JP2572648B2 - Overheating prevention device for ice machine compressor - Google Patents

Overheating prevention device for ice machine compressor

Info

Publication number
JP2572648B2
JP2572648B2 JP1179014A JP17901489A JP2572648B2 JP 2572648 B2 JP2572648 B2 JP 2572648B2 JP 1179014 A JP1179014 A JP 1179014A JP 17901489 A JP17901489 A JP 17901489A JP 2572648 B2 JP2572648 B2 JP 2572648B2
Authority
JP
Japan
Prior art keywords
compressor
temperature
refrigerant
pressure
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1179014A
Other languages
Japanese (ja)
Other versions
JPH0345857A (en
Inventor
順一 樋田
和弘 森
宏之 杉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP1179014A priority Critical patent/JP2572648B2/en
Publication of JPH0345857A publication Critical patent/JPH0345857A/en
Application granted granted Critical
Publication of JP2572648B2 publication Critical patent/JP2572648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、オーガ式製氷機のような製氷機の冷凍回路
に関し、特に、同冷凍回路に含まれる圧縮機の過熱防止
に関するものである。
Description: TECHNICAL FIELD The present invention relates to a refrigeration circuit of an ice maker such as an auger type ice maker, and more particularly, to prevention of overheating of a compressor included in the refrigeration circuit.

[従来の技術]及び[発明が解決しようとする課題] 従来、圧縮機の過熱による不都合を無くすために、 製氷機の分野では、過熱が生じると圧縮機の運転を停
止させる方法が一般に採用されているが、このような方
法では、停止中に製氷を行うことができなくなり、 空調装置の分野では、圧縮機の過熱を検知したら、減
圧弁をバイパスするように冷媒を流す技術が例えば実開
昭58−124760号公報に開示されているが、この技術を単
に製氷機に適用してみても、蒸発温度が高くなり過ぎて
製氷が行われなくなり、 また、インジェクション冷却方式のロータリコンプレ
ッサを含む冷凍装置においては、例えば実公昭52−7815
7号公報に開示されているように、冷媒循環量の一部を
圧縮機の冷却に使用する技術があるが、空調装置に比較
して製氷機では冷媒循環量が少ないため、その一部をキ
ャピラリーを用いて圧縮機に流そうとすると、細く長い
キャピラリーが必要になり、キャピラリー詰まりのよう
な二次弊害を招来する。
[Prior Art] and [Problems to be Solved by the Invention] Conventionally, in the field of ice making machines, a method of stopping the operation of a compressor when overheating occurs has been generally adopted in order to eliminate inconvenience due to overheating of the compressor. However, in such a method, ice making cannot be performed while the system is stopped, and in the field of air conditioners, a technology for flowing a refrigerant so as to bypass a pressure reducing valve when overheating of a compressor is detected, for example, has been implemented. Although this technology is disclosed in Japanese Patent Application Laid-Open No. 58-124760, even if this technology is simply applied to an ice making machine, the evaporating temperature becomes too high and ice making is not performed, and a refrigeration system including a rotary compressor of an injection cooling system is used. In the apparatus, for example, Japanese Utility Model Publication No. 52-7815
As disclosed in Japanese Patent Publication No. 7, there is a technique for using a part of the refrigerant circulation amount for cooling the compressor. If a capillary is used to flow through the compressor, a narrow and long capillary is required, which causes secondary adverse effects such as clogging of the capillary.

従って、本発明の目的は、少なくとも上記及びの
ような問題のない製氷機用圧縮機の過熱防止装置を提供
することである。
Accordingly, an object of the present invention is to provide an overheating prevention device for an ice machine compressor which does not have at least the above problems.

[課題を解決するための手段] この目的から、本発明によると、製氷機用圧縮機の過
熱防止装置は、冷媒入口及び出口を有する製氷機用圧縮
機と、該圧縮機の冷媒出口に凝縮器を介して一端で接続
された膨張手段と、該膨張手段の他端及び前記圧縮機の
冷媒入口の間に接続された蒸発器を備える冷凍回路にお
いて、前記製氷機用圧縮機の温度を検出する温度検出装
置と、前記膨張手段の一端及び他端に同膨張手段と並列
に接続されたバイパス管と、該バイパス管に設けられる
と共に、前記温度検出装置に接続された電磁弁と、該電
磁弁と直列に前記バイパス管に設けられた減圧手段とを
備え、該減圧手段は、該減圧手段を通る冷媒の出口側の
低圧圧力が前記膨張手段を通る冷媒の出口側の低圧圧力
よりも高く設定されていることを特徴とするものであ
る。
[Means for Solving the Problems] For this purpose, according to the present invention, an overheating prevention device for an ice maker compressor includes an ice maker compressor having a refrigerant inlet and an outlet, and condensing at a refrigerant outlet of the compressor. A refrigerating circuit comprising an expansion means connected at one end via a vessel, and an evaporator connected between the other end of the expansion means and a refrigerant inlet of the compressor, and detects a temperature of the ice making compressor. A temperature detecting device, a bypass pipe connected to one end and the other end of the expansion means in parallel with the expansion means, an electromagnetic valve provided in the bypass pipe and connected to the temperature detection apparatus, A pressure reducing means provided in the bypass pipe in series with the valve, wherein the pressure reducing means is configured such that the low pressure of the outlet of the refrigerant passing through the pressure reducing means is higher than the low pressure of the outlet of the refrigerant passing through the expansion means. It is characterized by being set Things.

好適な実施例においては、温度検出装置はサーミスタ
であり、該サーミスタと電磁弁との間には、タイマ機能
を有する制御器が接続されている。
In a preferred embodiment, the temperature detecting device is a thermistor, and a controller having a timer function is connected between the thermistor and the solenoid valve.

[作用] 圧縮機の温度は温度検出装置により検出されている。
この温度検出装置が圧縮機の過熱状態を表す設定温度を
検出すると、電磁弁が開弁される。
[Operation] The temperature of the compressor is detected by a temperature detecting device.
When the temperature detecting device detects a set temperature indicating an overheated state of the compressor, the solenoid valve is opened.

電磁弁が開弁されると、冷媒が減圧弁に流れるが、減
圧弁の設定低圧圧力は膨張弁よりも高いため、冷媒は、
蒸発器に流入しても十分に蒸発せず、圧縮機へ部分的に
液相(湿り蒸気)の状態で戻り、この湿り蒸気が圧縮機
内で気化することにより圧縮機が冷却される。
When the solenoid valve is opened, the refrigerant flows to the pressure reducing valve, but since the set low pressure of the pressure reducing valve is higher than that of the expansion valve, the refrigerant is
Even if it flows into the evaporator, it does not evaporate sufficiently, returns to the compressor partially in a liquid phase (wet steam), and the wet steam is vaporized in the compressor to cool the compressor.

圧縮機が冷却されれば、温度検出装置を介して電磁弁
が閉弁される。温度検出装置がサーミスタの場合には、
制御器のタイマ機能により一定時間を経過すると、電磁
弁が閉弁される。
When the compressor is cooled, the solenoid valve is closed via the temperature detection device. If the temperature detector is a thermistor,
When a certain time has elapsed by the timer function of the controller, the solenoid valve is closed.

このようにして電磁弁がオン・オフされ、製氷を続け
ながら圧縮機の過熱を防止する。
In this way, the solenoid valve is turned on and off to prevent overheating of the compressor while continuing ice making.

[実施例] 次に、本発明の好適な実施例について添付図面を参照
して詳細に説明する。
Embodiment Next, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図は、本発明によるオーガ式製氷機用冷凍回路の
一例を略図的に示すもので、圧縮機1の冷媒出口から冷
媒入口に伸びる配管1aには、冷媒の流れに関して上流側
から順に、凝縮器2と、膨張弁3と、蒸発器4とが直列
に設けられている。また、膨張弁3の入口にはバイパス
管1bが接続されており、このバイパス管1bに、電磁弁6
と、減圧弁7とが直列に設けられている。更に、実施例
では圧縮機1のケースに、ライン8aを介して制御器9に
接続された温度検出装置8が設けられており、電磁弁6
の開閉はこの制御器9によりライン8bを介して制御され
る。5は、圧縮機1の冷媒入口側に接続された別の温度
検出装置もしくは感温筒であって、これが膨張弁3の開
閉を制御する。
FIG. 1 schematically illustrates an example of an auger-type ice maker refrigeration circuit according to the present invention. In a pipe 1a extending from a refrigerant outlet to a refrigerant inlet of the compressor 1, a refrigerant flow is arranged in order from the upstream side with respect to the flow of the refrigerant. A condenser 2, an expansion valve 3, and an evaporator 4 are provided in series. A bypass pipe 1b is connected to the inlet of the expansion valve 3, and a solenoid valve 6 is connected to the bypass pipe 1b.
And a pressure reducing valve 7 are provided in series. Further, in the embodiment, the case of the compressor 1 is provided with a temperature detecting device 8 connected to a controller 9 via a line 8a.
Is controlled by this controller 9 via line 8b. Reference numeral 5 denotes another temperature detecting device or a temperature sensing tube connected to the refrigerant inlet side of the compressor 1, which controls opening and closing of the expansion valve 3.

減圧弁7としては、キャピラリーチューブ又は定圧式
膨張弁を使用することができ、また、温度検出装置8と
しては、サーモスタット又はサーミスタのような周知の
ものを使用することができる。実施例では、圧縮機1の
ケースに唯一つの温度検出装置8を設けたが、複数個の
温度検出装置8を圧縮機1の冷媒出口側配管に設けた
り、圧縮機モータ(図示せず)の巻線に設けたりしても
よい。尚、温度検出装置8は、圧縮機1の温度を直接又
は間接的に検出できればよいので、その取付位置は上記
の位置に限定されない。更に、膨張弁3は感温筒による
温度作動式としたが、定圧式でもよい。
As the pressure reducing valve 7, a capillary tube or a constant pressure type expansion valve can be used, and as the temperature detecting device 8, a well-known device such as a thermostat or a thermistor can be used. In the embodiment, only one temperature detecting device 8 is provided in the case of the compressor 1. However, a plurality of temperature detecting devices 8 may be provided in a refrigerant outlet pipe of the compressor 1 or a compressor motor (not shown). It may be provided on a winding. Note that the mounting position is not limited to the above-described position since the temperature detecting device 8 only needs to be able to directly or indirectly detect the temperature of the compressor 1. Further, the expansion valve 3 is a temperature-operated type using a temperature-sensitive cylinder, but may be a constant-pressure type.

圧縮機1が過熱されていない通常の運転時には、電磁
弁6が閉弁しているため、減圧弁7に冷媒は流れない。
しかし、周囲温度の上昇や、凝縮器2の目詰まり等の原
因により圧縮機1が過負荷になり、圧縮機1の温度が徐
々に上昇して過熱状態を示す所定値に至ると、温度検出
装置8がこの所定値を検出して制御器9に検出信号を出
力し、電磁弁6が制御器9を介して開弁する。減圧弁7
の設定低圧圧力は、過熱が生じる前の膨張弁3の出口側
低圧圧力よりも若干高くなるように、設定されている。
During a normal operation in which the compressor 1 is not overheated, the refrigerant does not flow through the pressure reducing valve 7 because the solenoid valve 6 is closed.
However, when the compressor 1 is overloaded due to a rise in the ambient temperature or a cause such as clogging of the condenser 2 and the temperature of the compressor 1 gradually increases to reach a predetermined value indicating an overheated state, the temperature is detected. The device 8 detects this predetermined value and outputs a detection signal to the controller 9, and the solenoid valve 6 opens via the controller 9. Pressure reducing valve 7
Is set to be slightly higher than the low pressure on the outlet side of the expansion valve 3 before overheating occurs.

過熱時にこのように電磁弁6を開くことにより冷媒を
減圧弁7に通すと、蒸発器4内を流れる冷媒は、同蒸発
器4で完全に蒸発しきれなくなるため、蒸発器4出口側
の温度が低下し、温度検出装置5がこれを検出して膨張
弁3を閉弁させようとする。前述のように、減圧弁7は
膨張弁3の低圧圧力より僅かに高く設定されているの
で、膨張弁3は閉弁する。即ち、温度作動式膨張弁で
は、ある一定の過熱度で低圧圧力と感温筒5の温度とが
バランスしているとすると、電磁弁6を開くことにより
低圧圧力が上昇し、蒸発器4では低圧圧力が高くなる。
そのため、冷媒の循環量が増大するので、冷媒が蒸発器
4で完全に蒸発しきれず、感温筒5の温度は低下する。
このように過熱度が低くなるため、膨張弁3は閉じよう
とする。しかし、冷媒は減圧弁7より流れ込むため、低
圧圧力はバランス圧力よりも低くならず、膨張弁3は過
熱度の低下に対応してどんどん閉弁する。
When the refrigerant is passed through the pressure reducing valve 7 by opening the solenoid valve 6 during overheating in this way, the refrigerant flowing in the evaporator 4 cannot completely evaporate in the evaporator 4, so that the temperature at the outlet side of the evaporator 4 Decreases, and the temperature detection device 5 detects this, and tries to close the expansion valve 3. As described above, since the pressure reducing valve 7 is set slightly higher than the low pressure of the expansion valve 3, the expansion valve 3 is closed. That is, in the temperature-operated expansion valve, assuming that the low-pressure pressure and the temperature of the thermosensitive cylinder 5 are balanced at a certain degree of superheat, the low-pressure pressure rises by opening the solenoid valve 6 and the evaporator 4 Low pressure increases.
Therefore, the circulation amount of the refrigerant increases, so that the refrigerant cannot completely evaporate in the evaporator 4, and the temperature of the thermosensitive cylinder 5 decreases.
Since the degree of superheat is thus reduced, the expansion valve 3 attempts to close. However, since the refrigerant flows from the pressure reducing valve 7, the low pressure does not become lower than the balance pressure, and the expansion valve 3 closes rapidly in response to the decrease in the degree of superheat.

定圧式膨張弁の場合も同様である。即ち、低圧圧力を
一定値に保とうとするのが低圧式膨張弁であるが、電磁
弁6を開き減圧弁7に冷媒が流れると、減圧弁7の設定
圧力は膨張弁3の低圧圧力よりも高く設定してあるため
に、膨張弁3の低圧圧力が上昇し、その結果、膨張弁3
は、上昇した低圧圧力を一定値まで低下させるべく絞る
ように動作するので、閉弁することになる。
The same applies to a constant pressure type expansion valve. That is, the low-pressure expansion valve tries to keep the low-pressure pressure at a constant value. However, when the solenoid valve 6 is opened and the refrigerant flows through the pressure-reducing valve 7, the set pressure of the pressure-reducing valve 7 is lower than the low-pressure pressure of the expansion valve 3. Because of the high setting, the low pressure of the expansion valve 3 increases, and as a result, the expansion valve 3
Operates to reduce the increased low-pressure pressure to a certain value, so that the valve is closed.

このように電磁弁6及び減圧弁7を冷媒が流れている
サイクルでは、膨張弁3が開いているサイクルよりも低
圧圧力が高く、冷媒は、蒸発器4で完全に蒸発できない
ので、圧縮機1へ一部が液相(湿り蒸気)で戻る。圧縮
機1はこの湿り蒸気が圧縮機内で気化することで冷却さ
れ、その過熱が防止される。
As described above, in the cycle in which the refrigerant flows through the solenoid valve 6 and the pressure reducing valve 7, the low-pressure pressure is higher than in the cycle in which the expansion valve 3 is open, and the refrigerant cannot completely evaporate in the evaporator 4. A part returns to the liquid phase (wet vapor). The compressor 1 is cooled by the vaporization of the wet steam in the compressor, thereby preventing overheating.

一般に製氷機においては、低圧圧力が高くなると製氷
能力は低下するので、減圧弁7の設定圧力は、膨張弁3
で制御するサイクルの低圧圧力よりも若干高くなる程度
であることが好ましく、例えば、0.1〜0.3Kg/cm2程度の
差圧が好適である。このように設定すれば、圧縮機1に
戻る液冷媒の量も圧縮機の過熱を防止しうる範囲内で最
少になり、圧縮機で液圧縮を起こすこともなく、製氷能
力の低下を最低限に抑えることができる。
Generally, in an ice making machine, as the low pressure increases, the ice making capacity decreases.
It is preferable that the pressure is slightly higher than the low pressure of the cycle controlled by the above, for example, a differential pressure of about 0.1 to 0.3 kg / cm 2 is suitable. With this setting, the amount of liquid refrigerant returning to the compressor 1 is also minimized within a range where overheating of the compressor can be prevented, without causing liquid compression in the compressor and minimizing deterioration in ice making capacity. Can be suppressed.

次に、圧縮機1が冷却されれば、製氷量を増すため
に、膨張弁3が開弁される冷凍サイクルに戻す。温度検
知装置8がサーモスタットである場合には、そのオン・
オフの温度ディファレンシャルが比較的に大きいので、
ディファレンシャルに依存して電磁弁6を閉弁させ、そ
の結果、膨張弁3を開弁させることができる。しかし、
サーミスタである場合、検知温度にある一定のディファ
レンシャルを持たせて2温度設定とし、電磁弁6をオン
・オフ制御することができないので(ディファレンシャ
ルが小さいため、制御に使用すると電磁弁が頻繁にオン
・オフし、電磁弁の故障になる)、制御器9にタイマ機
能を持たせておくのが有利である。即ち、サーミスタが
圧縮機の過熱状態を示す設定温度を検出し、その検出信
号を制御器9に入力すると、同制御器9が開弁信号を電
磁弁6に出力すると共に、制御器9のタイマ回路(図示
せず)が動作して、例えば5〜8分というような一定時
間後に電磁弁6を閉弁させる。
Next, when the compressor 1 is cooled, the operation returns to the refrigeration cycle in which the expansion valve 3 is opened in order to increase the amount of ice making. When the temperature detecting device 8 is a thermostat,
Because the off temperature differential is relatively large,
The solenoid valve 6 can be closed depending on the differential, and as a result, the expansion valve 3 can be opened. But,
In the case of a thermistor, the detected temperature is set to two temperatures by giving a certain differential, and the solenoid valve 6 cannot be controlled on / off. (Since the differential is small, the solenoid valve is frequently turned on when used for control.) (It turns off and the solenoid valve fails), and it is advantageous to provide the controller 9 with a timer function. That is, when the thermistor detects a set temperature indicating an overheated state of the compressor and inputs a detection signal to the controller 9, the controller 9 outputs a valve opening signal to the solenoid valve 6 and a timer of the controller 9 A circuit (not shown) operates to close the solenoid valve 6 after a certain period of time, for example, 5 to 8 minutes.

このようにして、膨張弁3を使用する冷凍サイクルと
減圧弁7を使用する冷凍サイクルとが交互に繰り返さ
れ、圧縮機1の温度、蒸発器4の入口温度、蒸発器4の
出口温度(圧縮機の吸込温度とほぼ同じ)が第2図に示
すように変化する。即ち、第2図(a)において、製氷
機の運転が始まると圧縮機1の温度は曲線11で示すよう
に徐々に上昇し、蒸発器4の入口温度及び出口温度はそ
れぞれ曲線12、13が示すように低下する。圧縮機1の温
度が時間t1で過熱状態を表す設定上限温度に達すると、
第2図(b)に示すように電磁弁6が開弁し、制御器9
のタイマ回路の設定時間t2に至ると、電磁弁6が再び開
弁する。蒸発器4の入口温度は、曲線12から分かるよう
に電磁弁6が開弁すると低圧圧力が高くなった分だけ上
昇し、閉弁すると低圧圧力が低くなった分だけ低下す
る。また、蒸発器4の出口温度は、曲線13からわかるよ
うに電磁弁6が開弁すると低圧圧力が上昇した分冷媒が
蒸発できないため、入口温度とほぼ同じ程度まで低下
し、閉弁すると上昇する。
In this manner, the refrigeration cycle using the expansion valve 3 and the refrigeration cycle using the pressure reducing valve 7 are alternately repeated, and the temperature of the compressor 1, the inlet temperature of the evaporator 4, and the outlet temperature of the evaporator 4 (compression temperature) (Approximately the same as the suction temperature of the machine) changes as shown in FIG. That is, in FIG. 2 (a), when the operation of the ice maker starts, the temperature of the compressor 1 gradually rises as shown by the curve 11, and the inlet temperature and the outlet temperature of the evaporator 4 correspond to the curves 12 and 13, respectively. As shown. When the temperature of the compressor 1 reaches the set upper limit temperature indicating an overheating at time t 1,
As shown in FIG. 2 (b), the solenoid valve 6 opens and the controller 9
It reaches the set time t 2 of the timer circuit, the solenoid valve 6 is opened again. As can be seen from the curve 12, when the solenoid valve 6 is opened, the inlet temperature of the evaporator 4 increases by an amount corresponding to an increase in low pressure, and when the valve is closed, the temperature decreases by an amount corresponding to a decrease in low pressure. Further, as can be seen from the curve 13, the outlet temperature of the evaporator 4 decreases to almost the same as the inlet temperature, and increases when the solenoid valve 6 is opened, because the refrigerant cannot evaporate due to the increase in low pressure when the solenoid valve 6 is opened. .

[発明の効果] 以上のように、本発明の過熱防止方法及び装置によれ
ば、圧縮機の過熱を検知したら、膨張弁に並列に設けら
れた、設定低圧圧力が該膨張弁より高い減圧弁を開くよ
うにしているため、低圧圧力を増加分だけの最少の製氷
能力低下で圧縮機を冷却することができる。
[Effects of the Invention] As described above, according to the overheating prevention method and apparatus of the present invention, when overheating of the compressor is detected, the pressure reducing valve provided in parallel with the expansion valve and having a lower set pressure higher than the expansion valve. As a result, the compressor can be cooled with a minimum decrease in ice making capacity by an increase in low pressure.

また、本発明に従って上述のように減圧弁を使用する
と、冷媒を自由に選定できるために、オゾン層を破壊す
ると言われているR−12やR−502のような特定のフロ
ン系冷媒以外のものも使用できる。
In addition, when the pressure reducing valve is used as described above according to the present invention, the refrigerant can be freely selected, and therefore, other than a specific chlorofluorocarbon-based refrigerant such as R-12 or R-502 which is said to destroy the ozone layer. Things can also be used.

その理由について以下に記載すると、例えばオーガ式
のような製氷機においては、高圧縮比でも圧縮機が過熱
しないように、フロン系冷媒であるR−12や、R−22及
びR−115の共沸混合体であるR−502が使用されてお
り、圧縮機を過熱させ易いフロン系冷媒のR−22は、製
氷機では使用しない慣行であつた。
The reason is described below. For example, in an ice making machine such as an auger type, the refrigerant such as R-12, R-22, and R-115 is used to prevent the compressor from overheating even at a high compression ratio. R-502, which is a boiling mixture, was used, and R-22, a CFC-based refrigerant that easily overheats the compressor, was not used in an ice machine.

即ち、比較的に飽和液ガス温度が似ているR−22及び
R−502に例をとってモリエル線図で説明すると、R−5
02及びR−22の冷凍サイクルは第3A図のようになる。第
3A図において、圧縮機の吸入ガスの状態を同程度の過熱
度とすると、圧縮機の吐出温度は、R−502ではA点、
R−22ではA′点となり、A′点の方が温度が高く圧縮
機を過熱させ易い。これは、等エンタルピー線がR−22
の方がR−502より傾いているためである。
In other words, taking the Mollier diagram as an example for R-22 and R-502 having relatively similar saturated liquid gas temperatures, R-5
The refrigeration cycles of 02 and R-22 are as shown in FIG. 3A. No.
In FIG. 3A, assuming that the state of the suction gas of the compressor is the same degree of superheat, the discharge temperature of the compressor is point A in R-502,
In the case of R-22, the point is point A ', and the point A' is higher in temperature and tends to overheat the compressor. This is because the isenthalpy line is R-22
Is more inclined than R-502.

しかし、第3B図に示すように、蒸発温度が高い空調装
置の場合(第3B図において、B点はR−502を利用した
製氷機についてのモリエル線図上の蒸発温度、B′点は
R−22を利用した空調装置についてのモリエル線図上の
蒸発温度をそれぞれ示す)、等エンタルピー線がR−22
の方がR−502より傾いていても、冷媒R−22の吐出温
度A′を比較的に低く抑えることができるので、冷媒R
−22は空調装置用として用いられてきた。
However, as shown in FIG. 3B, in the case of an air conditioner having a high evaporation temperature (in FIG. 3B, point B is the evaporation temperature on the Mollier diagram for an ice making machine using R-502, and point B 'is R Evaporation temperature on a Mollier diagram for an air conditioner using -22 is shown respectively), and the isenthalpy line is R-22.
Is more inclined than R-502, the discharge temperature A 'of the refrigerant R-22 can be kept relatively low.
-22 has been used for air conditioners.

従って、冷媒R−22をR−502と同様に製氷機に使い
たい場合には、第3C図に示すように、吐出温度A′、A
を同程度とするため、冷媒R−22については、過熱度を
低くして湿り蒸気の状態で冷媒を圧縮機に戻せばよい。
Therefore, when it is desired to use the refrigerant R-22 for the ice maker similarly to R-502, as shown in FIG. 3C, the discharge temperatures A 'and A
, The refrigerant R-22 may be returned to the compressor in the form of wet steam by lowering the degree of superheat.

本発明によると、圧縮機が過熱状態となって電磁弁が
開弁している時には、減圧弁の低圧圧力が上昇した分冷
媒が蒸発できないので、過熱度の低い湿り蒸気の状態の
冷媒が圧縮機に戻ることになり、R−22のような冷媒で
も製氷機において使用可能となる。
According to the present invention, when the compressor is overheated and the solenoid valve is opened, the refrigerant in the state of wet steam having a low degree of superheat is compressed because the refrigerant corresponding to the increased low pressure of the pressure reducing valve cannot evaporate. Then, the refrigerant such as R-22 can be used in the ice maker.

更に、本発明の好適な実施例によれば、過熱時に電磁
弁6が開弁している間、冷媒は膨張弁3を流れないた
め、減圧弁としてキャピラリーチューブを選定した場合
でも、冷媒循環量の一部を分けて圧縮機を冷却させるイ
ンジェクション方式のものよりも太く又は/及び短いキ
ャピラリーチューブを使用できるため、詰まり等の現象
の発生は大幅に減少する。
Further, according to the preferred embodiment of the present invention, the refrigerant does not flow through the expansion valve 3 while the solenoid valve 6 is open at the time of overheating. Therefore, even when the capillary tube is selected as the pressure reducing valve, the refrigerant circulation amount Can be used thicker and / or shorter than those of the injection type in which the compressor is cooled by dividing a part of the tube, and the occurrence of a phenomenon such as clogging is greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明による製氷機用圧縮機の過熱防止方法
を実施する装置を備えた製氷機の冷凍回路の概略図、第
2図(a)及び(b)は、本発明に従って過熱防止方法
を実施した場合の圧縮機温度等と過熱防止装置の電磁弁
の開閉との関係を示すグラフ、第3A図、第3B図及び第3C
図は、本発明の作用、効果を説明するためのグラフであ
る。 1……圧縮機、1b……バイパス管 2……凝縮器、3……膨張手段(膨張弁) 4……蒸発器、6……電磁弁 7……減圧手段(減圧弁) 8……温度検出装置、9……制御器
FIG. 1 is a schematic diagram of a refrigerating circuit of an ice machine provided with an apparatus for implementing a method for preventing overheating of a compressor for an ice machine according to the present invention, and FIGS. 2 (a) and (b) show overheating prevention according to the present invention. Graph showing the relationship between the compressor temperature and the like and the opening and closing of the solenoid valve of the overheat prevention device when the method is carried out, FIGS. 3A, 3B and 3C
The figure is a graph for explaining the operation and effect of the present invention. DESCRIPTION OF SYMBOLS 1 ... Compressor, 1b ... Bypass pipe 2 ... Condenser, 3 ... Expansion means (expansion valve) 4 ... Evaporator, 6 ... Electromagnetic valve 7 ... Pressure reducing means (pressure reducing valve) 8 ... Temperature Detector, 9 Controller

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】冷媒入口及び出口を有する製氷機用圧縮機
と、該圧縮機の冷媒出口に凝縮器を介して一端で接続さ
れた膨張手段と、該膨張手段の他端及び前記圧縮機の冷
媒入口の間に接続された蒸発器を備える冷凍回路におい
て、前記製氷機用圧縮機の温度を検出する温度検出装置
と、前記膨張手段の一端及び他端に同膨張手段と並列に
接続されたバイパス管と、該バイパス管に設けられると
共に、前記温度検出装置に接続された電磁弁と、該電磁
弁と直列に前記バイパス管に設けられた減圧手段とを備
え、該減圧手段は、該減圧手段を通る冷媒の出口側の低
圧圧力が前記膨張手段を通る冷媒の出口側の低圧圧力よ
りも高く設定されていることを特徴とする製氷機用圧縮
機の過熱防止装置。
1. A compressor for an ice making machine having a refrigerant inlet and an outlet, expansion means connected at one end to a refrigerant outlet of the compressor via a condenser, and the other end of the expansion means and the compressor In a refrigeration circuit including an evaporator connected between refrigerant inlets, a temperature detection device for detecting a temperature of the ice making machine compressor, and one end and the other end of the expansion means are connected in parallel with the expansion means. A bypass pipe, a solenoid valve provided in the bypass pipe, connected to the temperature detecting device, and a pressure reducing means provided in the bypass pipe in series with the solenoid valve; An overheating prevention device for a compressor for an ice making machine, characterized in that the low pressure on the outlet side of the refrigerant passing through the expansion means is set higher than the low pressure on the outlet side of the refrigerant passing through the expansion means.
【請求項2】前記温度検出装置はサーミスタであり、該
サーミスタと前記電磁弁との間には、タイマ機能を有す
る制御器が接続されていることを特徴とする特許請求の
範囲第1項記載の製氷機用圧縮機の過熱防止装置。
2. The apparatus according to claim 1, wherein said temperature detecting device is a thermistor, and a controller having a timer function is connected between said thermistor and said solenoid valve. Overheating prevention equipment for ice machine compressors.
JP1179014A 1989-07-13 1989-07-13 Overheating prevention device for ice machine compressor Expired - Lifetime JP2572648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1179014A JP2572648B2 (en) 1989-07-13 1989-07-13 Overheating prevention device for ice machine compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1179014A JP2572648B2 (en) 1989-07-13 1989-07-13 Overheating prevention device for ice machine compressor

Publications (2)

Publication Number Publication Date
JPH0345857A JPH0345857A (en) 1991-02-27
JP2572648B2 true JP2572648B2 (en) 1997-01-16

Family

ID=16058610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1179014A Expired - Lifetime JP2572648B2 (en) 1989-07-13 1989-07-13 Overheating prevention device for ice machine compressor

Country Status (1)

Country Link
JP (1) JP2572648B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4143206B2 (en) * 1998-03-09 2008-09-03 明晃化成工業株式会社 Storage case for disk for recording media
JP5552324B2 (en) * 2010-01-15 2014-07-16 ホシザキ電機株式会社 Drum ice machine
CN115164506B (en) * 2022-06-06 2024-05-28 中科美菱低温科技股份有限公司 Ultralow temperature refrigerator refrigeration control device, control method and refrigerator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332262U (en) * 1986-08-13 1988-03-02

Also Published As

Publication number Publication date
JPH0345857A (en) 1991-02-27

Similar Documents

Publication Publication Date Title
US5241833A (en) Air conditioning apparatus
AU2005277189B2 (en) Compressor loading control
JPH05106922A (en) Control system for refrigerating equipment
JP3610402B2 (en) Heat pump equipment
CN109341125B (en) A kind of refrigeration system and control method
JP2002081769A (en) Air conditioner
WO2006048825A1 (en) A cooling device and a control method
JP3240700B2 (en) Refrigeration cycle using non-azeotropic refrigerant mixture
JP2572648B2 (en) Overheating prevention device for ice machine compressor
JPH07198235A (en) Air conditioner
JP2923133B2 (en) Refrigeration equipment
JPH03221760A (en) Method and apparatus for controlling refrigerant flow in heat pump air conditioner
JPH07305903A (en) Controller for freezer
JP2506377B2 (en) Air conditioner and its control method
JP2522116B2 (en) Operation control device for air conditioner
JP2867792B2 (en) Heating and cooling machine
JP7098513B2 (en) Environment forming device and cooling device
JPH06341741A (en) Defrosting controller for refrigerating device
JP2816790B2 (en) Absorption chiller / heater
JPS62213669A (en) Method of controlling operation of air conditioner
JP3191463B2 (en) Heating and cooling machine
JPH06213541A (en) Heating-and-cooling machine
JPH08145494A (en) Absorption type heat pump
JP3203039B2 (en) Absorption refrigerator
JPH03164662A (en) Refrigerator