning control devices connected to the output side of the control device 40 are determined.
  • the control signal output to the high stage expansion valve 13 is determined so that the refrigerant pressure in the indoor condenser 12 becomes a predetermined target high pressure.
  • the control signal is determined so that the degree of supercooling of the refrigerant flowing out of the indoor condenser 12 becomes a predetermined target degree of supercooling.
  • the control signal output to the servo motor of the air mix door 34 is such that the air mix door 34 closes the bypass passage 35 and the total air flow after passing through the indoor evaporator 23 passes through the indoor condenser 12. It is determined.
  • the high-pressure refrigerant discharged from the discharge port 11 c of the compressor 11 flows into the indoor condenser 12.
  • the refrigerant flowing into the indoor condenser 12 exchanges heat with the air blown from the blower 32 and passed through the indoor evaporator 23 to dissipate heat. Thereby, air is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 is decompressed and expanded in an enthalpy manner until it becomes an intermediate-pressure refrigerant by the high-stage expansion valve 13 that is in a throttled state. Then, the intermediate pressure refrigerant decompressed by the high-stage side expansion valve 13 flows into the gas-liquid separation space 141b from the refrigerant inlet 141a of the integrated valve 14 and is separated into gas and liquid.
  • the liquid refrigerant separated in the gas-liquid separation space 141b flows into the first liquid refrigerant passage 141d. Since the first bypass valve 15 closes the first liquid phase refrigerant passage 141d, the liquid phase refrigerant flowing into the first liquid phase refrigerant passage 141d is decompressed and expanded in an enthalpy manner until it becomes a low pressure refrigerant at the throttle 17. And flows out from the liquid-phase refrigerant outlet 141e.
  • the refrigerant pressure on the liquid-phase refrigerant outlet 141e side after being depressurized by the throttle 17 is guided to the back pressure chamber 142e via the pressure introduction passage 19, so that the gas-phase side valve element 18 is replaced with the gas-phase refrigerant. Open the passage 142b. Therefore, the gas-phase refrigerant separated in the gas-liquid separation space 141 b flows out from the gas-phase refrigerant outlet 142 a of the integrated valve 14 and flows into the intermediate pressure port 11 b side of the compressor 11.
  • the intermediate-pressure gas-phase refrigerant that has flowed into the intermediate-pressure port 11b merges with the refrigerant discharged from the low-stage compression mechanism and is sucked into the high-stage compression mechanism.
  • the refrigerant that has flowed out of the liquid-phase refrigerant outlet 141e of the integrated valve 14 flows into the outdoor heat exchanger 20 and exchanges heat with the outside air blown from the blower fan 21 to absorb heat.
  • the refrigerant flowing out of the outdoor heat exchanger 20 flows into the accumulator 24 via the expansion valve bypass passage 25 and is separated into gas and liquid because the bypass passage opening / closing valve 27 is in the open state.
  • the separated gas-phase refrigerant is sucked from the suction port 11a of the compressor 11 and compressed again.
  • the separated liquid-phase refrigerant is stored in the accumulator 24 as surplus refrigerant that is not necessary for exhibiting the refrigerating capacity required for the cycle.
  • the heat of the refrigerant discharged from the compressor 11 by the indoor condenser 12 can be radiated to the air, and the heated air can be blown into the vehicle interior. Thereby, heating of a vehicle interior is realizable.
  • the low-pressure refrigerant decompressed by the throttle 17 is sucked from the suction port 11a of the compressor 11, and the intermediate-pressure refrigerant decompressed by the high stage side expansion valve 13 is caused to flow into the intermediate pressure port 11b.
  • a gas injection cycle (economizer-type refrigeration cycle) that joins with the refrigerant in the pressure increasing process can be configured.
  • the high-stage compression mechanism makes it possible to cause the high-stage compression mechanism to suck the refrigerant mixture having a low temperature, and to improve the compression efficiency of the high-stage compression mechanism. Furthermore, the compression efficiency of both compression mechanisms can be improved by reducing the pressure difference between the suction refrigerant pressure and the discharge refrigerant pressure in both the low-stage compression mechanism and the high-stage compression mechanism. As a result, the COP of the heat pump cycle 10 as a whole can be improved.
  • the control device 40 sets the high stage side expansion valve 13 to the throttle state, sets the solenoid 16 of the integrated valve 14 to the energized state, sets the cooling expansion valve 22 to the fully closed state, Then, the bypass passage opening / closing valve 27 is opened.
  • the integrated valve 14 as in the cooling operation mode, the state shown in FIG. 5 is established, and the heat pump cycle 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the solid line arrows in FIG.
  • the gas-phase refrigerant passage 142b is closed by the gas-phase side valve body 18, and the gas-phase refrigerant separated in the gas-liquid separation space 141b enters the intermediate pressure port 11b of the compressor 11. Since it does not flow, so-called normal heat pump operation (normal HP operation) is performed.
  • the control device 40 reads the detection signal of the air conditioning control sensor group 41 and the operation signal of the air conditioning operation switch group 42 in the same manner as in the cooling operation mode, and the target blowout temperature TAO and Based on the detection signal of the sensor group, the operating states of various air conditioning control devices connected to the output side of the control device 40 are determined.
  • the control signal output to the high stage side expansion valve 13 is determined so that the refrigerant pressure in the indoor condenser 12 becomes a predetermined target high pressure.
  • the control signal is determined so that the degree of supercooling of the refrigerant flowing out of the indoor condenser 12 becomes a predetermined target degree of supercooling.
  • the control signal output to the servo motor of the air mix door 34 is such that the air mix door 34 closes the bypass passage 35 and the total air flow after passing through the indoor evaporator 23 passes through the indoor condenser 12. It is determined.
  • the high-pressure refrigerant discharged from the discharge port 11c of the compressor 11 flows into the indoor condenser 12 and exchanges heat with air as in the first heating operation mode. To dissipate heat. Thereby, air is heated.
  • the refrigerant flowing out of the indoor condenser 12 is decompressed and expanded in an enthalpy manner until it becomes a low-pressure refrigerant in the throttled high-stage expansion valve 13 and flows into the gas-liquid separation space 141b of the integrated valve 14. To do.
  • the refrigerant that has flowed into the gas-liquid separation space 141b does not flow out of the gas-phase refrigerant outlet 142a and flows out of the liquid-phase refrigerant outlet 141e without being decompressed, as in the cooling operation mode.
  • the separated gas-phase refrigerant is sucked from the suction port 11a of the compressor 11.
  • the heat of the refrigerant discharged from the compressor 11 by the indoor condenser 12 can be radiated to the air, and the heated air can be blown into the vehicle interior. Thereby, heating of a vehicle interior is realizable.
  • the liquid refrigerant inflow prevention process shown in FIG. 8 is executed.
  • This liquid phase refrigerant inflow prevention process is started when the operation switch of the air conditioning operation switch group 42 is turned on.
  • the current operation mode is the first heating operation mode (ie, gas injection operation) (S10).
  • coolant flows in into the gaseous-phase refrigerant path 142b, and also the refrigerant
  • coolant is the compressor 11.
  • the occurrence of a phenomenon that flows into the intermediate pressure port 11b (hereinafter referred to as liquid-phase refrigerant inflow) is predicted or detected (S11).
  • the refrigerant state determination unit (S11) determines that liquid-phase refrigerant inflow occurs when the heating load increases and the compressor 11 is accelerated.
  • the operation mode is switched to the second heating operation mode (that is, normal heat pump operation).
  • the second heating operation mode as shown in FIG. 5, the power is supplied to the solenoid 16 and the first bypass valve 15 opens the first liquid-phase refrigerant passage 141d, whereby the refrigerant pressure on the gas-phase refrigerant passage 142b side is increased.
  • P2 and the refrigerant pressure P3 on the liquid-phase refrigerant outlet 141e side flowing out from the first bypass valve 15 are balanced, and the gas-phase side valve body 18 closes the gas-phase refrigerant passage 142b. Therefore, the flow of the refrigerant flowing into the intermediate pressure port 11b via the gas phase refrigerant passage 142b can be suppressed.
  • the liquid refrigerant does not flow even if the operation mode is returned to the first heating operation mode. Judge that it became.
  • the operation mode is returned to the first heating operation mode (S14). That is, as shown in FIG. 4, when the power supply to the solenoid 16 is stopped and the first bypass valve 15 closes the first liquid-phase refrigerant passage 141d, the refrigerant pressure P2 on the gas-phase refrigerant passage 142b side and the throttle 17 are closed. Based on the pressure difference from the pressure P3 of the refrigerant flowing out from the gas phase, the gas phase side valve body 18 opens the gas phase refrigerant passage 142b, and the gas injection operation is performed.
  • the vehicle air conditioner 1 of the present embodiment in order to suppress the flow of the refrigerant flowing into the intermediate pressure port 11b when it is determined that the refrigerant containing the liquid phase refrigerant flows into the gas-phase refrigerant passage 142b, The inflow of the liquid phase refrigerant into the compressor 11 can be prevented, and problems due to the inflow of the liquid phase refrigerant into the compressor 11 can be prevented. Further, in a situation where it is determined that the refrigerant containing the liquid phase refrigerant does not flow into the gas phase refrigerant passage 142b, the gas injection operation can be continued to improve the cycle efficiency (COP). (Second Embodiment) A second embodiment will be described.
  • This embodiment is different from the first embodiment in the determination condition of S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8).
  • S11 of the liquid-phase refrigerant inflow prevention process see FIG. 8.
  • 1st Embodiment since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
  • phase refrigerant inflow occurs.
  • the occupant operates the air volume setting switch of the air conditioning operation switch group 42 to increase the air volume, thereby increasing the heating load and increasing the speed of the compressor 11, it is determined that liquid phase refrigerant inflow occurs. To do.
  • the first heating operation mode i.e., gas injection operation
  • the second heating operation mode i.e., normal heat pump operation
  • the opportunity of gas injection operation can be increased as compared with the first embodiment.
  • a third embodiment will be described. This embodiment is different from the first embodiment in the determination condition of S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8). In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
  • the rotational speed of the compressor 11 before the compressor 11 is increased is equal to or lower than the predetermined rotational speed
  • the opening degree of the high stage side expansion valve 13 before the compressor 11 is increased is the predetermined opening degree.
  • the first heating operation mode (that is, the gas injection operation) is switched to the second heating operation mode (that is, the normal heat pump operation) only under conditions where liquid phase refrigerant inflow is likely to occur. Therefore, the opportunity of gas injection operation can be increased as compared with the first embodiment.
  • the second heating operation mode that is, the normal heat pump operation
  • the opportunity of gas injection operation can be increased as compared with the first embodiment.
  • the acceleration of the compressor 11 can be small even when the speed of the compressor 11 in the operating state where the rotational speed of the compressor 11 is low and the opening degree of the high stage side expansion valve 13 is small is increased.
  • the amount of refrigerant flowing into the gas-liquid separation space 141b gradually increases. Therefore, it can flow through the restrictor 17.
  • the compressor 11 is accelerated, and the acceleration of the compressor 11 is equal to or higher than a predetermined value, it is determined that liquid-phase refrigerant inflow occurs.
  • the first heating operation mode (that is, the gas injection operation) is switched to the second heating operation mode (that is, the normal heat pump operation) only under conditions where liquid phase refrigerant inflow is likely to occur. Therefore, the opportunity of gas injection operation can be increased as compared with the first embodiment.
  • the second heating operation mode that is, the normal heat pump operation
  • the opportunity of gas injection operation can be increased as compared with the first embodiment.
  • the speed increase amount of the compressor 11 is the difference between the target speed of the compressor 11 after the speed increase and the speed of the compressor 11 before the speed increase, or the compressor after the speed increase.
  • 11 is a ratio of the target rotational speed of 11 and the rotational speed of the compressor 11 before being increased.
  • the first heating operation mode i.e., gas injection operation
  • the second heating operation mode i.e., normal heat pump operation
  • the estimated temperature of the air blown into the passenger compartment from the outlet (corresponding to the estimated temperature after heat exchange of the heat exchange target fluid of the present disclosure) and the target outlet temperature TAO (after heat exchange of the heat exchange target fluid of the present disclosure)
  • the target rotational speed of the compressor 11 after the speed of the compressor 11 is increased is calculated based on the difference from the target temperature.
  • the speed increase amount of the compressor 11 can be calculated.
  • the temperature of the air blown out from the outlet into the vehicle compartment can be estimated.
  • the target rotational speed of the compressor 11 after being increased based on the difference between the actual blown air temperature and the target blown temperature TAO is calculated.
  • the speed increase amount of the compressor 11 can be calculated based on the calculated target speed and the speed of the compressor 11 before the speed increase.
  • liquid-phase refrigerant inflow occurs when the pressure of the intermediate pressure refrigerant is equal to or lower than a predetermined pressure.
  • the predetermined pressure as the threshold value may have a positive correlation with the outside air temperature.
  • the first heating operation mode i.e., gas injection operation
  • the second heating operation mode i.e., normal heat pump operation
  • the opportunity of gas injection operation can be increased as compared with the first embodiment.
  • a seventh embodiment will be described. This embodiment is different from the first embodiment in the determination condition of S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8). In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
  • the refrigerant flowing into the gas-liquid separation space 141b tends to be a refrigerant containing a large amount of liquid-phase refrigerant, so that liquid-phase refrigerant inflow tends to occur.
  • the first heating operation mode (that is, the gas injection operation) is switched to the second heating operation mode (that is, the normal heat pump operation) only when the liquid phase refrigerant inflow is likely to occur. Therefore, the opportunity of gas injection operation can be increased as compared with the first embodiment.
  • the superheat degree of the high-pressure refrigerant can be obtained from a map that defines the relationship between the pressure and temperature of the high-pressure refrigerant discharged from the compressor 11 and the superheat degree of the high-pressure refrigerant.
  • the degree of superheat of the high-pressure refrigerant may be obtained from a map that defines the relationship between the pressure of the high-pressure refrigerant discharged from the compressor 11 and the temperature of the high-pressure refrigerant flowing out of the indoor condenser 12 and the degree of superheat of the high-pressure refrigerant. .
  • An eighth embodiment will be described. This embodiment is different from the first embodiment in the determination condition of S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8). In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
  • the first heating operation mode (that is, the gas injection operation) is switched to the second heating operation mode (that is, the normal heat pump operation) only when the liquid phase refrigerant inflow is likely to occur. Therefore, the opportunity of gas injection operation can be increased as compared with the first embodiment.
  • the degree of superheat of the low-pressure refrigerant sucked from the suction port 11a can be obtained based on values detected by the suction pressure sensor and the suction temperature sensor. Further, the suction pressure sensor and the suction temperature sensor are arranged in a path for guiding the refrigerant from the outdoor heat exchanger 20 to the suction port 11a.
  • a ninth embodiment will be described. This embodiment is different from the first embodiment in the configuration of the integrated valve 14 and the determination condition in S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8). In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
  • the integrated valve 14 includes a sensor mounting body 143 for mounting a liquid phase refrigerant sensor 41 a included in the sensor group 41.
  • the sensor mounting body 143 includes a gas phase refrigerant passage 143a communicating with the gas phase refrigerant passage 142b of the upper body 142, and is located on the gas phase refrigerant outlet 142a side of the upper body 142.
  • the liquid-phase refrigerant sensor 41a has a different output when the gas-phase refrigerant comes into contact with the detection unit and when the liquid-phase refrigerant comes into contact.
  • the liquid-phase refrigerant sensor 41a has a detection unit located below the gas-phase refrigerant passage 143a, and the liquid-phase refrigerant contacts the detection unit when the gas-phase refrigerant passage 143a has a liquid-phase refrigerant having a threshold value or more.
  • the first heating operation mode (that is, the gas injection operation) is switched to the second heating operation mode (that is, the normal heat pump operation) only when the liquid phase refrigerant inflow is likely to occur. Therefore, the opportunity of gas injection operation can be increased as compared with the first embodiment.
  • a gas-phase refrigerant passage (bypass) is provided in the sensor mounting body 143 in parallel with the gas-phase refrigerant passage 143 a and below the gas-phase refrigerant passage 143 a.
  • (Refrigerant passage) 143b may be provided, and the detection unit of the liquid-phase refrigerant sensor 41a may be disposed in the bypass refrigerant passage 143b.
  • the bypass refrigerant passage 143b is quickly filled with the liquid phase refrigerant. Therefore, the presence of the liquid phase refrigerant in the gas phase refrigerant passage 143a can be detected quickly and reliably.
  • the refrigerant flowing into the gas-phase refrigerant passage 143a is swirled, and the liquid film A of the liquid-phase refrigerant is formed in the vicinity of the inner wall surface. You may make it do.
  • coolant sensor 41a may use the sensor which detects that there exists a liquid phase refrigerant
  • the liquid phase refrigerant sensor 41a may be a sensor similar to a hot-wire anemometer, which is detected by a difference in heat capacity, an optical sensor, or a sensor using an optical fiber.
  • a sensor similar to a hot-wire anemometer is a sensor that utilizes the fact that the amount of heat taken away is large in the liquid phase and the amount of heat taken away is small in the gas phase.
  • the integrated valve 14 is eliminated, and the function of the integrated valve 14 is obtained by a plurality of components.
  • the function of the integrated valve 14 is obtained by a plurality of components.
  • a gas-liquid separation unit that separates the gas-liquid of the intermediate pressure refrigerant that flows out of the indoor condenser 12 and is decompressed by the high-stage expansion valve 13.
  • a gas-liquid separator 50 is connected.
  • the gas-liquid separator 50 is a centrifugal-type gas-liquid separator that separates the gas-liquid refrigerant by the action of centrifugal force.
  • gas-phase refrigerant outlet of the gas-liquid separator 50 is connected to the intermediate pressure port 11b of the compressor 11 through a gas-phase refrigerant passage 51 constituted by refrigerant piping.
  • the gas-phase refrigerant passage 51 circulates the gas-phase refrigerant separated by the gas-liquid separator 50.
  • a gas phase refrigerant control valve 52 for opening and closing the gas phase refrigerant passage 51 is disposed in the gas phase refrigerant passage 51.
  • the gas-phase refrigerant control valve 52 is an electromagnetic valve, and its operation is controlled by a control signal output from the control device 40.
  • the gas phase refrigerant control valve 52 allows only the refrigerant to flow from the gas phase refrigerant outlet of the gas-liquid separator 50 to the intermediate pressure port 11 b side of the compressor 11 when the gas phase refrigerant passage 51 is opened. It also functions as a check valve. This prevents the refrigerant from flowing backward from the compressor 11 side to the gas-liquid separator 50 when the gas-phase refrigerant control valve 52 opens the gas-phase refrigerant passage 51. Further, the gas phase refrigerant control valve 52 switches the cycle configuration (refrigerant flow path) by opening and closing the gas phase refrigerant passage 51.
  • the liquid-phase refrigerant outlet of the gas-liquid separator 50 is connected to the outdoor heat exchanger 20 via a main liquid-phase refrigerant passage 53 constituted by refrigerant piping.
  • the main liquid phase refrigerant passage 53 allows the liquid phase refrigerant separated by the gas-liquid separator 50 to flow therethrough.
  • the main liquid-phase refrigerant passage 53 is provided with a throttle 54 as a low-stage decompression unit that decompresses the liquid-phase refrigerant separated by the gas-liquid separator 50 until it becomes a low-pressure refrigerant.
  • a throttle 54 As the throttle 54, a nozzle or an orifice having a fixed throttle opening can be employed.
  • liquid-phase refrigerant outlet of the gas-liquid separator 50 is connected to the outdoor heat exchanger 20 via a first liquid-phase refrigerant passage 55 constituted by refrigerant piping.
  • the first liquid-phase refrigerant passage 55 is arranged in parallel with the throttle 54 and allows the liquid-phase refrigerant separated by the gas-liquid separator 50 to flow toward the outdoor heat exchanger 20 by bypassing the throttle 54.
  • the first liquid phase refrigerant passage 55 is provided with a first bypass valve 56 for opening and closing the first liquid phase refrigerant passage 55.
  • the basic configuration of the first bypass valve 56 is the same as that of the gas-phase refrigerant control valve 52, and is an electromagnetic valve whose opening / closing operation is controlled by a control voltage output from the control device 40.
  • the control device 40 sets the high stage side expansion valve 13 to the throttle state, sets the gas-phase refrigerant control valve 52 to the fully open state, sets the first bypass valve 56 to the fully closed state, and performs cooling.
  • the expansion valve 22 is fully closed, and the bypass passage opening / closing valve 27 is opened.
  • the heat pump cycle 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the solid arrows in FIG. 13, and the gas-phase refrigerant separated by the gas-liquid separator 50 goes to the intermediate pressure port 11 b of the compressor 11.
  • the gas injection operation is performed.
  • the gas-phase refrigerant control valve 52 is fully closed in S12. State. Thereby, the flow of the refrigerant flowing into the intermediate pressure port 11 b via the gas-phase refrigerant passage 51 is suppressed, that is, the liquid-phase refrigerant is prevented from flowing into the compressor 11. As a result, it is possible to prevent problems due to the inflow of the liquid refrigerant into the compressor 11.
  • the gas phase refrigerant control valve 52 is fully closed when it is determined that liquid phase refrigerant inflow occurs.
  • the first bypass valve 56 may be opened while the gas-phase refrigerant control valve 52 is fully opened.
  • the opening of the first bypass valve 56 makes it easier for the refrigerant to flow toward the outdoor heat exchanger 20, and the liquid-phase refrigerant is prevented from accumulating in the gas-liquid separation space 141b.
  • the inflow of the liquid phase refrigerant into the compressor 11 is prevented, and a problem due to the inflow of the liquid phase refrigerant into the compressor 11 is prevented.
  • the throttle 17 as the low-stage decompression unit includes an electric actuator that includes a valve element that can change the throttle opening degree and an electric actuator that includes a stepping motor that changes the throttle opening degree of the valve element. This is a variable aperture mechanism.
  • the operation of the diaphragm 17 is controlled by a control signal output from the control device 40.
  • the opening degree of the throttle 17 during execution of the first heating operation mode is such that the dryness degree X of the refrigerant upstream of the throttle 17 is 0.1 or less even if the necessary circulating refrigerant flow rate changes due to cycle load fluctuations. It is set to become.
  • the lower body 141 of the integrated valve 14 is formed with a second liquid phase refrigerant passage 141g in parallel with the throttle 17 and the first liquid phase refrigerant passage 141d. Then, the liquid-phase refrigerant separated in the gas-liquid separation space 141b bypasses the throttle 17 and the first liquid-phase refrigerant passage 141d, passes through the second liquid-phase refrigerant passage 141g, and goes to the liquid-phase refrigerant outlet 141e side. Distribution is possible.
  • a second bypass valve 60 that opens and closes the second liquid-phase refrigerant passage 141g is disposed.
  • a detection unit 61 that drives the second bypass valve 60 is disposed in a path that guides the low-pressure refrigerant from the outdoor heat exchanger 20 to the suction port 11a of the compressor 11.
  • the detection unit 61 includes a diaphragm 611 and a shaft 612 having one end joined to the diaphragm 611.
  • a second bypass valve 60 is joined to the other end of the shaft 612.
  • the first chamber 613 formed on one side of the diaphragm 611 communicates with a path for guiding the refrigerant from the outdoor heat exchanger 20 to the suction port 11a of the compressor 11. For this reason, the pressure of the low-pressure refrigerant flowing through the path is equal to the pressure in the first chamber 613.
  • Refrigerant gas is enclosed in the second chamber 614 formed on the other side of the diaphragm 611 (the lower side of FIGS. 17 and 18).
  • the pressure in the second chamber 614 changes according to the temperature of the low-pressure refrigerant sucked from the suction port 11a. Specifically, when the temperature of the low-pressure refrigerant increases, that is, when the degree of superheat of the low-pressure refrigerant increases, the pressure in the second chamber 614 also increases.
  • the diaphragm 611 is displaced according to the pressure difference between the pressure in the first chamber 613 and the pressure in the second chamber 614.
  • the detection unit 61 corresponds to a refrigerant state determination unit and an inflow suppression unit of the present disclosure.
  • the solenoid 16 of the integrated valve 14 is energized, so the first bypass valve 15 opens the first liquid-phase refrigerant passage 141d. Further, in the state where the first liquid-phase refrigerant passage 141d is opened, the degree of superheat of the low-pressure refrigerant is low and the pressure in the second chamber 614 is also low. Therefore, the second bypass valve 60 is driven by the diaphragm 611 in the valve closing direction to close the second liquid phase refrigerant passage 141g.
  • the solenoid 16 of the integrated valve 14 When the first heating operation mode is executed, as shown in FIG. 17, the solenoid 16 of the integrated valve 14 is in a non-energized state, so the first bypass valve 15 closes the first liquid-phase refrigerant passage 141d. In a steady operation state, the temperature of the low-pressure refrigerant is low and the pressure in the second chamber 614 is also low. Therefore, the second bypass valve 60 is driven by the diaphragm 611 in the valve closing direction to close the second liquid phase refrigerant passage 141g.
  • the liquid phase refrigerant separated in the gas-liquid separation space 141b of the integrated valve 14 is reduced in pressure by the throttle 17. It is decompressed and expanded in an enthalpy manner until it becomes a refrigerant, and flows out from the liquid-phase refrigerant outlet 141e.
  • the pressure in the second chamber 614 also increases.
  • the second bypass valve 60 is driven in the valve opening direction by the diaphragm 611, and the second liquid-phase refrigerant. Open the passage 141g.
  • the liquid-phase refrigerant separated in the gas-liquid separation space 141b flows through the throttle 17 and the second liquid-phase refrigerant passage 141g, the liquid-phase refrigerant is prevented from accumulating in the gas-liquid separation space 141b.
  • the inflow of the liquid phase refrigerant into the compressor 11 is prevented, and a problem due to the inflow of the liquid phase refrigerant into the compressor 11 is prevented.
  • the refrigerant passage connecting the gas-phase refrigerant outlet 142a of the integrated valve 14 and the intermediate pressure port 11b of the compressor 11 has a passage opening / closing valve (gas-phase refrigerant passage opening / closing) for opening and closing the refrigerant passage.
  • Valve 70 is arranged.
  • a detection unit 71 that drives the passage opening / closing valve 70 is disposed in a path that guides the low-pressure refrigerant from the outdoor heat exchanger 20 to the suction port 11a of the compressor 11.
  • the detecting unit 71 includes a diaphragm 711 and a shaft 712 having one end joined to the diaphragm 711, and a passage opening / closing valve 70 is joined to the other end of the shaft 712.
  • the first chamber 713 formed on one side of the diaphragm 711 communicates with a path connecting the outdoor heat exchanger 20 to the cooling expansion valve 22 and the bypass passage opening / closing valve 27. For this reason, the pressure in the first chamber 713 is equal to the pressure of the low-pressure refrigerant flowing out of the outdoor heat exchanger 20.
  • a refrigerant gas is sealed in the second chamber 714 formed on the other side of the diaphragm 711 (the lower side in FIG. 19).
  • the pressure in the second chamber 714 changes according to the temperature of the low-pressure refrigerant flowing out of the outdoor heat exchanger 20. Specifically, when the temperature of the low-pressure refrigerant increases, that is, when the degree of superheat of the low-pressure refrigerant increases, the pressure in the second chamber 714 also increases.
  • the diaphragm 711 is displaced according to the pressure difference between the pressure in the first chamber 713 and the pressure in the second chamber 714.
  • the diaphragm 711 is displaced according to the degree of superheat of the low-pressure refrigerant flowing out from the outdoor heat exchanger 20.
  • the detection unit 71 corresponds to the refrigerant state determination unit and the inflow suppression unit of the present disclosure.
  • the passage opening / closing valve 70 is driven by the diaphragm 711 in the valve opening direction to fully open the refrigerant passage that connects the gas-phase refrigerant outlet 142 a of the integrated valve 14 and the intermediate pressure port 11 b of the compressor 11.
  • This embodiment is different from the first embodiment in that a gas-phase refrigerant passage opening / closing valve and a detection unit are provided.
  • a gas-phase refrigerant passage opening / closing valve and a detection unit are provided.
  • the refrigerant passage connecting the gas-phase refrigerant outlet 142a of the integrated valve 14 and the intermediate pressure port 11b of the compressor 11 has a passage opening / closing valve (gas-phase refrigerant passage opening / closing) for opening and closing the refrigerant passage.
  • Valve 80 is arranged.
  • a detection unit 81 that drives the passage opening / closing valve 80 is disposed in a path that guides the low-pressure refrigerant from the outdoor heat exchanger 20 to the suction port 11a of the compressor 11.
  • the detection unit 81 includes a diaphragm 811 and a shaft 812 having one end joined to the diaphragm 811, and a passage opening / closing valve 80 is joined to the other end of the shaft 812.
  • the first chamber 813 formed on one side of the diaphragm 811 communicates with a path connecting the accumulator 24 and the suction port 11a of the compressor 11. Therefore, the pressure in the first chamber 813 is equal to the pressure of the low-pressure refrigerant sucked from the suction port 11a.
  • Refrigerant gas is enclosed in the second chamber 814 formed on the other side of the diaphragm 811 (the lower side in FIG. 20).
  • the pressure in the second chamber 814 changes according to the temperature of the low-pressure refrigerant sucked from the suction port 11a. Specifically, when the temperature of the low-pressure refrigerant increases, that is, when the degree of superheat of the low-pressure refrigerant increases, the pressure in the second chamber 814 also increases.
  • the diaphragm 811 is displaced according to the pressure difference between the pressure in the first chamber 813 and the pressure in the second chamber 814.
  • the diaphragm 811 is displaced according to the degree of superheat of the low-pressure refrigerant sucked from the suction port 11a.
  • the detection unit 81 corresponds to the refrigerant state determination unit and the inflow suppression unit of the present disclosure.
  • the gas-phase refrigerant passage opening / closing valve 80 is driven by the diaphragm 811 in the valve opening direction to open a refrigerant passage connecting the gas-phase refrigerant outlet 142a of the integrated valve 14 and the intermediate pressure port 11b of the compressor 11. Yes.
  • the pressure in the second chamber 814 also increases, and the gas-phase refrigerant passage opening / closing valve 80 is driven by the diaphragm 811 in the valve closing direction so that the gas-phase refrigerant outlet 142a of the integrated valve 14 And the refrigerant passage connecting the intermediate pressure port 11b of the compressor 11 is closed. Therefore, the flow of the refrigerant flowing into the intermediate pressure port 11b is prevented, and problems due to the inflow of the liquid phase refrigerant into the compressor 11 are prevented.
  • the refrigerant passage that connects the gas-phase refrigerant outlet 142a of the integrated valve 14 and the intermediate pressure port 11b of the compressor 11 is closed. I did it.
  • the flow area of the refrigerant passage that connects the gas-phase refrigerant outlet 142a of the integrated valve 14 and the intermediate pressure port 11b of the compressor 11 May be reduced.
  • the throttle opening of the high stage side expansion valve 13 when the throttle opening of the high stage side expansion valve 13 is increased in the first heating operation mode (that is, the gas injection operation), the difference between the pressure of the high-pressure refrigerant and the pressure of the intermediate-pressure refrigerant decreases, Pressure increases.
  • the pressure of the low-pressure refrigerant is not substantially changed because the temperature of the outside air in contact with the outdoor heat exchanger 20 is dominant. Therefore, the pressure difference between the pressure of the intermediate pressure refrigerant and the pressure of the low pressure refrigerant can be increased.
  • the mode since the mode is switched to the second heating operation mode in S12, the first bypass valve 15 is opened and no pressure difference is generated between the pressure of the intermediate pressure refrigerant and the pressure of the low pressure refrigerant.
  • S15 is intended to secure a pressure difference generated in the throttle 17 immediately after switching at the stage where the operation mode is returned to the first heating operation mode in S14.
  • S15 it is possible to secure the pressure difference and increase the flow rate of the refrigerant that the throttle 17 can flow.
  • a large amount of refrigerant flowing into the gas-liquid separation space 141b can be securely flowed to the low pressure side.

Abstract

This heat pump cycle switches between a first heating operation mode and a second operation mode. When a heating load is increased and a compressor (11) is sped up during the first heating operation mode, it is determined that a refrigerant containing a liquid-phase refrigerant flows into an intermediate pressure port (11b) of the compressor (11), and the first heating operation mode is switched to the second heating operation mode. In the second heating operation mode, a gas-phase-side valve (18) closes the pathway leading the refrigerant to the intermediate pressure port (11b), and so it is possible to prevent the inflow of liquid-phase refrigerant to the compressor (11).

Description

ヒートポンプサイクルHeat pump cycle 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年1月14日に出願された日本特許出願2014-004356号を基にしている。 This application is based on Japanese Patent Application No. 2014-004356 filed on January 14, 2014, the disclosure of which is incorporated herein by reference.
 本開示は、ヒートポンプサイクルに関するものである。 This disclosure relates to a heat pump cycle.
 従来、電気自動車等のように車室内の暖房用の熱源を確保しにくい車両に適用される車両用空調装置として、ヒートポンプサイクル(蒸気圧縮式の冷凍サイクル)にて車室内へ送風される空気を加熱して、車室内の暖房を行うものが知られている。 Conventionally, as a vehicle air conditioner applied to a vehicle such as an electric vehicle in which it is difficult to secure a heat source for heating the vehicle interior, air blown into the vehicle interior by a heat pump cycle (vapor compression refrigeration cycle) is used. What heats and heats a vehicle interior is known.
 例えば、特許文献1、2には、この種の車両用空調装置に適用され、冷房運転時の冷媒回路と暖房運転時の冷媒回路とを切り替え可能なヒートポンプサイクルが開示されている。当該ヒートポンプサイクルでは、暖房運転時に、低段側圧縮機構と高段側圧縮機構との2つの圧縮機構にて冷媒を多段階に昇圧して、サイクルの中間圧気相冷媒を低段側圧縮機構から吐出された冷媒と合流させて高段側圧縮機構へ吸入させる、いわゆるガスインジェクションサイクル(エコノマイザ式冷凍サイクル)に切り替える。これにより、暖房運転時におけるサイクル効率(COP)の向上を図っている。 For example, Patent Documents 1 and 2 disclose heat pump cycles that are applied to this type of vehicle air conditioner and that can switch between a refrigerant circuit during cooling operation and a refrigerant circuit during heating operation. In the heat pump cycle, during heating operation, the refrigerant is boosted in multiple stages by two compression mechanisms, a low-stage compression mechanism and a high-stage compression mechanism, and the intermediate-pressure gas-phase refrigerant of the cycle is discharged from the low-stage compression mechanism. The operation is switched to a so-called gas injection cycle (economizer refrigeration cycle) in which the discharged refrigerant is combined and sucked into the high-stage compression mechanism. Thereby, the cycle efficiency (COP) at the time of heating operation is improved.
 具体的には、特許文献1、2に開示されたヒートポンプサイクルは、高段側膨張弁、気液分離器、気相冷媒通路、固定絞り(すなわち、低段側減圧部)、液相冷媒通路、蒸発器、バイパス弁、気相冷媒制御弁等を備えている。高段側膨張弁は、高圧冷媒を中間圧冷媒となるまで減圧させる。気液分離器は、高段側膨張弁にて減圧された冷媒の気液を分離する。気相冷媒通路は、気液分離器にて分離された気相冷媒を圧縮機の中間圧ポートに導く。固定絞りは、気液分離器にて分離された液相冷媒を減圧させる。液相冷媒通路は、気液分離器にて分離された液相冷媒を固定絞りをバイパスして流す。蒸発器は、固定絞りおよび液相冷媒通路から流出した冷媒を蒸発させる。バイパス弁は、液相冷媒通路を開閉する。気相冷媒制御弁は、気相冷媒通路を開閉する。 Specifically, the heat pump cycle disclosed in Patent Documents 1 and 2 includes a high-stage expansion valve, a gas-liquid separator, a gas-phase refrigerant passage, a fixed throttle (that is, a low-stage decompression section), a liquid-phase refrigerant passage. An evaporator, a bypass valve, a gas-phase refrigerant control valve, and the like. The high stage side expansion valve depressurizes the high-pressure refrigerant until it becomes an intermediate-pressure refrigerant. The gas-liquid separator separates the gas-liquid of the refrigerant decompressed by the high stage side expansion valve. The gas-phase refrigerant passage guides the gas-phase refrigerant separated by the gas-liquid separator to the intermediate pressure port of the compressor. The fixed throttle depressurizes the liquid-phase refrigerant separated by the gas-liquid separator. The liquid phase refrigerant passage allows the liquid phase refrigerant separated by the gas-liquid separator to flow through the fixed throttle. The evaporator evaporates the refrigerant flowing out from the fixed throttle and the liquid phase refrigerant passage. The bypass valve opens and closes the liquid phase refrigerant passage. The gas phase refrigerant control valve opens and closes the gas phase refrigerant passage.
 特許文献1に開示されたヒートポンプサイクルは、バイパス弁と気相冷媒制御弁が一体化され、バイパス弁の開閉弁作動に伴う圧力変化を利用して気相冷媒制御弁を作動させる。ガスインジェクション運転時には、バイパス弁は液相冷媒通路を閉じ、気相冷媒制御弁は気相冷媒通路を開く。 In the heat pump cycle disclosed in Patent Document 1, the bypass valve and the gas-phase refrigerant control valve are integrated, and the gas-phase refrigerant control valve is operated by utilizing the pressure change caused by the on-off valve operation of the bypass valve. During the gas injection operation, the bypass valve closes the liquid phase refrigerant passage, and the gas phase refrigerant control valve opens the gas phase refrigerant passage.
 一方、特許文献2に開示されたヒートポンプサイクルは、電磁弁形式のバイパス弁および電磁弁形式の気相冷媒制御弁が用いられている。ガスインジェクション運転時には、バイパス弁は液相冷媒通路を閉じ、気相冷媒制御弁は気相冷媒通路を開く。 On the other hand, the heat pump cycle disclosed in Patent Document 2 uses an electromagnetic valve type bypass valve and an electromagnetic valve type gas phase refrigerant control valve. During the gas injection operation, the bypass valve closes the liquid phase refrigerant passage, and the gas phase refrigerant control valve opens the gas phase refrigerant passage.
特開2013-092355号公報JP 2013-092355 A 特開2012-181005号公報JP 2012-181005 A
 しかしながら、本開示の発明者らによる検討によれば、バイパス弁が液相冷媒通路を閉じ且つ定常運転状態において、固定絞りを介して蒸発器へ適正な量の冷媒が流れるように固定絞りの径が設計されている。このため、ガスインジェクション運転状態で圧縮機の回転数が急激に上昇するような過渡運転域において、固定絞りを介して流しきれる冷媒の量と気液分離器に流入する冷媒の量のバランスが一時的に崩れ、気液分離器に液相冷媒が溜まってしまう。 However, according to studies by the inventors of the present disclosure, the diameter of the fixed throttle is such that an appropriate amount of refrigerant flows to the evaporator through the fixed throttle in a steady operation state where the bypass valve closes the liquid-phase refrigerant passage. Is designed. For this reason, in a transient operation region where the rotation speed of the compressor suddenly increases in the gas injection operation state, the balance between the amount of refrigerant flowing through the fixed throttle and the amount of refrigerant flowing into the gas-liquid separator is temporarily The liquid phase refrigerant accumulates in the gas-liquid separator.
 したがって、ガスインジェクション運転中の過渡運転域において、気液分離器に溜まった液相冷媒が気相冷媒通路を介して圧縮機の中間圧ポートに流入する。これにより、圧縮機内の冷凍機油が洗い出され、圧縮機の摺動部が貧潤滑状態となる。その結果、圧縮機の摺動部が摩耗したり、さらにはロックしたりする恐れがある。 Therefore, in the transient operation region during the gas injection operation, the liquid phase refrigerant accumulated in the gas-liquid separator flows into the intermediate pressure port of the compressor through the gas phase refrigerant passage. Thereby, the refrigeration oil in a compressor is washed out and the sliding part of a compressor will be in a poor lubrication state. As a result, the sliding portion of the compressor may be worn out or even locked.
 本開示は上記点に鑑みて、ガスインジェクション運転を行うヒートポンプサイクルにおいて、圧縮機への液相冷媒の流入を防止し、ガスインジェクション運転によるサイクル効率(COP)を向上させることができるヒートポンプサイクルを提供することを目的とする。 In view of the above points, the present disclosure provides a heat pump cycle capable of preventing liquid-phase refrigerant from flowing into a compressor and improving cycle efficiency (COP) by gas injection operation in a heat pump cycle performing gas injection operation. The purpose is to do.
 本開示のヒートポンプサイクルは、吸入ポートから吸入した低圧冷媒を圧縮して、高圧冷媒として吐出ポートから吐出するとともに、サイクル内の中間圧冷媒を流入させて圧縮過程の冷媒に合流させる中間圧ポートを有する圧縮機と、吐出ポートから吐出された高圧冷媒と熱交換対象流体とを熱交換させて、熱交換対象流体を加熱する利用側熱交換器と、利用側熱交換器から流出した高圧冷媒を中間圧冷媒となるまで減圧させる高段側減圧部と、高段側減圧部にて減圧された中間圧冷媒の気液を分離する気液分離部と、気液分離部にて分離された気相冷媒を中間圧ポートに導く気相冷媒通路と、気相冷媒通路を開閉する気相冷媒制御弁と、気液分離部にて分離された液相冷媒を減圧させる低段側減圧部と、低段側減圧部にて減圧された冷媒を蒸発させて、低圧冷媒として吸入ポート側へ流出させる蒸発器と、気相冷媒制御弁を開弁させて中間圧ポートに中間圧冷媒を流入させるガスインジェクション運転中に、気相冷媒通路に液相冷媒を含んだ冷媒が流入するか否かを判断する冷媒状態判断部と、冷媒状態判断部が気相冷媒通路に液相冷媒を含んだ冷媒が流入すると判断した際に、気相冷媒通路を介して中間圧ポートに流入する冷媒の流れを抑止する流入抑止部とを備える。 The heat pump cycle of the present disclosure compresses the low-pressure refrigerant sucked from the suction port, discharges it as a high-pressure refrigerant from the discharge port, and introduces an intermediate-pressure port that flows in the intermediate-pressure refrigerant in the cycle and joins the refrigerant in the compression process. A high-pressure refrigerant discharged from the discharge port and a high-pressure refrigerant discharged from the discharge port to heat-exchange the heat-exchange target fluid and a high-pressure refrigerant flowing out of the use-side heat exchanger A high-stage decompression unit that decompresses the refrigerant until it becomes an intermediate-pressure refrigerant, a gas-liquid separation unit that separates the gas-liquid of the intermediate-pressure refrigerant decompressed by the high-stage decompression unit, and a gas separated by the gas-liquid separation unit A gas-phase refrigerant passage for guiding the phase refrigerant to the intermediate pressure port, a gas-phase refrigerant control valve for opening and closing the gas-phase refrigerant passage, a low-stage decompression section for decompressing the liquid-phase refrigerant separated in the gas-liquid separation section, Refrigerant depressurized in the low-stage decompression section An evaporator that evaporates and flows out as a low-pressure refrigerant to the suction port side, and a gas phase refrigerant control valve that opens and an intermediate-pressure refrigerant flows into the intermediate-pressure port during the gas injection operation. A refrigerant state determination unit that determines whether or not a refrigerant containing a refrigerant flows; and a refrigerant state determination unit that determines whether or not a refrigerant containing a liquid phase refrigerant flows into the gas phase refrigerant passage; And an inflow suppressing part for suppressing the flow of the refrigerant flowing into the intermediate pressure port.
 これによると、気相冷媒通路に液相冷媒を含んだ冷媒が流入すると判断した際に中間圧ポートに流入する冷媒の流れを抑止する。このため、圧縮機への液相冷媒の流入を防止し、圧縮機への液相冷媒の流入による不具合を未然に防止することができる。また、気相冷媒通路に液相冷媒を含んだ冷媒が流入しないと判断される状況下では、ガスインジェクション運転を継続してサイクル効率(COP)の向上を図ることができる。 According to this, when it is determined that the refrigerant containing the liquid phase refrigerant flows into the gas phase refrigerant passage, the flow of the refrigerant flowing into the intermediate pressure port is suppressed. For this reason, the inflow of the liquid phase refrigerant into the compressor can be prevented, and problems due to the inflow of the liquid phase refrigerant into the compressor can be prevented. Further, in a situation where it is determined that the refrigerant containing the liquid-phase refrigerant does not flow into the gas-phase refrigerant passage, the gas injection operation can be continued to improve the cycle efficiency (COP).
第1実施形態のヒートポンプサイクルの冷房運転モード時および除湿暖房運転モード時の冷媒回路を示す全体構成図である。It is a whole block diagram which shows the refrigerant circuit at the time of the cooling operation mode of the heat pump cycle of 1st Embodiment, and the dehumidification heating operation mode. 第1実施形態のヒートポンプサイクルの第1暖房運転モード時の冷媒回路を示す全体構成図である。It is a whole block diagram which shows the refrigerant circuit at the time of the 1st heating operation mode of the heat pump cycle of 1st Embodiment. 第1実施形態のヒートポンプサイクルの第2暖房運転モード時の冷媒回路を示す全体構成図である。It is a whole block diagram which shows the refrigerant circuit at the time of the 2nd heating operation mode of the heat pump cycle of 1st Embodiment. 第1実施形態の統合弁の非通電状態における模式的な断面図である。It is typical sectional drawing in the non-energized state of the integrated valve of 1st Embodiment. 第1実施形態の統合弁の通電状態における模式的な断面図である。It is typical sectional drawing in the energized state of the integrated valve of 1st Embodiment. 第1実施形態の気相側弁体が開き始める条件を説明する部分拡大図である。It is the elements on larger scale explaining the conditions from which the gas-phase side valve body of 1st Embodiment begins to open. 第1実施形態の気相側弁体が開き続ける条件を説明する部分拡大図である。It is the elements on larger scale explaining the conditions which the vapor phase side valve body of 1st Embodiment continues opening. 第1実施形態の液相冷媒流入防止処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the liquid phase refrigerant | coolant inflow prevention process of 1st Embodiment. 第9実施形態の統合弁の非通電状態における模式的な断面図である。It is typical sectional drawing in the non-energized state of the integrated valve of 9th Embodiment. 第9実施形態の第1変形例を示す統合弁の模式的な部分断面図である。It is a typical fragmentary sectional view of the integrated valve which shows the 1st modification of 9th Embodiment. 第9実施形態の第2変形例を示す統合弁の模式的な部分断面図である。It is a typical fragmentary sectional view of the integrated valve which shows the 2nd modification of 9th Embodiment. 第9実施形態の第2変形例を示す統合弁の他の作動状態における模式的な部分断面図である。It is a typical fragmentary sectional view in the other operation state of the integrated valve which shows the 2nd modification of 9th Embodiment. 第10実施形態のヒートポンプサイクルの第1暖房運転モード時の冷媒回路を示す全体構成図である。It is a whole block diagram which shows the refrigerant circuit at the time of the 1st heating operation mode of the heat pump cycle of 10th Embodiment. 第11実施形態のヒートポンプサイクルの第1暖房運転モード時の冷媒回路を示す全体構成図である。It is a whole block diagram which shows the refrigerant circuit at the time of the 1st heating operation mode of the heat pump cycle of 11th Embodiment. 第12実施形態のヒートポンプサイクルの模式図である。It is a schematic diagram of the heat pump cycle of 12th Embodiment. 第12実施形態の統合弁の通電時の作動状態を示す断面図である。It is sectional drawing which shows the operating state at the time of electricity supply of the integrated valve of 12th Embodiment. 第12実施形態の統合弁の非通電時の作動状態を示す断面図である。It is sectional drawing which shows the operation state at the time of the deenergization of the integrated valve of 12th Embodiment. 第12実施形態の統合弁の非通電時の他の作動状態を示す断面図である。It is sectional drawing which shows the other operating state at the time of the deenergization of the integrated valve of 12th Embodiment. 第13実施形態のヒートポンプサイクルの模式図である。It is a schematic diagram of the heat pump cycle of 13th Embodiment. 第14実施形態のヒートポンプサイクルの模式図である。It is a schematic diagram of the heat pump cycle of 14th Embodiment. 第15実施形態の液相冷媒流入防止処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the liquid phase refrigerant | coolant inflow prevention process of 15th Embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
 図1~7により、第1実施形態について説明する。本実施形態では、本開示の統合弁14を備えるヒートポンプサイクル10を、走行用電動モータから車両走行用の駆動力を得る電気自動車の車両用空調装置1に適用している。本実施形態において、ヒートポンプサイクル10は、蒸気圧縮式の冷凍サイクルである。このヒートポンプサイクル10は、車両用空調装置1において、空調対象空間である車室内へ送風される空気を冷却あるいは加熱する。従って、本実施形態の熱交換対象流体は空気である。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
(First embodiment)
The first embodiment will be described with reference to FIGS. In this embodiment, the heat pump cycle 10 provided with the integrated valve 14 of this indication is applied to the vehicle air conditioner 1 of the electric vehicle which obtains the driving force for vehicle travel from the travel electric motor. In the present embodiment, the heat pump cycle 10 is a vapor compression refrigeration cycle. This heat pump cycle 10 cools or heats the air blown into the vehicle interior, which is a space to be air-conditioned, in the vehicle air conditioner 1. Therefore, the heat exchange target fluid of this embodiment is air.
 さらに、ヒートポンプサイクル10は、図1の全体構成図に示す、車室内を冷房する冷房運転モード(空気を冷却する冷却運転モード)の冷媒回路、および、図2、図3の全体構成図に示す、車室内を暖房する暖房運転モード(空気を加熱する加熱運転モード)の冷媒回路とを切替可能に構成されている。なお、図1~3では、それぞれの運転モードにおける冷媒の流れを実線矢印で示している。 Further, the heat pump cycle 10 is shown in the overall configuration diagram of FIG. 1, the refrigerant circuit in the cooling operation mode (cooling operation mode for cooling air) for cooling the vehicle interior, and the overall configuration diagram of FIGS. 2 and 3. The refrigerant circuit in the heating operation mode (heating operation mode for heating air) for heating the vehicle interior can be switched. In FIGS. 1 to 3, the refrigerant flow in each operation mode is indicated by solid arrows.
 また、このヒートポンプサイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。HFO系冷媒(例えば、R1234yf)等を採用してもよい。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 The heat pump cycle 10 employs an HFC refrigerant (specifically, R134a) as the refrigerant, and constitutes a vapor compression subcritical refrigeration cycle in which the high-pressure refrigerant pressure does not exceed the refrigerant critical pressure. Yes. An HFO refrigerant (for example, R1234yf) or the like may be employed. Furthermore, refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigeration oil circulates in the cycle together with the refrigerant.
 ヒートポンプサイクル10の構成機器のうち、圧縮機11は、車両のボンネット内に位置し、ヒートポンプサイクル10において冷媒を吸入し、圧縮して吐出する。この圧縮機11は、その外殻を形成するハウジングの内部に、低段側圧縮機構と高段側圧縮機構との2つの圧縮機構、および、双方の圧縮機構を回転駆動する電動モータを収容して構成された二段昇圧式の電動圧縮機である。 Among the components of the heat pump cycle 10, the compressor 11 is located in the hood of the vehicle, and inhales, compresses and discharges the refrigerant in the heat pump cycle 10. The compressor 11 accommodates two compression mechanisms, a low-stage compression mechanism and a high-stage compression mechanism, and an electric motor that rotationally drives both compression mechanisms in a housing that forms an outer shell thereof. Is a two-stage booster type electric compressor configured as described above.
 圧縮機11のハウジングには、ハウジングの外部から低段側圧縮機構へ低圧冷媒を吸入させる吸入ポート11a、ハウジングの外部からハウジングの内部へ中間圧冷媒を流入させて低圧から高圧への圧縮過程の冷媒に合流させる中間圧ポート11b、および、高段側圧縮機構から吐出された高圧冷媒をハウジングの外部へ吐出させる吐出ポート11cが設けられている。 The housing of the compressor 11 has a suction port 11a for sucking low-pressure refrigerant from the outside of the housing into the low-stage compression mechanism, and an intermediate-pressure refrigerant flows from the outside of the housing to the inside of the housing to compress from low pressure to high pressure. An intermediate pressure port 11b for joining the refrigerant and a discharge port 11c for discharging the high-pressure refrigerant discharged from the high-stage compression mechanism to the outside of the housing are provided.
 より具体的には、中間圧ポート11bは、低段側圧縮機構の冷媒吐出口(すなわち、高段側圧縮機構の冷媒吸入口)に接続されている。また、低段側圧縮機構および高段側圧縮機は、スクロール型圧縮機構、ベーン型圧縮機構、ローリングピストン型圧縮機構等の各種形式のものを採用することができる。 More specifically, the intermediate pressure port 11b is connected to the refrigerant discharge port of the low-stage compression mechanism (that is, the refrigerant suction port of the high-stage compression mechanism). Various types such as a scroll type compression mechanism, a vane type compression mechanism, and a rolling piston type compression mechanism can be adopted as the low stage side compression mechanism and the high stage side compressor.
 電動モータは、後述する制御装置(空調制御装置)40から出力される制御信号によって、その作動(回転数)が制御される。電動モータとして、交流モータ、直流モータのいずれの形式を採用してもよい。そして、回転数を制御することによって、圧縮機11の冷媒吐出能力が変更される。従って、本実施形態では、電動モータが圧縮機11の吐出能力変更部を構成している。 The operation (rotation speed) of the electric motor is controlled by a control signal output from a control device (air conditioning control device) 40 described later. As the electric motor, either an AC motor or a DC motor may be adopted. And the refrigerant | coolant discharge capability of the compressor 11 is changed by controlling rotation speed. Therefore, in this embodiment, the electric motor constitutes the discharge capacity changing unit of the compressor 11.
 なお、本実施形態では、2つの圧縮機構を1つのハウジング内に収容した圧縮機11を採用しているが、圧縮機の形式はこれに限定されない。つまり、中間圧ポート11bから中間圧冷媒を流入させて低圧から高圧への圧縮過程の冷媒に合流させることが可能であれば、ハウジングの内部に、1つの固定容量型の圧縮機構およびこの圧縮機構を回転駆動する電動モータを収容して構成された電動圧縮機であってもよい。 In addition, in this embodiment, although the compressor 11 which accommodated two compression mechanisms in one housing is employ | adopted, the format of a compressor is not limited to this. That is, if the intermediate pressure refrigerant can be introduced from the intermediate pressure port 11b and merged with the refrigerant in the compression process from low pressure to high pressure, one fixed capacity type compression mechanism and the compression mechanism are provided inside the housing. An electric compressor configured to accommodate an electric motor that rotationally drives the motor may be used.
 さらに、2つの圧縮機を直列に接続して、低段側に配置される低段側圧縮機の吸入口を吸入ポート11aとし、高段側に配置される高段側圧縮機の吐出口を吐出ポート11cとしてもよい。この場合、低段側圧縮機の吐出口と高段側圧縮機との吸入口とを接続する接続部に中間圧ポート11bを設け、低段側圧縮機と高段側圧縮機との双方によって、1つの二段昇圧式の圧縮機を構成する。 Further, two compressors are connected in series, and the suction port of the low-stage compressor disposed on the low-stage side serves as the suction port 11a, and the discharge port of the high-stage compressor disposed on the high-stage side serves as the suction port 11a. The discharge port 11c may be used. In this case, the intermediate pressure port 11b is provided at the connection portion connecting the discharge port of the low-stage compressor and the suction port of the high-stage compressor, and both the low-stage compressor and the high-stage compressor are used. One two-stage booster compressor is configured.
 圧縮機11の吐出ポート11cには、室内凝縮器12の冷媒入口が接続されている。室内凝縮器12は、後述する車両用空調装置1の空調ユニット(室内空調ユニット)30のケース(空調ケース)31内に位置し、圧縮機11(具体的には、高段側圧縮機構)から吐出された高温高圧冷媒を放熱させる放熱器として機能する。つまり、室内凝縮器12は、後述する室内蒸発器23を通過した空気を加熱する利用側熱交換器である。 The refrigerant inlet of the indoor condenser 12 is connected to the discharge port 11 c of the compressor 11. The indoor condenser 12 is located in a case (air conditioning case) 31 of an air conditioning unit (indoor air conditioning unit) 30 of the vehicle air conditioner 1 to be described later, and from the compressor 11 (specifically, a high stage compression mechanism). It functions as a radiator that radiates the discharged high-temperature and high-pressure refrigerant. That is, the indoor condenser 12 is a use side heat exchanger that heats air that has passed through an indoor evaporator 23 described later.
 室内凝縮器12の冷媒出口には、室内凝縮器12から流出した高圧冷媒を中間圧冷媒となるまで減圧させる高段側減圧部としての高段側膨張弁13の入口が接続されている。この高段側膨張弁13は、絞り開度を変更可能な弁体と、この弁体の絞り開度を変化させるステッピングモータからなる電動アクチュエータとを有する電気式の可変絞り機構である。 The refrigerant outlet of the indoor condenser 12 is connected to an inlet of a high stage side expansion valve 13 as a high stage side pressure reducing section that decompresses the high pressure refrigerant flowing out of the indoor condenser 12 until it becomes an intermediate pressure refrigerant. The high-stage expansion valve 13 is an electric variable throttle mechanism having a valve body that can change the throttle opening degree and an electric actuator that includes a stepping motor that changes the throttle opening degree of the valve body.
 より具体的には、高段側膨張弁13では、冷媒を減圧させる絞り状態となると、絞り通路の断面積が相当直径φ0.5~φ3mmとなる範囲で絞り開度が変化する。さらに、絞り開度を全開とすると、絞り通路の断面積を相当直径φ10mm程度確保して、冷媒減圧作用を発揮させないようにすることもできる。なお、高段側膨張弁13は、制御装置40から出力される制御信号によって、その作動が制御される。高段側膨張弁13の出口には、統合弁14の冷媒流入口141aが接続されている。 More specifically, in the high stage side expansion valve 13, when the refrigerant is in a throttle state in which the refrigerant is depressurized, the throttle opening changes within a range where the cross-sectional area of the throttle passage becomes an equivalent diameter φ0.5 to φ3 mm. Furthermore, when the throttle opening is fully opened, the cross-sectional area of the throttle passage can be ensured to have an equivalent diameter of about 10 mm so that the refrigerant decompression action is not exhibited. The operation of the high stage side expansion valve 13 is controlled by a control signal output from the control device 40. A refrigerant inlet 141 a of the integrated valve 14 is connected to the outlet of the high stage side expansion valve 13.
 統合弁14は、互いに一体化された、気液分離部(気液分離空間141b)、気相冷媒側の弁体(気相側弁体)18、弁(第1バイパス弁15)、減圧部(絞り17)等により構成されている。気液分離空間141bは、高段側膨張弁13から流出した冷媒の気液を分離する。気相側弁体18は、気液分離空間141bにて分離された気相冷媒を流通させる気相冷媒通路を開閉する。第1バイパス弁15は、気液分離空間141bにて分離された液相冷媒を流通させる液相冷媒通路を開閉する。絞り17は、気液分離空間141bにて分離された液相冷媒を減圧させる。 The integrated valve 14 includes a gas-liquid separation unit (gas-liquid separation space 141b), a gas-phase refrigerant-side valve element (gas-phase-side valve element) 18, a valve (first bypass valve 15), and a decompression unit, which are integrated with each other. (Aperture 17) or the like. The gas-liquid separation space 141 b separates the gas-liquid refrigerant flowing out from the high stage expansion valve 13. The gas phase side valve element 18 opens and closes a gas phase refrigerant passage through which the gas phase refrigerant separated in the gas-liquid separation space 141b flows. The first bypass valve 15 opens and closes a liquid-phase refrigerant passage through which the liquid-phase refrigerant separated in the gas-liquid separation space 141b flows. The throttle 17 depressurizes the liquid-phase refrigerant separated in the gas-liquid separation space 141b.
 換言すると、この統合弁14において、ヒートポンプサイクル10をガスインジェクションサイクルとして機能させるために必要な構成機器の一部を一体化している。さらに、統合弁14は、サイクルを循環する冷媒の冷媒回路を切り替える冷媒回路切替部である。 In other words, in the integrated valve 14, a part of the constituent devices necessary for causing the heat pump cycle 10 to function as a gas injection cycle is integrated. Furthermore, the integrated valve 14 is a refrigerant circuit switching part which switches the refrigerant circuit of the refrigerant | coolant which circulates through a cycle.
 統合弁14の詳細構成については、図4、図5を用いて説明する。なお、図4、図5における上下の各矢印は、統合弁14を車両用空調装置1に搭載した状態における上下の各方向を示している。 The detailed configuration of the integrated valve 14 will be described with reference to FIGS. In addition, the up and down arrows in FIGS. 4 and 5 indicate the up and down directions in a state where the integrated valve 14 is mounted on the vehicle air conditioner 1.
 統合弁14は、内部に気相冷媒制御弁としての気相側弁体18、第1バイパス弁15等を収容し、統合弁14の外殻を形成するボデー140を有している。ボデー140は、統合弁14における下方側に位置するロワーボデー141と、ロワーボデー141の上方に位置するようにロワーボデー141に取付られ固定されるアッパーボデー142とを備える。 The integrated valve 14 includes a body 140 that accommodates the gas-phase side valve body 18 as the gas-phase refrigerant control valve, the first bypass valve 15 and the like and forms an outer shell of the integrated valve 14. The body 140 includes a lower body 141 located on the lower side of the integrated valve 14 and an upper body 142 attached and fixed to the lower body 141 so as to be located above the lower body 141.
 まず、ロワーボデー141はその軸方向が上下方向に延びる略有底円筒状の金属ブロック体で形成される。ロワーボデー141の外側壁面には、高段側膨張弁13から流出した冷媒を内部へ流入させる冷媒流入口141aが形成されている。冷媒流入口141aは、ロワーボデー141の内部に形成された気液分離空間141bに連通している。この気液分離空間141bは、その軸線方向が上下方向に延びる略円柱状に形成されている。 First, the lower body 141 is formed of a substantially bottomed cylindrical metal block whose axial direction extends in the vertical direction. On the outer wall surface of the lower body 141, there is formed a refrigerant inlet 141a through which the refrigerant flowing out from the high stage side expansion valve 13 flows into the inside. The refrigerant inlet 141 a communicates with a gas-liquid separation space 141 b formed inside the lower body 141. The gas-liquid separation space 141b is formed in a substantially cylindrical shape whose axial direction extends in the vertical direction.
 さらに、冷媒流入口141aから気液分離空間141bへ至る冷媒通路は、気液分離空間141bの軸方向(本実施形態では、上下方向)から見たときに、円形断面を有する気液分離空間141bの内側壁面の接線方向に延びている。従って、冷媒流入口141aから気液分離空間141bへ流入した冷媒は、気液分離空間141bの断面円形状の内側壁面に沿って旋回するように流れる。 Further, the refrigerant passage extending from the refrigerant inlet 141a to the gas-liquid separation space 141b has a circular cross section when viewed from the axial direction (vertical direction in the present embodiment) of the gas-liquid separation space 141b. It extends in the tangential direction of the inner wall surface. Therefore, the refrigerant that has flowed into the gas-liquid separation space 141b from the refrigerant inlet 141a flows so as to swirl along the inner wall surface having a circular cross section of the gas-liquid separation space 141b.
 そして、この旋回流れによって生じる遠心力の作用によって気液分離空間141b内へ流入した冷媒の気液が分離され、分離された液相冷媒が重力の作用によって気液分離空間141bの下方側へ落下する。換言すると、本実施形態の気液分離空間141bは、遠心分離方式の気液分離部を構成している。 Then, the gas-liquid refrigerant flowing into the gas-liquid separation space 141b is separated by the action of the centrifugal force generated by the swirling flow, and the separated liquid-phase refrigerant falls to the lower side of the gas-liquid separation space 141b by the action of gravity. To do. In other words, the gas-liquid separation space 141b of the present embodiment constitutes a centrifugal gas-liquid separation unit.
 なお、気液分離空間141bの直径は、例えば、冷媒流入口141aへ接続される冷媒配管の直径の1.5倍以上、かつ3倍以下程度の径に設定されており、統合弁14全体としての小型化を図っている。 In addition, the diameter of the gas-liquid separation space 141b is set to a diameter that is 1.5 times or more and about 3 times or less the diameter of the refrigerant pipe connected to the refrigerant inlet 141a, for example. Is miniaturized.
 より詳細には、本実施形態の気液分離空間141bの内容積は、サイクルに封入される冷媒量を液相に換算した際の封入冷媒体積から、サイクルが最大能力を発揮するために必要な冷媒量を液相に換算した際の必要最大冷媒体積を減算した余剰冷媒体積よりも小さく設定されている。このため、本実施形態の気液分離空間141bの内容積は、サイクルに負荷変動が生じてサイクルを循環する冷媒循環流量が変動しても、実質的に余剰冷媒を溜めることができない程度の容積になっている。 More specifically, the internal volume of the gas-liquid separation space 141b of the present embodiment is necessary for the cycle to exert its maximum capacity from the enclosed refrigerant volume when the amount of refrigerant enclosed in the cycle is converted into the liquid phase. It is set smaller than the surplus refrigerant volume obtained by subtracting the required maximum refrigerant volume when the refrigerant amount is converted into the liquid phase. For this reason, the internal volume of the gas-liquid separation space 141b of the present embodiment is a volume that cannot substantially store surplus refrigerant even if a load fluctuation occurs in the cycle and the refrigerant circulation flow rate circulating in the cycle fluctuates. It has become.
 ロワーボデー141の気液分離空間141bの最下方部には、分離された液相冷媒を第1液相冷媒通路141d側へ流出させる分離液相冷媒出口穴141cが形成されている。第1液相冷媒通路141dは、気液分離空間141bの下方位置し、気液分離空間141bにて分離された液相冷媒を統合弁14の外部へ流出させる液相冷媒流出口141e側へ導く冷媒通路である。 In the lowermost part of the gas-liquid separation space 141b of the lower body 141, a separated liquid phase refrigerant outlet hole 141c through which the separated liquid phase refrigerant flows out to the first liquid phase refrigerant passage 141d side is formed. The first liquid-phase refrigerant passage 141d is positioned below the gas-liquid separation space 141b and guides the liquid-phase refrigerant separated in the gas-liquid separation space 141b to the liquid-phase refrigerant outlet 141e side that allows the liquid-phase refrigerant to flow out of the integrated valve 14. It is a refrigerant passage.
 より具体的には、第1液相冷媒通路141dは、気液分離空間141bの軸方向に垂直な方向(本実施形態では水平方向)に延びる断面円形状の貫通穴である。第1液相冷媒通路141dは、ロワーボデー141の中心部を通過して、ロワーボデー141を貫通するように形成されている。 More specifically, the first liquid-phase refrigerant passage 141d is a through-hole having a circular cross section that extends in a direction perpendicular to the axial direction of the gas-liquid separation space 141b (horizontal direction in the present embodiment). The first liquid-phase refrigerant passage 141d is formed so as to pass through the center of the lower body 141 and penetrate the lower body 141.
 従って、第1液相冷媒通路141dは、気液分離空間141bの軸方向に垂直に延びており、分離液相冷媒出口穴141cから第1液相冷媒通路141dへ流入した冷媒は、略直角に流れ方向を転換させて液相冷媒流出口141eおよび絞り17側へ流れる。さらに、この貫通穴の一端側の開口部が、液相冷媒流出口141eを構成している。なお、絞り17は本開示の低段側減圧部に相当する。 Accordingly, the first liquid phase refrigerant passage 141d extends perpendicular to the axial direction of the gas-liquid separation space 141b, and the refrigerant flowing into the first liquid phase refrigerant passage 141d from the separation liquid phase refrigerant outlet hole 141c is substantially perpendicular. The flow direction is changed to flow toward the liquid-phase refrigerant outlet 141e and the throttle 17 side. Further, the opening on one end side of the through hole constitutes a liquid-phase refrigerant outlet 141e. The diaphragm 17 corresponds to the low-stage decompression unit of the present disclosure.
 また、第1液相冷媒通路141dの内部には、第1液相冷媒通路141dを開閉する第1バイパス弁15、および、第1バイパス弁15に第1液相冷媒通路141dを閉じる側への荷重をかけるコイルバネからなるスプリング(弾性部材)15a等が収容されている。 The first liquid phase refrigerant passage 141d has a first bypass valve 15 that opens and closes the first liquid phase refrigerant passage 141d, and a first bypass valve 15 toward the side where the first liquid phase refrigerant passage 141d is closed. A spring (elastic member) 15a made of a coil spring for applying a load is accommodated.
 スプリング15aは、第1バイパス弁15に対して、第1バイパス弁15の先端部に位置する樹脂性の円環状のシール部材15bを第1液相冷媒通路141d内に形成された弁座部141fに押しつけてシール性を高める方向への荷重をかける。弁座部141fは、シール部材15bに適合する円環状に形成されている。 With respect to the first bypass valve 15, the spring 15a is a valve seat portion 141f formed in a first liquid-phase refrigerant passage 141d with a resinous annular seal member 15b located at the tip of the first bypass valve 15. Apply a load in the direction to improve the sealing performance. The valve seat 141f is formed in an annular shape that fits the seal member 15b.
 さらに、第1バイパス弁15は、シャフト15cを介してソレノイドアクチュエータ16の稼働部材(アーマチュア)に連結されている。以下、ソレノイドアクチュエータ16を、単にソレノイド16と記載する。ソレノイド16は、電力を供給することによって電磁力を発生させて稼働部材を変位させる電磁機構であって、制御装置40から出力される制御電圧によって、その作動が制御される。 Furthermore, the first bypass valve 15 is connected to an operating member (armature) of the solenoid actuator 16 through a shaft 15c. Hereinafter, the solenoid actuator 16 is simply referred to as a solenoid 16. The solenoid 16 is an electromagnetic mechanism that generates electromagnetic force by supplying electric power and displaces the operating member. The operation of the solenoid 16 is controlled by a control voltage output from the control device 40.
 本実施形態では制御装置40がソレノイド16に電力を供給すると、稼働部材に作用する電磁力によって、シャフト15cを介して第1バイパス弁15に第1液相冷媒通路141dを開く側の荷重がかかる。そして、この電磁力による荷重がスプリング15aによる荷重を超えることによって、図5に示すように、第1バイパス弁15が変位して第1液相冷媒通路141dを開く。 In the present embodiment, when the control device 40 supplies power to the solenoid 16, a load on the side of opening the first liquid-phase refrigerant passage 141d is applied to the first bypass valve 15 via the shaft 15c by the electromagnetic force acting on the operating member. . And when the load by this electromagnetic force exceeds the load by the spring 15a, as shown in FIG. 5, the 1st bypass valve 15 displaces and the 1st liquid phase refrigerant path 141d is opened.
 つまり、本実施形態のソレノイド16、第1バイパス弁15および第1液相冷媒通路141dの弁座部141f等は、いわゆるノーマルクローズ型の電磁弁を構成している。さらに、ソレノイド16は、上述した第1液相冷媒通路141dを構成する貫通穴の他端側の開口部を閉塞する閉塞部材としての機能も果たしている。 That is, the solenoid 16, the first bypass valve 15, the valve seat portion 141f of the first liquid phase refrigerant passage 141d, and the like of this embodiment constitute a so-called normally closed electromagnetic valve. Further, the solenoid 16 also functions as a closing member that closes the opening on the other end side of the through hole that constitutes the first liquid-phase refrigerant passage 141d described above.
 さらに、ロワーボデー141には、第1バイパス弁15が第1液相冷媒通路141dを閉じた際に、気液分離空間141bにて分離された液相冷媒を減圧させて液相冷媒流出口141e側へ流出させる絞り17が形成されている。より詳細には、絞り17は、弁座部141fの内部に形成される冷媒通路と並列に配置されている。 Further, in the lower body 141, when the first bypass valve 15 closes the first liquid-phase refrigerant passage 141d, the liquid-phase refrigerant separated in the gas-liquid separation space 141b is depressurized to the liquid-phase refrigerant outlet 141e side. A throttle 17 is formed to flow out to the bottom. More specifically, the throttle 17 is disposed in parallel with the refrigerant passage formed in the valve seat portion 141f.
 この絞り17としては、絞り開度が固定されたノズルあるいはオリフィスを採用できる。ここで、ノズル、オリフィス等の固定絞りでは、絞り通路の断面積が急縮小あるいは急拡大するので、上流側と下流側との圧力差(出入口間差圧)の変化に伴って、固定絞りを通過する冷媒の流量および固定絞り上流側冷媒の乾き度を自己調整(バランス)することができる。 As the throttle 17, a nozzle or an orifice having a fixed throttle opening can be used. Here, in a fixed throttle such as a nozzle or an orifice, the sectional area of the throttle passage suddenly decreases or expands rapidly, so that the fixed throttle is changed as the pressure difference between the upstream side and the downstream side (differential pressure between the inlet and outlet) changes. The flow rate of the passing refrigerant and the dryness of the fixed throttle upstream refrigerant can be self-adjusted (balanced).
 具体的には、上流側と下流側との圧力差が比較的大きい場合には、サイクルを循環させる必要のある必要循環冷媒流量が減少するに伴って、絞り17上流側冷媒の乾き度が大きくなるようにバランスする。一方、圧力差が比較的小さい場合には、必要循環冷媒流量が増加するに伴って、固定絞り上流側冷媒の乾き度が小さくなるようにバランスする。 Specifically, when the pressure difference between the upstream side and the downstream side is relatively large, the dryness of the refrigerant on the upstream side of the throttle 17 increases as the required circulating refrigerant flow rate that requires circulation of the cycle decreases. Balance to be. On the other hand, when the pressure difference is relatively small, it is balanced so that the dryness of the fixed throttle upstream side refrigerant decreases as the required circulating refrigerant flow rate increases.
 ところが、絞り17上流側冷媒の乾き度が大きくなってしまうと、室外熱交換器20が蒸発器として機能する際に、室外熱交換器20における冷媒の吸熱量(冷凍能力)が減ってサイクルの成績係数(COP)が悪化してしまう。そこで、本実施形態では、暖房運転モード時にサイクルの負荷変動によって必要循環冷媒流量が変化しても、絞り17上流側冷媒の乾き度Xが0.1以下となるようにして、COPの悪化を抑制している。 However, when the dryness of the refrigerant upstream of the throttle 17 becomes large, when the outdoor heat exchanger 20 functions as an evaporator, the heat absorption amount (refrigeration capacity) of the refrigerant in the outdoor heat exchanger 20 decreases, and the cycle The coefficient of performance (COP) will deteriorate. Therefore, in the present embodiment, even if the necessary circulating refrigerant flow rate changes due to cycle load fluctuations in the heating operation mode, the dryness X of the refrigerant upstream of the throttle 17 becomes 0.1 or less, and the COP is deteriorated. Suppressed.
 換言すると、本実施形態の絞り17では、ヒートポンプサイクル10に負荷変動が生じた際に想定される範囲で、冷媒循環流量および絞り17の出入口間差圧が変化しても、絞り17上流側冷媒の乾き度Xが0.1以下に自己調整されるものが採用されている。 In other words, in the throttle 17 of the present embodiment, even if the refrigerant circulation flow rate and the differential pressure between the inlet and outlet of the throttle 17 change within a range assumed when a load fluctuation occurs in the heat pump cycle 10, the upstream refrigerant of the throttle 17 A dry degree X of which is self-adjusted to 0.1 or less is employed.
 次に、アッパーボデー142は、ロワーボデー141と同等の外径を有する略円柱状の金属ブロック体で形成されている。アッパーボデー142には、気液分離空間141bにて分離された気相冷媒を統合弁14の外部へ流出させる気相冷媒流出口142a側へ導く気相冷媒通路142b、気液分離空間141bと気相冷媒通路142bとを連通させる分離気相冷媒流出パイプ部142c等が設けられている。 Next, the upper body 142 is formed of a substantially cylindrical metal block body having an outer diameter equivalent to that of the lower body 141. In the upper body 142, a gas-phase refrigerant passage 142b that leads the gas-phase refrigerant separated in the gas-liquid separation space 141b to the gas-phase refrigerant outlet 142a that flows out of the integrated valve 14 and the gas-liquid separation space 141b and the gas are separated. A separated gas-phase refrigerant outflow pipe portion 142c and the like are provided to communicate with the phase refrigerant passage 142b.
 分離気相冷媒流出パイプ部142cは、丸管状に形成されており、アッパーボデー142とロワーボデー141が一体化された際に、気液分離空間141bと同軸上に位置する。従って、気液分離空間141b内へ流入した冷媒は、分離気相冷媒流出パイプ部142cの周囲を旋回する。 The separated gas-phase refrigerant outflow pipe portion 142c is formed in a round tubular shape, and is located coaxially with the gas-liquid separation space 141b when the upper body 142 and the lower body 141 are integrated. Therefore, the refrigerant that has flowed into the gas-liquid separation space 141b swirls around the separated gas-phase refrigerant outflow pipe portion 142c.
 さらに、分離気相冷媒流出パイプ部142cの最下端部は、気液分離空間141bの内部に位置付けられるように延びており、この最下端部には、気液分離空間141bにて分離された気相冷媒を流出させる分離気相冷媒出口穴142dが形成されている。従って、第1液相冷媒通路141dおよび絞り17は、分離気相冷媒出口穴142dの下方に位置する。 Further, the lowermost end portion of the separated gas-phase refrigerant outflow pipe portion 142c extends so as to be positioned inside the gas-liquid separation space 141b, and the gas-liquid separation space 141b is separated from the lowermost end portion. A separated gas-phase refrigerant outlet hole 142d through which the phase refrigerant flows out is formed. Therefore, the first liquid-phase refrigerant passage 141d and the throttle 17 are located below the separated vapor-phase refrigerant outlet hole 142d.
 気相冷媒通路142bは、気液分離空間141bおよび分離気相冷媒流出パイプ部142cの上方に位置する。気相冷媒通路142bは、第1液相冷媒通路141dと同様に、気液分離空間141bの軸方向に垂直な方向(本実施形態では水平方向)に延びる断面円形状の貫通穴である。気相冷媒通路142dは、アッパーボデー142の中心部を通過して、アッパーボデー142を貫通するように形成されている。 The gas-phase refrigerant passage 142b is located above the gas-liquid separation space 141b and the separated gas-phase refrigerant outflow pipe portion 142c. Similarly to the first liquid-phase refrigerant passage 141d, the gas-phase refrigerant passage 142b is a through-hole having a circular cross section that extends in a direction perpendicular to the axial direction of the gas-liquid separation space 141b (horizontal direction in the present embodiment). The gas-phase refrigerant passage 142d is formed so as to pass through the center of the upper body 142 and penetrate the upper body 142.
 さらに、この貫通穴の一端側の開口部が、気相冷媒流出口142aを構成している。また、気相冷媒通路142bの内部には、気相冷媒通路142bを開閉する気相側弁体18が収容されている。この気相側弁体18は、液相冷媒流出口141e側の冷媒圧力と気相冷媒通路142b側の冷媒圧力との圧力差によって変位する差圧弁で構成されている。 Furthermore, the opening on one end side of the through hole constitutes a gas-phase refrigerant outlet 142a. A gas phase side valve body 18 for opening and closing the gas phase refrigerant passage 142b is accommodated in the gas phase refrigerant passage 142b. The gas-phase side valve element 18 is configured by a differential pressure valve that is displaced by a pressure difference between the refrigerant pressure on the liquid-phase refrigerant outlet 141e side and the refrigerant pressure on the gas-phase refrigerant passage 142b side.
 具体的には、貫通穴は、気相側弁体18の胴体部18aによって、気相冷媒通路142bを形成する空間と背圧室142eを形成する空間に区画されている。そして、背圧室142eには、圧力導入通路19を介して、液相冷媒流出口141e側の冷媒圧力が導かれる。 Specifically, the through hole is partitioned by a body portion 18a of the gas phase side valve body 18 into a space forming the gas phase refrigerant passage 142b and a space forming the back pressure chamber 142e. The refrigerant pressure on the liquid-phase refrigerant outlet 141e side is guided to the back pressure chamber 142e via the pressure introduction passage 19.
 なお、胴体部18aは円柱状に形成されており、軸方向一端側(気相冷媒流出口142a側)の端面で気相冷媒通路142b側の冷媒圧力を受け、軸方向他端側の端面で背圧室142e側の冷媒圧力を受ける。さらに、胴体部18aの外径は、気相冷媒通路142bの内径よりも僅かに小さく、両者は隙間バメの関係となっている。これにより、気相側弁体18は、気相冷媒通路142b内を変位することができる。 The body portion 18a is formed in a columnar shape, receives the refrigerant pressure on the gas phase refrigerant passage 142b side at the end face on one end side in the axial direction (gas phase refrigerant outlet 142a side), and on the end face on the other end side in the axial direction. The refrigerant pressure on the back pressure chamber 142e side is received. Further, the outer diameter of the body portion 18a is slightly smaller than the inner diameter of the gas-phase refrigerant passage 142b, and both are in a clearance fit. Thereby, the gas phase side valve element 18 can be displaced in the gas phase refrigerant passage 142b.
 圧力導入通路19は、アッパーボデー142とロワーボデー141が一体化された際に、ロワーボデー141およびアッパーボデー142の双方に形成された連通路によって形成されている。さらに、圧力導入通路19の長手方向は、気液分離空間141bおよび分離気相冷媒流出パイプ部142cの軸方向と平行になっている。これにより、圧力導入通路19を複雑な通路形状とせず、統合弁14全体としての小型化を図っている。 The pressure introduction passage 19 is formed by a communication passage formed in both the lower body 141 and the upper body 142 when the upper body 142 and the lower body 141 are integrated. Furthermore, the longitudinal direction of the pressure introducing passage 19 is parallel to the axial direction of the gas-liquid separation space 141b and the separated gas-phase refrigerant outflow pipe portion 142c. Thereby, the pressure introduction passage 19 is not made into a complicated passage shape, and the integrated valve 14 as a whole is reduced in size.
 背圧室142eの内部には、スプリング(弾性部材)18bおよびストッパ(規制部材)18cが収容されている。スプリング18bは、気相側弁体18に気相冷媒通路142bを閉じる側に荷重をかけるコイルバネからなる。ストッパ18cは、気相側弁体18が気相冷媒通路142bを開いた際に、気相側弁体18の変位を規制する。 A spring (elastic member) 18b and a stopper (regulating member) 18c are accommodated in the back pressure chamber 142e. The spring 18b is a coil spring that applies a load to the gas-phase side valve element 18 on the side where the gas-phase refrigerant passage 142b is closed. The stopper 18c restricts the displacement of the gas phase side valve element 18 when the gas phase side valve element 18 opens the gas phase refrigerant passage 142b.
 スプリング18bは、気相側弁体18に対して、気相側弁体18の先端部に位置するOリングからなるシール部材18dを気相冷媒通路142b内に形成されたテーパ形状の弁座部142fに押しつけてシール性を高める方向に荷重をかける。シール性を高める方向とは、すなわち気相側弁体18が気相冷媒通路142bを閉じる方向である。 The spring 18b is a tapered valve seat portion formed in the gas-phase refrigerant passage 142b with a seal member 18d made of an O-ring located at the tip of the gas-phase side valve body 18 with respect to the gas-phase side valve body 18. A load is applied in a direction to increase the sealing performance by pressing against 142f. The direction in which the sealing property is improved is the direction in which the gas phase side valve element 18 closes the gas phase refrigerant passage 142b.
 ストッパ18cは、気相側弁体18の変位を規制して、気相側弁体18の胴体部18aが圧力導入通路19を閉じてしまうことを防止する規制部材としての機能、および、気相冷媒通路142bを形成する貫通穴の他端側の開口部を閉塞する閉塞部材である。 The stopper 18c regulates the displacement of the gas phase side valve body 18 to prevent the body portion 18a of the gas phase side valve body 18 from closing the pressure introduction passage 19, and the gas phase It is a closing member that closes the opening on the other end side of the through hole that forms the refrigerant passage 142b.
 ここで、図4~図7を用いて気相側弁体18の作動について説明する。 Here, the operation of the gas-phase-side valve element 18 will be described with reference to FIGS.
 まず、ソレノイド16に電力が供給されている場合には、図5のP2で示す気相冷媒通路142bの冷媒圧力は気液分離空間141bにて分離された気相冷媒の圧力となり、P3で示す液相冷媒流出口141e側の冷媒圧力(背圧室142e内の冷媒圧力)は、気液分離空間141bにて分離された液相冷媒の圧力となる。 First, when power is supplied to the solenoid 16, the refrigerant pressure in the gas-phase refrigerant passage 142b indicated by P2 in FIG. 5 becomes the pressure of the gas-phase refrigerant separated in the gas-liquid separation space 141b, and is indicated by P3. The refrigerant pressure on the liquid phase refrigerant outlet 141e side (the refrigerant pressure in the back pressure chamber 142e) is the pressure of the liquid phase refrigerant separated in the gas-liquid separation space 141b.
 従って、気相冷媒通路142b側の冷媒圧力P2と液相冷媒流出口141e側の冷媒圧力P3(背圧室142e内の冷媒圧力)は、ほぼ同等となる。その結果、ソレノイド16に電力が供給されている場合には、気相側弁体18は、スプリング18bから受ける荷重Fspによって気相冷媒通路142bを閉じる。 Therefore, the refrigerant pressure P2 on the gas-phase refrigerant passage 142b side and the refrigerant pressure P3 on the liquid-phase refrigerant outlet 141e side (the refrigerant pressure in the back pressure chamber 142e) are substantially equal. As a result, when electric power is supplied to the solenoid 16, the gas-phase side valve element 18 closes the gas-phase refrigerant passage 142b by the load Fsp received from the spring 18b.
 換言すると、ソレノイド16に電力が供給されて第1バイパス弁15が第1液相冷媒通路141dを開いている場合には、気相冷媒通路142b側の冷媒圧力P2と、第1バイパス弁15から流出した液相冷媒流出口141e側の冷媒圧力P3とがバランスして、気相側弁体18が気相冷媒通路142bを閉じる。 In other words, when electric power is supplied to the solenoid 16 and the first bypass valve 15 opens the first liquid refrigerant passage 141d, the refrigerant pressure P2 on the gas phase refrigerant passage 142b side and the first bypass valve 15 The gas phase side valve element 18 closes the gas phase refrigerant passage 142b in balance with the refrigerant pressure P3 on the liquid phase refrigerant outlet 141e side that has flowed out.
 なお、図1~図3に示すように、統合弁14の気相冷媒流出口142aには、圧縮機11の中間圧ポート11bが接続されている。このため、圧縮機11の作動時に気相側弁体18が気相冷媒通路142bを閉じると、気相冷媒流出口142a側の冷媒圧力P1は、圧縮機11の吸入圧となる。従って、図5において、P1<P2の関係となる。 1 to 3, the intermediate pressure port 11b of the compressor 11 is connected to the gas-phase refrigerant outlet 142a of the integrated valve 14. For this reason, when the gas phase side valve element 18 closes the gas phase refrigerant passage 142b during the operation of the compressor 11, the refrigerant pressure P1 on the gas phase refrigerant outlet 142a side becomes the suction pressure of the compressor 11. Therefore, in FIG. 5, the relationship of P1 <P2 is established.
 このため、圧縮機11の作動時に気相側弁体18が気相冷媒通路142bを閉じると、気相冷媒通路142bの冷媒圧力P2および液相冷媒流出口141e側の冷媒圧力P3に多少の変動が生じても、ソレノイド16に電力が供給されなくなるまで、気相冷媒通路142bが閉じられた状態が維持される。 For this reason, when the gas phase side valve element 18 closes the gas phase refrigerant passage 142b during the operation of the compressor 11, the refrigerant pressure P2 in the gas phase refrigerant passage 142b and the refrigerant pressure P3 on the liquid phase refrigerant outlet 141e side are slightly changed. Even if this occurs, the gas-phase refrigerant passage 142b is kept closed until no power is supplied to the solenoid 16.
 次に、ソレノイド16に電力が供給されなくなると、図6のP1で示す気相冷媒流出口142a側の冷媒圧力は圧縮機11の中間圧ポート11b側の冷媒圧力となり、P2で示す気相冷媒通路142bの冷媒圧力は高段側膨張弁13で減圧された中間圧力となり、P3で示す液相冷媒流出口141e側の冷媒圧力(背圧室142e内の冷媒圧力)は、絞り17にて減圧された後の圧力となる。 Next, when power is not supplied to the solenoid 16, the refrigerant pressure on the gas-phase refrigerant outlet 142a side indicated by P1 in FIG. 6 becomes the refrigerant pressure on the intermediate pressure port 11b side of the compressor 11, and the gas-phase refrigerant indicated by P2 The refrigerant pressure in the passage 142b becomes an intermediate pressure reduced by the high stage side expansion valve 13, and the refrigerant pressure on the liquid-phase refrigerant outlet 141e side (refrigerant pressure in the back pressure chamber 142e) indicated by P3 is reduced by the throttle 17. It becomes the pressure after being done.
 従って、気相冷媒通路142bの冷媒圧力P2と液相冷媒流出口141e側の冷媒圧力P3との圧力差が拡大して、以下数式F1に示す関係となることで、気相側弁体18が気相冷媒通路142bを開き始める。 Therefore, the pressure difference between the refrigerant pressure P2 in the gas-phase refrigerant passage 142b and the refrigerant pressure P3 on the liquid-phase refrigerant outlet 141e side is expanded to satisfy the relationship shown in the following formula F1, whereby the gas-phase side valve body 18 is The gas phase refrigerant passage 142b starts to open.
 S2×(P2-P3)>S1×(P3-P1)+Fsp+Ffr…(F1)
 S1は、気相冷媒流出口142aを気相側弁体18の軸方向に投影した際の面積である。S2は、気相側弁体18の胴体部18aの軸方向垂直断面の断面積である。Ffrは気相側弁体18が変位する際の摩擦力(フリクション)である。
S2 × (P2-P3)> S1 × (P3-P1) + Fsp + Ffr (F1)
S <b> 1 is an area when the gas-phase refrigerant outlet 142 a is projected in the axial direction of the gas-phase side valve body 18. S <b> 2 is a cross-sectional area of an axially vertical cross section of the body portion 18 a of the gas phase side valve body 18. Ffr is a frictional force (friction) when the gas phase side valve element 18 is displaced.
 そして、気相側弁体18が気相冷媒通路142bを開くと、図7のP1で示す気相冷媒流出口142a側の冷媒圧力およびP2で示す気相冷媒通路142bの冷媒圧力は、気液分離空間141bにて分離された気相冷媒の圧力となり、P3で示す液相冷媒流出口141e側の冷媒圧力(背圧室142e内の冷媒圧力)は、絞り17にて減圧された後の圧力となる。 When the gas-phase side valve body 18 opens the gas-phase refrigerant passage 142b, the refrigerant pressure on the gas-phase refrigerant outlet 142a side indicated by P1 in FIG. 7 and the refrigerant pressure in the gas-phase refrigerant passage 142b indicated by P2 are gas-liquid. The pressure of the gas-phase refrigerant separated in the separation space 141b becomes the pressure after the pressure in the liquid refrigerant outlet 141e side indicated by P3 (the refrigerant pressure in the back pressure chamber 142e) is reduced by the throttle 17. It becomes.
 従って、背圧室142e内の冷媒圧力P3は気相冷媒通路142bの冷媒圧力P2よりも低くなり、以下数式F2に示す関係となることで、気相側弁体18が気相冷媒通路142bを開いた状態が維持される。 Accordingly, the refrigerant pressure P3 in the back pressure chamber 142e is lower than the refrigerant pressure P2 in the gas phase refrigerant passage 142b, and the relationship shown by the following formula F2 is established, so that the gas phase side valve body 18 passes through the gas phase refrigerant passage 142b. The open state is maintained.
 S2×(P2-P3)>Fsp…(F2)
 換言すると、ソレノイド16に電力が供給されなくて第1バイパス弁15が第1液相冷媒通路141dを閉じている場合には、気相冷媒通路142b側の冷媒圧力P2と絞り17から流出した冷媒の圧力P3との圧力差に基づいて、気相側弁体18が気相冷媒通路142bを開く。
S2 × (P2-P3)> Fsp (F2)
In other words, when power is not supplied to the solenoid 16 and the first bypass valve 15 closes the first liquid-phase refrigerant passage 141d, the refrigerant pressure P2 on the gas-phase refrigerant passage 142b side and the refrigerant flowing out from the throttle 17 The gas phase side valve element 18 opens the gas phase refrigerant passage 142b based on the pressure difference with the pressure P3.
 なお、統合弁14の気相冷媒流出口142aから圧縮機11の中間圧ポート11bに至る冷媒配管には、統合弁14から圧縮機11の中間圧ポート11bへ冷媒が流れることのみを許容する図示しない逆止弁が配置されている。これにより、圧縮機11側から統合弁14側へ冷媒が逆流することを防止している。この逆止弁を統合弁14あるいは圧縮機11と一体的に構成してもよい。 It should be noted that the refrigerant pipe extending from the gas phase refrigerant outlet 142a of the integrated valve 14 to the intermediate pressure port 11b of the compressor 11 only allows the refrigerant to flow from the integrated valve 14 to the intermediate pressure port 11b of the compressor 11. Not check valve is arranged. This prevents the refrigerant from flowing backward from the compressor 11 side to the integrated valve 14 side. This check valve may be integrated with the integrated valve 14 or the compressor 11.
 また、図1~図3に示すように、統合弁14の液相冷媒流出口141eには、室外熱交換器20の冷媒入口が接続されている。したがって、室外熱交換器20には、第1液相冷媒通路141dから流出した冷媒および絞り17から流出した冷媒が流入する。 Also, as shown in FIGS. 1 to 3, the refrigerant inlet of the outdoor heat exchanger 20 is connected to the liquid-phase refrigerant outlet 141e of the integrated valve 14. Therefore, the refrigerant that has flowed out of the first liquid-phase refrigerant passage 141d and the refrigerant that has flowed out of the throttle 17 flow into the outdoor heat exchanger 20.
 室外熱交換器20は、ボンネット内に位置し、内部を流通する冷媒と送風ファン21から送風された外気とを熱交換させる。この室外熱交換器20は、少なくとも暖房運転モード時には、低圧冷媒を蒸発させて吸熱作用を発揮させる蒸発器として機能し、冷房運転モード時等には、高圧冷媒を放熱させる放熱器として機能する熱交換器である。 The outdoor heat exchanger 20 is located in the bonnet and exchanges heat between the refrigerant circulating inside and the outside air blown from the blower fan 21. The outdoor heat exchanger 20 functions as an evaporator that evaporates low-pressure refrigerant and exerts an endothermic effect at least in the heating operation mode, and functions as a radiator that radiates high-pressure refrigerant in the cooling operation mode and the like. It is an exchanger.
 室外熱交換器20の冷媒出口には、冷房用膨張弁22の冷媒入口が接続されている。冷房用膨張弁22は、冷房運転モード時等に室外熱交換器20から流出し、室内蒸発器23へ流入する冷媒を減圧させる。この冷房用膨張弁22の基本的構成は、高段側膨張弁13と同様であり、制御装置40から出力される制御信号によって、その作動が制御される。 The refrigerant inlet of the cooling expansion valve 22 is connected to the refrigerant outlet of the outdoor heat exchanger 20. The cooling expansion valve 22 decompresses the refrigerant that flows out of the outdoor heat exchanger 20 and flows into the indoor evaporator 23 in the cooling operation mode or the like. The basic configuration of the cooling expansion valve 22 is the same as that of the high-stage expansion valve 13, and its operation is controlled by a control signal output from the control device 40.
 冷房用膨張弁22の出口には、室内蒸発器23の冷媒入口が接続されている。室内蒸発器23は、空調ユニット30のケース31内のうち、室内凝縮器12の空気流れ上流に位置する。室内蒸発器23は、冷房運転モードおよび除湿暖房運転モード等にその内部を流通する冷媒を蒸発させて吸熱作用を発揮させることにより空気を冷却する蒸発器として機能する熱交換器である。 The refrigerant inlet of the indoor evaporator 23 is connected to the outlet of the cooling expansion valve 22. The indoor evaporator 23 is located in the case 31 of the air conditioning unit 30 upstream of the air flow of the indoor condenser 12. The indoor evaporator 23 is a heat exchanger that functions as an evaporator that cools the air by evaporating the refrigerant that circulates in the cooling operation mode, the dehumidifying and heating operation mode, and the like to exert a heat absorbing action.
 室内蒸発器23の出口には、アキュムレータ24の入口が接続されている。アキュムレータ24は、その内部に流入した冷媒の気液を分離して余剰冷媒を蓄える低圧側気液分離器である。さらに、アキュムレータ24の気相冷媒出口には、圧縮機11の吸入ポート11aが接続されている。従って、室内蒸発器23は、圧縮機11の吸入ポート11aへ向けて冷媒を流出させるように接続されている。 The inlet of the accumulator 24 is connected to the outlet of the indoor evaporator 23. The accumulator 24 is a low-pressure side gas-liquid separator that separates the gas-liquid refrigerant flowing into the accumulator 24 and stores excess refrigerant. Furthermore, the suction port 11 a of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 24. Accordingly, the indoor evaporator 23 is connected so that the refrigerant flows out toward the suction port 11 a of the compressor 11.
 さらに、室外熱交換器20の冷媒出口には、室外熱交換器20から流出した冷媒を冷房用膨張弁22および室内蒸発器23を迂回させてアキュムレータ24の入口へ導く膨張弁迂回通路25が接続されている。この膨張弁迂回通路25には、迂回通路開閉弁27が配置されている。 Further, an expansion valve bypass passage 25 is connected to the refrigerant outlet of the outdoor heat exchanger 20 to guide the refrigerant flowing out of the outdoor heat exchanger 20 to the inlet of the accumulator 24 by bypassing the cooling expansion valve 22 and the indoor evaporator 23. Has been. A bypass passage opening / closing valve 27 is disposed in the expansion valve bypass passage 25.
 迂回通路開閉弁27は、膨張弁迂回通路25を開閉する電磁弁であり、制御装置40から出力される制御電圧によって、その開閉作動が制御される。また、冷媒が迂回通路開閉弁27を通過する際に生じる圧力損失は、冷房用膨張弁22を通過する際に生じる圧力損失よりも極めて小さい。 The bypass passage opening / closing valve 27 is an electromagnetic valve that opens and closes the expansion valve bypass passage 25, and its opening / closing operation is controlled by a control voltage output from the control device 40. The pressure loss that occurs when the refrigerant passes through the bypass passage opening / closing valve 27 is extremely smaller than the pressure loss that occurs when the refrigerant passes through the cooling expansion valve 22.
 従って、室外熱交換器20から流出した冷媒は、迂回通路開閉弁27が開いている場合には膨張弁迂回通路25を介してアキュムレータ24へ流入する。この際、冷房用膨張弁22の絞り開度を全閉としてもよい。 Therefore, the refrigerant flowing out of the outdoor heat exchanger 20 flows into the accumulator 24 via the expansion valve bypass passage 25 when the bypass passage opening / closing valve 27 is open. At this time, the throttle opening degree of the cooling expansion valve 22 may be fully closed.
 また、迂回通路開閉弁27が閉じている場合には冷房用膨張弁22を介して室内蒸発器23へ流入する。これにより、迂回通路開閉弁27は、ヒートポンプサイクル10の冷媒回路を切り替えることができる。従って、本実施形態の迂回通路開閉弁27は、統合弁14とともに、冷媒回路切替部を構成している。 Further, when the bypass passage opening / closing valve 27 is closed, it flows into the indoor evaporator 23 via the cooling expansion valve 22. Thereby, the bypass passage opening / closing valve 27 can switch the refrigerant circuit of the heat pump cycle 10. Therefore, the bypass passage opening / closing valve 27 of this embodiment forms a refrigerant circuit switching unit together with the integrated valve 14.
 次に、空調ユニット30について説明する。空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に位置して、空調ユニット30の外殻を形成するとともに、その内部に車室内に送風される空気の空気通路を形成するケース31を有している。そして、この空気通路に送風機32、前述の室内凝縮器12、室内蒸発器23等が収容されている。 Next, the air conditioning unit 30 will be described. The air conditioning unit 30 is located inside the instrument panel (instrument panel) at the foremost part of the vehicle interior, and forms an outer shell of the air conditioning unit 30 and also forms an air passage for air blown into the vehicle interior in the interior. A case 31 is provided. And the air blower 32, the above-mentioned indoor condenser 12, the indoor evaporator 23, etc. are accommodated in this air passage.
 ケース31の空気流れ最上流部には、車室内空気(内気)と外気とを切替導入する内外気切替装置33が位置している。この内外気切替装置33は、ケース31内に内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させる。 The inside / outside air switching device 33 for switching and introducing vehicle interior air (inside air) and outside air is located at the most upstream part of the air flow of the case 31. The inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the case 31 and the outside air introduction port for introducing the outside air by the inside / outside air switching door. The air volume ratio with the air volume is continuously changed.
 内外気切替装置33の空気流れ下流には、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風機32が位置している。この送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、制御装置40から出力される制御電圧によって回転数(送風量)が制御される。 A blower 32 that blows air sucked through the inside / outside air switching device 33 toward the passenger compartment is located downstream of the air flow of the inside / outside air switching device 33. The blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (the amount of blown air) is controlled by a control voltage output from the control device 40.
 送風機32の空気流れ下流には、前述の室内蒸発器23および室内凝縮器12が、空気の流れ方向において、室内蒸発器23、室内凝縮器12の順に配置されている。換言すると、室内蒸発器23は、室内凝縮器12の空気流れ上流に位置している。 The indoor evaporator 23 and the indoor condenser 12 are arranged in the order of the indoor evaporator 23 and the indoor condenser 12 in the air flow direction downstream of the air flow of the blower 32. In other words, the indoor evaporator 23 is located upstream of the air flow of the indoor condenser 12.
 ケース31内には、室内蒸発器23通過後の空気を、室内凝縮器12を迂回して流すバイパス通路35が設けられている。さらに、ケース31内には、室内蒸発器23の空気流れ下流側であって、かつ、室内凝縮器12の空気流れ上流に、エアミックスドア34が位置している。 In the case 31, there is provided a bypass passage 35 through which the air after passing through the indoor evaporator 23 flows around the indoor condenser 12. Further, an air mix door 34 is located in the case 31 on the downstream side of the air flow of the indoor evaporator 23 and upstream of the air flow of the indoor condenser 12.
 本実施形態のエアミックスドア34は、室内蒸発器23通過後の空気のうち、室内凝縮器12側を通過する空気の風量とバイパス通路35を通過させる風量との風量割合を調整することによって、室内凝縮器12へ流入する空気の流量(風量)を調整する流量調整部である。エアミックスドア34は、室内凝縮器12の熱交換能力を調整する。 The air mix door 34 of this embodiment adjusts the air volume ratio between the air volume passing through the indoor condenser 12 and the air volume passing through the bypass passage 35 among the air after passing through the indoor evaporator 23. It is a flow rate adjusting unit that adjusts the flow rate (air volume) of the air flowing into the indoor condenser 12. The air mix door 34 adjusts the heat exchange capability of the indoor condenser 12.
 また、室内凝縮器12およびバイパス通路35の空気流れ下流には、室内凝縮器12にて冷媒と熱交換して加熱された空気とバイパス通路35を通過して加熱されていない空気が合流する合流空間36が設けられている。 Further, downstream of the air flow of the indoor condenser 12 and the bypass passage 35, the air that is heated by exchanging heat with the refrigerant in the indoor condenser 12 and the air that is not heated through the bypass passage 35 merge. A space 36 is provided.
 従って、エアミックスドア34が、室内凝縮器12を通過させる風量とバイパス通路35を通過させる風量との風量割合を調整することによって、合流空間36内の空気の温度が調整される。なお、エアミックスドア34は、制御装置40から出力される制御信号によって作動が制御される図示しないサーボモータによって駆動される。 Therefore, the air mix door 34 adjusts the air volume ratio between the air volume that passes through the indoor condenser 12 and the air volume that passes through the bypass passage 35, thereby adjusting the temperature of the air in the merging space 36. The air mix door 34 is driven by a servo motor (not shown) whose operation is controlled by a control signal output from the control device 40.
 ケース31の空気流れ最下流部は、合流空間36にて合流した空気を、冷却対象空間である車室内へ吹き出す開口穴を有している。具体的には、この開口穴として、車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴37a、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴37b、乗員の足元に向けて空調風を吹き出すフット開口穴37cが設けられている。 The most downstream part of the air flow of the case 31 has an opening hole for blowing out the air merged in the merge space 36 into the vehicle interior that is the space to be cooled. Specifically, as this opening hole, a defroster opening hole 37a that blows conditioned air toward the inner side surface of the vehicle front window glass, a face opening hole 37b that blows conditioned air toward the upper body of the passenger in the vehicle interior, and the feet of the passenger The foot opening hole 37c which blows air-conditioning wind toward is provided.
 さらに、デフロスタ開口穴37a、フェイス開口穴37bおよびフット開口穴37cの空気流れ上流には、それぞれ、デフロスタ開口穴37aの開口面積を調整するデフロスタドア38a、フェイス開口穴37bの開口面積を調整するフェイスドア38b、フット開口穴37cの開口面積を調整するフットドア38cが位置している。 Further, on the upstream side of the air flow of the defroster opening hole 37a, the face opening hole 37b, and the foot opening hole 37c, the defroster door 38a for adjusting the opening area of the defroster opening hole 37a and the face for adjusting the opening area of the face opening hole 37b, respectively. A foot door 38c for adjusting the opening area of the door 38b and the foot opening hole 37c is located.
 これらのデフロスタドア38a、フェイスドア38bおよびフットドア38cは、各開口穴37a~37cを開閉して、吹出口モードを切り替える吹出口モード切替部を構成するものであって、リンク機構等を介して、制御装置40から出力される制御信号によってその作動が制御される図示しないサーボモータによって駆動される。 The defroster door 38a, the face door 38b, and the foot door 38c constitute an air outlet mode switching unit that opens and closes the respective opening holes 37a to 37c and switches the air outlet mode. It is driven by a servo motor (not shown) whose operation is controlled by a control signal output from the control device 40.
 また、デフロスタ開口穴37a、フェイス開口穴37bおよびフット開口穴37cの空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口に接続されている。 In addition, the air flow downstream side of the defroster opening hole 37a, the face opening hole 37b, and the foot opening hole 37c is respectively connected to a face air outlet, a foot air outlet, and a defroster air outlet provided in the vehicle interior via ducts that form air passages. Connected to the exit.
 なお、吹出口モードとしては、フェイスモード、バイレベルモード、フットモード等がある。フェイスモードでは、フェイス開口穴37bを全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す。バイレベルモードでは、フェイス開口穴37bとフット開口穴37cの両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す。フットモードでは、フット開口穴37cを全開するとともにデフロスタ開口穴37aを小開度だけ開口して、フット吹出口から主に空気を吹き出す。 Note that the outlet mode includes a face mode, a bi-level mode, a foot mode, and the like. In the face mode, the face opening hole 37b is fully opened, and air is blown out from the face outlet toward the upper body of the passenger in the passenger compartment. In the bi-level mode, both the face opening hole 37b and the foot opening hole 37c are opened, and air is blown out toward the upper body and the feet of the passengers in the passenger compartment. In the foot mode, the foot opening hole 37c is fully opened and the defroster opening hole 37a is opened by a small opening, and air is mainly blown out from the foot outlet.
 次に、本実施形態の電気制御部について説明する。制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置40は、ROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種空調制御機器の作動を制御する。各種空調制御機器とは、例えば、圧縮機11、統合弁14、迂回通路開閉弁27、送風機32である。 Next, the electric control unit of this embodiment will be described. The control device 40 is composed of a well-known microcomputer including a CPU, a ROM, a RAM and the like and its peripheral circuits. The control device 40 performs various calculations and processes based on the air conditioning control program stored in the ROM, and controls the operation of various air conditioning control devices connected to the output side. The various air conditioning control devices are, for example, the compressor 11, the integrated valve 14, the bypass passage opening / closing valve 27, and the blower 32.
 また、制御装置40の入力側には、内気センサ、外気センサ、日射センサ、蒸発器温度センサ、吹出空気温度センサ、吐出圧センサ、吐出温度センサ、凝縮器温度センサ、吸入圧センサ、吸入温度センサ、液相冷媒センサ等の種々の空調制御用のセンサ群41が接続されている。内気センサは、車室内温度を検出する。外気センサは、外気温を検出する。日射センサは、車室内の日射量を検出する。蒸発器温度センサは、室内蒸発器23からの吹出空気の温度(蒸発器温度)を検出する。吹出空気温度センサは、吹出口から車室内に吹き出される空気の温度である実吹出空気温度を検出する。吐出圧センサは、圧縮機11から吐出された高圧冷媒の圧力を検出する。吐出温度センサは、当該高圧冷媒の温度を検出する。凝縮器温度センサは、室内凝縮器12から流出した冷媒の温度を検出する。吸入圧センサは、圧縮機11の吸入ポート11aから吸入される低圧冷媒の圧力を検出する。吸入温度センサは、当該低圧冷媒の温度を検出する。液相冷媒センサは、気相冷媒通路142bに閾値以上の液相冷媒があるか否かを検出する。 Further, on the input side of the control device 40, an inside air sensor, an outside air sensor, a solar radiation sensor, an evaporator temperature sensor, a blown air temperature sensor, a discharge pressure sensor, a discharge temperature sensor, a condenser temperature sensor, a suction pressure sensor, and a suction temperature sensor Various air conditioning control sensor groups 41 such as liquid phase refrigerant sensors are connected. The inside air sensor detects the vehicle interior temperature. The outside air sensor detects the outside air temperature. The solar radiation sensor detects the amount of solar radiation in the passenger compartment. The evaporator temperature sensor detects the temperature of the air blown from the indoor evaporator 23 (evaporator temperature). The blown air temperature sensor detects an actual blown air temperature that is the temperature of the air blown into the vehicle interior from the blower outlet. The discharge pressure sensor detects the pressure of the high-pressure refrigerant discharged from the compressor 11. The discharge temperature sensor detects the temperature of the high-pressure refrigerant. The condenser temperature sensor detects the temperature of the refrigerant that has flowed out of the indoor condenser 12. The suction pressure sensor detects the pressure of the low-pressure refrigerant sucked from the suction port 11 a of the compressor 11. The suction temperature sensor detects the temperature of the low-pressure refrigerant. The liquid phase refrigerant sensor detects whether or not there is a liquid phase refrigerant equal to or greater than a threshold value in the gas phase refrigerant passage 142b.
 さらに、制御装置40の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた空調操作スイッチ群42からの操作信号が入力される。空調操作スイッチ群42は、具体的には、車両用空調装置1の作動スイッチ、車室内温度を設定する車室内温度設定スイッチ、車室内への送風量を設定する送風量設定スイッチ、冷房運転モードおよび暖房運転モードを選択するモード選択スイッチ等を備えている。 Further, an operation panel (not shown) arranged near the instrument panel in front of the vehicle interior is connected to the input side of the control device 40, and an operation signal is input from an air conditioning operation switch group 42 provided on the operation panel. The Specifically, the air conditioning operation switch group 42 includes an operation switch of the vehicle air conditioner 1, a vehicle interior temperature setting switch for setting the vehicle interior temperature, an air flow setting switch for setting the air flow into the vehicle interior, and a cooling operation mode. And a mode selection switch for selecting the heating operation mode.
 なお、制御装置40は、その出力側に接続された各種空調制御機器の作動を制御する制御部が一体に構成されているが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。 In addition, although the control part which controls the operation | movement of the various air-conditioning control apparatus connected to the output side is integrally comprised, the control apparatus 40 is comprised (hardware and software) which controls the operation | movement of each control object apparatus. ) Constitutes a control unit that controls the operation of each control target device.
 例えば、本実施形態では、圧縮機11の電動モータの作動を制御する構成(ハードウェアおよびソフトウェア)が吐出能力制御部を構成し、統合弁14および迂回通路開閉弁27の作動を制御する構成(ハードウェアおよびソフトウェア)が冷媒回路制御部を構成している。吐出能力制御部、冷媒回路制御部等を制御装置40とは別体の制御装置として構成してもよい。 For example, in this embodiment, the configuration (hardware and software) for controlling the operation of the electric motor of the compressor 11 constitutes the discharge capacity control unit, and the configuration for controlling the operation of the integrated valve 14 and the bypass passage opening / closing valve 27 ( Hardware and software) constitute the refrigerant circuit control unit. The discharge capacity control unit, the refrigerant circuit control unit, and the like may be configured as a separate control device from the control device 40.
 次に、上記構成における本実施形態の車両用空調装置1の作動について説明する。本実施形態の車両用空調装置1では、前述の如く、車室内を冷房する冷房運転モード、または車室内を暖房する暖房運転モードに切り替えることができる。本実施形態の車両用空調装置1では、液相冷媒が圧縮機11の中間圧ポート11bに流入することを防止するために、液相冷媒流入防止処理を実行する。以下、各運転モードにおける作動、および液相冷媒流入防止処理を説明する。 Next, the operation of the vehicle air conditioner 1 of the present embodiment having the above configuration will be described. As described above, the vehicle air conditioner 1 of the present embodiment can be switched to the cooling operation mode for cooling the vehicle interior or the heating operation mode for heating the vehicle interior. In the vehicle air conditioner 1 of the present embodiment, in order to prevent the liquid refrigerant from flowing into the intermediate pressure port 11b of the compressor 11, the liquid refrigerant inflow prevention process is executed. Hereinafter, the operation in each operation mode and the liquid-phase refrigerant inflow prevention process will be described.
 (a)冷房運転モード
 冷房運転モードは、空調操作スイッチ群42の作動スイッチが投入(ON)された状態で、モード選択スイッチによって冷房運転モードが選択されると開始される。冷房運転モードでは、制御装置40が、高段側膨脹弁13を全開状態とし、統合弁14のソレノイド16を通電状態とし、冷房用膨脹弁22を減圧作用を発揮する絞り状態とし、さらに、迂回通路開閉弁27を閉弁状態とする。
(A) Air-cooling operation mode The air-cooling operation mode is started when the air-conditioning operation switch group 42 is turned on (ON) and the air-conditioning operation mode is selected by the mode selection switch. In the cooling operation mode, the control device 40 fully opens the high stage side expansion valve 13, sets the solenoid 16 of the integrated valve 14 to the energized state, sets the cooling expansion valve 22 to a throttled state that exerts a pressure reducing action, and further bypasses. The passage opening / closing valve 27 is closed.
 これにより、統合弁14では、図5に示すように、第1バイパス弁15が第1液相冷媒通路141dを開き、気相側弁体18が気相冷媒通路142bを閉じた状態となり、ヒートポンプサイクル10は、図1の実線矢印に示すように冷媒が流れる冷媒回路に切り替えられる。 As a result, in the integrated valve 14, as shown in FIG. 5, the first bypass valve 15 opens the first liquid-phase refrigerant passage 141d, and the gas-phase side valve body 18 closes the gas-phase refrigerant passage 142b. The cycle 10 is switched to the refrigerant circuit through which the refrigerant flows as shown by the solid arrows in FIG.
 この冷媒回路の構成で、制御装置40が上述の空調制御用のセンサ群41の検出信号および空調操作スイッチ群42の操作信号を読み込む。そして、検出信号および操作信号の値に基づいて車室内へ吹き出す空気の目標温度である目標吹出温度TAOを算出する。さらに、算出された目標吹出温度TAOおよびセンサ群の検出信号に基づいて、制御装置40の出力側に接続された各種空調制御機器の作動状態を決定する。 With this refrigerant circuit configuration, the control device 40 reads the detection signal of the air conditioning control sensor group 41 and the operation signal of the air conditioning operation switch group 42 described above. And the target blowing temperature TAO which is the target temperature of the air which blows off into a vehicle interior is calculated based on the value of a detection signal and an operation signal. Furthermore, based on the calculated target blowing temperature TAO and the detection signal of the sensor group, the operating states of various air conditioning control devices connected to the output side of the control device 40 are determined.
 例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号は、以下のように決定される。まず、目標吹出温度TAOに基づいて、予め制御装置40に記憶された制御マップを参照して、室内蒸発器23の目標蒸発器吹出温度TEOを決定する。 For example, the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target evaporator outlet temperature TEO of the indoor evaporator 23 is determined based on the target outlet temperature TAO with reference to a control map stored in the control device 40 in advance.
 そして、この目標蒸発器吹出温度TEOと蒸発器温度センサによって検出された室内蒸発器23からの吹出空気温度との偏差に基づいて、フィードバック制御手法を用いて室内蒸発器23からの吹出空気温度が目標蒸発器吹出温度TEOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。 And based on the deviation of this target evaporator blowing temperature TEO and the blowing air temperature from the indoor evaporator 23 detected by the evaporator temperature sensor, the blowing air temperature from the indoor evaporator 23 is determined using a feedback control method. A control signal output to the electric motor of the compressor 11 is determined so as to approach the target evaporator outlet temperature TEO.
 また、冷房用膨脹弁22へ出力される制御信号は、冷房用膨脹弁22へ流入する冷媒の過冷却度が、COPを略最大値に近づけるように予め決定された目標過冷却度に近づくように決定される。また、エアミックスドア34のサーボモータへ出力される制御信号は、エアミックスドア34が室内凝縮器12の空気通路を閉塞し、室内蒸発器23通過後の空気の全流量がバイパス通路35を通過するように決定される。 Further, the control signal output to the cooling expansion valve 22 causes the supercooling degree of the refrigerant flowing into the cooling expansion valve 22 to approach a target supercooling degree that has been determined in advance so that the COP approaches a substantially maximum value. To be determined. In addition, the control signal output to the servo motor of the air mix door 34 indicates that the air mix door 34 closes the air passage of the indoor condenser 12 and the total air flow after passing through the indoor evaporator 23 passes through the bypass passage 35. To be decided.
 そして、上記の如く決定された制御信号等を各種空調制御機器へ出力する。その後、空調操作スイッチ群42の作動スイッチによって車両用空調装置の作動停止が要求されるまで、所定の制御周期毎に、上述の検出信号および操作信号の読み込み、目標吹出温度TAOの算出、各種空調制御機器の作動状態決定、制御電圧および制御信号の出力といった制御ルーチンが繰り返される。なお、このような制御ルーチンの繰り返しは、他の運転モード時にも同様に行われる。 Then, the control signals determined as described above are output to various air conditioning control devices. Thereafter, until the operation of the vehicle air conditioner is requested to be stopped by the operation switch of the air conditioning operation switch group 42, the above-described detection signal and operation signal are read, the target blowing temperature TAO is calculated, and various air conditionings are performed every predetermined control cycle. Control routines such as determining the operating state of the control device, outputting the control voltage and the control signal are repeated. Such a control routine is repeated in the other operation modes.
 従って、冷房運転モードのヒートポンプサイクル10では、圧縮機11の吐出ポート11cから吐出された高圧冷媒が室内凝縮器12へ流入する。この際、エアミックスドア34が室内凝縮器12の空気通路を閉塞しているので、室内凝縮器12へ流入した冷媒は殆ど空気へ放熱することなく、室内凝縮器12から流出していく。 Therefore, in the heat pump cycle 10 in the cooling operation mode, the high-pressure refrigerant discharged from the discharge port 11 c of the compressor 11 flows into the indoor condenser 12. At this time, since the air mix door 34 closes the air passage of the indoor condenser 12, the refrigerant flowing into the indoor condenser 12 flows out from the indoor condenser 12 without radiating heat to the air.
 室内凝縮器12から流出した冷媒は、高段側膨脹弁13が全開状態となっているので、高段側膨脹弁13にて殆ど減圧されることなく流出し、統合弁14の冷媒流入口141aから気液分離空間141b内へ流入する。 Since the high-stage side expansion valve 13 is fully opened, the refrigerant that has flowed out from the indoor condenser 12 flows out with almost no pressure reduction at the high-stage side expansion valve 13, and the refrigerant inlet 141 a of the integrated valve 14. Flows into the gas-liquid separation space 141b.
 統合弁14へ流入する冷媒は過熱度を有する気相状態となっているので、統合弁14の気液分離空間141bでは冷媒の気液が分離されることなく、気相冷媒が第1液相冷媒通路141dへ流入する。さらに、第1液相冷媒通路141dへ流入した気相冷媒は、第1バイパス弁15が第1液相冷媒通路141dを開いているので、絞り17にて減圧されることなく液相冷媒流出口141eから流出する。 Since the refrigerant flowing into the integrated valve 14 is in a superheated gas phase, the gas-liquid refrigerant is not separated in the gas-liquid separation space 141b of the integrated valve 14, and the gas-phase refrigerant is in the first liquid phase. It flows into the refrigerant passage 141d. Furthermore, since the first bypass valve 15 opens the first liquid phase refrigerant passage 141d, the gas phase refrigerant flowing into the first liquid phase refrigerant passage 141d is not decompressed by the throttle 17 and is discharged from the liquid phase refrigerant outlet. 141e flows out.
 つまり、統合弁14へ流入した冷媒は殆ど圧力損失を生じることなく液相冷媒流出口141eから流出していく。この際、液相冷媒流出口141e側の冷媒圧力が圧力導入通路19を介して背圧室142eに導かれるので、気相側弁体18は気相冷媒通路142bを閉じる。従って、気相冷媒流出口142aから冷媒が流出することはない。 That is, the refrigerant flowing into the integrated valve 14 flows out from the liquid-phase refrigerant outlet 141e with almost no pressure loss. At this time, the refrigerant pressure on the liquid-phase refrigerant outlet 141e side is guided to the back pressure chamber 142e through the pressure introduction passage 19, so that the gas-phase side valve element 18 closes the gas-phase refrigerant passage 142b. Therefore, the refrigerant does not flow out from the gas-phase refrigerant outlet 142a.
 統合弁14の液相冷媒流出口141eから流出した気相冷媒は、室外熱交換器20へ流入する。室外熱交換器20へ流入した冷媒は、送風ファン21から送風された外気と熱交換して放熱する。室外熱交換器20から流出した冷媒は、迂回通路開閉弁27が閉弁状態となっているので、絞り状態となっている冷房用膨脹弁22へ流入して低圧冷媒となるまで、等エンタルピ的に減圧膨脹される。 The gas-phase refrigerant that has flowed out from the liquid-phase refrigerant outlet 141e of the integrated valve 14 flows into the outdoor heat exchanger 20. The refrigerant flowing into the outdoor heat exchanger 20 exchanges heat with the outside air blown from the blower fan 21 to radiate heat. The refrigerant flowing out of the outdoor heat exchanger 20 is isoenthalpy until it flows into the cooling expansion valve 22 in the throttled state and becomes a low-pressure refrigerant because the bypass passage opening / closing valve 27 is closed. Inflated to a reduced pressure.
 そして、冷房用膨脹弁22にて減圧された低圧冷媒は、室内蒸発器23へ流入し、送風機32から送風された空気から吸熱して蒸発する。これにより、空気が冷却される。 And the low-pressure refrigerant decompressed by the cooling expansion valve 22 flows into the indoor evaporator 23 and absorbs heat from the air blown from the blower 32 to evaporate. Thereby, air is cooled.
 室内蒸発器23から流出した冷媒は、アキュムレータ24へ流入して気液分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11aから吸入されて低段側圧縮機構、高段側圧縮機構をこの順に流れて再び圧縮される。一方、分離された液相冷媒はサイクルが要求されている冷凍能力を発揮するために必要としていない余剰冷媒としてアキュムレータ24内に蓄えられる。 The refrigerant that has flowed out of the indoor evaporator 23 flows into the accumulator 24 and is separated into gas and liquid. The separated gas-phase refrigerant is sucked from the suction port 11a of the compressor 11, flows through the low-stage compression mechanism and the high-stage compression mechanism in this order, and is compressed again. On the other hand, the separated liquid-phase refrigerant is stored in the accumulator 24 as surplus refrigerant that is not necessary for exhibiting the refrigerating capacity required for the cycle.
 以上の如く、冷房運転モードでは、エアミックスドア34にて室内凝縮器12の空気通路を閉塞しているので、室内蒸発器23にて冷却された空気を車室内へ吹き出すことができる。これにより、車室内の冷房を実現することができる。 As described above, in the cooling operation mode, since the air passage of the indoor condenser 12 is blocked by the air mix door 34, the air cooled by the indoor evaporator 23 can be blown out into the vehicle interior. Thereby, cooling of a vehicle interior is realizable.
 (b)暖房運転モード
 次に、暖房運転モードについて説明する。前述の如く、本実施形態のヒートポンプサイクル10では、暖房運転モードとして、第1暖房運転モード、第2暖房運転モードを実行することができる。まず、暖房運転モードは、空調操作スイッチ群42の作動スイッチが投入(ON)された状態で、モード選択スイッチによって暖房運転モードが選択されると開始される。
(B) Heating operation mode Next, heating operation mode is demonstrated. As described above, in the heat pump cycle 10 of the present embodiment, the first heating operation mode and the second heating operation mode can be executed as the heating operation mode. First, the heating operation mode is started when the heating operation mode is selected by the mode selection switch while the operation switch of the air conditioning operation switch group 42 is turned on (ON).
 そして、暖房運転モードが開始されると、制御装置40が空調制御用のセンサ群41の検出信号および空調操作スイッチ群42の操作信号を読み込み、圧縮機11の冷媒吐出能力(圧縮機11の回転数)を決定する。 When the heating operation mode is started, the control device 40 reads the detection signal of the sensor group 41 for air conditioning control and the operation signal of the air conditioning operation switch group 42, and the refrigerant discharge capacity of the compressor 11 (the rotation of the compressor 11). Number).
 (b)-1:第1暖房運転モード
 まず、第1暖房運転モードについて説明する。第1暖房運転モードが実行されると、制御装置40が、高段側膨脹弁13を絞り状態とし、統合弁14のソレノイド16を非通電状態とし、冷房用膨脹弁22を全閉状態とし、さらに、迂回通路開閉弁27を開弁状態とする。
(B) -1: First Heating Operation Mode First, the first heating operation mode will be described. When the first heating operation mode is executed, the control device 40 sets the high stage side expansion valve 13 to the throttle state, sets the solenoid 16 of the integrated valve 14 to the non-energized state, sets the cooling expansion valve 22 to the fully closed state, Further, the bypass passage opening / closing valve 27 is opened.
 これにより、統合弁14では、図4に示すように、第1バイパス弁15が第1液相冷媒通路141dを閉じ、気相側弁体18が気相冷媒通路142bを開いた状態となり、ヒートポンプサイクル10は、図2の実線矢印に示すように冷媒が流れる冷媒流路に切り替えられる。 As a result, in the integrated valve 14, as shown in FIG. 4, the first bypass valve 15 closes the first liquid-phase refrigerant passage 141d and the gas-phase side valve element 18 opens the gas-phase refrigerant passage 142b. The cycle 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the solid arrows in FIG.
 すなわち、第1暖房運転モードでは、気液分離空間141bにて分離された気相冷媒が圧縮機11の中間圧ポート11bへ流入し、いわゆるガスインジェクション運転(GI運転)が行われる。 That is, in the first heating operation mode, the gas-phase refrigerant separated in the gas-liquid separation space 141b flows into the intermediate pressure port 11b of the compressor 11, and a so-called gas injection operation (GI operation) is performed.
 この冷媒流路構成(サイクル構成)で、制御装置40が、冷房運転モードと同様に、空調制御用のセンサ群41の検出信号および空調操作スイッチ群42の操作信号を読み込み、目標吹出温度TAOおよびセンサ群の検出信号に基づいて、制御装置40の出力側に接続された各種空調制御機器の作動状態を決定する。 In this refrigerant flow path configuration (cycle configuration), the control device 40 reads the detection signal of the air conditioning control sensor group 41 and the operation signal of the air conditioning operation switch group 42 in the same manner as in the cooling operation mode, and the target blowout temperature TAO and Based on the detection signal of the sensor group, the operating states of various air conditioning control devices connected to the output side of the control device 40 are determined.
 なお、第1暖房運転モードでは、高段側膨脹弁13へ出力される制御信号は、室内凝縮器12における冷媒圧力が予め定めた目標高圧となるように決定される。あるいは、当該制御信号は、室内凝縮器12から流出する冷媒の過冷却度が予め定めた目標過冷却度となるように決定される。また、エアミックスドア34のサーボモータへ出力される制御信号は、エアミックスドア34がバイパス通路35を閉塞し、室内蒸発器23通過後の空気の全流量が室内凝縮器12を通過するように決定される。 In the first heating operation mode, the control signal output to the high stage expansion valve 13 is determined so that the refrigerant pressure in the indoor condenser 12 becomes a predetermined target high pressure. Alternatively, the control signal is determined so that the degree of supercooling of the refrigerant flowing out of the indoor condenser 12 becomes a predetermined target degree of supercooling. Further, the control signal output to the servo motor of the air mix door 34 is such that the air mix door 34 closes the bypass passage 35 and the total air flow after passing through the indoor evaporator 23 passes through the indoor condenser 12. It is determined.
 従って、暖房運転モードのヒートポンプサイクル10では、圧縮機11の吐出ポート11cから吐出された高圧冷媒が室内凝縮器12へ流入する。室内凝縮器12へ流入した冷媒は、送風機32から送風されて室内蒸発器23を通過した空気と熱交換して放熱する。これにより、空気が加熱される。 Therefore, in the heat pump cycle 10 in the heating operation mode, the high-pressure refrigerant discharged from the discharge port 11 c of the compressor 11 flows into the indoor condenser 12. The refrigerant flowing into the indoor condenser 12 exchanges heat with the air blown from the blower 32 and passed through the indoor evaporator 23 to dissipate heat. Thereby, air is heated.
 室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨脹弁13にて中間圧冷媒となるまで等エンタルピ的に減圧膨脹される。そして、高段側膨脹弁13にて減圧された中間圧冷媒は、統合弁14の冷媒流入口141aから気液分離空間141b内へ流入して気液分離される。 The refrigerant that has flowed out of the indoor condenser 12 is decompressed and expanded in an enthalpy manner until it becomes an intermediate-pressure refrigerant by the high-stage expansion valve 13 that is in a throttled state. Then, the intermediate pressure refrigerant decompressed by the high-stage side expansion valve 13 flows into the gas-liquid separation space 141b from the refrigerant inlet 141a of the integrated valve 14 and is separated into gas and liquid.
 気液分離空間141bにて分離された液相冷媒は、第1液相冷媒通路141dへ流入する。第1液相冷媒通路141dへ流入した液相冷媒は、第1バイパス弁15が第1液相冷媒通路141dを閉じているので、絞り17にて低圧冷媒となるまで等エンタルピ的に減圧膨脹されて、液相冷媒流出口141eから流出する。 The liquid refrigerant separated in the gas-liquid separation space 141b flows into the first liquid refrigerant passage 141d. Since the first bypass valve 15 closes the first liquid phase refrigerant passage 141d, the liquid phase refrigerant flowing into the first liquid phase refrigerant passage 141d is decompressed and expanded in an enthalpy manner until it becomes a low pressure refrigerant at the throttle 17. And flows out from the liquid-phase refrigerant outlet 141e.
 この際、絞り17にて減圧された後の液相冷媒流出口141e側の冷媒圧力が圧力導入通路19を介して、背圧室142eに導かれるので、気相側弁体18が気相冷媒通路142bを開く。従って、気液分離空間141bにて分離された気相冷媒は、統合弁14の気相冷媒流出口142aから流出して圧縮機11の中間圧ポート11b側へ流入する。 At this time, the refrigerant pressure on the liquid-phase refrigerant outlet 141e side after being depressurized by the throttle 17 is guided to the back pressure chamber 142e via the pressure introduction passage 19, so that the gas-phase side valve element 18 is replaced with the gas-phase refrigerant. Open the passage 142b. Therefore, the gas-phase refrigerant separated in the gas-liquid separation space 141 b flows out from the gas-phase refrigerant outlet 142 a of the integrated valve 14 and flows into the intermediate pressure port 11 b side of the compressor 11.
 中間圧ポート11bへ流入した中間圧気相冷媒は、低段側圧縮機構吐出冷媒と合流して、高段側圧縮機構へ吸入される。一方、統合弁14の液相冷媒流出口141eから流出した冷媒は、室外熱交換器20へ流入して、送風ファン21から送風された外気と熱交換して吸熱する。 The intermediate-pressure gas-phase refrigerant that has flowed into the intermediate-pressure port 11b merges with the refrigerant discharged from the low-stage compression mechanism and is sucked into the high-stage compression mechanism. On the other hand, the refrigerant that has flowed out of the liquid-phase refrigerant outlet 141e of the integrated valve 14 flows into the outdoor heat exchanger 20 and exchanges heat with the outside air blown from the blower fan 21 to absorb heat.
 室外熱交換器20から流出した冷媒は、迂回通路開閉弁27が開弁状態となっているので、膨脹弁迂回通路25を介して、アキュムレータ24へ流入して気液分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11aから吸入されて再び圧縮される。一方、分離された液相冷媒はサイクルが要求されている冷凍能力を発揮するために必要としていない余剰冷媒としてアキュムレータ24内に蓄えられる。 The refrigerant flowing out of the outdoor heat exchanger 20 flows into the accumulator 24 via the expansion valve bypass passage 25 and is separated into gas and liquid because the bypass passage opening / closing valve 27 is in the open state. The separated gas-phase refrigerant is sucked from the suction port 11a of the compressor 11 and compressed again. On the other hand, the separated liquid-phase refrigerant is stored in the accumulator 24 as surplus refrigerant that is not necessary for exhibiting the refrigerating capacity required for the cycle.
 以上の如く、暖房運転モードでは、室内凝縮器12にて圧縮機11から吐出された冷媒の有する熱を空気に放熱させて、加熱された空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。 As described above, in the heating operation mode, the heat of the refrigerant discharged from the compressor 11 by the indoor condenser 12 can be radiated to the air, and the heated air can be blown into the vehicle interior. Thereby, heating of a vehicle interior is realizable.
 さらに、暖房運転モードでは、絞り17にて減圧された低圧冷媒を圧縮機11の吸入ポート11aから吸入させ、高段側膨脹弁13にて減圧された中間圧冷媒を中間圧ポート11bへ流入させて昇圧過程の冷媒と合流させる、ガスインジェクションサイクル(エコノマイザ式冷凍サイクル)を構成することができる。 Further, in the heating operation mode, the low-pressure refrigerant decompressed by the throttle 17 is sucked from the suction port 11a of the compressor 11, and the intermediate-pressure refrigerant decompressed by the high stage side expansion valve 13 is caused to flow into the intermediate pressure port 11b. Thus, a gas injection cycle (economizer-type refrigeration cycle) that joins with the refrigerant in the pressure increasing process can be configured.
 これにより、高段側圧縮機構に、温度の低い混合冷媒を吸入させることができ、高段側圧縮機構の圧縮効率を向上させることができる。さらに、低段側圧縮機構および高段側圧縮機構の双方の吸入冷媒圧力と吐出冷媒圧力との圧力差を縮小させて、双方の圧縮機構の圧縮効率を向上させることができる。その結果、ヒートポンプサイクル10全体としてのCOPを向上させることができる。 This makes it possible to cause the high-stage compression mechanism to suck the refrigerant mixture having a low temperature, and to improve the compression efficiency of the high-stage compression mechanism. Furthermore, the compression efficiency of both compression mechanisms can be improved by reducing the pressure difference between the suction refrigerant pressure and the discharge refrigerant pressure in both the low-stage compression mechanism and the high-stage compression mechanism. As a result, the COP of the heat pump cycle 10 as a whole can be improved.
 (b)-2:第2暖房運転モード
 次に、第2暖房運転モードについて説明する。第2暖房運転モードが実行されると、制御装置40が、高段側膨脹弁13を絞り状態とし、統合弁14のソレノイド16を通電状態とし、冷房用膨脹弁22を全閉状態とし、さらに、迂回通路開閉弁27を開弁状態とする。これにより、統合弁14では、冷房運転モードと同様に、図5に示す状態となり、ヒートポンプサイクル10は、図3の実線矢印に示すように冷媒が流れる冷媒流路に切り替えられる。
(B) -2: Second Heating Operation Mode Next, the second heating operation mode will be described. When the second heating operation mode is executed, the control device 40 sets the high stage side expansion valve 13 to the throttle state, sets the solenoid 16 of the integrated valve 14 to the energized state, sets the cooling expansion valve 22 to the fully closed state, Then, the bypass passage opening / closing valve 27 is opened. Thereby, in the integrated valve 14, as in the cooling operation mode, the state shown in FIG. 5 is established, and the heat pump cycle 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the solid line arrows in FIG.
 すなわち、第2暖房運転モードでは、気相側弁体18により気相冷媒通路142bが閉じられて、気液分離空間141bにて分離された気相冷媒は圧縮機11の中間圧ポート11bには流入しないため、いわゆるノーマルヒートポンプ運転(ノーマルHP運転)が行われる。 That is, in the second heating operation mode, the gas-phase refrigerant passage 142b is closed by the gas-phase side valve body 18, and the gas-phase refrigerant separated in the gas-liquid separation space 141b enters the intermediate pressure port 11b of the compressor 11. Since it does not flow, so-called normal heat pump operation (normal HP operation) is performed.
 この冷媒流路構成(サイクル構成)で、制御装置40が、冷房運転モードと同様に、空調制御用のセンサ群41の検出信号および空調操作スイッチ群42の操作信号を読み込み、目標吹出温度TAOおよびセンサ群の検出信号に基づいて、制御装置40の出力側に接続された各種空調制御機器の作動状態を決定する。 In this refrigerant flow path configuration (cycle configuration), the control device 40 reads the detection signal of the air conditioning control sensor group 41 and the operation signal of the air conditioning operation switch group 42 in the same manner as in the cooling operation mode, and the target blowout temperature TAO and Based on the detection signal of the sensor group, the operating states of various air conditioning control devices connected to the output side of the control device 40 are determined.
 なお、第2暖房運転モードでは、高段側膨脹弁13へ出力される制御信号は、室内凝縮器12における冷媒圧力が予め定めた目標高圧となるように決定される。あるいは、当該制御信号は、室内凝縮器12から流出する冷媒の過冷却度が予め定めた目標過冷却度となるように決定される。また、エアミックスドア34のサーボモータへ出力される制御信号は、エアミックスドア34がバイパス通路35を閉塞し、室内蒸発器23通過後の空気の全流量が室内凝縮器12を通過するように決定される。 In the second heating operation mode, the control signal output to the high stage side expansion valve 13 is determined so that the refrigerant pressure in the indoor condenser 12 becomes a predetermined target high pressure. Alternatively, the control signal is determined so that the degree of supercooling of the refrigerant flowing out of the indoor condenser 12 becomes a predetermined target degree of supercooling. Further, the control signal output to the servo motor of the air mix door 34 is such that the air mix door 34 closes the bypass passage 35 and the total air flow after passing through the indoor evaporator 23 passes through the indoor condenser 12. It is determined.
 従って、第2暖房運転モードのヒートポンプサイクル10では、圧縮機11の吐出ポート11cから吐出された高圧冷媒が室内凝縮器12へ流入し、第1暖房運転モード時と同様に、空気と熱交換して放熱する。これにより、空気が加熱される。 Accordingly, in the heat pump cycle 10 in the second heating operation mode, the high-pressure refrigerant discharged from the discharge port 11c of the compressor 11 flows into the indoor condenser 12 and exchanges heat with air as in the first heating operation mode. To dissipate heat. Thereby, air is heated.
 室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨脹弁13にて低圧冷媒となるまで等エンタルピ的に減圧膨脹されて、統合弁14の気液分離空間141b内へ流入する。気液分離空間141bへ流入した冷媒は、冷房運転モードと同様に、気相冷媒流出口142aから流出せず、液相冷媒流出口141eから減圧されることなく流出する。 The refrigerant flowing out of the indoor condenser 12 is decompressed and expanded in an enthalpy manner until it becomes a low-pressure refrigerant in the throttled high-stage expansion valve 13 and flows into the gas-liquid separation space 141b of the integrated valve 14. To do. The refrigerant that has flowed into the gas-liquid separation space 141b does not flow out of the gas-phase refrigerant outlet 142a and flows out of the liquid-phase refrigerant outlet 141e without being decompressed, as in the cooling operation mode.
 液相冷媒流出口141eから流出した低圧冷媒は、室外熱交換器20へ流入し、送風ファン21から送風された外気と熱交換して吸熱する。室外熱交換器20から流出した冷媒は、迂回通路開閉弁27が開弁状態となっているので、膨脹弁迂回通路25を介して、アキュムレータ24へ流入して気液分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11aから吸入される。 The low-pressure refrigerant that has flowed out of the liquid-phase refrigerant outlet 141e flows into the outdoor heat exchanger 20, exchanges heat with the outside air blown from the blower fan 21, and absorbs heat. The refrigerant flowing out of the outdoor heat exchanger 20 flows into the accumulator 24 via the expansion valve bypass passage 25 and is separated into gas and liquid because the bypass passage opening / closing valve 27 is in the open state. The separated gas-phase refrigerant is sucked from the suction port 11a of the compressor 11.
 以上の如く、第2暖房運転モードでは、室内凝縮器12にて圧縮機11から吐出された冷媒の有する熱を空気に放熱させて、加熱された空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。 As described above, in the second heating operation mode, the heat of the refrigerant discharged from the compressor 11 by the indoor condenser 12 can be radiated to the air, and the heated air can be blown into the vehicle interior. Thereby, heating of a vehicle interior is realizable.
 (c)液相冷媒流入防止処理
 ところで、第1暖房運転モードでは、第1バイパス弁15が第1液相冷媒通路141dを閉じ、気相側弁体18が気相冷媒通路142bを開いた状態となっている。したがって、前述したように、圧縮機11の回転数が急上昇するような過渡運転域において、絞り17を介して流しきれる冷媒の量と気液分離空間141bに流入する冷媒の量のバランスが一時的に崩れ、気液分離空間141bに液相冷媒が溜まってしまう。その結果、気液分離空間141bに溜まった液相冷媒を含んだ冷媒が、気相冷媒通路142bに流入し、さらには圧縮機11の中間圧ポート11bに流入する。
(C) Liquid Phase Refrigerant Inflow Prevention Process By the way, in the first heating operation mode, the first bypass valve 15 closes the first liquid phase refrigerant passage 141d, and the gas phase side valve element 18 opens the gas phase refrigerant passage 142b. It has become. Therefore, as described above, in the transient operation region where the rotation speed of the compressor 11 suddenly increases, the balance between the amount of refrigerant flowing through the throttle 17 and the amount of refrigerant flowing into the gas-liquid separation space 141b is temporarily. The liquid-phase refrigerant accumulates in the gas-liquid separation space 141b. As a result, the refrigerant containing the liquid-phase refrigerant accumulated in the gas-liquid separation space 141 b flows into the gas-phase refrigerant passage 142 b and further flows into the intermediate pressure port 11 b of the compressor 11.
 そこで、本実施形態では、液相冷媒が圧縮機11の中間圧ポート11bに流入することを防止するために、図8に示す液相冷媒流入防止処理を実行する。この液相冷媒流入防止処理は、空調操作スイッチ群42の作動スイッチが投入(ON)されると開始される。 Therefore, in this embodiment, in order to prevent the liquid refrigerant from flowing into the intermediate pressure port 11b of the compressor 11, the liquid refrigerant inflow prevention process shown in FIG. 8 is executed. This liquid phase refrigerant inflow prevention process is started when the operation switch of the air conditioning operation switch group 42 is turned on.
 図8に示すように、まず、現在の運転モードが第1暖房運転モード(すなわち、ガスインジェクション運転)であるか否かを判定する(S10)。 As shown in FIG. 8, first, it is determined whether or not the current operation mode is the first heating operation mode (ie, gas injection operation) (S10).
 そして、S10にて第1暖房運転モードであると判定された場合は、液相冷媒を含んだ冷媒が気相冷媒通路142bに流入し、さらにはその液相冷媒を含んだ冷媒が圧縮機11の中間圧ポート11bに流入する現象(以下、液相冷媒流入という)の発生を予測または検知する(S11)。 And when it determines with it being 1st heating operation mode in S10, the refrigerant | coolant containing a liquid phase refrigerant | coolant flows in into the gaseous-phase refrigerant path 142b, and also the refrigerant | coolant containing the liquid phase refrigerant | coolant is the compressor 11. The occurrence of a phenomenon that flows into the intermediate pressure port 11b (hereinafter referred to as liquid-phase refrigerant inflow) is predicted or detected (S11).
 本実施形態では、冷媒状態判断部(S11)において、暖房負荷が増加して圧縮機11が増速される場合に、液相冷媒流入が発生すると判断する。 In the present embodiment, the refrigerant state determination unit (S11) determines that liquid-phase refrigerant inflow occurs when the heating load increases and the compressor 11 is accelerated.
 そして、S11にて液相冷媒流入が発生すると判断された場合は、気相冷媒通路142bを介して中間圧ポート11bに流入する冷媒の流れを抑止するために、流入抑止部(S12)において運転モードを切り替える。 When it is determined in S11 that liquid-phase refrigerant inflow occurs, operation is performed in the inflow suppression unit (S12) in order to suppress the flow of refrigerant flowing into the intermediate pressure port 11b via the gas-phase refrigerant passage 142b. Switch modes.
 具体的には、運転モードを第2暖房運転モード(すなわち、ノーマルヒートポンプ運転)に切り替える。この第2暖房運転モードでは、図5に示すように、ソレノイド16に電力が供給されて第1バイパス弁15が第1液相冷媒通路141dを開くことにより、気相冷媒通路142b側の冷媒圧力P2と、第1バイパス弁15から流出した液相冷媒流出口141e側の冷媒圧力P3とがバランスして、気相側弁体18が気相冷媒通路142bを閉じる。したがって、気相冷媒通路142bを介して中間圧ポート11bに流入する冷媒の流れを抑止することができる。 Specifically, the operation mode is switched to the second heating operation mode (that is, normal heat pump operation). In the second heating operation mode, as shown in FIG. 5, the power is supplied to the solenoid 16 and the first bypass valve 15 opens the first liquid-phase refrigerant passage 141d, whereby the refrigerant pressure on the gas-phase refrigerant passage 142b side is increased. P2 and the refrigerant pressure P3 on the liquid-phase refrigerant outlet 141e side flowing out from the first bypass valve 15 are balanced, and the gas-phase side valve body 18 closes the gas-phase refrigerant passage 142b. Therefore, the flow of the refrigerant flowing into the intermediate pressure port 11b via the gas phase refrigerant passage 142b can be suppressed.
 この段階で、実際には圧縮機11の回転数が上昇して冷媒流量が増加するが、第1液相冷媒通路141dが開となっているため、室外熱交換器20に向けて冷媒を余裕を持って流しきることが可能となる。 At this stage, the rotational speed of the compressor 11 actually increases and the refrigerant flow rate increases. However, since the first liquid-phase refrigerant passage 141d is open, there is room for refrigerant toward the outdoor heat exchanger 20. It is possible to carry it all with.
 S12の後、S13では、運転モードを第1暖房運転モードに戻しても液相冷媒流入が発生しない状態になったか否かを判定する。 After S12, in S13, it is determined whether or not the inflow of the liquid refrigerant has not occurred even if the operation mode is returned to the first heating operation mode.
 具体的には、S12にて第2暖房運転モードに切り替えてから所定時間(例えば、10~20秒)経過したら、運転モードを第1暖房運転モードに戻しても液相冷媒流入が発生しない状態になったと判断する。 Specifically, when a predetermined time (for example, 10 to 20 seconds) has elapsed after switching to the second heating operation mode in S12, the liquid refrigerant does not flow even if the operation mode is returned to the first heating operation mode. Judge that it became.
 そして、S13の判定結果がYESの場合は、運転モードを第1暖房運転モードに戻す(S14)。すなわち、図4に示すように、ソレノイド16への電力供給が停止されて第1バイパス弁15が第1液相冷媒通路141dを閉じることにより、気相冷媒通路142b側の冷媒圧力P2と絞り17から流出した冷媒の圧力P3との圧力差に基づいて、気相側弁体18が気相冷媒通路142bを開き、ガスインジェクション運転が行われる。 And when the determination result of S13 is YES, the operation mode is returned to the first heating operation mode (S14). That is, as shown in FIG. 4, when the power supply to the solenoid 16 is stopped and the first bypass valve 15 closes the first liquid-phase refrigerant passage 141d, the refrigerant pressure P2 on the gas-phase refrigerant passage 142b side and the throttle 17 are closed. Based on the pressure difference from the pressure P3 of the refrigerant flowing out from the gas phase, the gas phase side valve body 18 opens the gas phase refrigerant passage 142b, and the gas injection operation is performed.
 本実施形態の車両用空調装置1では、上記の如く、気相冷媒通路142bに液相冷媒を含んだ冷媒が流入すると判断した際に中間圧ポート11bに流入する冷媒の流れを抑止するため、圧縮機11への液相冷媒の流入を防止し、圧縮機11への液相冷媒の流入による不具合を未然に防止することができる。また、気相冷媒通路142bに液相冷媒を含んだ冷媒が流入しないと判断される状況下では、ガスインジェクション運転を継続してサイクル効率(COP)の向上を図ることができる。
(第2実施形態)
 第2実施形態について説明する。本実施形態は、液相冷媒流入防止処理(図8参照)のS11の判断条件が、第1実施形態と異なっている。なお、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
In the vehicle air conditioner 1 of the present embodiment, as described above, in order to suppress the flow of the refrigerant flowing into the intermediate pressure port 11b when it is determined that the refrigerant containing the liquid phase refrigerant flows into the gas-phase refrigerant passage 142b, The inflow of the liquid phase refrigerant into the compressor 11 can be prevented, and problems due to the inflow of the liquid phase refrigerant into the compressor 11 can be prevented. Further, in a situation where it is determined that the refrigerant containing the liquid phase refrigerant does not flow into the gas phase refrigerant passage 142b, the gas injection operation can be continued to improve the cycle efficiency (COP).
(Second Embodiment)
A second embodiment will be described. This embodiment is different from the first embodiment in the determination condition of S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8). In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
 本実施形態では、液相冷媒流入防止処理(図8参照)のS11において、乗員により車両用空調装置1の運転条件が変更されて圧縮機11が増速される場合に、液相冷媒流入が発生すると判断する。 In the present embodiment, in S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8), when the operating condition of the vehicle air conditioner 1 is changed by the occupant and the compressor 11 is accelerated, the liquid-phase refrigerant inflow occurs. Judge that it occurs.
 具体的には、例えば乗員が空調操作スイッチ群42の車室内温度設定スイッチを操作して車室内設定温度を上げ、それにより暖房負荷が増加して圧縮機11が増速される場合に、液相冷媒流入が発生すると判断する。あるいは、乗員が空調操作スイッチ群42の送風量設定スイッチを操作して送風量を上げ、それにより暖房負荷が増加して圧縮機11が増速される場合に、液相冷媒流入が発生すると判断する。 Specifically, for example, when the passenger operates the vehicle interior temperature setting switch of the air conditioning operation switch group 42 to increase the vehicle interior set temperature, thereby increasing the heating load and increasing the speed of the compressor 11, It is determined that phase refrigerant inflow occurs. Alternatively, when the occupant operates the air volume setting switch of the air conditioning operation switch group 42 to increase the air volume, thereby increasing the heating load and increasing the speed of the compressor 11, it is determined that liquid phase refrigerant inflow occurs. To do.
 ところで、車室内温度の変化等に応じて圧縮機11の回転数等を自動的に制御するオート制御時は、圧縮機11の回転数変動幅が小さいため、液相冷媒流入は発生し難い。 By the way, at the time of auto control in which the rotation speed of the compressor 11 is automatically controlled according to a change in the passenger compartment temperature or the like, since the fluctuation range of the rotation speed of the compressor 11 is small, liquid-phase refrigerant inflow hardly occurs.
 これに対し、乗員により車両用空調装置1の運転条件が変更されて圧縮機11が増速される場合は、圧縮機11の回転数変動幅や加速度(増速スピ-ド)が大きくなる傾向になるため、液相冷媒流入が発生し易くなる。 On the other hand, when the operating condition of the vehicle air conditioner 1 is changed by the occupant and the compressor 11 is accelerated, the rotational speed fluctuation range and acceleration (acceleration speed) of the compressor 11 tend to increase. Therefore, liquid-phase refrigerant inflow tends to occur.
 したがって、本実施形態によると、液相冷媒流入が発生し易い条件のときにのみ、第1暖房運転モード(すなわち、ガスインジェクション運転)から第2暖房運転モード(すなわち、ノーマルヒートポンプ運転)に切り替えるため、第1実施形態よりもガスインジェクション運転の機会を増やすことができる。
(第3実施形態)
 第3実施形態について説明する。本実施形態は、液相冷媒流入防止処理(図8参照)のS11の判断条件が、第1実施形態と異なっている。なお、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
Therefore, according to the present embodiment, the first heating operation mode (i.e., gas injection operation) is switched to the second heating operation mode (i.e., normal heat pump operation) only under conditions where liquid-phase refrigerant inflow is likely to occur. The opportunity of gas injection operation can be increased as compared with the first embodiment.
(Third embodiment)
A third embodiment will be described. This embodiment is different from the first embodiment in the determination condition of S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8). In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
 本実施形態では、液相冷媒流入防止処理(図8参照)のS11において、圧縮機11が増速される前の圧縮機11の回転数および圧縮機11が増速される前の高段側膨張弁13の開度に基づいて、液相冷媒流入が発生するか否かを判断する。 In the present embodiment, in S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8), the rotational speed of the compressor 11 before the compressor 11 is accelerated and the higher stage before the compressor 11 is accelerated. Based on the opening degree of the expansion valve 13, it is determined whether or not liquid-phase refrigerant inflow occurs.
 具体的には、圧縮機11の回転数が低く且つ高段側膨張弁13の開度が小さい運転状態から圧縮機11が増速される時は、気液分離空間141bに流入する冷媒の量の変動幅が大きくなる傾向にあって液相冷媒流入が発生し易い。 Specifically, when the compressor 11 is accelerated from an operating state where the rotation speed of the compressor 11 is low and the opening degree of the high stage side expansion valve 13 is small, the amount of refrigerant flowing into the gas-liquid separation space 141b The fluctuation range of the liquid crystal refrigerant tends to increase, and liquid-phase refrigerant inflow tends to occur.
 そこで、圧縮機11が増速される前の圧縮機11の回転数が所定回転数以下で、且つ、圧縮機11が増速される前の高段側膨張弁13の開度が所定開度以下の運転状態にある圧縮機11が増速される時には、液相冷媒流入が発生すると判断する。 Therefore, the rotational speed of the compressor 11 before the compressor 11 is increased is equal to or lower than the predetermined rotational speed, and the opening degree of the high stage side expansion valve 13 before the compressor 11 is increased is the predetermined opening degree. When the compressor 11 in the following operation state is accelerated, it is determined that liquid phase refrigerant inflow occurs.
 したがって、本実施形態によると、液相冷媒流入が発生し易い条件のときにのみ、第1暖房運転モード(すなわち、ガスインジェクション運転)から第2暖房運転モード(すなわち、ノーマルヒートポンプ運転)に切り替える。したがって、第1実施形態よりもガスインジェクション運転の機会を増やすことができる。
(第4実施形態)
 第4実施形態について説明する。本実施形態は、液相冷媒流入防止処理(図8参照)のS11の判断条件が、第1実施形態と異なっている。なお、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
Therefore, according to the present embodiment, the first heating operation mode (that is, the gas injection operation) is switched to the second heating operation mode (that is, the normal heat pump operation) only under conditions where liquid phase refrigerant inflow is likely to occur. Therefore, the opportunity of gas injection operation can be increased as compared with the first embodiment.
(Fourth embodiment)
A fourth embodiment will be described. This embodiment is different from the first embodiment in the determination condition of S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8). In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
 本実施形態では、液相冷媒流入防止処理(図8参照)のS11において、増速される前の圧縮機11の回転数、圧縮機11が増速される前の高段側膨張弁13の開度、および圧縮機11の加速度に基づいて、液相冷媒流入が発生するか否かを判断する。 In the present embodiment, in S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8), the number of rotations of the compressor 11 before speeding up, and the high-stage side expansion valve 13 before speeding up the compressor 11 are increased. Based on the opening degree and the acceleration of the compressor 11, it is determined whether or not liquid-phase refrigerant inflow occurs.
 具体的には、圧縮機11の回転数が低く且つ高段側膨張弁13の開度が小さい運転状態にある圧縮機11が増速される時であっても、圧縮機11の加速度が小さければ気液分離空間141bに流入する冷媒の量は緩やかに増加する。したがって、絞り17を介して流しきることができる。 Specifically, the acceleration of the compressor 11 can be small even when the speed of the compressor 11 in the operating state where the rotational speed of the compressor 11 is low and the opening degree of the high stage side expansion valve 13 is small is increased. For example, the amount of refrigerant flowing into the gas-liquid separation space 141b gradually increases. Therefore, it can flow through the restrictor 17.
 一方、圧縮機11の回転数が低く且つ高段側膨張弁13の開度が小さい運転状態にある圧縮機11が増速される場合において、圧縮機11の加速度が大きければ気液分離空間141bに流入する冷媒の量は急激に増加する。したがって、絞り17を介して流しきることが困難になり、気液分離空間141bに液相冷媒が溜まってしまう。 On the other hand, when the speed of the compressor 11 in the operating state where the rotational speed of the compressor 11 is low and the opening degree of the high stage expansion valve 13 is small is increased, the gas-liquid separation space 141b is increased if the acceleration of the compressor 11 is large. The amount of refrigerant flowing into the tank increases rapidly. Therefore, it becomes difficult to flow completely through the throttle 17, and the liquid-phase refrigerant accumulates in the gas-liquid separation space 141b.
 そこで、増速される前の圧縮機11の回転数が所定回転数以下で、且つ、圧縮機11が増速される前の高段側膨張弁13の開度が所定開度以下の運転状態にある圧縮機11が増速される場合であって、かつ、圧縮機11の加速度が所定値以上の場合は、液相冷媒流入が発生すると判断する。 Therefore, an operating state in which the rotation speed of the compressor 11 before the speed increase is equal to or less than the predetermined rotation speed and the opening degree of the high stage side expansion valve 13 before the speed increase of the compressor 11 is equal to or less than the predetermined opening degree. In the case where the compressor 11 is accelerated, and the acceleration of the compressor 11 is equal to or higher than a predetermined value, it is determined that liquid-phase refrigerant inflow occurs.
 したがって、本実施形態によると、液相冷媒流入が発生し易い条件のときにのみ、第1暖房運転モード(すなわち、ガスインジェクション運転)から第2暖房運転モード(すなわち、ノーマルヒートポンプ運転)に切り替える。したがって、第1実施形態よりもガスインジェクション運転の機会を増やすことができる。
(第5実施形態)
 第5実施形態について説明する。本実施形態は、液相冷媒流入防止処理(図8参照)のS11の判断条件が、第1実施形態と異なっている。なお、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
Therefore, according to the present embodiment, the first heating operation mode (that is, the gas injection operation) is switched to the second heating operation mode (that is, the normal heat pump operation) only under conditions where liquid phase refrigerant inflow is likely to occur. Therefore, the opportunity of gas injection operation can be increased as compared with the first embodiment.
(Fifth embodiment)
A fifth embodiment will be described. This embodiment is different from the first embodiment in the determination condition of S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8). In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
 本実施形態では、液相冷媒流入防止処理(図8参照)のS11において、圧縮機11の増速量に基づいて、液相冷媒流入が発生するか否かを判断する。なお、圧縮機11の増速量は、増速した後の圧縮機11の目標回転数と増速される前の圧縮機11の回転数との差、または、増速された後の圧縮機11の目標回転数と増速される前の圧縮機11の回転数との比である。 In this embodiment, in S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8), it is determined whether or not liquid-phase refrigerant inflow occurs based on the speed increase amount of the compressor 11. The speed increase amount of the compressor 11 is the difference between the target speed of the compressor 11 after the speed increase and the speed of the compressor 11 before the speed increase, or the compressor after the speed increase. 11 is a ratio of the target rotational speed of 11 and the rotational speed of the compressor 11 before being increased.
 具体的には、圧縮機11の増速量が大きい場合、すなわち気液分離空間141bに流入する冷媒の量の変化量が大きい場合は、絞り17を介して流しきることが困難になり、気液分離空間141bに液相冷媒が溜まってしまう。そこで、圧縮機11の増速量が所定量以上である場合は、液相冷媒流入が発生すると判断する。 Specifically, when the amount of acceleration of the compressor 11 is large, that is, when the amount of change in the amount of refrigerant flowing into the gas-liquid separation space 141b is large, it becomes difficult to flow through the throttle 17, Liquid phase refrigerant accumulates in the liquid separation space 141b. Therefore, when the speed increase amount of the compressor 11 is equal to or greater than a predetermined amount, it is determined that liquid phase refrigerant inflow occurs.
 したがって、本実施形態によると、液相冷媒流入が発生し易い条件のときにのみ、第1暖房運転モード(すなわち、ガスインジェクション運転)から第2暖房運転モード(すなわち、ノーマルヒートポンプ運転)に切り替えるため、第1実施形態よりもガスインジェクション運転の機会を増やすことができる。 Therefore, according to the present embodiment, the first heating operation mode (i.e., gas injection operation) is switched to the second heating operation mode (i.e., normal heat pump operation) only under conditions where liquid-phase refrigerant inflow is likely to occur. The opportunity of gas injection operation can be increased as compared with the first embodiment.
 なお、吹出口から車室内に吹き出される空気の推定温度(本開示の熱交換対象流体の熱交換後の推定温度に相当)と目標吹出温度TAO(本開示の熱交換対象流体の熱交換後の目標温度に相当)との差に基づいて圧縮機11が増速された後の圧縮機11の目標回転数を算出する。算出した目標回転数と圧縮機11が増速される前の圧縮機11の回転数とに基づいて、圧縮機11の増速量を算出することができる。ここで、圧縮機11から吐出された高圧冷媒の圧力や温度に基づいて、吹出口から車室内に吹き出される空気の温度を推定することができる。 Note that the estimated temperature of the air blown into the passenger compartment from the outlet (corresponding to the estimated temperature after heat exchange of the heat exchange target fluid of the present disclosure) and the target outlet temperature TAO (after heat exchange of the heat exchange target fluid of the present disclosure) The target rotational speed of the compressor 11 after the speed of the compressor 11 is increased is calculated based on the difference from the target temperature. Based on the calculated target rotational speed and the rotational speed of the compressor 11 before the compressor 11 is accelerated, the speed increase amount of the compressor 11 can be calculated. Here, based on the pressure and temperature of the high-pressure refrigerant discharged from the compressor 11, the temperature of the air blown out from the outlet into the vehicle compartment can be estimated.
 また、実吹出空気温度と目標吹出温度TAOとの差に基づいて増速された後の圧縮機11の目標回転数を算出する。算出した目標回転数と増速される前の圧縮機11の回転数とに基づいて、圧縮機11の増速量を算出することができる。
(第6実施形態)
 第6実施形態について説明する。本実施形態は、液相冷媒流入防止処理(図8参照)のS11の判断条件が、第1実施形態と異なっている。なお、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
Further, the target rotational speed of the compressor 11 after being increased based on the difference between the actual blown air temperature and the target blown temperature TAO is calculated. The speed increase amount of the compressor 11 can be calculated based on the calculated target speed and the speed of the compressor 11 before the speed increase.
(Sixth embodiment)
A sixth embodiment will be described. This embodiment is different from the first embodiment in the determination condition of S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8). In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
 本実施形態では、液相冷媒流入防止処理(図8参照)のS11において、中間圧冷媒の圧力に基づいて、液相冷媒流入が発生するか否かを判断する。 In the present embodiment, in S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8), it is determined whether or not liquid-phase refrigerant inflow occurs based on the pressure of the intermediate-pressure refrigerant.
 具体的には、中間圧冷媒の圧力が低い場合は、絞り17の前後差圧が小さくなるため、絞り17を介して流れる冷媒の量が少なくなり、液相冷媒流入が発生し易い。 Specifically, when the pressure of the intermediate pressure refrigerant is low, the differential pressure across the throttle 17 becomes small, so the amount of refrigerant flowing through the throttle 17 is small, and liquid-phase refrigerant inflow tends to occur.
 そこで、中間圧冷媒の圧力が所定圧力以下である場合に、液相冷媒流入が発生すると判断する。なお、閾値である所定圧力は、外気温に対し正の相関を持たせてもよい。 Therefore, it is determined that liquid-phase refrigerant inflow occurs when the pressure of the intermediate pressure refrigerant is equal to or lower than a predetermined pressure. Note that the predetermined pressure as the threshold value may have a positive correlation with the outside air temperature.
 したがって、本実施形態によると、液相冷媒流入が発生し易い条件のときにのみ、第1暖房運転モード(すなわち、ガスインジェクション運転)から第2暖房運転モード(すなわち、ノーマルヒートポンプ運転)に切り替えるため、第1実施形態よりもガスインジェクション運転の機会を増やすことができる。
(第7実施形態)
 第7実施形態について説明する。本実施形態は、液相冷媒流入防止処理(図8参照)のS11の判断条件が、第1実施形態と異なっている。なお、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
Therefore, according to the present embodiment, the first heating operation mode (i.e., gas injection operation) is switched to the second heating operation mode (i.e., normal heat pump operation) only under conditions where liquid-phase refrigerant inflow is likely to occur. The opportunity of gas injection operation can be increased as compared with the first embodiment.
(Seventh embodiment)
A seventh embodiment will be described. This embodiment is different from the first embodiment in the determination condition of S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8). In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
 本実施形態では、液相冷媒流入防止処理(図8参照)のS11において、圧縮機11の吐出ポート11cから吐出された高圧冷媒の過熱度に基づいて、液相冷媒流入が発生するか否かを判断する。 In this embodiment, in S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8), whether or not liquid-phase refrigerant inflow occurs based on the degree of superheat of the high-pressure refrigerant discharged from the discharge port 11c of the compressor 11 is determined. Judging.
 具体的には、高圧冷媒の過熱度が小さい場合は、気液分離空間141bに流入する冷媒は液相冷媒を多く含んだ冷媒となる傾向になるため、液相冷媒流入が発生し易くなる。 Specifically, when the degree of superheat of the high-pressure refrigerant is small, the refrigerant flowing into the gas-liquid separation space 141b tends to be a refrigerant containing a large amount of liquid-phase refrigerant, so that liquid-phase refrigerant inflow tends to occur.
 そこで、吐出ポート11cから吐出された高圧冷媒の過熱度が所定過熱度以下である場合に、液相冷媒流入が発生すると判断する。 Therefore, when the superheat degree of the high-pressure refrigerant discharged from the discharge port 11c is equal to or lower than the predetermined superheat degree, it is determined that liquid phase refrigerant inflow occurs.
 したがって、本実施形態によると、液相冷媒流入が発生し易い条件のときにのみ、第1暖房運転モード(すなわち、ガスインジェクション運転)から第2暖房運転モード(すなわち、ノーマルヒートポンプ運転)に切り替える。したがって、第1実施形態よりもガスインジェクション運転の機会を増やすことができる。 Therefore, according to the present embodiment, the first heating operation mode (that is, the gas injection operation) is switched to the second heating operation mode (that is, the normal heat pump operation) only when the liquid phase refrigerant inflow is likely to occur. Therefore, the opportunity of gas injection operation can be increased as compared with the first embodiment.
 なお、高圧冷媒の過熱度は、圧縮機11から吐出された高圧冷媒の圧力および温度と高圧冷媒の過熱度との関係を定めたマップから求めることができる。 The superheat degree of the high-pressure refrigerant can be obtained from a map that defines the relationship between the pressure and temperature of the high-pressure refrigerant discharged from the compressor 11 and the superheat degree of the high-pressure refrigerant.
 また、高圧冷媒の過熱度は、圧縮機11から吐出された高圧冷媒の圧力および室内凝縮器12から流出した高圧冷媒の温度と高圧冷媒の過熱度との関係を定めたマップから求めてもよい。
(第8実施形態)
 第8実施形態について説明する。本実施形態は、液相冷媒流入防止処理(図8参照)のS11の判断条件が、第1実施形態と異なっている。なお、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
The degree of superheat of the high-pressure refrigerant may be obtained from a map that defines the relationship between the pressure of the high-pressure refrigerant discharged from the compressor 11 and the temperature of the high-pressure refrigerant flowing out of the indoor condenser 12 and the degree of superheat of the high-pressure refrigerant. .
(Eighth embodiment)
An eighth embodiment will be described. This embodiment is different from the first embodiment in the determination condition of S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8). In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
 本実施形態では、液相冷媒流入防止処理(図8参照)のS11において、圧縮機11の吸入ポート11aから吸入される低圧冷媒の過熱度に基づいて、液相冷媒流入が発生するか否かを判断する。 In this embodiment, in S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8), whether or not the liquid-phase refrigerant inflow occurs based on the degree of superheat of the low-pressure refrigerant sucked from the suction port 11a of the compressor 11 is determined. Judging.
 具体的には、低圧冷媒の過熱度が大きい場合は、絞り17を介して流れる冷媒の量が少なくなっており、液相冷媒流入が発生し易い。 Specifically, when the degree of superheat of the low-pressure refrigerant is large, the amount of refrigerant flowing through the throttle 17 is small, and liquid-phase refrigerant inflow is likely to occur.
 そこで、吸入ポート11aから吸入される低圧冷媒の過熱度が所定過熱度以上である場合に、液相冷媒流入が発生すると判断する。 Therefore, when the superheat degree of the low-pressure refrigerant sucked from the suction port 11a is equal to or higher than the predetermined superheat degree, it is determined that the liquid-phase refrigerant inflow occurs.
 したがって、本実施形態によると、液相冷媒流入が発生し易い条件のときにのみ、第1暖房運転モード(すなわち、ガスインジェクション運転)から第2暖房運転モード(すなわち、ノーマルヒートポンプ運転)に切り替える。したがって、第1実施形態よりもガスインジェクション運転の機会を増やすことができる。 Therefore, according to the present embodiment, the first heating operation mode (that is, the gas injection operation) is switched to the second heating operation mode (that is, the normal heat pump operation) only when the liquid phase refrigerant inflow is likely to occur. Therefore, the opportunity of gas injection operation can be increased as compared with the first embodiment.
 なお、吸入ポート11aから吸入される低圧冷媒の過熱度は、吸入圧センサおよび吸入温度センサにて検出した値に基づいて求めることができる。また、吸入圧センサおよび吸入温度センサは、室外熱交換器20から吸入ポート11aに冷媒を導く経路中に配置される。
(第9実施形態)
 第9実施形態について説明する。本実施形態は、統合弁14の構成、および液相冷媒流入防止処理(図8参照)のS11の判断条件が、第1実施形態と異なっている。なお、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
The degree of superheat of the low-pressure refrigerant sucked from the suction port 11a can be obtained based on values detected by the suction pressure sensor and the suction temperature sensor. Further, the suction pressure sensor and the suction temperature sensor are arranged in a path for guiding the refrigerant from the outdoor heat exchanger 20 to the suction port 11a.
(Ninth embodiment)
A ninth embodiment will be described. This embodiment is different from the first embodiment in the configuration of the integrated valve 14 and the determination condition in S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8). In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
 図9に示すように、統合弁14は、センサ群41に含まれる液相冷媒センサ41aを装着するセンサ装着ボデー143を備えている。 As shown in FIG. 9, the integrated valve 14 includes a sensor mounting body 143 for mounting a liquid phase refrigerant sensor 41 a included in the sensor group 41.
 センサ装着ボデー143は、アッパーボデー142の気相冷媒通路142bと連通する気相冷媒通路143aを備え、アッパーボデー142における気相冷媒流出口142a側に位置している。 The sensor mounting body 143 includes a gas phase refrigerant passage 143a communicating with the gas phase refrigerant passage 142b of the upper body 142, and is located on the gas phase refrigerant outlet 142a side of the upper body 142.
 液相冷媒センサ41aは、その検知部に気相冷媒が接触したときの出力と液相冷媒が接触したときの出力とが異なる。液相冷媒センサ41aは、検知部が気相冷媒通路143aの下部に位置し、気相冷媒通路143aに閾値以上の液相冷媒があるときに検知部に液相冷媒が接触する。 The liquid-phase refrigerant sensor 41a has a different output when the gas-phase refrigerant comes into contact with the detection unit and when the liquid-phase refrigerant comes into contact. The liquid-phase refrigerant sensor 41a has a detection unit located below the gas-phase refrigerant passage 143a, and the liquid-phase refrigerant contacts the detection unit when the gas-phase refrigerant passage 143a has a liquid-phase refrigerant having a threshold value or more.
 そして、液相冷媒流入防止処理(図8参照)のS11において、液相冷媒センサ41aが気相冷媒通路143aに閾値以上の液相冷媒を検出した場合に、液相冷媒流入が発生すると判断する。 In S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8), when the liquid-phase refrigerant sensor 41a detects a liquid-phase refrigerant that is equal to or greater than the threshold value in the gas-phase refrigerant passage 143a, it is determined that liquid-phase refrigerant inflow occurs. .
 したがって、本実施形態によると、液相冷媒流入が発生し易い条件のときにのみ、第1暖房運転モード(すなわち、ガスインジェクション運転)から第2暖房運転モード(すなわち、ノーマルヒートポンプ運転)に切り替える。したがって、第1実施形態よりもガスインジェクション運転の機会を増やすことができる。 Therefore, according to the present embodiment, the first heating operation mode (that is, the gas injection operation) is switched to the second heating operation mode (that is, the normal heat pump operation) only when the liquid phase refrigerant inflow is likely to occur. Therefore, the opportunity of gas injection operation can be increased as compared with the first embodiment.
 なお、図10に示す第9実施形態の第1変形例のように、センサ装着ボデー143に、気相冷媒通路143aと並列で且つ気相冷媒通路143aの下方に位置する気相冷媒通路(バイパス冷媒通路)143bを設け、このバイパス冷媒通路143bに液相冷媒センサ41aの検知部を配置してもよい。 Note that, as in the first modification of the ninth embodiment shown in FIG. 10, a gas-phase refrigerant passage (bypass) is provided in the sensor mounting body 143 in parallel with the gas-phase refrigerant passage 143 a and below the gas-phase refrigerant passage 143 a. (Refrigerant passage) 143b may be provided, and the detection unit of the liquid-phase refrigerant sensor 41a may be disposed in the bypass refrigerant passage 143b.
 これによると、気相冷媒通路143aに液相冷媒が流入したときに、バイパス冷媒通路143b内は速やかに液相冷媒で満たされる。したがって、気相冷媒通路143aに液相冷媒があることを速やかに且つ確実に検出することができる。 According to this, when the liquid phase refrigerant flows into the gas phase refrigerant passage 143a, the bypass refrigerant passage 143b is quickly filled with the liquid phase refrigerant. Therefore, the presence of the liquid phase refrigerant in the gas phase refrigerant passage 143a can be detected quickly and reliably.
 また、図11、図12に示す第9実施形態の第2変形例のように、気相冷媒通路143aに流入する冷媒に旋回を与え、液相冷媒の液膜Aが内壁面近傍に形成されるようにしてもよい。 Further, as in the second modification of the ninth embodiment shown in FIGS. 11 and 12, the refrigerant flowing into the gas-phase refrigerant passage 143a is swirled, and the liquid film A of the liquid-phase refrigerant is formed in the vicinity of the inner wall surface. You may make it do.
 これによると、図11に示すように、気相冷媒通路143aに流入する液相冷媒が少ない場合は、液相冷媒センサ41aの検知部は液膜Aに包まれない。一方、図12に示すように、気相冷媒通路143aに流入する液相冷媒が多い場合は、液相冷媒センサ41aの検知部は液膜Aに包まれる。したがって、気相冷媒通路143aに液相冷媒があることを速やかに且つ確実に検出することができる。 According to this, as shown in FIG. 11, when the liquid phase refrigerant flowing into the gas phase refrigerant passage 143a is small, the detection part of the liquid phase refrigerant sensor 41a is not wrapped in the liquid film A. On the other hand, as shown in FIG. 12, when there is a large amount of liquid phase refrigerant flowing into the gas phase refrigerant passage 143a, the detection part of the liquid phase refrigerant sensor 41a is enveloped in the liquid film A. Therefore, the presence of the liquid phase refrigerant in the gas phase refrigerant passage 143a can be detected quickly and reliably.
 なお、液相冷媒センサ41aは、例えば、気液の静電容量の違いに基づいて液相冷媒があることを検知するセンサを用いてもよい。或いは、液相冷媒センサ41aは、熱容量差で検出するような熱線流速計に類似したセンサ、光学式のセンサ、光ファイバーを用いたセンサでも良い。熱線流速計に類似したセンサとは、液相だと奪われる熱量が大きく、気相だと奪われる熱量が小さいことを利用するセンサである。
(第10実施形態)
 第10実施形態について説明する。本実施形態は、統合弁14を廃止し、統合弁14の機能を複数の構成部品にて得るようにしている。なお、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
In addition, the liquid phase refrigerant | coolant sensor 41a may use the sensor which detects that there exists a liquid phase refrigerant | coolant based on the difference in the electrostatic capacitance of gas-liquid, for example. Alternatively, the liquid phase refrigerant sensor 41a may be a sensor similar to a hot-wire anemometer, which is detected by a difference in heat capacity, an optical sensor, or a sensor using an optical fiber. A sensor similar to a hot-wire anemometer is a sensor that utilizes the fact that the amount of heat taken away is large in the liquid phase and the amount of heat taken away is small in the gas phase.
(10th Embodiment)
A tenth embodiment will be described. In the present embodiment, the integrated valve 14 is eliminated, and the function of the integrated valve 14 is obtained by a plurality of components. In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
 図13に示すように、高段側膨脹弁13の出口には、室内凝縮器12から流出して高段側膨脹弁13にて減圧された中間圧冷媒の気液を分離する気液分離部としての気液分離器50が接続されている。この気液分離器50は、遠心力の作用によって冷媒の気液を分離する遠心分離方式の気液分離器である。 As shown in FIG. 13, at the outlet of the high-stage expansion valve 13, a gas-liquid separation unit that separates the gas-liquid of the intermediate pressure refrigerant that flows out of the indoor condenser 12 and is decompressed by the high-stage expansion valve 13. A gas-liquid separator 50 is connected. The gas-liquid separator 50 is a centrifugal-type gas-liquid separator that separates the gas-liquid refrigerant by the action of centrifugal force.
 また、気液分離器50の気相冷媒流出口は、冷媒配管にて構成された気相冷媒通路51を介して、圧縮機11の中間圧ポート11bに接続されている。この気相冷媒通路51は、気液分離器50にて分離された気相冷媒を流通させる。 Further, the gas-phase refrigerant outlet of the gas-liquid separator 50 is connected to the intermediate pressure port 11b of the compressor 11 through a gas-phase refrigerant passage 51 constituted by refrigerant piping. The gas-phase refrigerant passage 51 circulates the gas-phase refrigerant separated by the gas-liquid separator 50.
 気相冷媒通路51には、気相冷媒通路51を開閉する気相冷媒制御弁52が配置されている。この気相冷媒制御弁52は電磁弁であり、制御装置40から出力される制御信号によって、その作動が制御される。 A gas phase refrigerant control valve 52 for opening and closing the gas phase refrigerant passage 51 is disposed in the gas phase refrigerant passage 51. The gas-phase refrigerant control valve 52 is an electromagnetic valve, and its operation is controlled by a control signal output from the control device 40.
 また、気相冷媒制御弁52は、気相冷媒通路51を開いた際に気液分離器50の気相冷媒流出口から圧縮機11の中間圧ポート11b側へ冷媒が流れることのみを許容する逆止弁としての機能を兼ね備えている。これにより、気相冷媒制御弁52が気相冷媒通路51を開いた際に、圧縮機11側から気液分離器50へ冷媒が逆流することが防止される。さらに、気相冷媒制御弁52は、気相冷媒通路51を開閉することによって、サイクル構成(冷媒流路)を切り替える。 Further, the gas phase refrigerant control valve 52 allows only the refrigerant to flow from the gas phase refrigerant outlet of the gas-liquid separator 50 to the intermediate pressure port 11 b side of the compressor 11 when the gas phase refrigerant passage 51 is opened. It also functions as a check valve. This prevents the refrigerant from flowing backward from the compressor 11 side to the gas-liquid separator 50 when the gas-phase refrigerant control valve 52 opens the gas-phase refrigerant passage 51. Further, the gas phase refrigerant control valve 52 switches the cycle configuration (refrigerant flow path) by opening and closing the gas phase refrigerant passage 51.
 一方、気液分離器50の液相冷媒流出口は、冷媒配管にて構成された主液相冷媒通路53を介して、室外熱交換器20に接続されている。この主液相冷媒通路53は、気液分離器50にて分離された液相冷媒を流通させる。 On the other hand, the liquid-phase refrigerant outlet of the gas-liquid separator 50 is connected to the outdoor heat exchanger 20 via a main liquid-phase refrigerant passage 53 constituted by refrigerant piping. The main liquid phase refrigerant passage 53 allows the liquid phase refrigerant separated by the gas-liquid separator 50 to flow therethrough.
 主液相冷媒通路53には、気液分離器50にて分離された液相冷媒を低圧冷媒となるまで減圧させる低段側減圧部としての絞り54が配置されている。この絞り54としては、絞り開度が固定されたノズルあるいはオリフィスを採用することができる。 The main liquid-phase refrigerant passage 53 is provided with a throttle 54 as a low-stage decompression unit that decompresses the liquid-phase refrigerant separated by the gas-liquid separator 50 until it becomes a low-pressure refrigerant. As the throttle 54, a nozzle or an orifice having a fixed throttle opening can be employed.
 さらに、気液分離器50の液相冷媒流出口は、冷媒配管にて構成された第1液相冷媒通路55を介して、室外熱交換器20に接続されている。この第1液相冷媒通路55は、絞り54と並列に配置され、気液分離器50にて分離された液相冷媒を、絞り54をバイパスさせて室外熱交換器20へ向けて流通させる。 Furthermore, the liquid-phase refrigerant outlet of the gas-liquid separator 50 is connected to the outdoor heat exchanger 20 via a first liquid-phase refrigerant passage 55 constituted by refrigerant piping. The first liquid-phase refrigerant passage 55 is arranged in parallel with the throttle 54 and allows the liquid-phase refrigerant separated by the gas-liquid separator 50 to flow toward the outdoor heat exchanger 20 by bypassing the throttle 54.
 第1液相冷媒通路55には、第1液相冷媒通路55を開閉する第1バイパス弁56が配置されている。第1バイパス弁56の基本的構成は、気相冷媒制御弁52と同等であり、制御装置40から出力される制御電圧によって、その開閉作動が制御される電磁弁である。 The first liquid phase refrigerant passage 55 is provided with a first bypass valve 56 for opening and closing the first liquid phase refrigerant passage 55. The basic configuration of the first bypass valve 56 is the same as that of the gas-phase refrigerant control valve 52, and is an electromagnetic valve whose opening / closing operation is controlled by a control voltage output from the control device 40.
 次に、上記構成における本実施形態の車両用空調装置1の作動について説明する。 Next, the operation of the vehicle air conditioner 1 of the present embodiment having the above configuration will be described.
 第1暖房運転モードが実行されると、制御装置40が、高段側膨脹弁13を絞り状態とし、気相冷媒制御弁52を全開状態とし、第1バイパス弁56を全閉状態とし、冷房用膨脹弁22を全閉状態とし、さらに、迂回通路開閉弁27を開弁状態とする。 When the first heating operation mode is executed, the control device 40 sets the high stage side expansion valve 13 to the throttle state, sets the gas-phase refrigerant control valve 52 to the fully open state, sets the first bypass valve 56 to the fully closed state, and performs cooling. The expansion valve 22 is fully closed, and the bypass passage opening / closing valve 27 is opened.
 これにより、ヒートポンプサイクル10は、図13の実線矢印に示すように冷媒が流れる冷媒流路に切り替えられ、気液分離器50にて分離された気相冷媒が圧縮機11の中間圧ポート11bへ流入し、ガスインジェクション運転が行われる。 As a result, the heat pump cycle 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the solid arrows in FIG. 13, and the gas-phase refrigerant separated by the gas-liquid separator 50 goes to the intermediate pressure port 11 b of the compressor 11. The gas injection operation is performed.
 そして、第1暖房運転モードを実行中に、液相冷媒流入防止処理(図8参照)のS11において液相冷媒流入が発生すると判断された場合は、S12において気相冷媒制御弁52を全閉状態とする。これにより、気相冷媒通路51を介して中間圧ポート11bに流入する冷媒の流れを抑止し、すなわち、圧縮機11への液相冷媒の流入を防止する。その結果、圧縮機11への液相冷媒の流入による不具合を未然に防止することができる。 If it is determined in S11 of the liquid-phase refrigerant inflow prevention process (see FIG. 8) during execution of the first heating operation mode, the gas-phase refrigerant control valve 52 is fully closed in S12. State. Thereby, the flow of the refrigerant flowing into the intermediate pressure port 11 b via the gas-phase refrigerant passage 51 is suppressed, that is, the liquid-phase refrigerant is prevented from flowing into the compressor 11. As a result, it is possible to prevent problems due to the inflow of the liquid refrigerant into the compressor 11.
 なお、本実施形態では、液相冷媒流入が発生すると判断された場合は気相冷媒制御弁52を全閉状態にした。しかしながら、液相冷媒流入が発生すると判断された場合に、気相冷媒制御弁52を全開状態にしたまま、第1バイパス弁56を開弁させてもよい。 In this embodiment, the gas phase refrigerant control valve 52 is fully closed when it is determined that liquid phase refrigerant inflow occurs. However, when it is determined that liquid-phase refrigerant inflow occurs, the first bypass valve 56 may be opened while the gas-phase refrigerant control valve 52 is fully opened.
 これによると、第1バイパス弁56の開弁により室外熱交換器20に向けて冷媒が流れやすくなり、気液分離空間141bに液相冷媒が溜まることが防止される。その結果、圧縮機11への液相冷媒の流入が防止され、圧縮機11への液相冷媒の流入による不具合が未然に防止される。 According to this, the opening of the first bypass valve 56 makes it easier for the refrigerant to flow toward the outdoor heat exchanger 20, and the liquid-phase refrigerant is prevented from accumulating in the gas-liquid separation space 141b. As a result, the inflow of the liquid phase refrigerant into the compressor 11 is prevented, and a problem due to the inflow of the liquid phase refrigerant into the compressor 11 is prevented.
 また、気相冷媒制御弁52を全開状態に維持してガスインジェクション運転を継続させるため、サイクル効率(COP)の向上を図ることができる。
(第11実施形態)
 第11実施形態について説明する。本実施形態は、絞り17の開度を調整可能にした点が第1実施形態と異なっている。なお、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
In addition, since the gas-injection operation is continued while maintaining the gas-phase refrigerant control valve 52 in a fully opened state, cycle efficiency (COP) can be improved.
(Eleventh embodiment)
An eleventh embodiment will be described. This embodiment is different from the first embodiment in that the opening degree of the diaphragm 17 can be adjusted. In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
 図14に示すように、低段側減圧部としての絞り17は、絞り開度を変更可能な弁体と、この弁体の絞り開度を変化させるステッピングモータからなる電動アクチュエータとを有する電気式の可変絞り機構である。また、この絞り17は、制御装置40から出力される制御信号によって、その作動が制御される。 As shown in FIG. 14, the throttle 17 as the low-stage decompression unit includes an electric actuator that includes a valve element that can change the throttle opening degree and an electric actuator that includes a stepping motor that changes the throttle opening degree of the valve element. This is a variable aperture mechanism. The operation of the diaphragm 17 is controlled by a control signal output from the control device 40.
 上記構成において、第1暖房運転モードを実行中の絞り17の開度は、サイクルの負荷変動によって必要循環冷媒流量が変化しても、絞り17の上流側冷媒の乾き度Xが0.1以下となるように設定されている。 In the above configuration, the opening degree of the throttle 17 during execution of the first heating operation mode is such that the dryness degree X of the refrigerant upstream of the throttle 17 is 0.1 or less even if the necessary circulating refrigerant flow rate changes due to cycle load fluctuations. It is set to become.
 そして、第1暖房運転モードを実行中に、液相冷媒流入防止処理(図8参照)のS11において液相冷媒流入が発生すると判断された場合は、S12において絞り17の開度を増加させる。これにより、室外熱交換器20に向けて冷媒が流れやすくなり、気液分離空間141bに液相冷媒が溜まることが防止される。その結果、圧縮機11への液相冷媒の流入が防止され、圧縮機11への液相冷媒の流入による不具合が未然に防止される。 And when it is judged that liquid phase refrigerant inflow occurs in S11 of liquid phase refrigerant inflow prevention processing (refer to Drawing 8) during execution of the 1st heating operation mode, the opening of throttle 17 is increased in S12. Thereby, the refrigerant easily flows toward the outdoor heat exchanger 20, and the liquid-phase refrigerant is prevented from accumulating in the gas-liquid separation space 141b. As a result, the inflow of the liquid phase refrigerant into the compressor 11 is prevented, and a problem due to the inflow of the liquid phase refrigerant into the compressor 11 is prevented.
 また、絞り17の開度を増加させてもガスインジェクション運転を継続させることが可能であるため、サイクル効率(COP)の向上を図ることができる。
(第12実施形態)
 第12実施形態について説明する。本実施形態は、第2液相冷媒通路、第2バイパス弁、および検知部を設けた点が第1実施形態と異なっている。なお、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
Further, since the gas injection operation can be continued even if the opening degree of the throttle 17 is increased, the cycle efficiency (COP) can be improved.
(Twelfth embodiment)
A twelfth embodiment will be described. This embodiment is different from the first embodiment in that a second liquid-phase refrigerant passage, a second bypass valve, and a detection unit are provided. In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
 図15~図18に示すように、統合弁14のロワーボデー141には、絞り17および第1液相冷媒通路141dと並列に第2液相冷媒通路141gが形成されている。そして、気液分離空間141bにて分離された液相冷媒は、絞り17および第1液相冷媒通路141dをバイパスして、第2液相冷媒通路141gを通って液相冷媒流出口141e側へ流通可能になっている。 15 to 18, the lower body 141 of the integrated valve 14 is formed with a second liquid phase refrigerant passage 141g in parallel with the throttle 17 and the first liquid phase refrigerant passage 141d. Then, the liquid-phase refrigerant separated in the gas-liquid separation space 141b bypasses the throttle 17 and the first liquid-phase refrigerant passage 141d, passes through the second liquid-phase refrigerant passage 141g, and goes to the liquid-phase refrigerant outlet 141e side. Distribution is possible.
 統合弁14のロワーボデー141内には、第2液相冷媒通路141gを開閉する第2バイパス弁60が配置されている。 In the lower body 141 of the integrated valve 14, a second bypass valve 60 that opens and closes the second liquid-phase refrigerant passage 141g is disposed.
 また、第2バイパス弁60を駆動する検知部61が、室外熱交換器20から圧縮機11の吸入ポート11aに低圧冷媒を導く経路中に配置されている。 In addition, a detection unit 61 that drives the second bypass valve 60 is disposed in a path that guides the low-pressure refrigerant from the outdoor heat exchanger 20 to the suction port 11a of the compressor 11.
 検知部61は、ダイヤフラム611およびこのダイヤフラム611に一端が接合されたシャフト612を備える。シャフト612の他端に第2バイパス弁60が接合されている。 The detection unit 61 includes a diaphragm 611 and a shaft 612 having one end joined to the diaphragm 611. A second bypass valve 60 is joined to the other end of the shaft 612.
 ダイヤフラム611の一方側(図17、18の上側)に形成された第1室613は、室外熱交換器20から圧縮機11の吸入ポート11aに冷媒を導く経路と連通している。そのため、当該経路を流れる低圧冷媒の圧力と第1室613内の圧力とは等しくなっている。 The first chamber 613 formed on one side of the diaphragm 611 (the upper side in FIGS. 17 and 18) communicates with a path for guiding the refrigerant from the outdoor heat exchanger 20 to the suction port 11a of the compressor 11. For this reason, the pressure of the low-pressure refrigerant flowing through the path is equal to the pressure in the first chamber 613.
 ダイヤフラム611の他方側(図17、18の下側)に形成された第2室614には、冷媒ガスが封入されている。この第2室614内の圧力は、吸入ポート11aから吸入される低圧冷媒の温度に応じて変化する。具体的には、低圧冷媒の温度が高くなると、すなわち低圧冷媒の過熱度が高くなると、第2室614内の圧力も高くなる。そして、ダイヤフラム611は、第1室613内の圧力と第2室614内の圧力との圧力差に応じて変位する。換言すると、ダイヤフラム611は、吸入ポート11aから吸入される低圧冷媒の過熱度に応じて変位する。なお、検知部61は、本開示の冷媒状態判断部および流入抑止部に相当する。 Refrigerant gas is enclosed in the second chamber 614 formed on the other side of the diaphragm 611 (the lower side of FIGS. 17 and 18). The pressure in the second chamber 614 changes according to the temperature of the low-pressure refrigerant sucked from the suction port 11a. Specifically, when the temperature of the low-pressure refrigerant increases, that is, when the degree of superheat of the low-pressure refrigerant increases, the pressure in the second chamber 614 also increases. The diaphragm 611 is displaced according to the pressure difference between the pressure in the first chamber 613 and the pressure in the second chamber 614. In other words, the diaphragm 611 is displaced according to the degree of superheat of the low-pressure refrigerant sucked from the suction port 11a. The detection unit 61 corresponds to a refrigerant state determination unit and an inflow suppression unit of the present disclosure.
 次に、上記構成における本実施形態の車両用空調装置1の作動について説明する。 Next, the operation of the vehicle air conditioner 1 of the present embodiment having the above configuration will be described.
 冷房運転モード時には、図16に示すように、統合弁14のソレノイド16は通電状態であるため、第1バイパス弁15が第1液相冷媒通路141dを開いている。また、第1液相冷媒通路141dを開いている状態では、低圧冷媒の過熱度が低く第2室614内の圧力も低い。そのため、第2バイパス弁60は、ダイヤフラム611により閉弁向きに駆動されて第2液相冷媒通路141gを閉じている。 In the cooling operation mode, as shown in FIG. 16, the solenoid 16 of the integrated valve 14 is energized, so the first bypass valve 15 opens the first liquid-phase refrigerant passage 141d. Further, in the state where the first liquid-phase refrigerant passage 141d is opened, the degree of superheat of the low-pressure refrigerant is low and the pressure in the second chamber 614 is also low. Therefore, the second bypass valve 60 is driven by the diaphragm 611 in the valve closing direction to close the second liquid phase refrigerant passage 141g.
 また、第1暖房運転モードが実行されると、図17に示すように、統合弁14のソレノイド16は非通電状態になるため、第1バイパス弁15が第1液相冷媒通路141dを閉じる。また、定常運転状態では、低圧冷媒の温度が低く第2室614内の圧力も低い。そのため、第2バイパス弁60は、ダイヤフラム611により閉弁向きに駆動されて第2液相冷媒通路141gを閉じている。 When the first heating operation mode is executed, as shown in FIG. 17, the solenoid 16 of the integrated valve 14 is in a non-energized state, so the first bypass valve 15 closes the first liquid-phase refrigerant passage 141d. In a steady operation state, the temperature of the low-pressure refrigerant is low and the pressure in the second chamber 614 is also low. Therefore, the second bypass valve 60 is driven by the diaphragm 611 in the valve closing direction to close the second liquid phase refrigerant passage 141g.
 このように、第1液相冷媒通路141dおよび第2液相冷媒通路141gが閉じられた状態では、統合弁14の気液分離空間141bにて分離された液相冷媒は、絞り17にて低圧冷媒となるまで等エンタルピ的に減圧膨脹されて、液相冷媒流出口141eから流出する。 As described above, in a state where the first liquid phase refrigerant passage 141d and the second liquid phase refrigerant passage 141g are closed, the liquid phase refrigerant separated in the gas-liquid separation space 141b of the integrated valve 14 is reduced in pressure by the throttle 17. It is decompressed and expanded in an enthalpy manner until it becomes a refrigerant, and flows out from the liquid-phase refrigerant outlet 141e.
 この第1暖房運転モードを実行中に暖房負荷が増加して圧縮機11が増速された場合、統合弁14の気液分離空間141bにて分離される液相冷媒の量が増える。したがって、その液相冷媒を絞り17のみで流通させることが困難になり、低圧冷媒の過熱度が高くなる。 When the heating load is increased and the compressor 11 is accelerated during execution of the first heating operation mode, the amount of liquid phase refrigerant separated in the gas-liquid separation space 141b of the integrated valve 14 increases. Therefore, it becomes difficult to distribute the liquid-phase refrigerant only by the throttle 17, and the degree of superheat of the low-pressure refrigerant increases.
 そして、低圧冷媒の過熱度が高くなると第2室614内の圧力も高くなり、図18に示すように、第2バイパス弁60は、ダイヤフラム611により開弁向きに駆動されて第2液相冷媒通路141gを開く。 When the degree of superheat of the low-pressure refrigerant increases, the pressure in the second chamber 614 also increases. As shown in FIG. 18, the second bypass valve 60 is driven in the valve opening direction by the diaphragm 611, and the second liquid-phase refrigerant. Open the passage 141g.
 したがって、気液分離空間141bにて分離された液相冷媒は、絞り17および第2液相冷媒通路141gを流通するため、気液分離空間141bに液相冷媒が溜まることが防止される。その結果、圧縮機11への液相冷媒の流入が防止され、圧縮機11への液相冷媒の流入による不具合が未然に防止される。 Therefore, since the liquid-phase refrigerant separated in the gas-liquid separation space 141b flows through the throttle 17 and the second liquid-phase refrigerant passage 141g, the liquid-phase refrigerant is prevented from accumulating in the gas-liquid separation space 141b. As a result, the inflow of the liquid phase refrigerant into the compressor 11 is prevented, and a problem due to the inflow of the liquid phase refrigerant into the compressor 11 is prevented.
 また、第2液相冷媒通路141gを開いてもガスインジェクション運転を継続させることが可能であるため、サイクル効率(COP)の向上を図ることができる。
(第13実施形態)
 第13実施形態について説明する。本実施形態は、気相冷媒通路開閉弁、および検知部を設けた点が第1実施形態と異なっている。なお、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
Further, since the gas injection operation can be continued even if the second liquid-phase refrigerant passage 141g is opened, cycle efficiency (COP) can be improved.
(13th Embodiment)
A thirteenth embodiment will be described. This embodiment is different from the first embodiment in that a gas-phase refrigerant passage opening / closing valve and a detection unit are provided. In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
 図19に示すように、統合弁14の気相冷媒流出口142aと圧縮機11の中間圧ポート11bとを接続する冷媒通路には、その冷媒通路を開閉する通路開閉弁(気相冷媒通路開閉弁)70が配置されている。 As shown in FIG. 19, the refrigerant passage connecting the gas-phase refrigerant outlet 142a of the integrated valve 14 and the intermediate pressure port 11b of the compressor 11 has a passage opening / closing valve (gas-phase refrigerant passage opening / closing) for opening and closing the refrigerant passage. Valve) 70 is arranged.
 また、通路開閉弁70を駆動する検知部71が、室外熱交換器20から圧縮機11の吸入ポート11aに低圧冷媒を導く経路中に配置されている。 In addition, a detection unit 71 that drives the passage opening / closing valve 70 is disposed in a path that guides the low-pressure refrigerant from the outdoor heat exchanger 20 to the suction port 11a of the compressor 11.
 検知部71は、ダイヤフラム711およびこのダイヤフラム711に一端が接合されたシャフト712を備え、このシャフト712の他端に通路開閉弁70が接合されている。 The detecting unit 71 includes a diaphragm 711 and a shaft 712 having one end joined to the diaphragm 711, and a passage opening / closing valve 70 is joined to the other end of the shaft 712.
 ダイヤフラム711の一方側(図19の上側)に形成された第1室713は、室外熱交換器20と冷房用膨張弁22および迂回通路開閉弁27とを接続する経路に連通している。そのため、第1室713内の圧力は、室外熱交換器20から流出する低圧冷媒の圧力と等しくなっている。 The first chamber 713 formed on one side of the diaphragm 711 (upper side in FIG. 19) communicates with a path connecting the outdoor heat exchanger 20 to the cooling expansion valve 22 and the bypass passage opening / closing valve 27. For this reason, the pressure in the first chamber 713 is equal to the pressure of the low-pressure refrigerant flowing out of the outdoor heat exchanger 20.
 ダイヤフラム711の他方側(図19の下側)に形成された第2室714には、冷媒ガスが封入されている。この第2室714内の圧力は、室外熱交換器20から流出する低圧冷媒の温度に応じて変化する。具体的には、低圧冷媒の温度が高くなると、すなわち低圧冷媒の過熱度が高くなると、第2室714内の圧力も高くなる。そして、ダイヤフラム711は、第1室713内の圧力と第2室714内の圧力との圧力差に応じて変位する。換言すると、ダイヤフラム711は、室外熱交換器20から流出する低圧冷媒の過熱度に応じて変位する。なお、検知部71は、本開示の冷媒状態判断部および流入抑止部に相当する。 A refrigerant gas is sealed in the second chamber 714 formed on the other side of the diaphragm 711 (the lower side in FIG. 19). The pressure in the second chamber 714 changes according to the temperature of the low-pressure refrigerant flowing out of the outdoor heat exchanger 20. Specifically, when the temperature of the low-pressure refrigerant increases, that is, when the degree of superheat of the low-pressure refrigerant increases, the pressure in the second chamber 714 also increases. The diaphragm 711 is displaced according to the pressure difference between the pressure in the first chamber 713 and the pressure in the second chamber 714. In other words, the diaphragm 711 is displaced according to the degree of superheat of the low-pressure refrigerant flowing out from the outdoor heat exchanger 20. The detection unit 71 corresponds to the refrigerant state determination unit and the inflow suppression unit of the present disclosure.
 次に、上記構成における本実施形態の車両用空調装置1の作動について説明する。 Next, the operation of the vehicle air conditioner 1 of the present embodiment having the above configuration will be described.
 まず、定常運転状態では、低圧冷媒の過熱度が低く第2室714の圧力も低い。そのため、通路開閉弁70は、ダイヤフラム711により開弁向きに駆動されて、統合弁14の気相冷媒流出口142aと圧縮機11の中間圧ポート11bとを接続する冷媒通路を全開している。 First, in a steady operation state, the degree of superheat of the low-pressure refrigerant is low and the pressure in the second chamber 714 is also low. Therefore, the passage opening / closing valve 70 is driven by the diaphragm 711 in the valve opening direction to fully open the refrigerant passage that connects the gas-phase refrigerant outlet 142 a of the integrated valve 14 and the intermediate pressure port 11 b of the compressor 11.
 第1暖房運転モードを実行中に、暖房負荷が増加して圧縮機11が増速された場合、統合弁14の気液分離空間141bにて分離される液相冷媒の量が増える。そのため、その液相冷媒を絞り17のみで流通させることが困難になり、低圧冷媒の過熱度が高くなる。 When the heating load is increased and the compressor 11 is accelerated during execution of the first heating operation mode, the amount of liquid phase refrigerant separated in the gas-liquid separation space 141b of the integrated valve 14 increases. Therefore, it becomes difficult to distribute the liquid-phase refrigerant only by the throttle 17, and the degree of superheat of the low-pressure refrigerant increases.
 そして、低圧冷媒の過熱度が高くなると第2室714内の圧力も高くなり、通路開閉弁70は、ダイヤフラム711により閉弁向きに駆動される。これにより、通路開閉弁70は、統合弁14の気相冷媒流出口142aと圧縮機11の中間圧ポート11bとを接続する冷媒通路を閉じる。したがって、中間圧ポート11bに流入する冷媒の流れが防止され、圧縮機11への液相冷媒の流入による不具合が未然に防止される。
(第14実施形態)
 第14実施形態について説明する。本実施形態は、気相冷媒通路開閉弁、および検知部を設けた点が第1実施形態と異なっている。なお、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
When the degree of superheat of the low-pressure refrigerant increases, the pressure in the second chamber 714 also increases, and the passage opening / closing valve 70 is driven by the diaphragm 711 in the valve closing direction. Thereby, the passage opening / closing valve 70 closes the refrigerant passage connecting the gas-phase refrigerant outlet 142a of the integrated valve 14 and the intermediate pressure port 11b of the compressor 11. Therefore, the flow of the refrigerant flowing into the intermediate pressure port 11b is prevented, and problems due to the inflow of the liquid phase refrigerant into the compressor 11 are prevented.
(14th Embodiment)
A fourteenth embodiment will be described. This embodiment is different from the first embodiment in that a gas-phase refrigerant passage opening / closing valve and a detection unit are provided. In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
 図20に示すように、統合弁14の気相冷媒流出口142aと圧縮機11の中間圧ポート11bとを接続する冷媒通路には、その冷媒通路を開閉する通路開閉弁(気相冷媒通路開閉弁)80が配置されている。 As shown in FIG. 20, the refrigerant passage connecting the gas-phase refrigerant outlet 142a of the integrated valve 14 and the intermediate pressure port 11b of the compressor 11 has a passage opening / closing valve (gas-phase refrigerant passage opening / closing) for opening and closing the refrigerant passage. Valve) 80 is arranged.
 また、通路開閉弁80を駆動する検知部81が、室外熱交換器20から圧縮機11の吸入ポート11aに低圧冷媒を導く経路中に配置されている。 In addition, a detection unit 81 that drives the passage opening / closing valve 80 is disposed in a path that guides the low-pressure refrigerant from the outdoor heat exchanger 20 to the suction port 11a of the compressor 11.
 検知部81は、ダイヤフラム811およびこのダイヤフラム811に一端が接合されたシャフト812を備え、このシャフト812の他端に通路開閉弁80が接合されている。 The detection unit 81 includes a diaphragm 811 and a shaft 812 having one end joined to the diaphragm 811, and a passage opening / closing valve 80 is joined to the other end of the shaft 812.
 ダイヤフラム811の一方側(図20の上側)に形成された第1室813は、アキュムレータ24と圧縮機11の吸入ポート11aを接続する経路に連通している。そのため、第1室813内の圧力は、吸入ポート11aから吸入される低圧冷媒の圧力と等しくなっている。 The first chamber 813 formed on one side of the diaphragm 811 (upper side in FIG. 20) communicates with a path connecting the accumulator 24 and the suction port 11a of the compressor 11. Therefore, the pressure in the first chamber 813 is equal to the pressure of the low-pressure refrigerant sucked from the suction port 11a.
 ダイヤフラム811の他方側(図20の下側)に形成された第2室814には、冷媒ガスが封入されている。この第2室814の圧力は、吸入ポート11aから吸入される低圧冷媒の温度に応じて変化する。具体的には、低圧冷媒の温度が高くなると、すなわち低圧冷媒の過熱度が高くなると、第2室814内の圧力も高くなる。そして、ダイヤフラム811は、第1室813内の圧力と第2室814内の圧力との圧力差に応じて変位する。換言すると、ダイヤフラム811は、吸入ポート11aから吸入される低圧冷媒の過熱度に応じて変位する。なお、検知部81は、本開示の冷媒状態判断部および流入抑止部に相当する。 Refrigerant gas is enclosed in the second chamber 814 formed on the other side of the diaphragm 811 (the lower side in FIG. 20). The pressure in the second chamber 814 changes according to the temperature of the low-pressure refrigerant sucked from the suction port 11a. Specifically, when the temperature of the low-pressure refrigerant increases, that is, when the degree of superheat of the low-pressure refrigerant increases, the pressure in the second chamber 814 also increases. The diaphragm 811 is displaced according to the pressure difference between the pressure in the first chamber 813 and the pressure in the second chamber 814. In other words, the diaphragm 811 is displaced according to the degree of superheat of the low-pressure refrigerant sucked from the suction port 11a. The detection unit 81 corresponds to the refrigerant state determination unit and the inflow suppression unit of the present disclosure.
 次に、上記構成における本実施形態の車両用空調装置1の作動について説明する。 Next, the operation of the vehicle air conditioner 1 of the present embodiment having the above configuration will be described.
 まず、定常運転状態では、低圧冷媒の過熱度が低く第2室814内の圧力も低い。そのため、気相冷媒通路開閉弁80は、ダイヤフラム811により開弁向きに駆動されて、統合弁14の気相冷媒流出口142aと圧縮機11の中間圧ポート11bとを接続する冷媒通路を開いている。 First, in a steady operation state, the degree of superheat of the low-pressure refrigerant is low and the pressure in the second chamber 814 is also low. Therefore, the gas-phase refrigerant passage opening / closing valve 80 is driven by the diaphragm 811 in the valve opening direction to open a refrigerant passage connecting the gas-phase refrigerant outlet 142a of the integrated valve 14 and the intermediate pressure port 11b of the compressor 11. Yes.
 第1暖房運転モードを実行中に、暖房負荷が増加して圧縮機11が増速された場合、統合弁14の気液分離空間141bにて分離される液相冷媒の量が増える。したがって、その液相冷媒を絞り17のみで流通させることが困難になり、低圧冷媒の過熱度が高くなる。 When the heating load is increased and the compressor 11 is accelerated during execution of the first heating operation mode, the amount of liquid phase refrigerant separated in the gas-liquid separation space 141b of the integrated valve 14 increases. Therefore, it becomes difficult to distribute the liquid-phase refrigerant only by the throttle 17, and the degree of superheat of the low-pressure refrigerant increases.
 そして、低圧冷媒の過熱度が高くなると第2室814の圧力も高くなり、気相冷媒通路開閉弁80は、ダイヤフラム811により閉弁向きに駆動されて、統合弁14の気相冷媒流出口142aと圧縮機11の中間圧ポート11bとを接続する冷媒通路を閉じる。したがって、中間圧ポート11bに流入する冷媒の流れが防止され、圧縮機11への液相冷媒の流入による不具合が未然に防止される。 When the degree of superheat of the low-pressure refrigerant increases, the pressure in the second chamber 814 also increases, and the gas-phase refrigerant passage opening / closing valve 80 is driven by the diaphragm 811 in the valve closing direction so that the gas-phase refrigerant outlet 142a of the integrated valve 14 And the refrigerant passage connecting the intermediate pressure port 11b of the compressor 11 is closed. Therefore, the flow of the refrigerant flowing into the intermediate pressure port 11b is prevented, and problems due to the inflow of the liquid phase refrigerant into the compressor 11 are prevented.
 本実施形態では、第1暖房運転モードを実行中に低圧冷媒の過熱度が高くなると、統合弁14の気相冷媒流出口142aと圧縮機11の中間圧ポート11bとを接続する冷媒通路を閉じるようにした。しかしながら、第1暖房運転モードを実行中に低圧冷媒の過熱度が高くなった場合、統合弁14の気相冷媒流出口142aと圧縮機11の中間圧ポート11bとを接続する冷媒通路の流通面積を小さくしてもよい。この場合、気相冷媒流出口142aから液相冷媒が流出しても、冷媒通路の流通面積が小さくなった部位にて液相冷媒がガス化される。その結果、圧縮機11への液相冷媒の流入による不具合が未然に防止される。
(第15実施形態)
 第15実施形態について説明する。本実施形態は、液相冷媒流入防止処理にS15を追加した点が第1実施形態と異なっている。なお、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
In the present embodiment, when the superheat degree of the low-pressure refrigerant becomes high during execution of the first heating operation mode, the refrigerant passage that connects the gas-phase refrigerant outlet 142a of the integrated valve 14 and the intermediate pressure port 11b of the compressor 11 is closed. I did it. However, when the superheat degree of the low-pressure refrigerant becomes high during execution of the first heating operation mode, the flow area of the refrigerant passage that connects the gas-phase refrigerant outlet 142a of the integrated valve 14 and the intermediate pressure port 11b of the compressor 11 May be reduced. In this case, even if the liquid-phase refrigerant flows out from the gas-phase refrigerant outlet 142a, the liquid-phase refrigerant is gasified at the portion where the circulation area of the refrigerant passage is reduced. As a result, problems due to the inflow of the liquid phase refrigerant into the compressor 11 are prevented.
(Fifteenth embodiment)
A fifteenth embodiment is described. This embodiment is different from the first embodiment in that S15 is added to the liquid-phase refrigerant inflow prevention process. In addition, since it is the same as that of 1st Embodiment regarding others, only a different part from 1st Embodiment is demonstrated.
 図21に示すように、S12を実行した後、減圧制御部としてのS15にて高段側膨張弁13の絞り開度を増加させる。 As shown in FIG. 21, after executing S12, the throttle opening of the high stage side expansion valve 13 is increased in S15 as the pressure reduction control unit.
 因みに、第1暖房運転モード(すなわち、ガスインジェクション運転)において高段側膨張弁13の絞り開度を増加させると、高圧冷媒の圧力と中間圧冷媒の圧力の差が小さくなり、中間圧冷媒の圧力が上昇する。一方、低圧冷媒の圧力は、室外熱交換器20と接触する外気の温度が支配的であるのでほぼ変わらない。そのため、中間圧冷媒の圧力と低圧冷媒の圧力との圧力差を拡大することが可能となる。但し、実際には、S12にて第2暖房運転モードに切り替わっているため、第1バイパス弁15が開となり中間圧冷媒の圧力と低圧冷媒の圧力との間に圧力差は生じない。 Incidentally, when the throttle opening of the high stage side expansion valve 13 is increased in the first heating operation mode (that is, the gas injection operation), the difference between the pressure of the high-pressure refrigerant and the pressure of the intermediate-pressure refrigerant decreases, Pressure increases. On the other hand, the pressure of the low-pressure refrigerant is not substantially changed because the temperature of the outside air in contact with the outdoor heat exchanger 20 is dominant. Therefore, the pressure difference between the pressure of the intermediate pressure refrigerant and the pressure of the low pressure refrigerant can be increased. However, in actuality, since the mode is switched to the second heating operation mode in S12, the first bypass valve 15 is opened and no pressure difference is generated between the pressure of the intermediate pressure refrigerant and the pressure of the low pressure refrigerant.
 S15は、S14にて運転モードを第1暖房運転モードに戻す段階にて切替直後から絞り17にて発生する圧力差を確保しておくことを目的としている。S15を実行することによりその圧力差を確保して、絞り17が流せる冷媒流量を増加させることが可能となる。その結果、気液分離空間141bに流入する大量の冷媒をしっかりと低圧側に流しきることが可能となる。
(他の実施形態)
 なお、本開示は上記した実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲内において適宜変更が可能である。
S15 is intended to secure a pressure difference generated in the throttle 17 immediately after switching at the stage where the operation mode is returned to the first heating operation mode in S14. By executing S15, it is possible to secure the pressure difference and increase the flow rate of the refrigerant that the throttle 17 can flow. As a result, a large amount of refrigerant flowing into the gas-liquid separation space 141b can be securely flowed to the low pressure side.
(Other embodiments)
Note that the present disclosure is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present disclosure.
 また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。 Further, the above embodiments are not irrelevant to each other, and can be appropriately combined unless the combination is clearly impossible.
 また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes.
 また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。 Further, in each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except for the case.
 また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。 Further, in each of the above embodiments, when referring to the shape, positional relationship, etc. of the component, etc., the shape, unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to the positional relationship or the like.

Claims (22)

  1.  吸入ポート(11a)から吸入した低圧冷媒を圧縮して、高圧冷媒として吐出ポート(11c)から吐出するとともに、サイクル内の中間圧冷媒を流入させて圧縮過程の冷媒に合流させる中間圧ポート(11b)を有する圧縮機(11)と、
     前記吐出ポートから吐出された前記高圧冷媒と熱交換対象流体とを熱交換させて、前記熱交換対象流体を加熱する利用側熱交換器(12)と、
     前記利用側熱交換器から流出した前記高圧冷媒を前記中間圧冷媒となるまで減圧させる高段側減圧部(13)と、
     前記高段側減圧部にて減圧された前記中間圧冷媒の気液を分離する気液分離部(50、141b)と、
     前記気液分離部にて分離された気相冷媒を前記中間圧ポートに導く気相冷媒通路(51、142b、143a)と、
     前記気相冷媒通路を開閉する気相冷媒制御弁(18、52)と、
     前記気液分離部にて分離された液相冷媒を減圧させる低段側減圧部(17、54)と、
     前記低段側減圧部にて減圧された冷媒を蒸発させて、前記低圧冷媒として前記吸入ポート側へ流出させる蒸発器(20)と、
     前記気相冷媒制御弁を開弁させて前記中間圧ポートに前記中間圧冷媒を流入させるガスインジェクション運転中に、前記気相冷媒通路に液相冷媒を含んだ冷媒が流入するか否かを判断する冷媒状態判断部(S11、61、71、81)と、
     前記冷媒状態判断部が前記気相冷媒通路に液相冷媒を含んだ冷媒が流入すると判断した際に、前記気相冷媒通路を介して前記中間圧ポートに流入する冷媒の流れを抑止する流入抑止部(S12、61、71、81)とを備えるヒートポンプサイクル。
    The low-pressure refrigerant sucked from the suction port (11a) is compressed and discharged as high-pressure refrigerant from the discharge port (11c), and the intermediate-pressure port (11b) that causes the intermediate-pressure refrigerant in the cycle to flow in and merge with the refrigerant in the compression process ) Having a compressor (11),
    A use-side heat exchanger (12) that heat-exchanges the heat exchange target fluid by exchanging heat between the high-pressure refrigerant discharged from the discharge port and the heat exchange target fluid;
    A high-stage decompression section (13) that decompresses the high-pressure refrigerant that has flowed out of the use-side heat exchanger until the intermediate-pressure refrigerant is obtained;
    A gas-liquid separator (50, 141b) that separates the gas-liquid of the intermediate-pressure refrigerant decompressed by the high-stage decompression unit;
    A gas-phase refrigerant passage (51, 142b, 143a) for guiding the gas-phase refrigerant separated in the gas-liquid separator to the intermediate pressure port;
    A gas phase refrigerant control valve (18, 52) for opening and closing the gas phase refrigerant passage;
    A low-stage decompression section (17, 54) for decompressing the liquid-phase refrigerant separated in the gas-liquid separation section;
    An evaporator (20) for evaporating the refrigerant decompressed by the low-stage decompression unit and causing the refrigerant to flow out to the suction port side as the low-pressure refrigerant;
    During the gas injection operation of opening the gas-phase refrigerant control valve and allowing the intermediate-pressure refrigerant to flow into the intermediate-pressure port, it is determined whether or not refrigerant containing liquid-phase refrigerant flows into the gas-phase refrigerant passage. A refrigerant state determination unit (S11, 61, 71, 81) to perform,
    Inflow suppression that suppresses the flow of the refrigerant flowing into the intermediate pressure port through the gas-phase refrigerant passage when the refrigerant state determination unit determines that the refrigerant containing the liquid-phase refrigerant flows into the gas-phase refrigerant passage. Part (S12, 61, 71, 81).
  2.  前記冷媒状態判断部は、前記圧縮機が増速される場合に、前記気相冷媒通路に液相冷媒を含んだ冷媒が流入すると判断する請求項1に記載のヒートポンプサイクル。 The heat pump cycle according to claim 1, wherein the refrigerant state determination unit determines that a refrigerant containing a liquid phase refrigerant flows into the gas phase refrigerant passage when the compressor is accelerated.
  3.  前記冷媒状態判断部は、乗員により運転条件が変更されて前記圧縮機が増速される場合に、前記気相冷媒通路に液相冷媒を含んだ冷媒が流入すると判断する請求項1に記載のヒートポンプサイクル。 2. The refrigerant state determination unit according to claim 1, wherein when the operating condition is changed by an occupant and the compressor is accelerated, the refrigerant state determination unit determines that a refrigerant containing a liquid phase refrigerant flows into the gas phase refrigerant passage. Heat pump cycle.
  4.  前記冷媒状態判断部は、圧縮機が増速される前の前記圧縮機の回転数および圧縮機が増速される前の前記高段側減圧部の開度に基づいて、前記気相冷媒通路に液相冷媒を含んだ冷媒が流入するか否かを判断する請求項1に記載のヒートポンプサイクル。 The refrigerant state determination unit is configured to determine the gas-phase refrigerant path based on the rotation speed of the compressor before the compressor is accelerated and the opening of the high-stage decompression unit before the compressor is accelerated. The heat pump cycle according to claim 1, wherein it is determined whether or not a refrigerant containing a liquid phase refrigerant flows into the tank.
  5.  前記冷媒状態判断部は、圧縮機が増速される前の前記圧縮機の回転数、圧縮機が増速される前の前記高段側減圧部の開度、および前記圧縮機の加速度に基づいて、前記気相冷媒通路に液相冷媒を含んだ冷媒が流入するか否かを判断する請求項1に記載のヒートポンプサイクル。 The refrigerant state determination unit is based on the rotation speed of the compressor before the compressor is accelerated, the opening degree of the high-stage decompression unit before the compressor is accelerated, and the acceleration of the compressor. The heat pump cycle according to claim 1, wherein it is determined whether or not a refrigerant containing a liquid phase refrigerant flows into the gas phase refrigerant passage.
  6.  前記冷媒状態判断部は、圧縮機が増速される前の前記圧縮機の回転数が所定回転数以下で、且つ、圧縮機が増速される前の前記高段側減圧部の開度が所定開度以下である場合に、前記気相冷媒通路に液相冷媒を含んだ冷媒が流入すると判断する請求項4または5に記載のヒートポンプサイクル。 The refrigerant state determination unit is configured such that the rotation speed of the compressor before the speed of the compressor is increased is equal to or less than a predetermined speed, and the opening degree of the high-stage decompression section before the speed of the compressor is increased. The heat pump cycle according to claim 4 or 5, wherein it is determined that a refrigerant containing a liquid phase refrigerant flows into the gas phase refrigerant passage when the opening degree is equal to or less than a predetermined opening degree.
  7.  前記冷媒状態判断部は、前記圧縮機の増速量が所定量以上である場合に、前記気相冷媒通路に液相冷媒を含んだ冷媒が流入すると判断する請求項1に記載のヒートポンプサイクル。 The heat pump cycle according to claim 1, wherein the refrigerant state determination unit determines that a refrigerant containing a liquid-phase refrigerant flows into the gas-phase refrigerant passage when an acceleration amount of the compressor is a predetermined amount or more.
  8.  前記圧縮機の増速量は、圧縮機が増速された後の前記圧縮機の目標回転数と圧縮機が増速される前の前記圧縮機の回転数との差であり、
     前記冷媒状態判断部は、前記熱交換対象流体の熱交換後の推定温度と前記熱交換対象流体の熱交換後の目標温度との差に基づいて圧縮機が増速された後の前記圧縮機の目標回転数を算出し、算出した目標回転数と圧縮機が増速される前の前記圧縮機の回転数とに基づいて前記圧縮機の増速量を算出し、
     前記冷媒状態判断部は、算出した前記圧縮機の増速量が所定回転数以上である場合に、前記気相冷媒通路に液相冷媒を含んだ冷媒が流入すると判断する請求項7に記載のヒートポンプサイクル。
    The speed increase amount of the compressor is the difference between the target speed of the compressor after the speed of the compressor is increased and the speed of the compressor before the speed of the compressor is increased,
    The compressor after the compressor is accelerated based on the difference between the estimated temperature after heat exchange of the heat exchange target fluid and the target temperature after heat exchange of the heat exchange target fluid And calculating the speed increase amount of the compressor based on the calculated target speed and the rotation speed of the compressor before the speed of the compressor is increased,
    The said refrigerant | coolant state determination part determines that the refrigerant | coolant containing a liquid phase refrigerant flows in into the said gaseous-phase refrigerant path, when the calculated acceleration amount of the said compressor is more than predetermined rotation speed. Heat pump cycle.
  9.  前記冷媒状態判断部は、前記中間圧冷媒の圧力が所定圧力以下である場合に、前記気相冷媒通路に液相冷媒を含んだ冷媒が流入すると判断する請求項1に記載のヒートポンプサイクル。 The heat pump cycle according to claim 1, wherein the refrigerant state determination unit determines that a refrigerant containing a liquid phase refrigerant flows into the gas phase refrigerant passage when a pressure of the intermediate pressure refrigerant is equal to or lower than a predetermined pressure.
  10.  前記所定圧力は、外気温に対し正の相関を持つ請求項9に記載のヒートポンプサイクル。 The heat pump cycle according to claim 9, wherein the predetermined pressure has a positive correlation with an outside air temperature.
  11.  前記冷媒状態判断部は、前記吐出ポートから吐出された前記高圧冷媒の過熱度が所定過熱度以下である場合に、前記気相冷媒通路に液相冷媒を含んだ冷媒が流入すると判断する請求項1に記載のヒートポンプサイクル。 The refrigerant state determination unit determines that a refrigerant containing a liquid phase refrigerant flows into the gas-phase refrigerant passage when a superheat degree of the high-pressure refrigerant discharged from the discharge port is equal to or lower than a predetermined superheat degree. The heat pump cycle according to 1.
  12.  前記冷媒状態判断部は、前記吸入ポートに吸入される前記低圧冷媒の過熱度が所定過熱度以上である場合に、前記気相冷媒通路に液相冷媒を含んだ冷媒が流入すると判断する請求項1に記載のヒートポンプサイクル。 The refrigerant state determination unit determines that a refrigerant containing a liquid-phase refrigerant flows into the gas-phase refrigerant passage when the superheat degree of the low-pressure refrigerant sucked into the suction port is equal to or higher than a predetermined superheat degree. The heat pump cycle according to 1.
  13.  前記冷媒状態判断部は、
      前記吸入ポートから吸入される前記低圧冷媒の圧力を検出する吸入圧センサと、
      前記吸入ポートから吸入される前記低圧冷媒の温度を検出する吸入温度センサを備え、
     前記冷媒状態判断部は、前記吸入圧センサおよび前記吸入温度センサにて検出した値に基づいて、前記吸入ポートから吸入される前記低圧冷媒の過熱度を算出する請求項12に記載のヒートポンプサイクル。
    The refrigerant state determination unit
    A suction pressure sensor for detecting the pressure of the low-pressure refrigerant sucked from the suction port;
    A suction temperature sensor for detecting the temperature of the low-pressure refrigerant sucked from the suction port;
    The heat pump cycle according to claim 12, wherein the refrigerant state determination unit calculates the degree of superheat of the low-pressure refrigerant sucked from the suction port based on values detected by the suction pressure sensor and the suction temperature sensor.
  14.  前記吸入圧センサおよび前記吸入温度センサは、前記蒸発器から前記吸入ポートに冷媒を導く経路中に配置されている請求項13に記載のヒートポンプサイクル。 14. The heat pump cycle according to claim 13, wherein the suction pressure sensor and the suction temperature sensor are arranged in a path for guiding a refrigerant from the evaporator to the suction port.
  15.  前記気相冷媒通路(143a)に閾値以上の液相冷媒があるか否かを検出する液相冷媒センサ(41a)をさらに備え、
     前記冷媒状態判断部は、前記液相冷媒センサにて、前記気相冷媒通路に閾値以上の液相冷媒があることが検出された場合に、前記気相冷媒通路に液相冷媒を含んだ冷媒が流入すると判断する請求項1に記載のヒートポンプサイクル。
    A liquid phase refrigerant sensor (41a) for detecting whether or not there is a liquid phase refrigerant equal to or higher than a threshold in the gas phase refrigerant passage (143a);
    The refrigerant state determination unit, when the liquid-phase refrigerant sensor detects that the gas-phase refrigerant passage has a liquid-phase refrigerant of a threshold value or more, the refrigerant containing the liquid-phase refrigerant in the gas-phase refrigerant passage The heat pump cycle according to claim 1, wherein the heat pump cycle is determined to flow in.
  16.  前記流入抑止部は、前記冷媒状態判断部が前記気相冷媒通路に液相冷媒を含んだ冷媒が流入すると判断した際に、前記気相冷媒制御弁を閉弁させる請求項1ないし15のいずれか1つに記載のヒートポンプサイクル。 The inflow suppression unit closes the gas phase refrigerant control valve when the refrigerant state determination unit determines that a refrigerant containing a liquid phase refrigerant flows into the gas phase refrigerant passage. The heat pump cycle as described in any one.
  17.  前記低段側減圧部の開度は調整可能であり、
     前記流入抑止部は、前記冷媒状態判断部が前記気相冷媒通路に液相冷媒を含んだ冷媒が流入すると判断した際に、前記低段側減圧部の開度を増加させる請求項1に記載のヒートポンプサイクル。
    The opening degree of the low-stage decompression unit is adjustable,
    The said inflow suppression part increases the opening degree of the said low stage pressure reduction part, when the said refrigerant | coolant state judgment part judges that the refrigerant | coolant containing a liquid phase refrigerant flows in into the said gaseous-phase refrigerant path. Heat pump cycle.
  18.  前記低段側減圧部と並列に配置され、前記気液分離部にて分離された液相冷媒を前記低段側減圧部をバイパスして前記蒸発器へ流す第1液相冷媒通路(55、141d)と、
     前記第1液相冷媒通路を開閉する第1バイパス弁(15、56)とを備え、
     前記流入抑止部は、前記冷媒状態判断部が前記気相冷媒通路に液相冷媒を含んだ冷媒が流入すると判断した際に、前記第1バイパス弁を開弁させる請求項1ないし16のいずれか1つに記載のヒートポンプサイクル。
    A first liquid-phase refrigerant passage (55, which is arranged in parallel with the low-stage decompression section and flows the liquid-phase refrigerant separated by the gas-liquid separation section to the evaporator bypassing the low-stage decompression section. 141d),
    A first bypass valve (15, 56) for opening and closing the first liquid phase refrigerant passage,
    The inflow suppression unit opens the first bypass valve when the refrigerant state determination unit determines that a refrigerant containing a liquid phase refrigerant flows into the gas-phase refrigerant passage. The heat pump cycle according to one.
  19.  前記低段側減圧部と並列に配置され、前記気液分離部にて分離された液相冷媒を前記低段側減圧部をバイパスして前記蒸発器へ流す第1液相冷媒通路(141d)と、
     前記第1液相冷媒通路を開閉する第1バイパス弁(15)と、
     前記低段側減圧部および前記第1液相冷媒通路と並列に配置され、前記液相冷媒を前記低段側減圧部および前記第1液相冷媒通路をバイパスして前記蒸発器へ流す第2液相冷媒通路(141g)と、
     前記第2液相冷媒通路を開閉する第2バイパス弁(60)とをさらに備え、
     前記第1バイパス弁が前記第1液相冷媒通路を閉じた際に、前記低段側減圧部から流出した冷媒の圧力と前記気相冷媒通路に流入する冷媒の圧力との圧力差に基づいて前記気相冷媒制御弁が前記気相冷媒通路を開き、
     前記第1バイパス弁が前記第1液相冷媒通路を開いた際に、前記気相冷媒通路に流入する冷媒の圧力と前記第1バイパス弁から流出した冷媒の圧力とがバランスして前記気相冷媒制御弁が前記気相冷媒通路を閉じ、
     前記流入抑止部(61)は、前記冷媒状態判断部が前記気相冷媒通路に液相冷媒を含んだ冷媒が流入すると判断した際に、前記第2バイパス弁を開弁させる請求項1に記載のヒートポンプサイクル。
    A first liquid-phase refrigerant passage (141d) that is arranged in parallel with the low-stage decompression section and flows the liquid-phase refrigerant separated by the gas-liquid separation section to the evaporator, bypassing the low-stage decompression section When,
    A first bypass valve (15) for opening and closing the first liquid phase refrigerant passage;
    A second stage disposed in parallel with the low-stage decompression section and the first liquid-phase refrigerant passage, and allows the liquid-phase refrigerant to flow to the evaporator, bypassing the low-stage decompression section and the first liquid-phase refrigerant path. A liquid phase refrigerant passage (141 g);
    A second bypass valve (60) for opening and closing the second liquid phase refrigerant passage,
    When the first bypass valve closes the first liquid-phase refrigerant passage, based on the pressure difference between the pressure of the refrigerant flowing out from the low-stage decompression section and the pressure of the refrigerant flowing into the gas-phase refrigerant passage. The gas-phase refrigerant control valve opens the gas-phase refrigerant passage;
    When the first bypass valve opens the first liquid-phase refrigerant passage, the pressure of the refrigerant flowing into the gas-phase refrigerant passage and the pressure of the refrigerant flowing out of the first bypass valve are balanced so that the gas phase A refrigerant control valve closes the gas-phase refrigerant passage;
    The said inflow suppression part (61) opens the said 2nd bypass valve, when the said refrigerant | coolant state judgment part judges that the refrigerant | coolant containing a liquid phase refrigerant flows in into the said gaseous-phase refrigerant path. Heat pump cycle.
  20.  前記流入抑止部および前記冷媒状態判断部は、前記吸入ポートから吸入される前記低圧冷媒の過熱度に応じてダイヤフラム(611)が変位する検知部(61)にて構成され、
     前記第2バイパス弁は前記検知部により駆動される請求項19に記載のヒートポンプサイクル。
    The inflow suppression unit and the refrigerant state determination unit are configured by a detection unit (61) in which a diaphragm (611) is displaced according to the degree of superheat of the low-pressure refrigerant sucked from the suction port,
    The heat pump cycle according to claim 19, wherein the second bypass valve is driven by the detection unit.
  21.  前記検知部は、前記蒸発器から前記吸入ポートに冷媒を導く経路中に配置されている請求項20に記載のヒートポンプサイクル。 21. The heat pump cycle according to claim 20, wherein the detection unit is disposed in a path for guiding a refrigerant from the evaporator to the suction port.
  22.  前記高段側減圧部の開度は調整可能であり、
     前記気相冷媒通路に液相冷媒を含んだ冷媒が流入すると前記冷媒状態判断部が判断した際に、前記高段側減圧部の開度を増加させる減圧制御部(S15)を備える請求項1ないし21のいずれか1つに記載のヒートポンプサイクル。
    The opening degree of the high-stage decompression unit is adjustable,
    The pressure reduction control part (S15) which increases the opening degree of the said high pressure side pressure reduction part, when the said refrigerant | coolant state judgment part judges that the refrigerant | coolant containing a liquid phase refrigerant flows in into the said gaseous-phase refrigerant channel | path. The heat pump cycle as described in any one of thru | or 21.
PCT/JP2015/000069 2014-01-14 2015-01-08 Heat pump cycle WO2015107876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-004356 2014-01-14
JP2014004356A JP6119616B2 (en) 2014-01-14 2014-01-14 Heat pump cycle

Publications (1)

Publication Number Publication Date
WO2015107876A1 true WO2015107876A1 (en) 2015-07-23

Family

ID=53542773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000069 WO2015107876A1 (en) 2014-01-14 2015-01-08 Heat pump cycle

Country Status (2)

Country Link
JP (1) JP6119616B2 (en)
WO (1) WO2015107876A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142176A1 (en) 2016-02-19 2017-08-24 Samsung Electronics Co., Ltd. Air conditioner and control method thereof
EP3374704A4 (en) * 2016-02-19 2019-01-09 Samsung Electronics Co., Ltd. Air conditioner and control method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6854668B2 (en) * 2017-02-28 2021-04-07 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP6852642B2 (en) 2017-10-16 2021-03-31 株式会社デンソー Heat pump cycle
EP3798534B1 (en) * 2019-09-30 2023-06-07 Daikin Industries, Ltd. A heat pump

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197960A (en) * 1985-02-26 1986-09-02 株式会社デンソー Refrigerating air-cooling device
JPH01314857A (en) * 1988-06-14 1989-12-20 Nippon Denso Co Ltd Refrigerating cycle
JPH05203270A (en) * 1992-01-27 1993-08-10 Matsushita Electric Ind Co Ltd Two-stage compressi0n type refrigerating cycle apparatus
JPH1163694A (en) * 1997-08-21 1999-03-05 Zexel Corp Refrigeration cycle
JPH11132575A (en) * 1997-10-23 1999-05-21 Daikin Ind Ltd Air conditioner
JP2002081769A (en) * 2000-09-08 2002-03-22 Hitachi Ltd Air conditioner
JP2004183913A (en) * 2002-11-29 2004-07-02 Mitsubishi Electric Corp Air conditioner
US20090165482A1 (en) * 2008-01-02 2009-07-02 Lg Electronics Inc. Air conditioning system
JP2013068407A (en) * 2011-09-05 2013-04-18 Denso Corp Refrigeration cycle device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197960A (en) * 1985-02-26 1986-09-02 株式会社デンソー Refrigerating air-cooling device
JPH01314857A (en) * 1988-06-14 1989-12-20 Nippon Denso Co Ltd Refrigerating cycle
JPH05203270A (en) * 1992-01-27 1993-08-10 Matsushita Electric Ind Co Ltd Two-stage compressi0n type refrigerating cycle apparatus
JPH1163694A (en) * 1997-08-21 1999-03-05 Zexel Corp Refrigeration cycle
JPH11132575A (en) * 1997-10-23 1999-05-21 Daikin Ind Ltd Air conditioner
JP2002081769A (en) * 2000-09-08 2002-03-22 Hitachi Ltd Air conditioner
JP2004183913A (en) * 2002-11-29 2004-07-02 Mitsubishi Electric Corp Air conditioner
US20090165482A1 (en) * 2008-01-02 2009-07-02 Lg Electronics Inc. Air conditioning system
JP2013068407A (en) * 2011-09-05 2013-04-18 Denso Corp Refrigeration cycle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142176A1 (en) 2016-02-19 2017-08-24 Samsung Electronics Co., Ltd. Air conditioner and control method thereof
EP3374704A4 (en) * 2016-02-19 2019-01-09 Samsung Electronics Co., Ltd. Air conditioner and control method thereof
US10866018B2 (en) 2016-02-19 2020-12-15 Samsung Electronics Co., Ltd. Air conditioner and control method thereof

Also Published As

Publication number Publication date
JP2015132428A (en) 2015-07-23
JP6119616B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP5772764B2 (en) Integrated valve and heat pump cycle
JP5780166B2 (en) Heat pump cycle
JP6304407B2 (en) Integrated valve and heat pump cycle
JP6278132B2 (en) Heat pump cycle
WO2013051237A1 (en) Integration valve
JP6011493B2 (en) Integrated valve, drive system
WO2015107876A1 (en) Heat pump cycle
JP2015075268A (en) Refrigeration cycle device
JP5920272B2 (en) Integrated valve
JP5991277B2 (en) Integrated valve for heat pump
JP6572695B2 (en) Integrated valve
JP6070418B2 (en) Heat pump cycle
JP6079474B2 (en) Differential pressure valve for heat pump
JP6572829B2 (en) Integrated valve
WO2018016219A1 (en) Ejector-type refrigeration cycle
JP6094401B2 (en) Integrated valve for heat pump
JP6079475B2 (en) Differential pressure valve for heat pump
JP6183223B2 (en) Heat pump cycle
WO2018088033A1 (en) Refrigeration cycle device
JP6319041B2 (en) Ejector refrigeration cycle
WO2016031157A1 (en) Ejector-type refrigeration cycle
WO2019155806A1 (en) Ejector-type refrigeration cycle, and ejector module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737334

Country of ref document: EP

Kind code of ref document: A1