JP3890870B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3890870B2
JP3890870B2 JP2000278659A JP2000278659A JP3890870B2 JP 3890870 B2 JP3890870 B2 JP 3890870B2 JP 2000278659 A JP2000278659 A JP 2000278659A JP 2000278659 A JP2000278659 A JP 2000278659A JP 3890870 B2 JP3890870 B2 JP 3890870B2
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
expansion valve
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000278659A
Other languages
Japanese (ja)
Other versions
JP2002081769A (en
Inventor
砂穂 舟越
啓夫 中村
弘 篠崎
和利 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000278659A priority Critical patent/JP3890870B2/en
Publication of JP2002081769A publication Critical patent/JP2002081769A/en
Application granted granted Critical
Publication of JP3890870B2 publication Critical patent/JP3890870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和機に関する。
【0002】
【従来の技術】
特開平10−185343号公報(文献)に、インジェクションを行う冷凍サイクルにおいて、気液分離器内の圧力である中間圧力を何らかにより測定し目標圧力にこの測定された圧力がなるように、気液分離器の配管前後に設けられた膨張弁のうち下流側にある膨張弁の開度を制御するようにしている。また、インジェクション回路を流れる中間ガス冷媒の最大流量に対応する中間圧力又は中間温度になるように、主冷媒回路の下流側膨張弁を制御する例が見られる。さらに、中間圧力を算出するために、気液分離器の出口温度を検出し、これと圧縮機の回転数によりて中間圧力を算出することが記載されている。
【0003】
【発明が解決しようとする課題】
上記従来技術では、下流側膨張弁の制御を行うために、気液分離器に温度センサなどを設ける必要がある。中間圧力を気液分離器温度によって制御する場合、気液分離器温度を正確に検出できれば、下流側膨張弁を適正に制御できるが、気液分離器の出口温度の変化量に対して中間圧力の変化量は相当大きいので、温度センサの絶対値に対する精度及び分解能が制御量にきいてきてしまう。気液分離器温度が1℃異なると性能が数パーセント変わってしまい、このため、高い精度の高価な温度センサが必要である。実際にはこのように高い精度で気液分離器温度を検出することは困難なので、下流側膨張弁を適正に制御できないという問題点があった。
【0004】
本発明の目的は、下流側膨張弁を適正に制御することにより、インジェクションによる性能向上の効果を最大限に発揮させることにある。
【0005】
本発明の他の目的は、液インジェクションが起こりやすい条件ではインジェクションを止めることにより、液インジェクションが生じることによる性能低下を防止することにある。
【0006】
【課題を解決するための手段】
上記目的圧縮機と、室外熱交換器と、開度の調節が可能な第1の絞り装置と、気液分離器と、開度の調節が可能な第2の絞り装置と、室内熱交換器とを順次接続して冷凍サイクルを構成し、前記気液分離器より前記圧縮機に冷媒を供給するインジェクション配管を備えた空気調和機において、圧縮機回転数を検出する手段と、外気温度を検出する手段と、検出された圧縮機回転数と外気温度に応じて前記2つの絞り装置のうちの下流側の絞り装置の絞り量を制御する手段とを備え、冷房運転時、同じ圧縮機回転数のときは、外気温度が低いほど前記2つの絞り装置のうちの下流側の絞りを開き、暖房運転時、同じ圧縮機回転数のときは、外気温度が高いほど前記2つの絞り装置のうちの下流側の絞りを開く制御を行う機能を備えたことにより達成される。
【0023】
【発明の実施の形態】
以下、本発明を図面に示す実施の形態により説明する。本発明の一実施形態(第1の実施形態)の空気調和機の構成を図1に示す。
【0024】
圧縮機1、四方弁2、室外熱交換器3、電動膨張弁等の絞り量が変更可能な第1の絞り装置4、気液分離器5、電動膨張弁等の絞り量が変更可能な第2の絞り装置6、室内熱交換器7は、冷媒配管により順次接続されて主冷凍サイクルを構成する。冷房運転時においては、四方弁2を図1の実線のように切り換え、図1の実線の矢印方向に冷媒が流れて冷房サイクルを構成する。冷房運転時、圧縮機で圧縮された冷媒は、室外熱交換器3において凝縮して空気に放熱し、次に第1の電動膨張弁4で減圧されて凝縮圧力と蒸発圧力の中間圧力となり、気液分離器5においてガス冷媒と液冷媒とに分離される。液冷媒は、第2の電動膨張弁6で更に減圧されて、室内熱交換器7において空気から吸熱して圧縮機1に戻る。一方、気液分離器で分離されたガス冷媒は、インジェクション配管8を通って、圧縮機1に注入される。インジェクション配管8には二方弁9を設け、必要に応じて二方弁9を閉じることにより、インジェクションを停止することができる。
【0025】
暖房運転時は、四方弁2を図1の破線のように切り換え、破線の矢印方向に冷媒が流れる。暖房運転時は、圧縮機で圧縮された冷媒は、室内熱交換器7において凝縮して空気に放熱し、次に第2の電動膨張弁6で減圧されて凝縮圧力と蒸発圧力の中間圧力となり、気液分離器5においてガス冷媒と液冷媒に分離される。液冷媒は、第1の電動膨張弁4で更に減圧されて、室外熱交換器3で蒸発して空気から吸熱して圧縮機1に戻る。一方、気液分離器で分離されたガス冷媒は、インジェクション配管8を通って圧縮機に注入される。
【0026】
圧縮機のチャンバには、圧縮機チャンバ表面温度センサ10を設け、圧縮機頭部のチャンバ温度を検出する。なお、圧縮機チャンバ温度センサの替わりに、冷媒吐出配管に圧縮機吐出冷媒配管温度センサを設けてもよい。以下の説明では、圧縮機吐出冷媒配管温度又は圧縮機頭部チャンバ表面温度のことを圧縮機吐出冷媒温度と呼ぶ。圧縮機の冷媒吸入配管には圧縮機吸入冷媒配管温度センサ11を設け、吸入冷媒温度を検出する。圧縮機吸入配管にセンサを設ける替わりに、圧縮機吸入部に設けられる液溜め(アキュムレータ)等にセンサを取り付けてもよい。室外機には外気温度センサ12及び室外熱交換器センサ13を設け、外気温度及び室外熱交換器温度を検出する。
【0027】
圧縮機1、第1の電動膨張弁4、第2の電動膨張弁6などの制御や、センサからの信号の取り込みは、制御装置14によって行われる。制御装置14はマイクロコンピュータ15とその周辺機器から構成される。圧縮機1は、制御装置14とインバータ回路16によって回転数を制御される。圧縮機の回転数はセンシングされて、マイクロコンピュータ15に取り込まれる。圧縮機回転数のセンシングは、モータへの出力電流をフィードバックするなどの方法により行う。圧縮機に回転数センサを取り付けてもよい。
【0028】
次に、インジェクションサイクルの動作とサイクル効率向上について、図2により説明する。図2に示したモリエル線図は、横軸にエンタルピー、縦軸に圧力を取って冷凍サイクルの特性を表している。破線が従来サイクル、実線がガスインジェクションサイクルを表す。従来サイクルでは、A点からD'点まで圧縮機で冷媒が圧縮され、D'点からE点において凝縮器において冷媒は凝縮して外気に放熱する。E点からH'点では、膨張弁によって冷媒は膨張し、H'点からA点では蒸発器において冷媒が蒸発し、室内の空気の熱を吸熱する。インジェクションサイクルにおいては、圧縮機でまずA点からB点において冷媒が圧縮され、ここで気液分離器において分離されたガス冷媒が注入されてC点に至り、更に圧縮機においてC点からD点まで圧縮される。D点からE点において冷媒は凝縮器で凝縮し、E点からF点においては、第1の電動膨張弁で冷媒は膨張し、蒸発圧力と凝縮圧力の中間圧力のF点で気液分離器において冷媒はガスと液に分離される。ガスはF点からC点で圧縮機に注入され、液はG点からH点まで第2の電動膨張弁で減圧され、H点からA点において蒸発器で蒸発する。冷房運転の場合、従来サイクルの蒸発能力即ち冷房能力はA点とH'点のエンタルピーの差で表され、インジェクションサイクルの蒸発能力はA点とH点のエンタルピーの差で表される。H点のエンタルピーはH'点のエンタルピーよりも小さいので、インジェクションサイクルにおいては冷房能力が増加する。暖房運転の場合、従来サイクルのときの凝縮器の冷媒流量をG、ガスインジェクションサイクルにおいてインジェクションされる冷媒流量をG1とすると、インジェクションサイクルで凝縮器を流れる冷媒流量はG+G1となり、凝縮器出入口のエンタルピー差と冷媒流量の積である暖房能力が増加する。
【0029】
次に、本実施の形態における冷凍サイクル制御の動作について図3のフローチャートにより説明する。以下の説明では、2個の電動膨張弁をそれぞれ上流側膨張弁、下流側膨張弁と呼ぶことにする。2個の電動膨張弁のうち、冷房運転時は図1における第1の電動膨張弁4が上流側膨張弁、第2の電動膨張弁6が下流側膨張弁となり、暖房運転時は電動膨張弁6が上流側膨張弁、電動膨張弁4が下流側膨張弁となる。また、膨張弁開度の数値については、数値が大きいほど膨張弁が開く方向と定義する。
【0030】
図3は冷房の場合のフローを示しているが、暖房の場合も基本的には同様である。暖房と冷房で計算式が異なる場合については、それぞれについて本文中で説明する。
【0031】
図3のステップ101において、変数の初期化等の初期化処理を行い、ステップ102において、初期運転タイマをスタートする。初期運転は図1の二方弁9を閉じてガスインジェクションを行わずに所定時間運転するもので、このタイマはその時間を与える。ステップ103では、上流側及び下流側膨張弁開度の初期値を設定する。下流側膨張弁は通常全開にするが、圧縮機回転数に応じた開度に設定してもよい。次のステップ104で、サンプリングタイムを与えるタイマをスタートする。このタイマは、圧縮機吐出冷媒温度等のセンシングや2個の膨張弁制御を行う間隔(サンプリングタイム)を与えるものである。ステップ105では、圧縮機吐出冷媒温度Td、圧縮機吸込み冷媒温度Ts、外気温度To、室外熱交換器温度Teo、圧縮機回転数Nを読み込む。ステップ106においては、上流側膨張弁の開度変更量を算出する。上流側膨張弁は、圧縮機吐出冷媒温度とその変化量に応じて制御される。次にステップ107において、初期運転時間が経過したかどうかを判定し、初期運転時間に達していない場合には、ステップ108で二方弁は閉じたままとし、ステップ109において、下流側膨張弁は全開に保たれる。初期運転時間経過後は、ステップ110で、圧縮機回転数と外気温度によって、ガスインジェクションを行うかどうかの判定を行う。冷房運転では、圧縮機回転数が所定値以下又は外気温度が所定値以下の場合、即ち、以下の式(1)、(2)のいずれかが成立した場合には、ガスインジェクションを行わない。
【0032】
N ≦ Nc0 (1)
To ≦ Toc0 (2)
ここで、Nは圧縮機回転数、Toは外気温度、Nc0、Toc0は定数である。すなわち、圧縮機回転数が低い場合は低能力運転であると判断し、外気温が低い場合は室内温度もそう高くなく能力が低い運転であると看做す。
【0033】
暖房運転では、圧縮機回転数が所定値以下又は外気温度が所定値以上の場合、即ち、式(3)、(4)のいずれかが成立した場合には、ガスインジェクションを行わない。
【0034】
N ≦ Nh0 (3)
To ≧ Toh0 (4)
ここで、Nh0、Toh0は定数である。冷房同様、圧縮機回転数が低い場合は低能力運転であると判断し、外気温が高い場合は室内温度もそう低くなく能力が低い運転であると看做す。
【0035】
これらの条件でガスインジェクションを行わないのは、このような条件では蒸発圧力が高いため、ガスインジェクションしてもインジェクション量が極めて少なく効果があまりない上に、液インジェクションになりやすく、逆に性能が低下する恐れがあるからである。
【0036】
ガスインジェクションを行わない場合、ステップ108で二方弁を閉じ、ステップ109で、下流側膨張弁を全開にする。下流弁を絞った状態から全開にするときには、一回で全開にせずに、徐々に全開まで開くようにしてもよい。また、下流側膨張弁を徐々に開いて全開になった時点で二方弁を閉じるようにしてもよい。下流側膨張弁を徐々に開くことにより、圧縮機吐出冷媒温度或いは圧縮機吸入スーパヒートの急激な低下を避けることができる。
【0037】
ステップ110で、式(1)、(2)又は式(3)、(4)の条件が成立しない場合には、ステップ111で二方弁を開いてガスインジェクションを行う。既に二方弁が開いている場合は、そのまま開いた状態を保持する。
【0038】
次にステップ112では、圧縮機吐出冷媒温度Tdの目標値Tdsを式(5)により算出する。
【0039】
Tds = a1・N + b1・To + c1 (5)
ここで、Nは圧縮機回転数(センシングした値)、To は外気温度、a1、b1、c1は定数である。
【0040】
次のステップ113では圧縮機吸入温度Tsの基準値Tssを式(6)により計算する。
【0041】
Tss = a2・N + b2・To + c2 (6)
ここで、a2、b2、c2は定数である。
【0042】
圧縮機吸い込み温度の基準値Tssについては、暖房の場合は室外熱交換器に霜が着く場合も考慮して、室外熱交換器温度Teoを用いた式(7)によって求めてもよい。
【0043】
Tss = a2・N + b2・Teo + c2 (7)
次のステップ114では、インジェクションされる冷媒に液が混合しているかどうかの判定を行う。判定は、式(8)と式(9)が同時に満たされたときに液インジェクションが起こっていると判定される。
【0044】
Td ≦ Tds − α (8)
Ts ≧ Tss + β (9)
ここで、Tdsはステップ112で算出された圧縮機吐出冷媒温度の目標値、Tssはステップ113で算出された圧縮機吸入冷媒温度の基準値、α、βは定数である。このような条件によって液インジェクションの判定が可能な理由は、液インジェクションが生じると液によって圧縮室内冷媒が冷却されて圧縮機吐出冷媒温度が低下するとともに、気液分離器に冷媒が溜まることによってサイクルの冷媒が不足ぎみになり、圧縮機吸入冷媒温度が上昇するからである。
【0045】
ステップ114において条件が成立したならば、液インジェクションが起こっていると見なし、ステップ115において式(10)に示すように下流側膨張弁開度の補正値SP(n)に所定量dP2aを加える。
【0046】
SP(n) = SP(n−1) + dP2a (10)
dP2aの値は正(膨張弁が開く方向の値)とする。ここで、nはサンプリング番号である。下流弁を開くことによって気液分離器内の冷媒圧力が低下するので、液インジェクションを終息させることができる。SP(n−1)は開度補正値の前回値であり、ここでこの値が0であったときに液インジェクションが判定されたことを想定して説明する。液インジェクションであると判定されると、今回の補正量をdp2aとする。次回まだ液インジェクションが継続していると判断されると、補正量は2dp2aとなり、液インジェクションが収まるまで繰り返される。すなわち、補正量の積分制御となる。なお、下流弁を開く替わりに二方弁を閉じることによってインジェクションを止めてしまう方法もある。
【0047】
次のステップ116では、下流側膨張弁開度の基準値P2sを式(11)により算出する。
【0048】
P2s = a3・N + b3・To + c3 + SP(n) (11)
ここで、Nは圧縮機回転数、Toは外気温度、SP(n)は下流側膨張弁開度の補正量、a3、b3、c3は定数である。冷房運転では、a3は正、b3は負であり、暖房運転ではa3は正、b3も正である。従って、冷房運転では外気温度が高いほど下流側膨張弁を絞り、暖房運転では外気温度が高いほど下流側膨張弁を開く制御が行われる。
【0049】
その理由を説明する。圧縮機回転数に比例して開度調整を行う理由は、回転数が高いと冷媒循環量が増え気液分離器内の液冷媒が増加し液インジェクションとなる可能性が高いので、下流側膨張弁を開いて液インジェクションとなることを防止するためである。
【0050】
外気温に応じて下流側膨張弁の開度を調節する理由は、冷房時において、室外熱交換器は凝縮器として作用しており、外気温が急激に上昇したとすると、凝縮器の温度が上昇して凝縮量が減少した分ガス冷媒の割合が増加する。このため、凝縮器の圧力が増大する。凝縮器の圧力増大はサイクル全体の圧力増大となる。この時、圧縮機内の中間圧力も増大するので、気液分離器内の中間圧を大きくしなければガスインジェクションの量が少なくなりCOP低下につながるので、下流側膨張弁を絞って適正にガスインジェクションを行わせるためである。一方、暖房時は、室外機は蒸発器として機能する。外気温が高くなると、蒸発器温度も高くなり蒸発量が増える。このため、蒸発器内の圧力が大きくなり、圧縮機の吸込圧力が大きくなる。吸込圧力が増大するということは、圧縮機に吸込まれるガス冷媒の密度が増すことであるので、圧縮機によって圧縮される冷媒の量が増えたこととなり、結果として冷媒循環量が多くなることを意味する。この時気液分離器内の圧力上昇分は、圧縮機のインジェクションポートの圧力上昇分よりも大きいため、気液分離器内の液量が増加して液戻りになってしまう可能性がある。このため、下流側の膨張弁を開いて、液戻りを防止するのである。
【0051】
次のステップ117では、下流側膨張弁の一回に絞る絞り量を所定値dP2max以下に制限するために、前回のサンプリングタイムにおける下流側膨張弁開度P2(n−1)とステップ116で算出された下流側膨張弁開度P2sとの差を求め、それがdP2max以下ならば、ステップ118において、下流側膨張弁開度P2(n)をP2sに設定する。そうでないときには、ステップ119において下流側膨張弁開度P2(n)は前回の開度からdP2maxを減じた値とする。一回に絞る絞り量を制限している理由は、急激に下流側膨張弁を絞ると中間圧力が上昇して液インジェクションが起こり易くなるのと、圧縮機吐出温度が急激に上昇して制御の安定性が損なわれるためである。
【0052】
次のステップ120では、下流側膨張弁開度の変更量を求め、ステップ121において膨張弁コイルにパルスを出力して上流側及び下流側膨張弁を動作させる。ステップ122においてサンプリングタイムをカウントし、サンプリングタイムに達したならば、ステップ104に戻って以下の一連の動作を繰り返す。
【0053】
本実施形態によれば、下流側膨張弁開度を圧縮機回転数と外気温度に応じて制御することにより中間圧力を適正に保つことができるので、ガスインジェクションによる性能向上が大きい。また、圧縮機吐出冷媒温度と圧縮機吸入冷媒温度によって液インジェクションを判定して下流側膨張弁開度を調整しているので、液インジェクションによる性能低下が防止できる。また、本実施形態によれば、圧縮機回転数や外気温度に応じて、二方弁を閉じてインジェクションを止める制御を行っているので、液インジェクションによる性能低下が起こりにくい。
【0054】
本発明の他の実施形態(第2の実施形態)の空気調和機の構成を図4に示す。本実施形態における冷凍サイクル構成は、第1の実施形態と同様であるが、室内機に室内吸込み空気温度センサと室内熱交換器センサを設けている。本実施形態における冷凍サイクル制御の動作について図5のフローチャートにより説明する。制御動作の基本的な流れは、第1の実施形態と同様なので、本実施形態に関する説明は、第1の実施形態と異なる部分のみについて行うことにする。
【0055】
ステップ205では、圧縮機吐出冷媒温度Td、圧縮機吸入冷媒温度Ts、外気温度To、室外熱交換器温度Teoの他に、室内吸込み空気温度Ti及び室内熱交換器温度Teiを読み込む。室内吸込み空気温度と室内熱交換器温度については、直接室外機の制御装置に取り込めない場合には、室内機に設けた制御装置に取り込んで室外機の制御装置にデータを送るようにしてもよい。
【0056】
ステップ210のガスインジェクションを行うかどうかの判定において、冷房運転では式(12)から(14)のいずれかが成立した場合には、ガスインジェクションを行わない。
【0057】
N ≦ Nc0 (12)
To ≦ Toc0 (13)
Ti ≧ Tic0 (14)
ここで、Nは圧縮機回転数、Toは外気温度、Tiは室内吸込み空気温度、Nc0、Toc0、Tic0は定数である。更に室内吸込み空気湿度センサを設け、室内吸込み空気湿度が所定値以上の場合にも二方弁を閉じるようにしてもよい。
【0058】
暖房運転では、式(15)から(17)のいずれかが成立した場合には、ガスインジェクションを行わない。
【0059】
N ≦ Nh0 (15)
To ≧ Toh0 (16)
Ti ≦ Tih0 (17)
ここで、Nh0、Toh0、Tih0は定数である。
【0060】
ステップ213において、冷房運転の場合は、圧縮機吸入冷媒温度Tsの基準値Tssを式(18)により計算する。
【0061】
Tss = a2・N + b2・Tei + c2 (18)
ここで、a2、b2、c2は定数である。本実施形態では、圧縮機吸入冷媒温度の基準値の算出に、室内熱交換器の温度を用いている。暖房運転の場合については、第1の実施形態と同様に、前述の式(6)又は式(7)により圧縮機吸入温度基準値を求める。
【0062】
ステップ216において、下流側膨張弁開度基準値は式(19)により求める。
【0063】
P2s = a3・N + b3・To + c3・Ti + d3 + SP(n) (19)
ここでは、室内吸込み空気温度も下流側膨張弁開度の算出に用いている。
【0064】
本実施形態によれば、下流側膨張弁開度を圧縮機回転数と外気温度の他に、室内吸込み空気温度にも応じて制御することにより中間圧力をより適正に保つことができるので、ガスインジェクションによる性能向上の効果が最大限に引き出される。また、本実施形態によれば、圧縮機回転数や外気温度の他に室内吸込み空気温度によっても二方弁を閉じてインジェクションを止める制御を行っているので、液インジェクションによる性能低下が起こりにくくなっている。
【0065】
【発明の効果】
以上詳細に説明したように、本発明によれば、ガスインジェクションによる性能向上の効果を最大限に発揮させることができる。また本発明によれば、外気温度や圧縮機回転数の条件によっては二方弁を閉じてインジェクションを止めることにより、液インジェクションが生じることによる性能低下を防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態における空気調和機の構成。
【図2】ガスインジェクションサイクルの動作を示すモリエル線図。
【図3】膨張弁制御のフローチャート。
【図4】本発明の第2の実施形態の空気調和機の構成。
【図5】本発明の第2の実施形態の空気調和機の膨張弁制御のフローチャート。
【符号の説明】
1…圧縮機、2…四方弁、3…室外熱交換器、4…第1の絞り装置、5…気液分離器、6…第2の絞り装置、7…室内熱交換器、8…インジェクション配管、10…圧縮機チャンバ表面温度センサ、11…圧縮機吸入冷媒配管温度センサ、12…外気温度センサ、14…制御装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner.
[0002]
[Prior art]
In Japanese Patent Laid-Open No. 10-185343 (reference), in a refrigeration cycle in which injection is performed, an intermediate pressure, which is a pressure in a gas-liquid separator, is measured by some means, so that the measured pressure becomes a target pressure. Among the expansion valves provided before and after the pipe of the liquid separator, the opening degree of the expansion valve on the downstream side is controlled. In addition, there is an example in which the downstream side expansion valve of the main refrigerant circuit is controlled so that the intermediate pressure or the intermediate temperature corresponding to the maximum flow rate of the intermediate gas refrigerant flowing through the injection circuit is obtained. Furthermore, in order to calculate the intermediate pressure, it is described that the outlet temperature of the gas-liquid separator is detected and the intermediate pressure is calculated based on this and the rotational speed of the compressor.
[0003]
[Problems to be solved by the invention]
In the above prior art, it is necessary to provide a temperature sensor or the like in the gas-liquid separator in order to control the downstream expansion valve. When the intermediate pressure is controlled by the gas-liquid separator temperature, if the gas-liquid separator temperature can be detected accurately, the downstream expansion valve can be properly controlled. Therefore, the accuracy and resolution of the absolute value of the temperature sensor are determined by the control amount. When the gas-liquid separator temperature is different by 1 ° C., the performance is changed by several percent. Therefore, an expensive temperature sensor with high accuracy is required. In practice, it is difficult to detect the gas-liquid separator temperature with such high accuracy, and there is a problem that the downstream side expansion valve cannot be controlled properly.
[0004]
An object of the present invention is to maximize the performance improvement effect by injection by appropriately controlling the downstream side expansion valve.
[0005]
Another object of the present invention is to prevent performance degradation caused by the occurrence of liquid injection by stopping the injection under conditions where liquid injection is likely to occur.
[0006]
[Means for Solving the Problems]
The objective compressor, the outdoor heat exchanger, the first throttle device capable of adjusting the opening degree, the gas-liquid separator, the second throttle device capable of adjusting the opening degree, and the indoor heat exchanger In the air conditioner having an injection pipe for supplying refrigerant from the gas-liquid separator to the compressor, and detecting the outside air temperature. Means for controlling the throttle amount of the downstream throttling device of the two throttling devices according to the detected compressor speed and the outside air temperature, and the same compressor speed during cooling operation When the outside air temperature is lower, the downstream side of the two expansion devices is opened. During heating operation, at the same compressor speed, the higher the outside air temperature, By providing a function to control the opening on the downstream side It is made.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to embodiments shown in the drawings. The configuration of an air conditioner according to an embodiment (first embodiment) of the present invention is shown in FIG.
[0024]
Compressor 1, four-way valve 2, outdoor heat exchanger 3, first expansion device 4 that can change the amount of expansion such as an electric expansion valve, gas-liquid separator 5, electric expansion valve and the like that can change the amount of expansion The expansion device 6 and the indoor heat exchanger 7 of 2 are sequentially connected by a refrigerant pipe to constitute a main refrigeration cycle. During the cooling operation, the four-way valve 2 is switched as shown by the solid line in FIG. 1, and the refrigerant flows in the direction indicated by the solid line in FIG. During the cooling operation, the refrigerant compressed by the compressor condenses in the outdoor heat exchanger 3 and dissipates heat to the air, and then is decompressed by the first electric expansion valve 4 to become an intermediate pressure between the condensation pressure and the evaporation pressure, The gas-liquid separator 5 separates the refrigerant into a gas refrigerant and a liquid refrigerant. The liquid refrigerant is further depressurized by the second electric expansion valve 6, absorbs heat from the air in the indoor heat exchanger 7, and returns to the compressor 1. On the other hand, the gas refrigerant separated by the gas-liquid separator is injected into the compressor 1 through the injection pipe 8. The injection pipe 8 is provided with a two-way valve 9, and the injection can be stopped by closing the two-way valve 9 as necessary.
[0025]
During the heating operation, the four-way valve 2 is switched as indicated by the broken line in FIG. 1 and the refrigerant flows in the direction of the broken arrow. During the heating operation, the refrigerant compressed by the compressor condenses in the indoor heat exchanger 7 and dissipates heat to the air, and then is depressurized by the second electric expansion valve 6 to become an intermediate pressure between the condensation pressure and the evaporation pressure. The gas-liquid separator 5 separates the refrigerant into a gas refrigerant and a liquid refrigerant. The liquid refrigerant is further depressurized by the first electric expansion valve 4, evaporated by the outdoor heat exchanger 3, absorbs heat from the air, and returns to the compressor 1. On the other hand, the gas refrigerant separated by the gas-liquid separator is injected into the compressor through the injection pipe 8.
[0026]
A compressor chamber surface temperature sensor 10 is provided in the compressor chamber to detect the chamber temperature of the compressor head. Instead of the compressor chamber temperature sensor, a compressor discharge refrigerant pipe temperature sensor may be provided in the refrigerant discharge pipe. In the following description, the compressor discharge refrigerant pipe temperature or the compressor head chamber surface temperature is referred to as a compressor discharge refrigerant temperature. A compressor suction refrigerant pipe temperature sensor 11 is provided in the refrigerant suction pipe of the compressor to detect the suction refrigerant temperature. Instead of providing a sensor in the compressor suction pipe, a sensor may be attached to a liquid reservoir (accumulator) or the like provided in the compressor suction portion. The outdoor unit is provided with an outdoor air temperature sensor 12 and an outdoor heat exchanger sensor 13 to detect the outdoor air temperature and the outdoor heat exchanger temperature.
[0027]
Control of the compressor 1, the first electric expansion valve 4, the second electric expansion valve 6, etc., and the acquisition of signals from sensors are performed by the control device 14. The control device 14 includes a microcomputer 15 and its peripheral devices. The rotation speed of the compressor 1 is controlled by the control device 14 and the inverter circuit 16. The rotation speed of the compressor is sensed and taken into the microcomputer 15. The compressor rotational speed is sensed by a method such as feeding back the output current to the motor. A rotation speed sensor may be attached to the compressor.
[0028]
Next, the operation of the injection cycle and the improvement of the cycle efficiency will be described with reference to FIG. The Mollier diagram shown in FIG. 2 represents the characteristics of the refrigeration cycle with the horizontal axis representing enthalpy and the vertical axis representing pressure. A broken line represents a conventional cycle, and a solid line represents a gas injection cycle. In the conventional cycle, the refrigerant is compressed by the compressor from the point A to the point D ′, and the refrigerant is condensed in the condenser from the point D ′ to the point E to dissipate heat to the outside air. From the point E to the point H ′, the refrigerant is expanded by the expansion valve, and from the point H ′ to the point A, the refrigerant evaporates in the evaporator and absorbs the heat of the indoor air. In the injection cycle, the refrigerant is first compressed from the point A to the point B by the compressor, where the gas refrigerant separated in the gas-liquid separator is injected to reach the point C, and further from the point C to the point D in the compressor. Until compressed. From point D to point E, the refrigerant condenses in the condenser, from point E to point F, the refrigerant expands at the first electric expansion valve, and the gas-liquid separator at point F, which is an intermediate pressure between the evaporation pressure and the condensation pressure. The refrigerant is separated into gas and liquid. The gas is injected into the compressor from point F to point C, the liquid is depressurized by the second electric expansion valve from point G to point H, and evaporated from the point H to point A by the evaporator. In the case of cooling operation, the evaporation capacity of the conventional cycle, that is, the cooling capacity, is expressed by the difference between the enthalpies at point A and H ′, and the evaporation capacity at the injection cycle is expressed by the difference between the enthalpies at point A and H. Since the enthalpy at the H point is smaller than the enthalpy at the H 'point, the cooling capacity increases in the injection cycle. In the case of heating operation, if the refrigerant flow rate of the condenser in the conventional cycle is G and the refrigerant flow rate injected in the gas injection cycle is G1, the refrigerant flow rate flowing through the condenser in the injection cycle is G + G1, and the enthalpy of the condenser inlet / outlet The heating capacity, which is the product of the difference and the refrigerant flow rate, increases.
[0029]
Next, the operation of the refrigeration cycle control in the present embodiment will be described with reference to the flowchart of FIG. In the following description, the two electric expansion valves are referred to as an upstream expansion valve and a downstream expansion valve, respectively. Of the two electric expansion valves, the first electric expansion valve 4 in FIG. 1 serves as an upstream expansion valve and the second electric expansion valve 6 serves as a downstream expansion valve during cooling operation, and the electric expansion valve during heating operation. 6 is an upstream expansion valve, and the electric expansion valve 4 is a downstream expansion valve. The numerical value of the expansion valve opening is defined as the direction in which the expansion valve opens as the numerical value increases.
[0030]
FIG. 3 shows a flow in the case of cooling, but the same is basically the case in the case of heating. When the calculation formulas differ between heating and cooling, each will be described in the text.
[0031]
In step 101 of FIG. 3, initialization processing such as variable initialization is performed, and in step 102, an initial operation timer is started. In the initial operation, the two-way valve 9 shown in FIG. 1 is closed to operate for a predetermined time without performing gas injection, and this timer gives the time. In step 103, initial values of upstream and downstream expansion valve openings are set. The downstream side expansion valve is normally fully opened, but may be set to an opening degree corresponding to the compressor speed. In the next step 104, a timer for giving a sampling time is started. This timer gives an interval (sampling time) for sensing the compressor discharge refrigerant temperature and the like and controlling two expansion valves. In step 105, the compressor discharge refrigerant temperature Td, the compressor suction refrigerant temperature Ts, the outside air temperature To, the outdoor heat exchanger temperature Teo, and the compressor rotation speed N are read. In step 106, the opening degree change amount of the upstream side expansion valve is calculated. The upstream expansion valve is controlled according to the compressor discharge refrigerant temperature and the amount of change. Next, in step 107, it is determined whether or not the initial operation time has elapsed. If the initial operation time has not been reached, the two-way valve is kept closed in step 108, and in step 109, the downstream side expansion valve is Keep it fully open. After the initial operation time has elapsed, in step 110, it is determined whether or not to perform gas injection based on the compressor speed and the outside air temperature. In the cooling operation, when the compressor rotation speed is equal to or lower than the predetermined value or the outside air temperature is equal to or lower than the predetermined value, that is, when any of the following formulas (1) and (2) is satisfied, gas injection is not performed.
[0032]
N ≤ Nc0 (1)
To ≤ Toc0 (2)
Here, N is the compressor speed, To is the outside air temperature, and Nc0 and Toc0 are constants. That is, when the compressor speed is low, it is determined that the operation is low-capacity, and when the outside air temperature is low, the indoor temperature is not so high and the operation is low.
[0033]
In the heating operation, gas injection is not performed when the compressor rotation speed is equal to or lower than a predetermined value or when the outside air temperature is equal to or higher than a predetermined value, that is, when either of the expressions (3) and (4) is satisfied.
[0034]
N ≤ Nh0 (3)
To ≧ Toh0 (4)
Here, Nh0 and Toh0 are constants. As with cooling, when the compressor speed is low, it is determined that the operation is low-capacity, and when the outside air temperature is high, the indoor temperature is not so low and the operation is low.
[0035]
The reason why gas injection is not performed under these conditions is that the evaporation pressure is high under such conditions, so even if gas injection is performed, the amount of injection is very small and not very effective, and liquid injection tends to occur. This is because there is a risk of decline.
[0036]
When the gas injection is not performed, the two-way valve is closed at step 108 and the downstream side expansion valve is fully opened at step 109. When the downstream valve is fully opened from the throttled state, it may be gradually opened until it is fully opened instead of being fully opened at once. Alternatively, the two-way valve may be closed when the downstream side expansion valve is gradually opened and fully opened. By gradually opening the downstream side expansion valve, it is possible to avoid a sudden drop in the compressor discharge refrigerant temperature or the compressor suction superheat.
[0037]
If the conditions of the expressions (1), (2) or (3), (4) are not satisfied in step 110, the two-way valve is opened in step 111 to perform gas injection. If the two-way valve is already open, it remains open.
[0038]
Next, at step 112, the target value Tds of the compressor discharge refrigerant temperature Td is calculated by equation (5).
[0039]
Tds = a1 ・ N + b1 ・ To + c1 (5)
Here, N is the compressor speed (sensed value), To is the outside air temperature, and a1, b1, and c1 are constants.
[0040]
In the next step 113, the reference value Tss of the compressor suction temperature Ts is calculated by the equation (6).
[0041]
Tss = a2 ・ N + b2 ・ To + c2 (6)
Here, a2, b2, and c2 are constants.
[0042]
The reference value Tss of the compressor suction temperature may be obtained by Equation (7) using the outdoor heat exchanger temperature Teo in consideration of the case where frost forms on the outdoor heat exchanger in the case of heating.
[0043]
Tss = a2 ・ N + b2 ・ Teo + c2 (7)
In the next step 114, it is determined whether or not the liquid is mixed with the refrigerant to be injected. In the determination, it is determined that liquid injection is occurring when Expression (8) and Expression (9) are satisfied simultaneously.
[0044]
Td ≤ Tds − α (8)
Ts ≧ Tss + β (9)
Here, Tds is the target value of the compressor discharge refrigerant temperature calculated in step 112, Tss is the reference value of the compressor intake refrigerant temperature calculated in step 113, and α and β are constants. The reason why the liquid injection can be determined under such conditions is that when the liquid injection occurs, the refrigerant in the compression chamber is cooled by the liquid, the refrigerant discharge refrigerant temperature decreases, and the refrigerant accumulates in the gas-liquid separator. This is because the refrigerant becomes insufficient and the compressor suction refrigerant temperature rises.
[0045]
If the condition is satisfied in step 114, it is considered that liquid injection has occurred, and in step 115, a predetermined amount dP2a is added to the correction value SP (n) of the downstream side expansion valve opening as shown in equation (10).
[0046]
SP (n) = SP (n−1) + dP2a (10)
The value of dP2a is positive (value in the direction in which the expansion valve opens). Here, n is a sampling number. Since the refrigerant pressure in the gas-liquid separator decreases by opening the downstream valve, the liquid injection can be terminated. SP (n−1) is the previous value of the opening correction value. Here, the description will be made assuming that liquid injection is determined when this value is zero. If it is determined that the injection is liquid injection, the current correction amount is set to dp2a. When it is determined that the liquid injection is still continued next time, the correction amount is 2dp2a, and the process is repeated until the liquid injection is settled. That is, the correction amount is integrated. There is also a method in which the injection is stopped by closing the two-way valve instead of opening the downstream valve.
[0047]
In the next step 116, the reference value P2s of the downstream side expansion valve opening is calculated by equation (11).
[0048]
P2s = a3 ・ N + b3 ・ To + c3 + SP (n) (11)
Here, N is the compressor speed, To is the outside air temperature, SP (n) is the correction amount for the downstream side expansion valve opening, and a3, b3, and c3 are constants. In the cooling operation, a3 is positive and b3 is negative. In the heating operation, a3 is positive and b3 is also positive. Therefore, in the cooling operation, the downstream expansion valve is throttled as the outside air temperature is high, and in the heating operation, the downstream expansion valve is opened as the outside air temperature is high.
[0049]
The reason will be explained. The reason for adjusting the opening degree in proportion to the compressor rotational speed is that if the rotational speed is high, the amount of refrigerant circulation increases and the liquid refrigerant in the gas-liquid separator increases, which is likely to result in liquid injection. This is to prevent liquid injection by opening the valve.
[0050]
The reason for adjusting the opening of the downstream side expansion valve according to the outside air temperature is that the outdoor heat exchanger acts as a condenser during cooling, and if the outside air temperature rises rapidly, the condenser temperature The proportion of the gas refrigerant increases as the amount of condensation decreases. For this reason, the pressure of the condenser increases. The increase in condenser pressure results in an increase in pressure throughout the cycle. At this time, since the intermediate pressure in the compressor also increases, if the intermediate pressure in the gas-liquid separator is not increased, the amount of gas injection will decrease, leading to COP reduction. This is to make it happen. On the other hand, during heating, the outdoor unit functions as an evaporator. As the outside air temperature increases, the evaporator temperature also increases and the amount of evaporation increases. For this reason, the pressure in an evaporator becomes large and the suction pressure of a compressor becomes large. An increase in the suction pressure means an increase in the density of the gas refrigerant sucked into the compressor, which means that the amount of refrigerant compressed by the compressor has increased, resulting in an increase in the amount of refrigerant circulation. Means. At this time, since the pressure increase in the gas-liquid separator is larger than the pressure increase in the injection port of the compressor, there is a possibility that the amount of liquid in the gas-liquid separator increases and the liquid returns. For this reason, the expansion valve on the downstream side is opened to prevent liquid return.
[0051]
In the next step 117, the downstream expansion valve opening P2 (n−1) at the previous sampling time and the calculation in step 116 are performed in order to limit the throttle amount to be limited to one downstream expansion valve to a predetermined value dP2max or less. If the difference from the determined downstream expansion valve opening P2s is equal to or less than dP2max, in step 118, the downstream expansion valve opening P2 (n) is set to P2s. Otherwise, in step 119, the downstream side expansion valve opening P2 (n) is set to a value obtained by subtracting dP2max from the previous opening. The reason for limiting the throttle amount to be reduced once is that if the downstream expansion valve is suddenly throttled, the intermediate pressure rises and liquid injection is likely to occur. This is because stability is impaired.
[0052]
In the next step 120, the amount of change in the downstream expansion valve opening is obtained, and in step 121, a pulse is output to the expansion valve coil to operate the upstream and downstream expansion valves. In step 122, the sampling time is counted. When the sampling time is reached, the process returns to step 104 and the following series of operations is repeated.
[0053]
According to the present embodiment, the intermediate pressure can be appropriately maintained by controlling the downstream side expansion valve opening degree according to the compressor rotational speed and the outside air temperature, so that the performance improvement by gas injection is great. Moreover, since the liquid injection is determined based on the compressor discharge refrigerant temperature and the compressor suction refrigerant temperature and the downstream side expansion valve opening is adjusted, the performance deterioration due to the liquid injection can be prevented. Moreover, according to this embodiment, since the control which stops a two-way valve by closing a two-way valve according to a compressor rotation speed and external temperature is performed, the performance fall by liquid injection does not occur easily.
[0054]
FIG. 4 shows the configuration of an air conditioner according to another embodiment (second embodiment) of the present invention. The refrigeration cycle configuration in the present embodiment is the same as that in the first embodiment, but the indoor unit is provided with an indoor intake air temperature sensor and an indoor heat exchanger sensor. The operation of the refrigeration cycle control in this embodiment will be described with reference to the flowchart of FIG. Since the basic flow of the control operation is the same as that of the first embodiment, the description related to this embodiment will be made only for parts different from the first embodiment.
[0055]
In step 205, the indoor intake air temperature Ti and the indoor heat exchanger temperature Tei are read in addition to the compressor discharge refrigerant temperature Td, the compressor intake refrigerant temperature Ts, the outdoor air temperature To, and the outdoor heat exchanger temperature Teo. When the indoor intake air temperature and the indoor heat exchanger temperature cannot be directly taken into the control unit of the outdoor unit, they may be taken into the control unit provided in the indoor unit and sent to the control unit of the outdoor unit. .
[0056]
In the determination of whether or not to perform the gas injection in step 210, in the cooling operation, if any of the equations (12) to (14) is established, the gas injection is not performed.
[0057]
N ≤ Nc0 (12)
To ≤ Toc0 (13)
Ti ≧ Tic0 (14)
Here, N is the compressor speed, To is the outside air temperature, Ti is the indoor intake air temperature, and Nc0, Toc0, and Tic0 are constants. Further, an indoor intake air humidity sensor may be provided, and the two-way valve may be closed even when the indoor intake air humidity is a predetermined value or more.
[0058]
In the heating operation, gas injection is not performed when any of the equations (15) to (17) is satisfied.
[0059]
N ≤ Nh0 (15)
To ≧ Toh0 (16)
Ti ≤ Tih0 (17)
Here, Nh0, Toh0, and Tih0 are constants.
[0060]
In step 213, in the case of the cooling operation, the reference value Tss of the compressor suction refrigerant temperature Ts is calculated by the equation (18).
[0061]
Tss = a2 ・ N + b2 ・ Tei + c2 (18)
Here, a2, b2, and c2 are constants. In this embodiment, the temperature of the indoor heat exchanger is used for calculating the reference value of the compressor suction refrigerant temperature. In the case of the heating operation, similarly to the first embodiment, the compressor intake temperature reference value is obtained by the above-described formula (6) or formula (7).
[0062]
In step 216, the downstream side expansion valve opening reference value is obtained by equation (19).
[0063]
P2s = a3 ・ N + b3 ・ To + c3 ・ Ti + d3 + SP (n) (19)
Here, the indoor intake air temperature is also used to calculate the downstream expansion valve opening.
[0064]
According to the present embodiment, the intermediate pressure can be more appropriately maintained by controlling the downstream expansion valve opening degree according to the indoor intake air temperature in addition to the compressor rotation speed and the outside air temperature, so that the gas The effect of performance improvement by injection is maximized. In addition, according to the present embodiment, since the control is performed to close the two-way valve and stop the injection not only by the compressor rotation speed and the outside air temperature but also by the indoor intake air temperature, the performance deterioration due to the liquid injection hardly occurs. ing.
[0065]
【The invention's effect】
As described above in detail, according to the present invention, the effect of performance improvement by gas injection can be maximized. Further, according to the present invention, depending on the conditions of the outside air temperature and the compressor rotation speed, the two-way valve is closed to stop the injection, thereby preventing the performance deterioration due to the liquid injection.
[Brief description of the drawings]
FIG. 1 shows a configuration of an air conditioner according to an embodiment of the present invention.
FIG. 2 is a Mollier diagram showing the operation of a gas injection cycle.
FIG. 3 is a flowchart of expansion valve control.
FIG. 4 is a configuration of an air conditioner according to a second embodiment of the present invention.
FIG. 5 is a flowchart of expansion valve control of the air conditioner according to the second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four way valve, 3 ... Outdoor heat exchanger, 4 ... 1st expansion device, 5 ... Gas-liquid separator, 6 ... 2nd expansion device, 7 ... Indoor heat exchanger, 8 ... Injection Piping, 10 ... compressor chamber surface temperature sensor, 11 ... compressor intake refrigerant piping temperature sensor, 12 ... outside air temperature sensor, 14 ... control device.

Claims (1)

圧縮機と、室外熱交換器と、開度の調節が可能な第1の絞り装置と、気液分離器と、開度の調節が可能な第2の絞り装置と、室内熱交換器とを順次接続して冷凍サイクルを構成し、前記気液分離器より前記圧縮機に冷媒を供給するインジェクション配管を備えた空気調和機において、
圧縮機回転数を検出する手段と、外気温度を検出する手段と、検出された圧縮機回転数と外気温度に応じて前記2つの絞り装置のうちの下流側の絞り装置の絞り量を制御する手段とを備え、
冷房運転時、同じ圧縮機回転数のときは、外気温度が低いほど前記2つの絞り装置のうちの下流側の絞りを開き、暖房運転時、同じ圧縮機回転数のときは、外気温度が高いほど前記2つの絞り装置のうちの下流側の絞りを開く制御を行う機能を備えた空気調和装置。
A compressor, an outdoor heat exchanger, a first throttle device capable of adjusting an opening degree, a gas-liquid separator, a second throttle device capable of adjusting an opening degree, and an indoor heat exchanger, In an air conditioner comprising an injection pipe for sequentially connecting to constitute a refrigeration cycle and supplying refrigerant from the gas-liquid separator to the compressor,
A means for detecting the compressor rotational speed, a means for detecting the outside air temperature, and a throttle amount of the downstream side throttle device of the two throttle devices according to the detected compressor rotational speed and the outside air temperature. Means and
During cooling operation, when the compressor speed is the same, the lower the outside air temperature, the lower the throttle on the downstream side of the two throttle devices, and during heating operation, when the compressor speed is the same, the outside air temperature is higher An air conditioner having a function of controlling the opening of the downstream side of the two expansion devices.
JP2000278659A 2000-09-08 2000-09-08 Air conditioner Expired - Fee Related JP3890870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000278659A JP3890870B2 (en) 2000-09-08 2000-09-08 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000278659A JP3890870B2 (en) 2000-09-08 2000-09-08 Air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006122881A Division JP3982557B2 (en) 2006-04-27 2006-04-27 Air conditioner

Publications (2)

Publication Number Publication Date
JP2002081769A JP2002081769A (en) 2002-03-22
JP3890870B2 true JP3890870B2 (en) 2007-03-07

Family

ID=18763789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000278659A Expired - Fee Related JP3890870B2 (en) 2000-09-08 2000-09-08 Air conditioner

Country Status (1)

Country Link
JP (1) JP3890870B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327727A (en) * 2006-06-09 2007-12-20 Hitachi Appliances Inc Heat pump water heater
KR101460717B1 (en) 2007-12-24 2014-11-13 엘지전자 주식회사 Air conditioning system
KR101397660B1 (en) 2007-12-24 2014-05-23 엘지전자 주식회사 Air conditioning system
JP5308220B2 (en) * 2009-04-17 2013-10-09 三菱重工業株式会社 Heat pump type hot water supply / air conditioner
KR101175516B1 (en) 2010-05-28 2012-08-23 엘지전자 주식회사 Hot water supply device associated with heat pump
CN102523753A (en) * 2010-09-08 2012-06-27 松下电器产业株式会社 Refrigeration cycle apparatus
JP2015083894A (en) * 2013-10-25 2015-04-30 ダイキン工業株式会社 Refrigeration unit
JP6119616B2 (en) * 2014-01-14 2017-04-26 株式会社デンソー Heat pump cycle
CN104633862B (en) * 2015-02-03 2018-01-09 深圳麦格米特电气股份有限公司 The control method of electric expansion valve during a kind of refrigerating of convertible frequency air conditioner operation
CN105371499B (en) * 2015-10-30 2018-05-29 株洲麦格米特电气有限责任公司 A kind of control method of air-source water heater electric expansion valve
JP6852642B2 (en) 2017-10-16 2021-03-31 株式会社デンソー Heat pump cycle
JP7193706B2 (en) * 2018-10-02 2022-12-21 ダイキン工業株式会社 refrigeration cycle equipment
CN114216201B (en) * 2021-12-02 2024-03-22 珠海格力电器股份有限公司 Control method of fixed-frequency air conditioner and fixed-frequency air conditioner

Also Published As

Publication number Publication date
JP2002081769A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
US9103557B2 (en) Air conditioner and method for controlling the same based on a calculated value of a malfunctioning sensor
US7617694B2 (en) Apparatus and method for controlling super-heating degree in heat pump system
JP3982557B2 (en) Air conditioner
JP2000146329A (en) Heat pump cycle
JP3890870B2 (en) Air conditioner
US20070266719A1 (en) Air conditioner and method of controlling the same
JP2002081767A (en) Air conditioner
US6711909B2 (en) Outdoor fan control system of air conditioner and control method thereof
KR101414860B1 (en) Air conditioner and method of controlling the same
JP2007101177A (en) Air conditioner or refrigerating cycle device
KR101677031B1 (en) Air conditioner and Control method of the same
JP3334222B2 (en) Air conditioner
US10816251B2 (en) Heat pump
JP3021987B2 (en) Refrigeration equipment
JPH0694954B2 (en) Refrigerator superheat control device
JP2757685B2 (en) Operation control device for air conditioner
JPH02157568A (en) Refrigerant residence suppressing device for air conditioning device
JP2006177598A (en) Refrigerating cycle device
JP7533557B2 (en) Air Conditioning Equipment
JPH07332736A (en) Air conditioner
JP3059886B2 (en) Refrigeration equipment
JPH08128747A (en) Controller for air conditioner
JP4111241B2 (en) Refrigeration equipment
JPH03186156A (en) Pressure equalizer of air conditioner
JP2542649B2 (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees