JP2002081769A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JP2002081769A JP2002081769A JP2000278659A JP2000278659A JP2002081769A JP 2002081769 A JP2002081769 A JP 2002081769A JP 2000278659 A JP2000278659 A JP 2000278659A JP 2000278659 A JP2000278659 A JP 2000278659A JP 2002081769 A JP2002081769 A JP 2002081769A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- throttle
- temperature
- refrigerant
- air conditioner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、空気調和機に関す
る。[0001] The present invention relates to an air conditioner.
【0002】[0002]
【従来の技術】特開平10−185343号公報(文
献)に、インジェクションを行う冷凍サイクルにおい
て、気液分離器内の圧力である中間圧力を何らかにより
測定し目標圧力にこの測定された圧力がなるように、気
液分離器の配管前後に設けられた膨張弁のうち下流側に
ある膨張弁の開度を制御するようにしている。また、イ
ンジェクション回路を流れる中間ガス冷媒の最大流量に
対応する中間圧力又は中間温度になるように、主冷媒回
路の下流側膨張弁を制御する例が見られる。さらに、中
間圧力を算出するために、気液分離器の出口温度を検出
し、これと圧縮機の回転数によりて中間圧力を算出する
ことが記載されている。2. Description of the Related Art Japanese Patent Application Laid-Open No. 10-185343 (document) discloses that in an injection refrigeration cycle, an intermediate pressure, which is a pressure in a gas-liquid separator, is measured by some means. Thus, the opening of the expansion valve on the downstream side among the expansion valves provided before and after the pipe of the gas-liquid separator is controlled. Further, there is an example in which the downstream expansion valve of the main refrigerant circuit is controlled so as to have an intermediate pressure or an intermediate temperature corresponding to the maximum flow rate of the intermediate gas refrigerant flowing through the injection circuit. Furthermore, in order to calculate the intermediate pressure, it is described that the outlet temperature of the gas-liquid separator is detected, and the intermediate pressure is calculated based on the detected temperature and the rotation speed of the compressor.
【0003】[0003]
【発明が解決しようとする課題】上記従来技術では、下
流側膨張弁の制御を行うために、気液分離器に温度セン
サなどを設ける必要がある。中間圧力を気液分離器温度
によって制御する場合、気液分離器温度を正確に検出で
きれば、下流側膨張弁を適正に制御できるが、気液分離
器の出口温度の変化量に対して中間圧力の変化量は相当
大きいので、温度センサの絶対値に対する精度及び分解
能が制御量にきいてきてしまう。気液分離器温度が1℃
異なると性能が数パーセント変わってしまい、このた
め、高い精度の高価な温度センサが必要である。実際に
はこのように高い精度で気液分離器温度を検出すること
は困難なので、下流側膨張弁を適正に制御できないとい
う問題点があった。In the above prior art, it is necessary to provide a temperature sensor or the like in the gas-liquid separator in order to control the downstream expansion valve. When controlling the intermediate pressure by the gas-liquid separator temperature, if the gas-liquid separator temperature can be accurately detected, the downstream expansion valve can be properly controlled. Of the temperature sensor, the accuracy and resolution of the absolute value of the temperature sensor depend on the control amount. Gas-liquid separator temperature is 1 ℃
If different, the performance will vary by a few percent, which requires an expensive temperature sensor with high accuracy. In practice, it is difficult to detect the temperature of the gas-liquid separator with such high accuracy, so that there is a problem that the downstream expansion valve cannot be properly controlled.
【0004】本発明の目的は、下流側膨張弁を適正に制
御することにより、インジェクションによる性能向上の
効果を最大限に発揮させることにある。[0004] It is an object of the present invention to maximize the effect of performance improvement by injection by properly controlling the downstream expansion valve.
【0005】本発明の他の目的は、液インジェクション
が起こりやすい条件ではインジェクションを止めること
により、液インジェクションが生じることによる性能低
下を防止することにある。[0005] Another object of the present invention is to stop the injection under conditions where liquid injection is likely to occur, thereby preventing performance degradation due to liquid injection.
【0006】[0006]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明の請求項1における空気調和機は、圧縮機
回転数と外気温度に応じて下流側の絞り装置の絞り量を
制御することにより、気液分離器の圧力が適正に保たれ
るようにした。In order to achieve the above object, an air conditioner according to a first aspect of the present invention controls a throttle amount of a downstream throttle device according to a compressor speed and an outside air temperature. By doing so, the pressure of the gas-liquid separator was properly maintained.
【0007】また、上記の目的を達成するために、本発
明の請求項2における空気調和機は、冷房運転時、同じ
圧縮機回転数のときは、外気温度が低いほど下流側の絞
りを開き、暖房運転時、同じ圧縮機回転数のときは、外
気温度が高いほど下流側の絞りを開く制御を行うように
した。In order to achieve the above object, the air conditioner according to claim 2 of the present invention opens the throttle on the downstream side as the outside air temperature is lower at the same compressor rotation speed during the cooling operation. During the heating operation, when the compressor speed is the same, control is performed to open the downstream throttle as the outside air temperature increases.
【0008】また、上記の目的を達成するために、本発
明の請求項3における空気調和機は、圧縮機回転数と外
気温度と室内温度に応じて下流側の絞り装置の絞り量を
制御することにより、気液分離器の圧力が適正に保たれ
るようにした。In order to achieve the above object, the air conditioner according to claim 3 of the present invention controls the throttle amount of the downstream throttle device according to the compressor speed, the outside air temperature and the room temperature. Thereby, the pressure of the gas-liquid separator is appropriately maintained.
【0009】また、上記の目的を達成するために、本発
明の請求項4における空気調和機は、冷房運転時、同じ
圧縮機回転数、外気温度のときは、室内温度が高いほど
下流側の絞りを開き、暖房運転時、同じ圧縮機回転数、
外気温度のときは、室内温度が低いほど下流側の絞りを
開く制御を行うようにした。In order to achieve the above object, the air conditioner according to claim 4 of the present invention is arranged such that, at the time of the cooling operation, the compressor speed and the outside air temperature become higher as the indoor temperature becomes higher. Open the throttle, during heating operation, the same compressor speed,
At the time of the outside air temperature, the control to open the throttle on the downstream side as the room temperature is lower is performed.
【0010】また、上記の目的を達成するために、本発
明の請求項5における空気調和機は、圧縮機吐出冷媒温
度が圧縮機回転数に応じて定められた所定値よりも所定
量以上低く、圧縮機吸入冷媒温度が圧縮機回転数と外気
温度に応じて定められた所定値よりも所定量以上高い場
合に、前記2つの絞り装置のうちの下流側の絞りを所定
量開く制御を行うことにより、液をインジェクションが
生じることによる性能低下を防止するようにした。According to another aspect of the present invention, there is provided an air conditioner in which the temperature of a refrigerant discharged from a compressor is lower by a predetermined amount than a predetermined value determined according to the number of revolutions of the compressor. When the refrigerant suction refrigerant temperature is higher than a predetermined value determined according to the compressor rotation speed and the outside air temperature by a predetermined amount or more, control is performed to open a predetermined amount of the downstream throttle of the two throttle devices. This prevents the performance from deteriorating due to the injection of the liquid.
【0011】また、上記の目的を達成するために、本発
明の請求項6における空気調和機は、圧縮機吐出冷媒温
度が圧縮機回転数に応じて定められた所定値よりも所定
量以上低く、圧縮機吸入冷媒温度が室外熱交換器温度に
応じて定められた所定値よりも所定量以上高い場合に、
下流側の絞りを所定量開く制御を行うことにより、液を
インジェクションが生じることによる性能低下を防止す
るようにした。According to another aspect of the present invention, there is provided an air conditioner in which the temperature of a refrigerant discharged from a compressor is lower than a predetermined value determined in accordance with the number of rotations of the compressor by a predetermined amount or more. When the compressor suction refrigerant temperature is higher than a predetermined value determined according to the outdoor heat exchanger temperature by a predetermined amount or more,
By performing control to open the downstream throttle by a predetermined amount, performance degradation due to liquid injection is prevented.
【0012】また、上記の目的を達成するために、本発
明の請求項7における空気調和機は、インジェクション
配管の途中に開閉可能な二方弁を備え、圧縮機回転数が
所定値より低いときには二方弁を閉じるようにした。In order to achieve the above object, the air conditioner according to claim 7 of the present invention includes a two-way valve that can be opened and closed in the middle of the injection pipe, and is provided when the compressor speed is lower than a predetermined value. The two-way valve was closed.
【0013】また、上記の目的を達成するために、本発
明の請求項8における空気調和機は、インジェクション
配管の途中に開閉可能な二方弁を備え、冷房運転時に外
気温度が所定値より低い場合や暖房運転時に外気温度が
所定値より高い場合には二方弁を閉じるようにした。In order to achieve the above object, the air conditioner according to claim 8 of the present invention is provided with a two-way valve that can be opened and closed in the middle of the injection pipe, and the outside air temperature is lower than a predetermined value during cooling operation. In the case where the outside air temperature is higher than a predetermined value during the heating operation, the two-way valve is closed.
【0014】また、上記の目的を達成するために、本発
明の請求項9における空気調和機は、インジェクション
配管の途中に開閉可能な二方弁を備え、冷房運転時に室
内吸込み空気温度が所定値より高い場合や暖房運転時に
室内吸込み空気温度が所定値より低い場合には二方弁を
閉じるようにした。In order to achieve the above object, the air conditioner according to the ninth aspect of the present invention is provided with a two-way valve that can be opened and closed in the middle of the injection pipe so that the indoor suction air temperature can be reduced to a predetermined value during the cooling operation. The two-way valve is closed when the temperature is higher or when the indoor suction air temperature is lower than a predetermined value during the heating operation.
【0015】また、上記の目的を達成するために、本発
明の請求項10における空気調和機は、インジェクショ
ン配管の途中に開閉可能な二方弁を備え、冷房運転時に
室内吸込み空気温度が所定値より高い場合又は室内吸込
み空気湿度が所定値より高い場合には二方弁を閉じるよ
うにした。In order to achieve the above object, the air conditioner according to claim 10 of the present invention is provided with a two-way valve that can be opened and closed in the middle of the injection pipe so that the indoor suction air temperature can be reduced to a predetermined value during cooling operation. When it is higher or when the indoor suction air humidity is higher than a predetermined value, the two-way valve is closed.
【0016】また、上記の目的を達成するために、本発
明の請求項11における空気調和機は、二方弁を閉じた
ときには、前記2つの絞り装置のうちの下流側の絞りを
全開にするようにした。In order to achieve the above object, in the air conditioner according to claim 11 of the present invention, when the two-way valve is closed, the downstream throttle of the two throttle devices is fully opened. I did it.
【0017】また、上記の目的を達成するために、本発
明の請求項12における空気調和機は、二方弁を閉じて
下流側の絞りを全開にするとき、下流側絞りを一回に開
く開度に制限を設け、徐々に下流側絞りを全開にするよ
うにした。In order to achieve the above object, the air conditioner according to claim 12 of the present invention opens the downstream throttle at one time when closing the two-way valve and fully opening the downstream throttle. The opening was restricted, and the downstream throttle was gradually opened fully.
【0018】また、上記の目的を達成するために、本発
明の請求項13における空気調和機は、2つの絞り装置
のうちの下流側の絞りを絞る場合には、一回に絞る絞り
量を所定値以下に制限するようにした。In order to achieve the above object, the air conditioner according to the thirteenth aspect of the present invention is configured such that when the downstream throttle of the two throttle devices is throttled, the throttle amount to be reduced at one time is reduced. It was restricted to a predetermined value or less.
【0019】また、上記の目的を達成するために、本発
明の請求項14における空気調和機は、インジェクショ
ン配管の途中に開閉可能な二方弁を備え、運転開始から
所定時間は二方弁を閉じ、二方弁を開いたときには下流
側の絞りの開度を所定量に絞るとき、一回に絞る絞り量
を所定値以下に制限するようにした。In order to achieve the above object, the air conditioner according to claim 14 of the present invention is provided with a two-way valve that can be opened and closed in the middle of the injection pipe, and the two-way valve is operated for a predetermined time from the start of operation. When the two-way valve is closed and the opening of the downstream throttle is reduced to a predetermined amount when the two-way valve is opened, the throttle amount to be reduced at one time is limited to a predetermined value or less.
【0020】前記の手段によると、下流側の絞り装置の
絞り量を適切に制御することにより、気液分離器におけ
る中間圧力を適正に保ち、ガスインジェクションによる
性能向上効果を最大限に発揮させることができる。According to the above means, by appropriately controlling the throttle amount of the downstream throttle device, the intermediate pressure in the gas-liquid separator is appropriately maintained, and the performance improvement effect by gas injection is maximized. Can be.
【0021】また、圧縮機に液冷媒がインジェクション
されて性能が低下している場合を検知して下流側絞り装
置を開くことにより、液冷媒のインジェクションによる
性能の低下を防止することができる。Further, by detecting the case where the performance is degraded due to the injection of the liquid refrigerant into the compressor and opening the downstream throttling device, it is possible to prevent the performance from deteriorating due to the injection of the liquid refrigerant.
【0022】また、外気温度や圧縮機回転数の条件によ
っては二方弁を閉じてインジェクションを止めることに
より、液インジェクションが生じることによる性能低下
を防止することができる。Further, depending on the conditions of the outside air temperature and the number of revolutions of the compressor, the two-way valve is closed to stop the injection, thereby preventing the performance degradation due to the liquid injection.
【0023】[0023]
【発明の実施の形態】以下、本発明を図面に示す実施の
形態により説明する。本発明の一実施形態(第1の実施
形態)の空気調和機の構成を図1に示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment shown in the drawings. FIG. 1 shows a configuration of an air conditioner according to one embodiment (first embodiment) of the present invention.
【0024】圧縮機1、四方弁2、室外熱交換器3、電
動膨張弁等の絞り量が変更可能な第1の絞り装置4、気
液分離器5、電動膨張弁等の絞り量が変更可能な第2の
絞り装置6、室内熱交換器7は、冷媒配管により順次接
続されて主冷凍サイクルを構成する。冷房運転時におい
ては、四方弁2を図1の実線のように切り換え、図1の
実線の矢印方向に冷媒が流れて冷房サイクルを構成す
る。冷房運転時、圧縮機で圧縮された冷媒は、室外熱交
換器3において凝縮して空気に放熱し、次に第1の電動
膨張弁4で減圧されて凝縮圧力と蒸発圧力の中間圧力と
なり、気液分離器5においてガス冷媒と液冷媒とに分離
される。液冷媒は、第2の電動膨張弁6で更に減圧され
て、室内熱交換器7において空気から吸熱して圧縮機1
に戻る。一方、気液分離器で分離されたガス冷媒は、イ
ンジェクション配管8を通って、圧縮機1に注入され
る。インジェクション配管8には二方弁9を設け、必要
に応じて二方弁9を閉じることにより、インジェクショ
ンを停止することができる。The first throttle device 4 capable of changing the throttle amount of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the electric expansion valve and the like, the throttle amount of the gas-liquid separator 5, the electric expansion valve and the like are changed. The possible second expansion device 6 and the indoor heat exchanger 7 are sequentially connected by a refrigerant pipe to form a main refrigeration cycle. During the cooling operation, the four-way valve 2 is switched as shown by the solid line in FIG. 1, and the refrigerant flows in the direction of the solid line arrow in FIG. 1 to constitute a cooling cycle. During the cooling operation, the refrigerant compressed by the compressor is condensed in the outdoor heat exchanger 3 and radiates heat to the air, and is then decompressed by the first electric expansion valve 4 to have an intermediate pressure between the condensing pressure and the evaporating pressure, The gas-liquid separator 5 separates the refrigerant into a gas refrigerant and a liquid refrigerant. The liquid refrigerant is further decompressed by the second electric expansion valve 6, absorbs heat from air in the indoor heat exchanger 7, and
Return to On the other hand, the gas refrigerant separated by the gas-liquid separator is injected into the compressor 1 through the injection pipe 8. The injection pipe 8 is provided with a two-way valve 9 and the injection can be stopped by closing the two-way valve 9 as necessary.
【0025】暖房運転時は、四方弁2を図1の破線のよ
うに切り換え、破線の矢印方向に冷媒が流れる。暖房運
転時は、圧縮機で圧縮された冷媒は、室内熱交換器7に
おいて凝縮して空気に放熱し、次に第2の電動膨張弁6
で減圧されて凝縮圧力と蒸発圧力の中間圧力となり、気
液分離器5においてガス冷媒と液冷媒に分離される。液
冷媒は、第1の電動膨張弁4で更に減圧されて、室外熱
交換器3で蒸発して空気から吸熱して圧縮機1に戻る。
一方、気液分離器で分離されたガス冷媒は、インジェク
ション配管8を通って圧縮機に注入される。During the heating operation, the four-way valve 2 is switched as shown by the broken line in FIG. 1, and the refrigerant flows in the direction of the broken arrow. During the heating operation, the refrigerant compressed by the compressor is condensed in the indoor heat exchanger 7 and radiates heat to the air.
At the intermediate pressure between the condensing pressure and the evaporating pressure, and is separated into a gas refrigerant and a liquid refrigerant in the gas-liquid separator 5. The liquid refrigerant is further reduced in pressure by the first electric expansion valve 4, evaporates in the outdoor heat exchanger 3, absorbs heat from the air, and returns to the compressor 1.
On the other hand, the gas refrigerant separated by the gas-liquid separator is injected into the compressor through the injection pipe 8.
【0026】圧縮機のチャンバには、圧縮機チャンバ表
面温度センサ10を設け、圧縮機頭部のチャンバ温度を
検出する。なお、圧縮機チャンバ温度センサの替わり
に、冷媒吐出配管に圧縮機吐出冷媒配管温度センサを設
けてもよい。以下の説明では、圧縮機吐出冷媒配管温度
又は圧縮機頭部チャンバ表面温度のことを圧縮機吐出冷
媒温度と呼ぶ。圧縮機の冷媒吸入配管には圧縮機吸入冷
媒配管温度センサ11を設け、吸入冷媒温度を検出す
る。圧縮機吸入配管にセンサを設ける替わりに、圧縮機
吸入部に設けられる液溜め(アキュムレータ)等にセン
サを取り付けてもよい。室外機には外気温度センサ12
及び室外熱交換器センサ13を設け、外気温度及び室外
熱交換器温度を検出する。A compressor chamber surface temperature sensor 10 is provided in the compressor chamber to detect the chamber temperature at the head of the compressor. Note that a compressor discharge refrigerant pipe temperature sensor may be provided in the refrigerant discharge pipe instead of the compressor chamber temperature sensor. In the following description, the compressor discharge refrigerant pipe temperature or the compressor head chamber surface temperature is referred to as compressor discharge refrigerant temperature. A compressor suction refrigerant pipe temperature sensor 11 is provided in the refrigerant suction pipe of the compressor to detect the temperature of the suction refrigerant. Instead of providing a sensor in the compressor suction pipe, a sensor may be attached to a liquid reservoir (accumulator) or the like provided in the compressor suction section. The outdoor unit has an outside air temperature sensor 12
And an outdoor heat exchanger sensor 13 for detecting the outside air temperature and the outdoor heat exchanger temperature.
【0027】圧縮機1、第1の電動膨張弁4、第2の電
動膨張弁6などの制御や、センサからの信号の取り込み
は、制御装置14によって行われる。制御装置14はマ
イクロコンピュータ15とその周辺機器から構成され
る。圧縮機1は、制御装置14とインバータ回路16に
よって回転数を制御される。圧縮機の回転数はセンシン
グされて、マイクロコンピュータ15に取り込まれる。
圧縮機回転数のセンシングは、モータへの出力電流をフ
ィードバックするなどの方法により行う。圧縮機に回転
数センサを取り付けてもよい。The control of the compressor 1, the first electric expansion valve 4, the second electric expansion valve 6, etc., and the taking in of signals from sensors are performed by the control device 14. The control device 14 includes a microcomputer 15 and its peripheral devices. The rotation speed of the compressor 1 is controlled by the control device 14 and the inverter circuit 16. The rotation speed of the compressor is sensed and taken into the microcomputer 15.
The sensing of the compressor rotation speed is performed by a method such as feeding back the output current to the motor. A rotation speed sensor may be attached to the compressor.
【0028】次に、インジェクションサイクルの動作と
サイクル効率向上について、図2により説明する。図2
に示したモリエル線図は、横軸にエンタルピー、縦軸に
圧力を取って冷凍サイクルの特性を表している。破線が
従来サイクル、実線がガスインジェクションサイクルを
表す。従来サイクルでは、A点からD'点まで圧縮機で冷
媒が圧縮され、D'点からE点において凝縮器において冷
媒は凝縮して外気に放熱する。E点からH'点では、膨張
弁によって冷媒は膨張し、H'点からA点では蒸発器にお
いて冷媒が蒸発し、室内の空気の熱を吸熱する。インジ
ェクションサイクルにおいては、圧縮機でまずA点からB
点において冷媒が圧縮され、ここで気液分離器において
分離されたガス冷媒が注入されてC点に至り、更に圧縮
機においてC点からD点まで圧縮される。D点からE点にお
いて冷媒は凝縮器で凝縮し、E点からF点においては、第
1の電動膨張弁で冷媒は膨張し、蒸発圧力と凝縮圧力の
中間圧力のF点で気液分離器において冷媒はガスと液に
分離される。ガスはF点からC点で圧縮機に注入され、液
はG点からH点まで第2の電動膨張弁で減圧され、H点か
らA点において蒸発器で蒸発する。冷房運転の場合、従
来サイクルの蒸発能力即ち冷房能力はA点とH'点のエン
タルピーの差で表され、インジェクションサイクルの蒸
発能力はA点とH点のエンタルピーの差で表される。H点
のエンタルピーはH'点のエンタルピーよりも小さいの
で、インジェクションサイクルにおいては冷房能力が増
加する。暖房運転の場合、従来サイクルのときの凝縮器
の冷媒流量をG、ガスインジェクションサイクルにおい
てインジェクションされる冷媒流量をG1とすると、イ
ンジェクションサイクルで凝縮器を流れる冷媒流量はG
+G1となり、凝縮器出入口のエンタルピー差と冷媒流
量の積である暖房能力が増加する。Next, the operation of the injection cycle and the improvement of the cycle efficiency will be described with reference to FIG. FIG.
In the Mollier diagram shown in FIG. 7, the horizontal axis represents enthalpy and the vertical axis represents pressure, and represents the characteristics of the refrigeration cycle. The broken line represents the conventional cycle, and the solid line represents the gas injection cycle. In the conventional cycle, the refrigerant is compressed by the compressor from the point A to the point D ', and from the point D' to the point E, the refrigerant is condensed in the condenser and radiates heat to the outside air. From the point E to the point H ′, the refrigerant is expanded by the expansion valve, and from the point H ′ to the point A, the refrigerant evaporates in the evaporator to absorb the heat of the indoor air. In the injection cycle, the compressor starts with B
The refrigerant is compressed at the point, where the gas refrigerant separated in the gas-liquid separator is injected to reach point C and further compressed from point C to point D in the compressor. From point D to point E, the refrigerant condenses in the condenser. From point E to point F, the refrigerant expands at the first electric expansion valve, and the gas-liquid separator at point F, which is an intermediate pressure between the evaporation pressure and the condensation pressure. In, the refrigerant is separated into gas and liquid. The gas is injected into the compressor from the point F to the point C, and the liquid is reduced in pressure from the point G to the point H by the second electric expansion valve, and evaporates from the point H to the point A by the evaporator. In the case of the cooling operation, the evaporation capacity of the conventional cycle, that is, the cooling capacity, is represented by the difference between the enthalpies of the points A and H ', and the evaporation capacity of the injection cycle is represented by the difference of the enthalpies of the points A and H. Since the enthalpy at the point H is smaller than the enthalpy at the point H ', the cooling capacity increases in the injection cycle. In the case of the heating operation, assuming that the refrigerant flow rate of the condenser in the conventional cycle is G and the refrigerant flow rate injected in the gas injection cycle is G1, the refrigerant flow rate flowing through the condenser in the injection cycle is G
+ G1, and the heating capacity, which is the product of the enthalpy difference between the inlet and outlet of the condenser and the flow rate of the refrigerant, increases.
【0029】次に、本実施の形態における冷凍サイクル
制御の動作について図3のフローチャートにより説明す
る。以下の説明では、2個の電動膨張弁をそれぞれ上流
側膨張弁、下流側膨張弁と呼ぶことにする。2個の電動
膨張弁のうち、冷房運転時は図1における第1の電動膨
張弁4が上流側膨張弁、第2の電動膨張弁6が下流側膨
張弁となり、暖房運転時は電動膨張弁6が上流側膨張
弁、電動膨張弁4が下流側膨張弁となる。また、膨張弁
開度の数値については、数値が大きいほど膨張弁が開く
方向と定義する。Next, the operation of the refrigeration cycle control in this embodiment will be described with reference to the flowchart of FIG. In the following description, the two electric expansion valves will be referred to as an upstream expansion valve and a downstream expansion valve, respectively. Of the two electric expansion valves, the first electric expansion valve 4 in FIG. 1 is an upstream expansion valve, the second electric expansion valve 6 is a downstream expansion valve during the cooling operation, and the electric expansion valve during the heating operation. 6 is an upstream expansion valve, and the electric expansion valve 4 is a downstream expansion valve. The numerical value of the expansion valve opening is defined as a direction in which the larger the numerical value, the more the expansion valve opens.
【0030】図3は冷房の場合のフローを示している
が、暖房の場合も基本的には同様である。暖房と冷房で
計算式が異なる場合については、それぞれについて本文
中で説明する。FIG. 3 shows a flow in the case of cooling, but the same applies to the case of heating. The case where the calculation formula differs between heating and cooling will be described in the text for each case.
【0031】図3のステップ101において、変数の初
期化等の初期化処理を行い、ステップ102において、
初期運転タイマをスタートする。初期運転は図1の二方
弁9を閉じてガスインジェクションを行わずに所定時間
運転するもので、このタイマはその時間を与える。ステ
ップ103では、上流側及び下流側膨張弁開度の初期値
を設定する。下流側膨張弁は通常全開にするが、圧縮機
回転数に応じた開度に設定してもよい。次のステップ1
04で、サンプリングタイムを与えるタイマをスタート
する。このタイマは、圧縮機吐出冷媒温度等のセンシン
グや2個の膨張弁制御を行う間隔(サンプリングタイ
ム)を与えるものである。ステップ105では、圧縮機
吐出冷媒温度Td、圧縮機吸込み冷媒温度Ts、外気温度T
o、室外熱交換器温度Teo、圧縮機回転数Nを読み込む。
ステップ106においては、上流側膨張弁の開度変更量
を算出する。上流側膨張弁は、圧縮機吐出冷媒温度とそ
の変化量に応じて制御される。次にステップ107にお
いて、初期運転時間が経過したかどうかを判定し、初期
運転時間に達していない場合には、ステップ108で二
方弁は閉じたままとし、ステップ109において、下流
側膨張弁は全開に保たれる。初期運転時間経過後は、ス
テップ110で、圧縮機回転数と外気温度によって、ガ
スインジェクションを行うかどうかの判定を行う。冷房
運転では、圧縮機回転数が所定値以下又は外気温度が所
定値以下の場合、即ち、以下の式(1)、(2)のいずれかが
成立した場合には、ガスインジェクションを行わない。In step 101 of FIG. 3, initialization processing such as initialization of variables is performed.
Start the initial operation timer. In the initial operation, the two-way valve 9 in FIG. 1 is closed and the operation is performed for a predetermined time without performing gas injection, and this timer gives the time. In step 103, the initial values of the upstream and downstream expansion valve openings are set. The downstream expansion valve is normally fully opened, but may be set to an opening corresponding to the compressor speed. Next Step 1
At 04, a timer for giving a sampling time is started. This timer provides an interval (sampling time) for sensing the temperature of the refrigerant discharged from the compressor and controlling two expansion valves. In step 105, the compressor discharge refrigerant temperature Td, the compressor suction refrigerant temperature Ts, the outside air temperature T
o, Read the outdoor heat exchanger temperature Teo and the compressor speed N.
In step 106, the opening change amount of the upstream expansion valve is calculated. The upstream expansion valve is controlled in accordance with the temperature of the refrigerant discharged from the compressor and the amount of change thereof. Next, in step 107, it is determined whether or not the initial operation time has elapsed. If the initial operation time has not been reached, the two-way valve is kept closed in step 108. It is kept fully open. After the elapse of the initial operation time, it is determined in step 110 whether or not to perform gas injection based on the compressor speed and the outside air temperature. In the cooling operation, gas injection is not performed when the compressor speed is equal to or lower than a predetermined value or when the outside air temperature is equal to or lower than a predetermined value, that is, when one of the following equations (1) and (2) is satisfied.
【0032】N ≦ Nc0 (1) To ≦ Toc0 (2) ここで、Nは圧縮機回転数、Toは外気温度、Nc0、Toc0は
定数である。すなわち、圧縮機回転数が低い場合は低能
力運転であると判断し、外気温が低い場合は室内温度も
そう高くなく能力が低い運転であると看做す。N ≦ Nc0 (1) To ≦ Toc0 (2) where N is the number of rotations of the compressor, To is the outside air temperature, and Nc0 and Toc0 are constants. That is, when the compressor rotation speed is low, it is determined that the operation is low-capacity operation, and when the outside air temperature is low, it is considered that the operation is low because the indoor temperature is not so high.
【0033】暖房運転では、圧縮機回転数が所定値以下
又は外気温度が所定値以上の場合、即ち、式(3)、(4)の
いずれかが成立した場合には、ガスインジェクションを
行わない。In the heating operation, the gas injection is not performed when the compressor speed is equal to or lower than a predetermined value or when the outside air temperature is equal to or higher than a predetermined value, that is, when either of the equations (3) and (4) is satisfied. .
【0034】N ≦ Nh0 (3) To ≧ Toh0 (4) ここで、Nh0、Toh0は定数である。冷房同様、圧縮機回
転数が低い場合は低能力運転であると判断し、外気温が
高い場合は室内温度もそう低くなく能力が低い運転であ
ると看做す。N ≦ Nh0 (3) To ≧ Toh0 (4) where Nh0 and Toh0 are constants. As in the case of cooling, when the compressor rotation speed is low, it is determined that the operation is low-capacity operation, and when the outside air temperature is high, it is considered that the operation is low because the room temperature is not so low.
【0035】これらの条件でガスインジェクションを行
わないのは、このような条件では蒸発圧力が高いため、
ガスインジェクションしてもインジェクション量が極め
て少なく効果があまりない上に、液インジェクションに
なりやすく、逆に性能が低下する恐れがあるからであ
る。The reason why gas injection is not performed under these conditions is that the evaporation pressure is high under these conditions,
This is because even if gas injection is performed, the injection amount is extremely small and the effect is not so large, and furthermore, liquid injection is liable to occur, and conversely, the performance may be deteriorated.
【0036】ガスインジェクションを行わない場合、ス
テップ108で二方弁を閉じ、ステップ109で、下流
側膨張弁を全開にする。下流弁を絞った状態から全開に
するときには、一回で全開にせずに、徐々に全開まで開
くようにしてもよい。また、下流側膨張弁を徐々に開い
て全開になった時点で二方弁を閉じるようにしてもよ
い。下流側膨張弁を徐々に開くことにより、圧縮機吐出
冷媒温度或いは圧縮機吸入スーパヒートの急激な低下を
避けることができる。When the gas injection is not performed, the two-way valve is closed in step 108, and the downstream expansion valve is fully opened in step 109. When the downstream valve is fully opened from the throttled state, it may not be fully opened at once, but may be gradually opened to the full opening. Alternatively, the two-way valve may be closed when the downstream expansion valve is gradually opened and fully opened. By gradually opening the downstream expansion valve, it is possible to avoid a rapid decrease in the refrigerant discharge refrigerant temperature or the compressor suction superheat.
【0037】ステップ110で、式(1)、(2)又は式
(3)、(4)の条件が成立しない場合には、ステップ111
で二方弁を開いてガスインジェクションを行う。既に二
方弁が開いている場合は、そのまま開いた状態を保持す
る。In step 110, the equations (1), (2) or
If the conditions (3) and (4) are not satisfied, step 111
Open the two-way valve to perform gas injection. If the two-way valve is already open, keep the open state.
【0038】次にステップ112では、圧縮機吐出冷媒
温度Tdの目標値Tdsを式(5)により算出する。Next, at step 112, the target value Tds of the compressor discharge refrigerant temperature Td is calculated by the equation (5).
【0039】Tds = a1・N + b1・To + c1 (5) ここで、Nは圧縮機回転数(センシングした値)、To は
外気温度、a1、b1、c1は定数である。Tds = a1 · N + b1 · To + c1 (5) Here, N is the compressor speed (a value sensed), To is the outside air temperature, and a1, b1, and c1 are constants.
【0040】次のステップ113では圧縮機吸入温度Ts
の基準値Tssを式(6)により計算する。In the next step 113, the compressor suction temperature Ts
Is calculated by the equation (6).
【0041】Tss = a2・N + b2・To + c2 (6) ここで、a2、b2、c2は定数である。Tss = a2 · N + b2 · To + c2 (6) where a2, b2 and c2 are constants.
【0042】圧縮機吸い込み温度の基準値Tssについて
は、暖房の場合は室外熱交換器に霜が着く場合も考慮し
て、室外熱交換器温度Teoを用いた式(7)によって求めて
もよい。The reference value Tss of the compressor suction temperature may be obtained by the equation (7) using the outdoor heat exchanger temperature Teo in consideration of the case where frost forms on the outdoor heat exchanger in the case of heating. .
【0043】Tss = a2・N + b2・Teo + c2 (7) 次のステップ114では、インジェクションされる冷媒
に液が混合しているかどうかの判定を行う。判定は、式
(8)と式(9)が同時に満たされたときに液インジェクショ
ンが起こっていると判定される。Tss = a2 ・ N + b2TTeo + c2 (7) In the next step 114, it is determined whether or not the refrigerant to be injected is mixed with liquid. Judgment is an expression
When both (8) and (9) are satisfied at the same time, it is determined that liquid injection has occurred.
【0044】Td ≦ Tds − α (8) Ts ≧ Tss + β (9) ここで、Tdsはステップ112で算出された圧縮機吐出
冷媒温度の目標値、Tssはステップ113で算出された
圧縮機吸入冷媒温度の基準値、α、βは定数である。こ
のような条件によって液インジェクションの判定が可能
な理由は、液インジェクションが生じると液によって圧
縮室内冷媒が冷却されて圧縮機吐出冷媒温度が低下する
とともに、気液分離器に冷媒が溜まることによってサイ
クルの冷媒が不足ぎみになり、圧縮機吸入冷媒温度が上
昇するからである。Td ≦ Tds−α (8) Ts ≧ Tss + β (9) where Tds is the target value of the compressor discharge refrigerant temperature calculated in step 112, and Tss is the compressor suction temperature calculated in step 113. The reference values of the refrigerant temperature, α and β, are constants. The reason that liquid injection can be determined under such conditions is that when liquid injection occurs, the refrigerant cools the compression chamber refrigerant by the liquid and lowers the refrigerant discharge refrigerant temperature, and the refrigerant accumulates in the gas-liquid separator, resulting in a cycle. This is because the refrigerant in the compressor becomes almost insufficiency, and the refrigerant suction refrigerant temperature rises.
【0045】ステップ114において条件が成立したな
らば、液インジェクションが起こっていると見なし、ス
テップ115において式(10)に示すように下流側膨張弁
開度の補正値SP(n)に所定量dP2aを加える。If the condition is satisfied in step 114, it is considered that liquid injection has occurred, and in step 115, the correction value SP (n) of the downstream-side expansion valve opening is determined by a predetermined amount dP2a as shown in equation (10). Add.
【0046】SP(n) = SP(n−1) + dP2a (10) dP2aの値は正(膨張弁が開く方向の値)とする。ここ
で、nはサンプリング番号である。下流弁を開くことに
よって気液分離器内の冷媒圧力が低下するので、液イン
ジェクションを終息させることができる。SP(n−1)は開
度補正値の前回値であり、ここでこの値が0であったと
きに液インジェクションが判定されたことを想定して説
明する。液インジェクションであると判定されると、今
回の補正量をdp2aとする。次回まだ液インジェクション
が継続していると判断されると、補正量は2dp2aとな
り、液インジェクションが収まるまで繰り返される。す
なわち、補正量の積分制御となる。なお、下流弁を開く
替わりに二方弁を閉じることによってインジェクション
を止めてしまう方法もある。SP (n) = SP (n−1) + dP2a (10) The value of dP2a is positive (the value in the direction in which the expansion valve opens). Here, n is a sampling number. By opening the downstream valve, the refrigerant pressure in the gas-liquid separator decreases, so that the liquid injection can be terminated. SP (n−1) is the previous value of the opening correction value, and the description will be made on the assumption that liquid injection is determined when this value is 0. If it is determined that the injection is the liquid injection, the current correction amount is set to dp2a. When it is determined that the liquid injection is still continued next time, the correction amount becomes 2dp2a, and the correction is repeated until the liquid injection stops. That is, integration control of the correction amount is performed. Note that there is a method in which the injection is stopped by closing the two-way valve instead of opening the downstream valve.
【0047】次のステップ116では、下流側膨張弁開
度の基準値P2sを式(11)により算出する。In the next step 116, the reference value P2s of the downstream expansion valve opening is calculated by the equation (11).
【0048】 P2s = a3・N + b3・To + c3 +
SP(n) (11) ここで、Nは圧縮機回転数、Toは外気温度、SP(n)は下
流側膨張弁開度の補正量、a3、b3、c3は定数である。冷
房運転では、a3は正、b3は負であり、暖房運転ではa3は
正、b3も正である。従って、冷房運転では外気温度が高
いほど下流側膨張弁を絞り、暖房運転では外気温度が高
いほど下流側膨張弁を開く制御が行われる。P2s = a3 · N + b3 · To + c3 +
SP (n) (11) Here, N is the number of rotations of the compressor, To is the outside air temperature, SP (n) is the correction amount of the downstream-side expansion valve opening, and a3, b3, and c3 are constants. In the cooling operation, a3 is positive and b3 is negative, and in the heating operation, a3 is positive and b3 is also positive. Therefore, in the cooling operation, the downstream expansion valve is throttled as the outside air temperature increases, and in the heating operation, the downstream expansion valve is opened as the outside air temperature increases.
【0049】その理由を説明する。圧縮機回転数に比例
して開度調整を行う理由は、回転数が高いと冷媒循環量
が増え気液分離器内の液冷媒が増加し液インジェクショ
ンとなる可能性が高いので、下流側膨張弁を開いて液イ
ンジェクションとなることを防止するためである。The reason will be described. The reason why the opening degree is adjusted in proportion to the compressor rotation speed is that if the rotation speed is high, the amount of circulating refrigerant increases, the liquid refrigerant in the gas-liquid separator increases, and there is a high possibility of liquid injection. This is to prevent liquid injection by opening the valve.
【0050】外気温に応じて下流側膨張弁の開度を調節
する理由は、冷房時において、室外熱交換器は凝縮器と
して作用しており、外気温が急激に上昇したとすると、
凝縮器の温度が上昇して凝縮量が減少した分ガス冷媒の
割合が増加する。このため、凝縮器の圧力が増大する。
凝縮器の圧力増大はサイクル全体の圧力増大となる。こ
の時、圧縮機内の中間圧力も増大するので、気液分離器
内の中間圧を大きくしなければガスインジェクションの
量が少なくなりCOP低下につながるので、下流側膨張
弁を絞って適正にガスインジェクションを行わせるため
である。一方、暖房時は、室外機は蒸発器として機能す
る。外気温が高くなると、蒸発器温度も高くなり蒸発量
が増える。このため、蒸発器内の圧力が大きくなり、圧
縮機の吸込圧力が大きくなる。吸込圧力が増大するとい
うことは、圧縮機に吸込まれるガス冷媒の密度が増すこ
とであるので、圧縮機によって圧縮される冷媒の量が増
えたこととなり、結果として冷媒循環量が多くなること
を意味する。この時気液分離器内の圧力上昇分は、圧縮
機のインジェクションポートの圧力上昇分よりも大きい
ため、気液分離器内の液量が増加して液戻りになってし
まう可能性がある。このため、下流側の膨張弁を開い
て、液戻りを防止するのである。The reason why the opening of the downstream expansion valve is adjusted in accordance with the outside air temperature is that, during cooling, the outdoor heat exchanger acts as a condenser, and if the outside air temperature rises rapidly,
As the temperature of the condenser increases and the amount of condensate decreases, the proportion of the gas refrigerant increases. For this reason, the pressure of the condenser increases.
A pressure increase in the condenser results in a pressure increase throughout the cycle. At this time, the intermediate pressure in the compressor also increases, so if the intermediate pressure in the gas-liquid separator is not increased, the amount of gas injection will decrease and the COP will decrease. Is performed. On the other hand, during heating, the outdoor unit functions as an evaporator. When the outside air temperature increases, the evaporator temperature also increases, and the amount of evaporation increases. For this reason, the pressure in the evaporator increases, and the suction pressure of the compressor increases. An increase in the suction pressure means an increase in the density of the gas refrigerant sucked into the compressor.Therefore, the amount of the refrigerant compressed by the compressor increases, and as a result, the refrigerant circulation amount increases. Means At this time, since the pressure increase in the gas-liquid separator is larger than the pressure increase in the injection port of the compressor, the liquid volume in the gas-liquid separator may increase and the liquid may return. For this reason, the downstream expansion valve is opened to prevent the liquid from returning.
【0051】次のステップ117では、下流側膨張弁の
一回に絞る絞り量を所定値dP2max以下に制限するため
に、前回のサンプリングタイムにおける下流側膨張弁開
度P2(n-1)とステップ116で算出された下流側膨張弁
開度P2sとの差を求め、それがdP2max以下ならば、ステ
ップ118において、下流側膨張弁開度P2(n)をP2sに設
定する。そうでないときには、ステップ119において
下流側膨張弁開度P2(n)は前回の開度からdP2maxを減じ
た値とする。一回に絞る絞り量を制限している理由は、
急激に下流側膨張弁を絞ると中間圧力が上昇して液イン
ジェクションが起こり易くなるのと、圧縮機吐出温度が
急激に上昇して制御の安定性が損なわれるためである。In the next step 117, the downstream expansion valve opening degree P2 (n-1) at the previous sampling time is set in order to limit the throttle amount of the downstream expansion valve at one time to a predetermined value dP2max or less. The difference from the downstream expansion valve opening P2s calculated in 116 is obtained, and if it is equal to or less than dP2max, in step 118, the downstream expansion valve opening P2 (n) is set to P2s. Otherwise, in step 119, the downstream-side expansion valve opening P2 (n) is set to a value obtained by subtracting dP2max from the previous opening. The reason for limiting the amount of squeezing at one time is
This is because if the downstream expansion valve is suddenly throttled, the intermediate pressure rises and liquid injection is likely to occur, and the compressor discharge temperature rises rapidly and control stability is impaired.
【0052】次のステップ120では、下流側膨張弁開
度の変更量を求め、ステップ121において膨張弁コイ
ルにパルスを出力して上流側及び下流側膨張弁を動作さ
せる。ステップ122においてサンプリングタイムをカ
ウントし、サンプリングタイムに達したならば、ステッ
プ104に戻って以下の一連の動作を繰り返す。In the next step 120, the amount of change in the degree of opening of the downstream expansion valve is determined. In step 121, a pulse is output to the expansion valve coil to operate the upstream and downstream expansion valves. In step 122, the sampling time is counted. When the sampling time has been reached, the process returns to step 104 and the following series of operations is repeated.
【0053】本実施形態によれば、下流側膨張弁開度を
圧縮機回転数と外気温度に応じて制御することにより中
間圧力を適正に保つことができるので、ガスインジェク
ションによる性能向上が大きい。また、圧縮機吐出冷媒
温度と圧縮機吸入冷媒温度によって液インジェクション
を判定して下流側膨張弁開度を調整しているので、液イ
ンジェクションによる性能低下が防止できる。また、本
実施形態によれば、圧縮機回転数や外気温度に応じて、
二方弁を閉じてインジェクションを止める制御を行って
いるので、液インジェクションによる性能低下が起こり
にくい。According to the present embodiment, the intermediate pressure can be appropriately maintained by controlling the degree of opening of the downstream expansion valve according to the compressor speed and the outside air temperature, so that the performance improvement by gas injection is large. Further, since the liquid injection is determined based on the compressor discharge refrigerant temperature and the compressor suction refrigerant temperature and the downstream expansion valve opening is adjusted, the performance degradation due to the liquid injection can be prevented. Further, according to the present embodiment, according to the compressor rotation speed and the outside air temperature,
Since the control for closing the two-way valve to stop the injection is performed, the performance degradation due to the liquid injection hardly occurs.
【0054】本発明の他の実施形態(第2の実施形態)
の空気調和機の構成を図4に示す。本実施形態における
冷凍サイクル構成は、第1の実施形態と同様であるが、
室内機に室内吸込み空気温度センサと室内熱交換器セン
サを設けている。本実施形態における冷凍サイクル制御
の動作について図5のフローチャートにより説明する。
制御動作の基本的な流れは、第1の実施形態と同様なの
で、本実施形態に関する説明は、第1の実施形態と異な
る部分のみについて行うことにする。Another Embodiment of the Present Invention (Second Embodiment)
FIG. 4 shows the configuration of the air conditioner of FIG. The configuration of the refrigeration cycle in this embodiment is the same as that of the first embodiment,
The indoor unit is provided with an indoor intake air temperature sensor and an indoor heat exchanger sensor. The operation of the refrigeration cycle control in this embodiment will be described with reference to the flowchart of FIG.
Since the basic flow of the control operation is the same as that of the first embodiment, the description of the present embodiment will be made only for the portions different from the first embodiment.
【0055】ステップ205では、圧縮機吐出冷媒温度
Td、圧縮機吸入冷媒温度Ts、外気温度To、室外熱交換器
温度Teoの他に、室内吸込み空気温度Ti及び室内熱交換
器温度Teiを読み込む。室内吸込み空気温度と室内熱交
換器温度については、直接室外機の制御装置に取り込め
ない場合には、室内機に設けた制御装置に取り込んで室
外機の制御装置にデータを送るようにしてもよい。In step 205, the refrigerant discharge refrigerant temperature
The indoor suction air temperature Ti and the indoor heat exchanger temperature Tei are read in addition to Td, the compressor suction refrigerant temperature Ts, the outside air temperature To, and the outdoor heat exchanger temperature Teo. When the indoor intake air temperature and the indoor heat exchanger temperature cannot be directly taken into the control unit of the outdoor unit, the data may be taken into the control unit provided in the indoor unit and sent to the control unit of the outdoor unit. .
【0056】ステップ210のガスインジェクションを
行うかどうかの判定において、冷房運転では式(12)から
(14)のいずれかが成立した場合には、ガスインジェクシ
ョンを行わない。In the determination as to whether or not to perform the gas injection in step 210, in the cooling operation, the equation (12) is used.
If any of (14) is satisfied, gas injection is not performed.
【0057】N ≦ Nc0 (12) To ≦ Toc0 (13) Ti ≧ Tic0 (14) ここで、Nは圧縮機回転数、Toは外気温度、Tiは室内吸
込み空気温度、Nc0、Toc0、Tic0は定数である。更に室
内吸込み空気湿度センサを設け、室内吸込み空気湿度が
所定値以上の場合にも二方弁を閉じるようにしてもよ
い。N ≦ Nc0 (12) To ≦ Toc0 (13) Ti ≧ Tic0 (14) where N is the compressor rotation speed, To is the outside air temperature, Ti is the indoor suction air temperature, Nc0, Toc0, and Tic0 are constants. It is. Further, an indoor suction air humidity sensor may be provided to close the two-way valve even when the indoor suction air humidity is equal to or higher than a predetermined value.
【0058】暖房運転では、式(15)から(17)のいずれか
が成立した場合には、ガスインジェクションを行わな
い。In the heating operation, if any of the equations (15) to (17) holds, the gas injection is not performed.
【0059】N ≦ Nh0 (15) To ≧ Toh0 (16) Ti ≦ Tih0 (17) ここで、Nh0、Toh0、Tih0は定数である。N ≦ Nh0 (15) To ≧ Toh0 (16) Ti ≦ Tih0 (17) Here, Nh0, Toh0, and Tih0 are constants.
【0060】ステップ213において、冷房運転の場合
は、圧縮機吸入冷媒温度Tsの基準値Tssを式(18)により
計算する。In step 213, in the case of the cooling operation, the reference value Tss of the compressor suction refrigerant temperature Ts is calculated by the equation (18).
【0061】Tss = a2・N + b2・Tei + c2 (18) ここで、a2、b2、c2は定数である。本実施形態では、圧
縮機吸入冷媒温度の基準値の算出に、室内熱交換器の温
度を用いている。暖房運転の場合については、第1の実
施形態と同様に、前述の式(6)又は式(7)により圧縮機吸
入温度基準値を求める。Tss = a2 · N + b2 · Tei + c2 (18) where a2, b2 and c2 are constants. In the present embodiment, the temperature of the indoor heat exchanger is used to calculate the reference value of the compressor suction refrigerant temperature. In the case of the heating operation, similarly to the first embodiment, the compressor suction temperature reference value is obtained by the above-described equation (6) or (7).
【0062】ステップ216において、下流側膨張弁開
度基準値は式(19)により求める。In step 216, the reference value of the downstream-side expansion valve opening is obtained by equation (19).
【0063】 P2s = a3・N + b3・To + c3・Ti + d3 + SP(n) (19) ここでは、室内吸込み空気温度も下流側膨張弁開度の算
出に用いている。P2s = a3 · N + b3 · To + c3 · Ti + d3 + SP (n) (19) Here, the indoor intake air temperature is also used for calculating the downstream expansion valve opening.
【0064】本実施形態によれば、下流側膨張弁開度を
圧縮機回転数と外気温度の他に、室内吸込み空気温度に
も応じて制御することにより中間圧力をより適正に保つ
ことができるので、ガスインジェクションによる性能向
上の効果が最大限に引き出される。また、本実施形態に
よれば、圧縮機回転数や外気温度の他に室内吸込み空気
温度によっても二方弁を閉じてインジェクションを止め
る制御を行っているので、液インジェクションによる性
能低下が起こりにくくなっている。According to the present embodiment, the intermediate pressure can be more appropriately maintained by controlling the opening degree of the downstream expansion valve in accordance with not only the rotational speed of the compressor and the temperature of the outside air but also the temperature of the intake air in the room. Therefore, the effect of performance improvement by gas injection is maximized. Further, according to the present embodiment, since the control for closing the two-way valve and stopping the injection is performed based on the indoor suction air temperature in addition to the compressor rotation speed and the outside air temperature, the performance is not easily reduced by the liquid injection. ing.
【0065】[0065]
【発明の効果】以上詳細に説明したように、本発明によ
れば、ガスインジェクションによる性能向上の効果を最
大限に発揮させることができる。また本発明によれば、
外気温度や圧縮機回転数の条件によっては二方弁を閉じ
てインジェクションを止めることにより、液インジェク
ションが生じることによる性能低下を防止することがで
きる。As described above in detail, according to the present invention, the effect of improving the performance by gas injection can be maximized. According to the present invention,
By stopping the injection by closing the two-way valve depending on the conditions of the outside air temperature and the number of rotations of the compressor, it is possible to prevent performance degradation due to liquid injection.
【図1】本発明の一実施形態における空気調和機の構
成。FIG. 1 is a configuration of an air conditioner according to an embodiment of the present invention.
【図2】ガスインジェクションサイクルの動作を示すモ
リエル線図。FIG. 2 is a Mollier diagram showing an operation of a gas injection cycle.
【図3】膨張弁制御のフローチャート。FIG. 3 is a flowchart of expansion valve control.
【図4】本発明の第2の実施形態の空気調和機の構成。FIG. 4 is a configuration of an air conditioner according to a second embodiment of the present invention.
【図5】本発明の第2の実施形態の空気調和機の膨張弁
制御のフローチャート。FIG. 5 is a flowchart of an expansion valve control of the air conditioner according to the second embodiment of the present invention.
1…圧縮機、2…四方弁、3…室外熱交換器、4…第1
の絞り装置、5…気液分離器、6…第2の絞り装置、7
…室内熱交換器、8…インジェクション配管、10…圧
縮機チャンバ表面温度センサ、11…圧縮機吸入冷媒配
管温度センサ、12…外気温度センサ、14…制御装
置。DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... 4-way valve, 3 ... Outdoor heat exchanger, 4 ... First
Squeezing device, 5 ... gas-liquid separator, 6 ... second squeezing device, 7
... indoor heat exchanger, 8 ... injection piping, 10 ... compressor chamber surface temperature sensor, 11 ... compressor suction refrigerant piping temperature sensor, 12 ... outside air temperature sensor, 14 ... control device.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠崎 弘 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 太田 和利 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 Fターム(参考) 3L060 AA03 CC02 CC03 CC04 CC19 DD02 EE02 EE09 EE45 ──────────────────────────────────────────────────の Continuing on the front page (72) Hiroshi Shinozaki, 800, Tomita, Ohira-machi, Ohira-machi, Shimotsuga-gun, Tochigi Prefecture Inside the Cooling Division, Hitachi, Ltd. 3L060 AA03 CC02 CC03 CC04 CC19 DD02 EE02 EE09 EE45
Claims (16)
可能な第1の絞り装置と、気液分離器と、開度の調節が
可能な第2の絞り装置と、室内熱交換器とを順次接続し
て冷凍サイクルを構成し、前記気液分離器より前記圧縮
機に冷媒を供給するインジェクション配管を備えた空気
調和機において、圧縮機回転数を検出する手段と、外気
温度を検出する手段と、検出された圧縮機回転数と外気
温度に応じて前記2つの絞り装置のうちの下流側の絞り
装置の絞り量を制御する手段とを備えた空気調和機。1. A compressor, an outdoor heat exchanger, a first throttle device having an adjustable opening, a gas-liquid separator, a second throttle device having an adjustable opening, and an indoor device. A means for detecting a compressor rotation speed in an air conditioner having an injection pipe for supplying a refrigerant from the gas-liquid separator to the compressor by sequentially connecting a heat exchanger and forming a refrigeration cycle; An air conditioner comprising: a means for detecting a temperature; and a means for controlling a throttle amount of a downstream throttle device of the two throttle devices according to the detected compressor rotation speed and outside air temperature.
機回転数のときは、外気温度が低いほど前記2つの絞り
装置のうちの下流側の絞りを開き、暖房運転時、同じ圧
縮機回転数のときは、外気温度が高いほど前記2つの絞
り装置のうちの下流側の絞りを開く制御を行う機能を備
えた空気調和装置。2. The cooling device according to claim 1, wherein at the time of the cooling operation, at the same compressor rotation speed, as the outside air temperature is lower, the downstream throttle of the two expansion devices is opened, and at the time of the heating operation, the same compressor is opened. An air conditioner having a function of performing control to open a throttle on the downstream side of the two throttle devices as the outside air temperature increases at a rotation speed.
可能な第1の絞り装置と、気液分離器と、開度の調節が
可能な第2の絞り装置と、室内熱交換器とを順次接続し
て冷凍サイクルを構成し、前記気液分離器より前記圧縮
機に冷媒を供給するインジェクション配管を備えた空気
調和機において、圧縮機回転数を検出する手段と、室内
吸込み空気温度を検出する手段と、外気温度を検出する
手段と、検出された圧縮機回転数と室内温度と外気温度
に応じて前記2つの絞り装置のうちの下流側の絞り装置
の絞り量を制御する手段とを備えた空気調和機。3. A compressor, an outdoor heat exchanger, a first throttle device whose opening can be adjusted, a gas-liquid separator, a second throttle device whose opening can be adjusted, and an indoor device. A heat exchanger is sequentially connected to form a refrigeration cycle, and in an air conditioner having an injection pipe for supplying a refrigerant from the gas-liquid separator to the compressor, a means for detecting a compressor speed, Means for detecting the intake air temperature, means for detecting the outside air temperature, and the throttle amount of the downstream throttle device of the two throttle devices in accordance with the detected compressor speed, room temperature and outside air temperature. An air conditioner comprising: a control unit.
機回転数、同じ外気温度のときは、室内温度が高いほど
前記2つの絞り装置のうちの下流側の絞りを開き、同じ
圧縮機回転数、同じ室内温度のときは、外気温度が低い
ほど前記2つの絞り装置のうちの下流側の絞りを開く制
御を行い、暖房運転時、同じ圧縮機回転数、同じ外気温
度のときは、室内温度が低いほど前記2つの絞り装置の
うちの下流側の絞りを開き、同じ圧縮機回転数、同じ室
内温度のときは、外気温度が高いほど前記2つの絞り装
置のうちの下流側の絞りを開く制御を行う空気調和装
置。4. The cooling device according to claim 3, wherein during cooling operation, at the same compressor rotation speed and the same outside air temperature, as the room temperature increases, the downstream throttle of the two throttle devices is opened, and the same compressor is opened. When the rotation speed and the same room temperature are the same, the lower the outside air temperature, the lower the downstream throttle of the two expansion devices is controlled to open, and during the heating operation, the same compressor rotation speed and the same outside air temperature, As the indoor temperature is lower, the downstream throttle of the two throttle devices is opened, and when the compressor speed is the same and the room temperature is the same, the downstream throttle of the two throttle devices is higher as the outside air temperature is higher. The air conditioner that controls the opening.
可能な第1の絞り装置と、気液分離器と、開度の調節が
可能な第2の絞り装置と、室内熱交換器とを順次接続し
て冷凍サイクルを構成し、前記気液分離器より前記圧縮
機に冷媒を供給するインジェクション配管を備えた空気
調和機において、圧縮機回転数を検出する手段と、圧縮
機吐出冷媒温度を検出する手段と、圧縮機吸入冷媒温度
を検出する手段と、外気温度を検出する手段とを備え、
圧縮機吐出冷媒温度が圧縮機回転数と外気温度の両方ま
たは圧縮機回転数のみに応じて定められた所定値よりも
所定量以上低く、圧縮機吸入冷媒温度が圧縮機回転数と
外気温度の両方又は圧縮機回転数のみに応じて定められ
た所定値よりも所定量以上高い場合に、前記2つの絞り
装置のうちの下流側の絞りを所定量開く制御を行う空気
調和装置。5. A compressor, an outdoor heat exchanger, a first throttle device whose opening can be adjusted, a gas-liquid separator, a second throttle device whose opening can be adjusted, and an indoor device. A means for detecting a compressor rotation speed in an air conditioner having an injection pipe for supplying a refrigerant from the gas-liquid separator to the compressor by sequentially connecting a heat exchanger and forming a refrigeration cycle; A means for detecting a compressor discharge refrigerant temperature, a means for detecting a compressor suction refrigerant temperature, and a means for detecting an outside air temperature,
The compressor discharge refrigerant temperature is at least a predetermined amount lower than a predetermined value determined according to both the compressor rotation speed and the outside air temperature or only the compressor rotation speed, and the compressor suction refrigerant temperature is lower than the compressor rotation speed and the outside air temperature. An air conditioner that performs control to open a downstream throttle of the two throttle devices by a predetermined amount when the speed is higher by a predetermined amount than a predetermined value determined in accordance with both or only the compressor speed.
可能な第1の絞り装置と、気液分離器と、開度の調節が
可能な第2の絞り装置と、室内熱交換器とを順次接続し
て冷凍サイクルを構成し、前記気液分離器より前記圧縮
機に冷媒を供給するインジェクション配管を備えた空気
調和機において、圧縮機回転数を検出する手段と、圧縮
機吐出冷媒温度を検出する手段と、圧縮機吸入冷媒温度
を検出する手段と、室外熱交換器温度を検出する手段と
を備え、圧縮機吐出冷媒温度が圧縮機回転数と外気温度
の両方又は圧縮機回転数のみに応じて定められた所定値
よりも所定量以上低く、圧縮機吸入冷媒温度が室外熱交
換器温度と圧縮機回転数の両方又は室外熱交換器温度の
みに応じて定められた所定値よりも所定量以上高い場合
に、前記2つの絞り装置のうちの下流側の絞りを所定量
開く制御を行う空気調和装置。6. A compressor, an outdoor heat exchanger, a first throttle device whose opening can be adjusted, a gas-liquid separator, a second throttle device whose opening can be adjusted, and an indoor device. A means for detecting a compressor rotation speed in an air conditioner having an injection pipe for supplying a refrigerant from the gas-liquid separator to the compressor by sequentially connecting a heat exchanger and forming a refrigeration cycle; A means for detecting a compressor discharge refrigerant temperature, a means for detecting a compressor suction refrigerant temperature, and a means for detecting an outdoor heat exchanger temperature, wherein the compressor discharge refrigerant temperature is both a compressor rotation speed and an outside air temperature or The compressor suction refrigerant temperature is determined according to both the outdoor heat exchanger temperature and the compressor rotation speed or only the outdoor heat exchanger temperature, which is lower than a predetermined value determined only by the compressor rotation speed by a predetermined amount or more. If the value is higher than the predetermined value by a predetermined amount or more, An air conditioning apparatus performs a predetermined amount open controls the aperture of the downstream side of the device.
可能な第1の絞り装置と、気液分離器と、開度の調節が
可能な第2の絞り装置と、室内熱交換器とを順次接続し
て冷凍サイクルを構成し、前記気液分離器より前記圧縮
機に冷媒を供給するインジェクション配管を備えた空気
調和機において、圧縮機回転数を検出する手段と、イン
ジェクション配管の途中に開閉可能な二方弁を備え、圧
縮機回転数が所定値より低いときには二方弁を閉じるよ
うにした空気調和機。7. A compressor, an outdoor heat exchanger, a first throttle device whose opening can be adjusted, a gas-liquid separator, a second throttle device whose opening can be adjusted, and an indoor device. A means for detecting a compressor rotation speed in an air conditioner comprising an injection pipe for supplying a refrigerant from the gas-liquid separator to the compressor by sequentially connecting a heat exchanger and forming a refrigeration cycle; An air conditioner comprising a two-way valve that can be opened and closed in the middle of a pipe, wherein the two-way valve is closed when the compressor rotation speed is lower than a predetermined value.
可能な第1の絞り装置と、気液分離器と、開度の調節が
可能な第2の絞り装置と、室内熱交換器とを順次接続し
て冷凍サイクルを構成し、前記気液分離器より前記圧縮
機に冷媒を供給するインジェクション配管を備えた空気
調和機において、外気温度を検出する手段と、インジェ
クション配管の途中に開閉可能な二方弁を備え、冷房運
転時に外気温度が所定値より低い場合又は暖房運転時に
外気温度が所定値より高い場合には前記二方弁を閉じる
ようにした空気調和機。8. A compressor, an outdoor heat exchanger, a first throttle device whose opening can be adjusted, a gas-liquid separator, a second throttle device whose opening can be adjusted, and an indoor device. A heat exchanger is sequentially connected to form a refrigeration cycle, and in an air conditioner having an injection pipe for supplying a refrigerant from the gas-liquid separator to the compressor, a means for detecting an outside air temperature; An air conditioner including a two-way valve that can be opened and closed on the way, wherein the two-way valve is closed when the outside air temperature is lower than a predetermined value during a cooling operation or when the outside air temperature is higher than a predetermined value during a heating operation.
可能な第1の絞り装置と、気液分離器と、開度の調節が
可能な第2の絞り装置と、室内熱交換器とを順次接続し
て冷凍サイクルを構成し、前記気液分離器より前記圧縮
機に冷媒を供給するインジェクション配管を備えた空気
調和機において、室内吸込み空気温度を検出する手段
と、インジェクション配管の途中に開閉可能な二方弁を
備え、冷房運転時に室内吸込み空気温度が所定値より高
い場合又は暖房運転時に室内吸込み空気温度が所定値よ
り低い場合には前記二方弁を閉じるようにした空気調和
機。9. A compressor, an outdoor heat exchanger, a first throttle device whose opening can be adjusted, a gas-liquid separator, a second throttle device whose opening can be adjusted, and an indoor device. A means for detecting the indoor suction air temperature in an air conditioner having an injection pipe for supplying a refrigerant from the gas-liquid separator to the compressor by sequentially connecting a heat exchanger and forming a refrigeration cycle; A two-way valve that can be opened and closed in the middle of the pipe is provided, and when the indoor suction air temperature is higher than a predetermined value during the cooling operation or when the indoor suction air temperature is lower than the predetermined value during the heating operation, the two-way valve is closed. Air conditioner.
が可能な第1の絞り装置と、気液分離器と、開度の調節
が可能な第2の絞り装置と、室内熱交換器とを順次接続
して冷凍サイクルを構成し、前記気液分離器より前記圧
縮機に冷媒を供給するインジェクション配管を備えた空
気調和機において、室内吸込み空気温度を検出する手段
と、室内吸込み空気湿度を検出する手段と、インジェク
ション配管の途中に開閉可能な二方弁を備え、冷房運転
時に室内吸込み空気温度が所定値より高い場合又は室内
吸込み空気湿度が所定値より高い場合には前記二方弁を
閉じるようにした空気調和機。10. A compressor, an outdoor heat exchanger, a first throttle device whose opening can be adjusted, a gas-liquid separator, a second throttle device whose opening can be adjusted, and an indoor device. A means for detecting the indoor suction air temperature in an air conditioner comprising an injection pipe for supplying a refrigerant from the gas-liquid separator to the compressor by sequentially connecting a heat exchanger and a refrigeration cycle; A means for detecting the suction air humidity and a two-way valve that can be opened and closed in the middle of the injection pipe, and when the indoor suction air temperature is higher than a predetermined value during cooling operation or when the indoor suction air humidity is higher than a predetermined value, An air conditioner with a two-way valve closed.
いて、前記二方弁を閉じたときには、前記2つの絞り装
置のうちの下流側の絞りを全開にする空気調和装置。11. The air conditioner according to claim 7, wherein when the two-way valve is closed, a downstream throttle of the two throttle devices is fully opened.
て下流側の絞りを全開にするとき、下流側絞りを一回に
開く開度に制限を設け、徐々に下流側絞りを全開にする
空気調和装置。12. The method according to claim 11, wherein when the two-way valve is closed to fully open the downstream throttle, a limit is provided on the opening degree at which the downstream throttle is opened at one time, and the downstream throttle is gradually opened fully. Air conditioner.
絞り装置のうちの下流側の絞りを絞る場合には、一回に
絞る絞り量を所定値以下に制限するようにした空気調和
装置。13. An air conditioner according to claim 1, wherein, when the downstream throttle of the two throttle devices is throttled, the throttle amount reduced at one time is limited to a predetermined value or less. .
が可能な第1の絞り装置と、気液分離器と、開度の調節
が可能な第2の絞り装置と、室内熱交換器とを順次接続
して冷凍サイクルを構成し、前記気液分離器より前記圧
縮機に冷媒を供給するインジェクション配管を備えた空
気調和機において、インジェクション配管の途中に開閉
可能な二方弁を備え、運転開始から所定時間は二方弁を
閉じ、二方弁を開いたときには下流側の絞りの開度を所
定量に絞るとき、一回に絞る絞り量を所定値以下に制限
した空気調和装置。14. A compressor, an outdoor heat exchanger, a first throttle device whose opening can be adjusted, a gas-liquid separator, a second throttle device whose opening can be adjusted, and an indoor device. A heat exchanger is sequentially connected to form a refrigeration cycle, and in an air conditioner having an injection pipe for supplying a refrigerant from the gas-liquid separator to the compressor, a two-way valve that can be opened and closed in the middle of the injection pipe. When the two-way valve is closed for a predetermined time from the start of operation, and when the two-way valve is opened, when the degree of opening of the downstream throttle is reduced to a predetermined amount, the amount of throttle that is reduced at one time is restricted to a predetermined value or less. Harmony equipment.
吐出冷媒温度の替わりに圧縮機頭部のチャンバ表面温度
を検出するものである空気調和機。15. An air conditioner according to claim 5, wherein the temperature of the chamber surface at the head of the compressor is detected instead of the temperature of the refrigerant discharged from the compressor.
吸入冷媒温度の替わりに圧縮機吸入部に設けたアキュム
レータの表面温度を検出するものである空気調和機。16. An air conditioner according to claim 5, wherein a surface temperature of an accumulator provided in a compressor suction part is detected instead of a compressor suction refrigerant temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000278659A JP3890870B2 (en) | 2000-09-08 | 2000-09-08 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000278659A JP3890870B2 (en) | 2000-09-08 | 2000-09-08 | Air conditioner |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006122881A Division JP3982557B2 (en) | 2006-04-27 | 2006-04-27 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002081769A true JP2002081769A (en) | 2002-03-22 |
JP3890870B2 JP3890870B2 (en) | 2007-03-07 |
Family
ID=18763789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000278659A Expired - Fee Related JP3890870B2 (en) | 2000-09-08 | 2000-09-08 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3890870B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007327727A (en) * | 2006-06-09 | 2007-12-20 | Hitachi Appliances Inc | Heat pump water heater |
JP2010249448A (en) * | 2009-04-17 | 2010-11-04 | Mitsubishi Heavy Ind Ltd | Heat pump type water heater-air conditioner |
WO2012032699A1 (en) * | 2010-09-08 | 2012-03-15 | パナソニック株式会社 | Refrigeration cycle device |
KR101397660B1 (en) | 2007-12-24 | 2014-05-23 | 엘지전자 주식회사 | Air conditioning system |
US20140326014A1 (en) * | 2010-05-28 | 2014-11-06 | Lg Electronics Inc. | Hot water supply apparatus associated with heat pump |
KR101460717B1 (en) | 2007-12-24 | 2014-11-13 | 엘지전자 주식회사 | Air conditioning system |
JP2015083894A (en) * | 2013-10-25 | 2015-04-30 | ダイキン工業株式会社 | Refrigeration unit |
CN104633862A (en) * | 2015-02-03 | 2015-05-20 | 深圳麦格米特电气股份有限公司 | Control method of electronic expansion valve in refrigeration operation of variable frequency air conditioner |
JP2015132428A (en) * | 2014-01-14 | 2015-07-23 | 株式会社デンソー | Heat pump cycle |
CN105371499A (en) * | 2015-10-30 | 2016-03-02 | 株洲麦格米特电气有限责任公司 | Control method for electronic expansion valve of air energy water heater |
JP2019074250A (en) * | 2017-10-16 | 2019-05-16 | 株式会社デンソー | Heat pump cycle |
CN114216201A (en) * | 2021-12-02 | 2022-03-22 | 珠海格力电器股份有限公司 | Control method of fixed-frequency air conditioner and fixed-frequency air conditioner |
JP2023017009A (en) * | 2018-10-02 | 2023-02-02 | ダイキン工業株式会社 | Refrigeration cycle device |
-
2000
- 2000-09-08 JP JP2000278659A patent/JP3890870B2/en not_active Expired - Fee Related
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007327727A (en) * | 2006-06-09 | 2007-12-20 | Hitachi Appliances Inc | Heat pump water heater |
KR101397660B1 (en) | 2007-12-24 | 2014-05-23 | 엘지전자 주식회사 | Air conditioning system |
KR101460717B1 (en) | 2007-12-24 | 2014-11-13 | 엘지전자 주식회사 | Air conditioning system |
JP2010249448A (en) * | 2009-04-17 | 2010-11-04 | Mitsubishi Heavy Ind Ltd | Heat pump type water heater-air conditioner |
US9234675B2 (en) | 2010-05-28 | 2016-01-12 | Lg Electronics Inc. | Hot water supply apparatus associated with heat pump |
US20140326014A1 (en) * | 2010-05-28 | 2014-11-06 | Lg Electronics Inc. | Hot water supply apparatus associated with heat pump |
US9234676B2 (en) | 2010-05-28 | 2016-01-12 | Lg Electronics Inc. | Hot water supply apparatus associated with heat pump |
WO2012032699A1 (en) * | 2010-09-08 | 2012-03-15 | パナソニック株式会社 | Refrigeration cycle device |
JP2015083894A (en) * | 2013-10-25 | 2015-04-30 | ダイキン工業株式会社 | Refrigeration unit |
WO2015060384A1 (en) * | 2013-10-25 | 2015-04-30 | ダイキン工業株式会社 | Refrigeration device |
EP3062041A4 (en) * | 2013-10-25 | 2017-06-07 | Daikin Industries, Ltd. | Refrigeration device |
WO2015107876A1 (en) * | 2014-01-14 | 2015-07-23 | 株式会社デンソー | Heat pump cycle |
JP2015132428A (en) * | 2014-01-14 | 2015-07-23 | 株式会社デンソー | Heat pump cycle |
CN104633862A (en) * | 2015-02-03 | 2015-05-20 | 深圳麦格米特电气股份有限公司 | Control method of electronic expansion valve in refrigeration operation of variable frequency air conditioner |
CN105371499A (en) * | 2015-10-30 | 2016-03-02 | 株洲麦格米特电气有限责任公司 | Control method for electronic expansion valve of air energy water heater |
JP2019074250A (en) * | 2017-10-16 | 2019-05-16 | 株式会社デンソー | Heat pump cycle |
US11320170B2 (en) | 2017-10-16 | 2022-05-03 | Denso Corporation | Heat pump cycle |
JP2023017009A (en) * | 2018-10-02 | 2023-02-02 | ダイキン工業株式会社 | Refrigeration cycle device |
JP7473833B2 (en) | 2018-10-02 | 2024-04-24 | ダイキン工業株式会社 | Refrigeration Cycle Equipment |
CN114216201A (en) * | 2021-12-02 | 2022-03-22 | 珠海格力电器股份有限公司 | Control method of fixed-frequency air conditioner and fixed-frequency air conditioner |
CN114216201B (en) * | 2021-12-02 | 2024-03-22 | 珠海格力电器股份有限公司 | Control method of fixed-frequency air conditioner and fixed-frequency air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JP3890870B2 (en) | 2007-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7617694B2 (en) | Apparatus and method for controlling super-heating degree in heat pump system | |
US20070266719A1 (en) | Air conditioner and method of controlling the same | |
JP3982557B2 (en) | Air conditioner | |
JP2002081769A (en) | Air conditioner | |
JP2008261513A (en) | Refrigerating cycle device | |
US11193705B2 (en) | Refrigeration cycle apparatus | |
US8205463B2 (en) | Air conditioner and method of controlling the same | |
JP2007101177A (en) | Air conditioner or refrigerating cycle device | |
JPH10176866A (en) | Refrigeration device | |
JP6554903B2 (en) | Air conditioner | |
JPH11132575A (en) | Air conditioner | |
JP3021987B2 (en) | Refrigeration equipment | |
JPH0493558A (en) | Operation-controlling device for refrigeration arrangement | |
JP3237206B2 (en) | Air conditioner | |
JP2006177598A (en) | Refrigerating cycle device | |
JP2572648B2 (en) | Overheating prevention device for ice machine compressor | |
JPH09236299A (en) | Running control device for air conditioning apparatus | |
JPH07332736A (en) | Air conditioner | |
JPH02157568A (en) | Refrigerant residence suppressing device for air conditioning device | |
JPH08128747A (en) | Controller for air conditioner | |
KR100292496B1 (en) | Method for preventing inflow of compressor liquid refrigerant in heat pump air conditioner and its device | |
JPH03186156A (en) | Pressure equalizer of air conditioner | |
JPH08219566A (en) | High pressure protector and condensation pressure controller in refrigerating apparatus | |
JP2001116372A (en) | Refrigerating cycle controller | |
JPS60122848A (en) | Operation control device for air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060427 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061127 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101215 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |