JP3203039B2 - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JP3203039B2
JP3203039B2 JP08807792A JP8807792A JP3203039B2 JP 3203039 B2 JP3203039 B2 JP 3203039B2 JP 08807792 A JP08807792 A JP 08807792A JP 8807792 A JP8807792 A JP 8807792A JP 3203039 B2 JP3203039 B2 JP 3203039B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
cooling water
water level
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08807792A
Other languages
Japanese (ja)
Other versions
JPH05256534A (en
Inventor
勝彦 上西
明 成宮
利弘 藤野
英樹 谷
敏宏 石橋
佐登志 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP08807792A priority Critical patent/JP3203039B2/en
Publication of JPH05256534A publication Critical patent/JPH05256534A/en
Application granted granted Critical
Publication of JP3203039B2 publication Critical patent/JP3203039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は吸収式冷凍機に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator.

【0002】[0002]

【従来の技術】まずこの種の吸収冷凍機の構造を図3に
よって説明すると、1は室内冷房ユニット等に冷水を循
環させる負荷配管、2は屋外クーリングタワー等から冷
却水を導入する冷却水配管であり、バーナ3の加熱によ
り高温再生器4で発生する冷媒蒸気(水蒸気)と吸収剤
(リチウム塩類)の中濃度溶液とが分離器5で分離し、
冷媒蒸気は低温再生器6の加熱管を通って溶液を加熱し
たのち、溶液から放出された冷媒蒸気と共に凝縮器7で
冷却されて冷媒液(水)に戻り、更に蒸発器8の管束上
に散布されて、負荷回路1の冷水を冷却すると共に自身
は蒸発し、吸収器9で冷却されて溶液に吸収される。一
方、中濃度溶液は分離器5から高温熱交換器10を通っ
て低温再生器6へ送られ、上記冷媒蒸気による加熱で高
濃度に濃縮されたのち、更に低温熱交換器11を通って
吸収器9へ送られ、蒸発器8からの冷媒蒸気を吸収して
稀溶液となる。この稀溶液は、低温熱交換器11及び高
温熱交換器10で加熱されながら、溶液ポンプ12によ
って高温再生器4へ圧送される。
2. Description of the Related Art First, the structure of this type of absorption refrigerator will be described with reference to FIG. 3. Reference numeral 1 denotes a load pipe for circulating cold water to an indoor cooling unit or the like, and 2 denotes a cooling water pipe for introducing cooling water from an outdoor cooling tower or the like. Yes, the refrigerant vapor (steam) generated in the high-temperature regenerator 4 by the heating of the burner 3 and the medium concentration solution of the absorbent (lithium salts) are separated in the separator 5,
The refrigerant vapor passes through the heating tube of the low-temperature regenerator 6 to heat the solution, and is cooled together with the refrigerant vapor released from the solution in the condenser 7 to return to the refrigerant liquid (water). The sprayed water cools the cold water in the load circuit 1 and evaporates itself, and is cooled by the absorber 9 and absorbed by the solution. On the other hand, the medium-concentration solution is sent from the separator 5 to the low-temperature regenerator 6 through the high-temperature heat exchanger 10, is concentrated to a high concentration by heating with the refrigerant vapor, and is further absorbed through the low-temperature heat exchanger 11. Sent to the evaporator 9 to absorb the refrigerant vapor from the evaporator 8 to become a dilute solution. The diluted solution is pressure-fed to the high-temperature regenerator 4 by the solution pump 12 while being heated by the low-temperature heat exchanger 11 and the high-temperature heat exchanger 10.

【0003】図4は、上記吸収冷凍機の動作特性を示し
たもので、〜は図1の同一符号を付した箇所におけ
る溶液の温度、圧力及び濃度の状態を示しており、→
及び→は稀溶液(約62%)の低温熱交換器11
及び高温熱交換器10における温度上昇、→は高温
再生器4による加熱、→は高温再生器4による濃
縮、→は中濃度溶液(約60%)の高温熱交換器1
0における温度降下、→は低温再生器6による濃
縮、→は高濃度溶液(約58%)の低温熱交換器1
1における温度降下、→は吸収器9内での冷却水に
よる冷却、→は吸収器9内での冷媒の吸収を表わし
ている。
FIG. 4 shows the operating characteristics of the absorption refrigerator. The symbols 〜 indicate the temperature, pressure and concentration of the solution at the same reference numerals in FIG.
And → indicate a low temperature heat exchanger 11 of a dilute solution (about 62%).
And the temperature rise in the high-temperature heat exchanger 10, → is heating by the high-temperature regenerator 4, → is concentration by the high-temperature regenerator 4, → is the high-temperature heat exchanger 1 of a medium concentration solution (about 60%).
Temperature drop at 0, → is concentration by low-temperature regenerator 6, → is low-temperature heat exchanger 1 of high concentration solution (about 58%)
1, represents the cooling by the cooling water in the absorber 9, and → represents the absorption of the refrigerant in the absorber 9.

【0004】通常運転時の冷却水の入口温度は約32
℃、出口温度は約39℃で、冷却用ファンの回転数を制
御することにより入口温度を維持している。この冷却水
温が下がると、吸収器内の溶液温度が図4の破線に沿っ
てTaからTbに下がり、→の吸収行程の蒸気圧もP
1からP2に、蒸発器の蒸発温度もT1からT2にそれぞれ
下がり、従って最も温度の下がる冷水管の表面や冷媒噴
霧口付近などにおいて冷媒の凍結の危険が生じる。そこ
で図3に示すように、冷媒の循環経路内に冷媒貯蔵室1
3とバルブ14とを設け、冷却水温が外気温まで下がる
運転開始時に備えて、運転終了時にこの貯蔵冷媒を放出
して系全体の冷媒(水)の量を増やしておき、運転再開
後にバルブを絞って溶液の濃度を正常に戻すという方法
を採っている。これは吸収サイクル曲線を左方へ平行移
動(図4に鎖線で示した)したことに相当し、このよう
にすれば、溶液温度がTaからTbに下がっても、蒸気圧
及び蒸発温度はそれぞれP1及びT1のまま変わらず、凍
結を防止することができる。
[0004] The cooling water inlet temperature during normal operation is about 32
° C, the outlet temperature is about 39 ° C, and the inlet temperature is maintained by controlling the number of revolutions of the cooling fan. When the cooling water temperature falls, the solution temperature in the absorber falls from Ta to Tb along the broken line in FIG.
From 1 to P2, the evaporation temperature of the evaporator also drops from T1 to T2, and therefore, there is a danger of freezing of the refrigerant at the surface of the cold water pipe or the vicinity of the refrigerant spray port where the temperature drops most. Therefore, as shown in FIG.
3 and a valve 14 to release the stored refrigerant at the end of the operation to increase the amount of refrigerant (water) in the entire system in preparation for the start of the operation in which the cooling water temperature drops to the outside temperature. The solution is squeezed to return the concentration of the solution to normal. This is equivalent to translating the absorption cycle curve to the left (indicated by the dashed line in FIG. 4), so that even if the solution temperature drops from Ta to Tb, the vapor pressure and the evaporation temperature respectively Freezing can be prevented without changing P1 and T1.

【0005】また初夏などには、気温が低く運転中に冷
却水温が設定値以下になる場合がある。そのような場合
の凍結防止対策として、従来は図3に示すように、蒸発
器8の冷媒蒸発温度を監視する温度センサ15を設け、
冷媒蒸発温度が一定値以下となった時に、バルブ14の
開度を大きくして、冷媒貯蔵室13から冷媒液を放出す
るようにしていた。
In early summer or the like, the temperature of the cooling water may become lower than a set value during operation when the temperature is low. Conventionally, as a measure for preventing freezing in such a case, as shown in FIG. 3, a temperature sensor 15 for monitoring the refrigerant evaporation temperature of the evaporator 8 is provided.
When the refrigerant evaporation temperature falls below a certain value, the opening of the valve 14 is increased to discharge the refrigerant liquid from the refrigerant storage chamber 13.

【0006】[0006]

【発明が解決しようとする課題】上述のように、蒸発器
8の温度低下を温度センサ15が検出してバルブ14を
開き、溶液の晶析防止のために冷媒液を放出すると、図
4の吸収サイクル曲線が全体に左側にずれ、それだけ冷
凍能力が低下する。従って冷却水温が正常に復したのち
は、溶液濃度をできるだけ早く元に戻すのが望ましい。
しかし上記の従来構成では、冷却水の温度が低下してか
ら、溶液の温度が下がって蒸発器8内の蒸気圧が下が
り、それにより冷媒の蒸発温度が低下して、これを温度
センサ15が検知するまでに時間がかかるために、冷却
水温が正常に復したのちも、バルブ14が復帰して冷却
能力が正常に復するまでには相当の時間がかかり、その
間は正常な冷房運転を行うことができないという問題が
あった。
As described above, when the temperature sensor 15 detects that the temperature of the evaporator 8 has dropped, the valve 14 is opened, and the refrigerant liquid is discharged to prevent crystallization of the solution. The absorption cycle curve shifts to the left as a whole, and the refrigeration capacity decreases accordingly. Therefore, it is desirable to return the solution concentration as soon as possible after the cooling water temperature returns to normal.
However, in the above-described conventional configuration, after the temperature of the cooling water has decreased, the temperature of the solution has decreased, and the vapor pressure in the evaporator 8 has decreased, whereby the evaporation temperature of the refrigerant has decreased. Since it takes a long time to detect, even after the cooling water temperature returns to normal, it takes a considerable time until the valve 14 returns and the cooling capacity returns to normal, and during that time, the normal cooling operation is performed. There was a problem that it was not possible.

【0007】[0007]

【課題を解決するための手段】本発明は、図1に示すよ
うに、凝縮器7から蒸発器8までの冷媒経路に、冷媒液
を一時的に滞留させる冷媒貯蔵室13と、この冷媒貯蔵
室13から流出する冷媒液の流量を制御するバルブ14
を設けると共に、冷媒貯蔵室13に水位センサ16を、
冷却水入口に冷却水温センサ17をそれぞれ設け、現在
水位を冷却水温で定まる目標水位に近付けるようにバル
ブ14を制御せしめた点を特徴とするものである。
According to the present invention, as shown in FIG. 1, a refrigerant storage chamber 13 for temporarily storing a refrigerant liquid in a refrigerant path from a condenser 7 to an evaporator 8 is provided. Valve 14 for controlling the flow rate of the refrigerant liquid flowing out of the chamber 13
And a water level sensor 16 in the refrigerant storage chamber 13,
A cooling water temperature sensor 17 is provided at each cooling water inlet, and the valve 14 is controlled so that the current water level approaches a target water level determined by the cooling water temperature.

【0008】[0008]

【作用】冷却水温を用いてバルブを制御する上でまず問
題となるのは、負荷の変動が検知できないという点であ
るが、蒸発器内の蒸気圧は溶液の濃度及び温度のみで決
まり、それによって冷水管表面の蒸発温度も決まる。従
ってもし負荷が変動して冷水管の温度が低下しても、そ
のために蒸発量が減少して冷却機能が抑制されることに
なるので、負荷の変動を無視できるのである。また冷却
水温が低下した場合、必要最小限の希釈で済ませること
ができれば、再び気温が上昇したときに冷却能力が落ち
るのを防止することができるが、そのためには常に系全
体の冷媒の含有量を検知して、これが必要量に達したと
きに冷媒液の放出を停止する必要がある。本発明におけ
る水位センサはその役目を果たしているのである。
The first problem in controlling the valve using the cooling water temperature is that load fluctuation cannot be detected, but the vapor pressure in the evaporator is determined only by the concentration and temperature of the solution. This also determines the evaporation temperature of the cold water pipe surface. Therefore, even if the load fluctuates and the temperature of the cold water pipe decreases, the amount of evaporation decreases and the cooling function is suppressed, so that the fluctuation of the load can be ignored. If the temperature of the cooling water drops, it is possible to prevent the cooling capacity from dropping when the temperature rises again, if the required minimum dilution can be used. It is necessary to stop the discharge of the refrigerant liquid when the required amount is reached. The water level sensor in the present invention fulfills its role.

【0009】[0009]

【実施例】図1は本発明の一実施例を示したもので、図
3の従来例と異なるところは、温度センサ15を廃し
て、冷却水入口に冷却水温センサ17を設けると共に、
冷媒貯蔵室13に水位センサ16を設けて、現在水位を
冷却水温で定まる目標水位に近付けるようにバルブ14
を制御せしめた点であり、その他の構造は図3で説明し
た通りである。バルブ14としては、開度を3段階以上
に調節できる比例弁を使用しているが、オンオフ弁を使
用して、そのデューティ比を変化させるようにしてもよ
い。水位センサ16は、例えば水位を7〜8段階に分
け、同数の近接スイッチあるいは光電スイッチで浮子の
位置を検出するなどの方法で簡単に構成できる。
FIG. 1 shows an embodiment of the present invention. The difference from the conventional example of FIG. 3 is that the temperature sensor 15 is eliminated and a cooling water temperature sensor 17 is provided at a cooling water inlet.
A water level sensor 16 is provided in the refrigerant storage chamber 13, and a valve 14 is provided so that the current water level approaches a target water level determined by the cooling water temperature.
Is controlled, and the other structure is as described with reference to FIG. As the valve 14, a proportional valve capable of adjusting the opening degree in three or more stages is used. However, an on / off valve may be used to change the duty ratio. The water level sensor 16 can be easily configured by, for example, dividing the water level into 7 to 8 stages and detecting the position of the float using the same number of proximity switches or photoelectric switches.

【0010】図2は、上記バルブの制御装置の動作をフ
ローチャートで示したもので、まず冷却水温を測定し
て、演算式又は較正テーブルにより目標水位を求め、次
に現在水位を測定して目標水位と比較し、差があれば現
在水位を目標水位に近付けるようにバルブの開度を変え
て流量を調節する。この場合、目標水位と現在水位との
差が、水位センサの2段階以上あるときには、バルブの
開度も2段階以上変化するように構成すれば、応答性が
一層よくなる。
FIG. 2 is a flowchart showing the operation of the valve control device. First, the cooling water temperature is measured, the target water level is obtained by an arithmetic expression or a calibration table, and then the current water level is measured and the target water level is measured. Compare with the water level, and if there is a difference, adjust the flow rate by changing the valve opening so that the current water level approaches the target water level. In this case, when the difference between the target water level and the current water level is two or more steps of the water level sensor, the responsiveness is further improved if the opening degree of the valve is changed by two or more steps.

【0011】[0011]

【発明の効果】本発明は上述のように、現在の冷却水温
と現在の溶液濃度(貯蔵室水位)とから直ちに目標貯蔵
室水位を求めて、バルブの開度を制御するものであるか
ら、例えば数分後に検出される冷水の温度の変化によっ
て初めて冷却水温の変化に対応できるような従来方式に
比して遥かに応答性がよく、従って凍結の発生を確実に
防止し得る上に、溶液を薄め過ぎて冷却能力がダウンす
ることもないという利点がある。
According to the present invention, as described above, the target storage chamber water level is immediately obtained from the current cooling water temperature and the current solution concentration (storage chamber water level) to control the valve opening. For example, it is much more responsive than the conventional method that can respond to a change in cooling water temperature for the first time by a change in the temperature of the cooling water detected after a few minutes, so that the generation of freezing can be reliably prevented, and the solution There is an advantage that the cooling capacity is not reduced due to excessive thinning.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の系統図。FIG. 1 is a system diagram of one embodiment of the present invention.

【図2】同上の動作説明図。FIG. 2 is an operation explanatory view of the above.

【図3】従来例の系統図。FIG. 3 is a system diagram of a conventional example.

【図4】同上の動作特性図。FIG. 4 is an operation characteristic diagram of the above.

【符号の説明】 1 負荷配管 2 冷却水配管 3 バーナ 4 高温再生器 5 分離器 6 低温再生器 7 凝縮器 8 蒸発器 9 吸収器 13 冷媒貯蔵室 14 バルブ 16 水位センサ 17 冷却水温センサ[Description of Signs] 1 Load piping 2 Cooling water piping 3 Burner 4 High temperature regenerator 5 Separator 6 Low temperature regenerator 7 Condenser 8 Evaporator 9 Absorber 13 Refrigerant storage room 14 Valve 16 Water level sensor 17 Cooling water temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷 英樹 大阪市中央区平野町四丁目1番2号 大 阪瓦斯株式会社内 (72)発明者 石橋 敏宏 静岡県湖西市梅田941−16 (72)発明者 内藤 佐登志 静岡県湖西市新所4494−24 (56)参考文献 特開 平3−211371(JP,A) 特開 昭62−138663(JP,A) 特開 昭57−87573(JP,A) 特開 昭59−60162(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 306 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideki Tani 4-1-2, Hirano-cho, Chuo-ku, Osaka City Inside Osaka Gas Co., Ltd. (72) Inventor Toshihiro Ishibashi 941-16 Umeda, Kosai-shi, Shizuoka (72) Inventor Satoshi Naito 4494-24 Shinsho, Kosai-shi, Shizuoka (56) References JP-A-3-211371 (JP, A) JP-A-62-138663 (JP, A) JP-A-57-87573 (JP, A) JP-A-59-60162 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 15/00 306

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 再生器、凝縮器、蒸発器及び吸収器を備
えた吸収式冷凍機において、凝縮器から蒸発器に至る冷
媒経路に、冷媒液を一時的に貯蔵する冷媒貯蔵室と、冷
媒貯蔵室から流出する冷媒液の流量を制御するバルブを
設けると共に、冷媒貯蔵室に水位センサを、冷却水入口
に冷却水温センサをそれぞれ設け、現在水位を冷却水温
で定まる目標水位に近付けるようにバルブを制御させる
ようにしたことを特徴とする吸収式冷凍機。
1. An absorption refrigerator including a regenerator, a condenser, an evaporator and an absorber, a refrigerant storage chamber for temporarily storing a refrigerant liquid in a refrigerant path from the condenser to the evaporator, A valve is provided to control the flow rate of the refrigerant liquid flowing out of the storage chamber, a water level sensor is provided in the refrigerant storage chamber, and a cooling water temperature sensor is provided at the cooling water inlet, so that the current water level approaches a target water level determined by the cooling water temperature. Absorption chiller characterized by controlling the temperature of the chiller.
JP08807792A 1992-03-11 1992-03-11 Absorption refrigerator Expired - Fee Related JP3203039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08807792A JP3203039B2 (en) 1992-03-11 1992-03-11 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08807792A JP3203039B2 (en) 1992-03-11 1992-03-11 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH05256534A JPH05256534A (en) 1993-10-05
JP3203039B2 true JP3203039B2 (en) 2001-08-27

Family

ID=13932804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08807792A Expired - Fee Related JP3203039B2 (en) 1992-03-11 1992-03-11 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3203039B2 (en)

Also Published As

Publication number Publication date
JPH05256534A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
JP2003279186A (en) Absorption type refrigerator and method for controlling same
KR102191560B1 (en) Heat pump system and control method of the same
JP3203039B2 (en) Absorption refrigerator
JP2904525B2 (en) Method of controlling refrigerant flow rate in heat pump air conditioner and heat pump air conditioner
JP3184034B2 (en) Control method of absorption chiller / heater
JP2017020687A (en) Refrigeration cycle apparatus
JP3081472B2 (en) Control method of absorption refrigerator
JP3448680B2 (en) Absorption air conditioner
JP2816790B2 (en) Absorption chiller / heater
JP2873538B2 (en) Double-effect absorption chiller / heater
JP2572648B2 (en) Overheating prevention device for ice machine compressor
JP3143227B2 (en) Refrigerant freezing prevention device for absorption refrigerator
JPS62213669A (en) Method of controlling operation of air conditioner
JP2639969B2 (en) Absorption refrigerator
JP2575966B2 (en) Absorption chiller / heater
JPH0478903B2 (en)
JP3182233B2 (en) Operation control method in absorption refrigerator
JP3081314B2 (en) Control device for absorption refrigerator
JPS6383556A (en) Refrigeration cycle
JP3202157B2 (en) Air conditioner
JP2916866B2 (en) Absorption chiller / heater
JPH0359360A (en) Absorption type freezer
JP3159038B2 (en) Absorption heat pump
JPS61159060A (en) Double effect absorption refrigerator
SE1750501A1 (en) A method for controlling an expansion device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees