JPS60122848A - Operation control device for air conditioner - Google Patents

Operation control device for air conditioner

Info

Publication number
JPS60122848A
JPS60122848A JP58230997A JP23099783A JPS60122848A JP S60122848 A JPS60122848 A JP S60122848A JP 58230997 A JP58230997 A JP 58230997A JP 23099783 A JP23099783 A JP 23099783A JP S60122848 A JPS60122848 A JP S60122848A
Authority
JP
Japan
Prior art keywords
room temperature
temperature
defrosting operation
air conditioner
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58230997A
Other languages
Japanese (ja)
Inventor
Katsuyuki Mizuno
水野 克之
Kozo Matsumura
松村 幸蔵
Takao Murai
村井 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP58230997A priority Critical patent/JPS60122848A/en
Publication of JPS60122848A publication Critical patent/JPS60122848A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To allow a stabilized control of the defrosting operation of an air conditioner by making the appropriate correction to a judgment criterion as a command signal to start the defrosting operation so that even if the room temperature signal detected by a room temperature sensor is temporarily disturbed, an accurate defrosting operation command signal may be obtained without being influenced by the disturbance. CONSTITUTION:The defrosting operation is performed only when the temperature reduction DELTAT from the initial maximum value To of the differential temperature T between the condensing temperature Tc of the refrigerant in a room side heat exchanger 12 and the room temperature TA is maintained above a predetermined differential temperature for a duration of time t2. Because of this, even if the warm air blown by a room fan 13 hits a room temperature sensor 17 by an external disturbance to cause the room temperature sensor to temporarily output a temperature signal higher than the actual room temperature TA, the mere fact only of such will not start the defrosting operation. Therefore, the defrosting operation of an air conditioner can be controlled in a stabilized manner.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、空気調和機の運転制御I装置に関し、特に、
暖房運転時に室外側熱交換器に生じた着霜を所定の条件
下で除去するデフロスト運転を行うようにしたものに関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an operation control device for an air conditioner, in particular,
This invention relates to a defrost operation that removes frost formed on an outdoor heat exchanger under predetermined conditions during heating operation.

(従来技術) 従来より、この種のデフロスト運転機能を持つ空気調和
機の運転制御装置として、例えば特開昭55−1504
47号公報等に開示されているように、暖房運転時の室
内側熱交換器での冷媒の凝縮温度と室温センサにより検
出した室温との温度差を締出し、該温度差がその暖房運
転初期での最大値に対して所定温度(例えば4°C)以
上減少変化すると暖房能力の低下を招く室外側熱交換器
での着霜が生じているものと判定して、冷媒の循環系路
を暖房サイクルとは逆のサイクル(冷房り一イクル)に
切り換えてデフロスト運転を行うようにしたものは知ら
れている。
(Prior Art) Conventionally, as an operation control device for an air conditioner having this type of defrost operation function, for example, Japanese Patent Application Laid-Open No. 55-1504
As disclosed in Publication No. 47, etc., the temperature difference between the condensation temperature of the refrigerant in the indoor heat exchanger during heating operation and the room temperature detected by the room temperature sensor is eliminated, and this temperature difference is detected at the beginning of the heating operation. If the temperature decreases by more than a predetermined value (for example, 4°C) from the maximum value, it is determined that frost has formed on the outdoor heat exchanger, which will lead to a decrease in heating capacity, and the refrigerant circulation path is closed. It is known that the defrost operation is performed by switching to the opposite cycle (cooling cycle) from the heating cycle.

しかしながら、この従来のものでは、室温センサで検出
された室温を制御信号として入力させている関係上、室
内ファンによって吹き出された温風等が何らかの外乱に
よって上記室温センサに当たり、室温センサが実際の室
温よりも高い室温信号を出力した場合には、それに応じ
て冷媒の凝縮温度と室温との温度差も小さく判別されて
しまい、その結果、本来はデフロスト運転を行う必要の
ない運転状態でもデフロスト運転が行われて誤動作する
虞れがあった。
However, in this conventional system, the room temperature detected by the room temperature sensor is input as a control signal, so if the warm air blown out by the indoor fan hits the room temperature sensor due to some external disturbance, the room temperature sensor may detect the actual room temperature. If a room temperature signal higher than that is output, the temperature difference between the condensation temperature of the refrigerant and the room temperature will be determined to be small accordingly, and as a result, defrost operation will not be performed even in operating conditions that do not normally require defrost operation. There was a risk that this could result in malfunction.

(発明の目的) 本発明の目的は、上記したデフロスト運転の開始指令と
なる判定基準に適切な補正を加えることにより、室温セ
ンサによって検出された室温信号が一時的に乱れてもそ
の影響を受けることなく正確なデフロスト運転指令信号
が1qられるようにし、よって空気調和機のデフロスト
運転の制御安定化を図ることにある。
(Objective of the Invention) The object of the present invention is to make appropriate corrections to the above-mentioned criteria for starting the defrost operation, so that even if the room temperature signal detected by the room temperature sensor is temporarily disturbed, the The purpose of the present invention is to provide an accurate defrost operation command signal 1q without causing any problems, thereby stabilizing the control of the defrost operation of an air conditioner.

(発明の構成) 上記目的の達成のため、本発明の解決手段は、第1図に
示すように、室F(TA)を検出する室温検出手段(1
7)と、暖房運転時の室内側熱交換器での冷媒の凝縮温
度(Tc )を検出する凝縮温度検出手段(18)と、
該凝縮温度検出手段(18)および室温検出手段(17
)の出力を受け、凝縮温度(Tc )と室温(TA )
との温度差がその初期最大値に対し所定値以上減少変化
したことを判別して温度差変化信号を出力する判別手段
(21)と、該判別手段(21)の出力を受け、温度差
変化状態が所定時間継続したときにデフロスト運転指令
信号を出力する制御手段(22)とを備えているもので
ある。このことにより、空気調和機にデフロスト運転を
行わぽるための判定基準を拡大安定化したものである。
(Structure of the Invention) In order to achieve the above object, the solution means of the present invention is as shown in FIG.
7), and a condensing temperature detection means (18) for detecting the condensation temperature (Tc) of the refrigerant in the indoor heat exchanger during heating operation;
The condensation temperature detection means (18) and the room temperature detection means (17)
), condensing temperature (Tc) and room temperature (TA)
and determining means (21) for determining that the temperature difference between The control means (22) outputs a defrost operation command signal when the condition continues for a predetermined period of time. As a result, the criteria for determining whether the air conditioner should perform defrost operation has been expanded and stabilized.

(発明の効果) したがって、本発明によれば、空気調和機の暖房運転時
に室内側熱交換器の凝縮温度と室温との温度差がその初
期最大値よりも所定値以上減少した状態が所定時間継続
したときに初めてデフロスト運転指令信号が出力される
ため、室温センサに温風等が当たって一時的に高い室温
信号が出力されても、その影響を受けることなく正確な
デフロスト運転指令信号を得ることができ、よって空気
調和機のデフロスト運転の誤動作を防止してその制御安
定化を図ることができる。
(Effects of the Invention) Therefore, according to the present invention, during the heating operation of the air conditioner, the temperature difference between the condensation temperature of the indoor heat exchanger and the room temperature decreases by a predetermined value or more from its initial maximum value for a predetermined period of time. The defrost operation command signal is output only when the defrost operation continues, so even if a temporarily high room temperature signal is output due to hot air hitting the room temperature sensor, an accurate defrost operation command signal can be obtained without being affected by it. Therefore, it is possible to prevent malfunctions in the defrost operation of the air conditioner and to stabilize its control.

(実施例) 以下、本発明の実施例について第2図以下の図面によっ
て詳細に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to FIG. 2 and the subsequent drawings.

第2図は本発明の実施例に係る空気調和機の冷媒回路を
示し、(1)は室外ユニツ1〜、(2)は該室外ユニッ
ト(1)に液側冷媒配管(3)およびガス側冷媒配管(
4)を介して連結された室内ユニットであって、上記室
外ユニツ1−(1)は圧縮器(5)、室外側熱交換器(
6)、四路切換弁〈7〉、気液分離器(8)、キi・ピ
ラリ−チューブ(9)、(9)、・・・、逆止弁(1Q
)、室外ファン(11)等を備えている一方、室内ユニ
ット(2)は室内側熱交換器(12)および室内ファン
(13)を備えている。そして、上記の各冷媒流通用機
器は冷媒配管(14)によって図示の如く接続されてお
り、四路切換弁(7)の切換えにより冷房時には冷媒を
図で実線矢符にて示すように流して室外側熱交換器(6
)で凝縮させたのち室内側熱交換器(12)で蒸発させ
ることにより冷房運転を行い、暖房時には冷媒を図で破
線矢符にて示すように流して室内側熱交換器(12)で
凝縮させたのち室外側熱交換器(6)で蒸発させること
により暖房運転を行い、さらに暖房時に室外側熱交換器
(6)に生じた着霜を除去するためのデフロスト運転を
行うときには、冷媒を上記冷房運転時と同様に流して室
外側熱交換器(6)で凝縮発熱さゼるとともに、室外お
よび室内ファン(11)、(13)を停止させるように
している。
FIG. 2 shows a refrigerant circuit of an air conditioner according to an embodiment of the present invention, (1) shows outdoor units 1 to 1, and (2) shows a liquid side refrigerant pipe (3) and a gas side connected to the outdoor unit (1). Refrigerant piping (
The outdoor unit 1-(1) is an indoor unit connected via a compressor (5), an outdoor heat exchanger (
6), four-way switching valve <7>, gas-liquid separator (8), key pillar tube (9), (9),..., check valve (1Q
), an outdoor fan (11), etc., while the indoor unit (2) includes an indoor heat exchanger (12) and an indoor fan (13). The above-mentioned refrigerant distribution devices are connected by refrigerant piping (14) as shown in the figure, and the four-way switching valve (7) is switched to allow the refrigerant to flow as shown by the solid line arrow in the figure during cooling. Outdoor heat exchanger (6
) and then evaporated in the indoor heat exchanger (12) to perform cooling operation. During heating, the refrigerant is flowed as shown by the dashed arrow in the figure and condensed in the indoor heat exchanger (12). The refrigerant is then evaporated in the outdoor heat exchanger (6) to perform heating operation, and when performing defrost operation to remove frost formed on the outdoor heat exchanger (6) during heating. In the same way as during the cooling operation described above, the air is allowed to flow and condensed heat is generated in the outdoor heat exchanger (6), and the outdoor and indoor fans (11) and (13) are stopped.

また、上記室外ユニット(1)において、気液分離器(
8)と圧縮機(5)のインジェクションボート(5a)
との間は制御用電磁弁(15)を介設したガスインジェ
クションバイパス配管(16)によって接続されており
、暖房時に暖房能力を高めた暖房アップ運転を行うとき
には、制御用電磁弁(15)を開いて中間圧力ガスを圧
縮機(5)に注入することにより、能力アップ運転を行
い、暖房時に暖房能力を抑制した[!!房セーブ運転も
しくは上記デフロスト運転を行うとぎ、または冷房運転
を行うときには、制御用電磁弁(15)を閉じて中間圧
力ガスの圧縮111(5)への注入を停止することによ
り、能力ダウン運転を行うようにしている。
In addition, in the outdoor unit (1), a gas-liquid separator (
8) and the injection boat (5a) of the compressor (5)
are connected by a gas injection bypass pipe (16) with a control solenoid valve (15) interposed therein, and when performing heating-up operation with increased heating capacity during heating, the control solenoid valve (15) is connected to the gas injection bypass pipe (16). By opening it and injecting intermediate pressure gas into the compressor (5), capacity-up operation was performed and heating capacity was suppressed during heating [! ! When performing the air conditioner save operation or the above-mentioned defrost operation, or when performing the air conditioner operation, the control solenoid valve (15) is closed to stop the injection of intermediate pressure gas into the compressor 111 (5), thereby reducing the capacity. I try to do it.

第3図は上記圧縮機(5)、四路切換弁(7)。Figure 3 shows the compressor (5) and four-way switching valve (7).

制御用電磁弁(15)、室外ファン(11)および室内
ファン(13)を作動制御するための制御システムを示
し、(17)は室温(TA )を検出する室温検出手段
としてのサーミスタよりなる室温センサ、(18)は暖
房運転時の室内側熱交換器(12)での冷媒の凝縮温度
(Tc )を検−出する凝縮温度検出手段としてのサー
ミスタよりなる凝縮温度センサであって、上記各センサ
(17)。
A control system for controlling the operation of a control solenoid valve (15), an outdoor fan (11), and an indoor fan (13) is shown, and (17) is a room temperature sensor consisting of a thermistor as a room temperature detection means for detecting room temperature (TA). The sensor (18) is a condensation temperature sensor consisting of a thermistor as a condensation temperature detection means for detecting the condensation temperature (Tc) of the refrigerant in the indoor heat exchanger (12) during heating operation, and Sensor (17).

(18)の出力は各センサ(17)、(18)の出力信
号を受けて圧縮機(5)、四路切換弁(7)、制御用電
磁弁(1’5)、室外ファン(11)および室内ファン
(13)を制御するコン1〜ロールユニツト(19)に
入力されている。該コントロールユニット(19)はマ
イクロコンピュータ(20)を備え、該マイクロコンピ
ュータ(20〉は、その信号処理機能の一つとして、凝
縮温度センサく18)で検出した凝縮温度(Tc )と
室温センサ(17)で検出した室温(TA )との温度
差(T>((T)=(Tc) −(TA))を算出して
該温度差(T)がその暖房運転初期の最大温度差(To
 )よりも所定温度(ΔTo>(例えば4°C)以上減
少変化した温度差変化状態にあることを判定し、この温
度差変化状態が所定時間(j2)(例えば1分間)継続
するとデフロスト運転を行わせる機能を有している。
The output of (18) is sent to the compressor (5), four-way switching valve (7), control solenoid valve (1'5), and outdoor fan (11) in response to the output signals of each sensor (17) and (18). and is input to the controller 1 to the roll unit (19) that control the indoor fan (13). The control unit (19) is equipped with a microcomputer (20), and as one of its signal processing functions, the microcomputer (20〉) detects the condensing temperature (Tc) detected by the condensing temperature sensor (18) and the room temperature sensor (18). The temperature difference (T > ((T) = (Tc) - (TA)) from the room temperature (TA) detected in step 17) is calculated, and the temperature difference (T) is determined to be the maximum temperature difference (To
) is determined to be in a temperature difference change state where the temperature difference has decreased by more than a predetermined temperature (ΔTo> (for example, 4°C) It has a function to make it perform.

しかして、このコントロールユニット(19)のマイク
ロコンピュータ(20)により、凝縮温度センサ(18
)および室温センサ(17)の出力を受け、凝縮温度(
Tc )と室温(TA)との温度差(T)がその初期最
大値(To )よりも所定値(ΔTo)以上減少したこ
とを判別して温度差変化信号を出力する判別手段〈21
)と、該判別手段(21〉の出力を受け、上記温度差変
化状態が所定時間(t2)継続したときにデフロスト運
転指令信号を四路切換弁(7)、室外ファン(11)お
よび室内ファン(13)に出力づ−る制御手段(22)
とが構成される。
The microcomputer (20) of this control unit (19) controls the condensation temperature sensor (18).
) and room temperature sensor (17), the condensing temperature (
Discrimination means for discriminating that the temperature difference (T) between Tc ) and room temperature (TA) has decreased by a predetermined value (ΔTo) or more from its initial maximum value (To ) and outputting a temperature difference change signal <21
) and the determination means (21), and when the temperature difference change state continues for a predetermined time (t2), a defrost operation command signal is sent to the four-way selector valve (7), the outdoor fan (11), and the indoor fan. Control means (22) outputting to (13)
is composed of.

次に、上記制御システムの暖房運転時の作動について、
第4図に示すフローチャートによって説明Jると、スタ
ート後、先ず、ステップ(SI)において圧縮機(5)
および室外ファン(11)を運転するとともに四路切換
弁(7)を暖房サイクルに切り換え、次いでステップ(
S2)で凝縮温度センサ(18)からの出力信号により
室内側熱交換器(12)での冷媒の凝縮温度(Tc >
を検出記憶したのちステップ(S3)にて上記凝縮温度
(Tc )が35°C以上であるか否かの判定を行い、
この判定がNoであるときにはステップ(S2)に戻り
、判定がYESになるとステップ(S4)で室内ファン
(13)の運転を行う。以上のステップ(S2)〜〈S
4)により暖房運転開始時室内側熱交換器(12)での
熱交換が不十分であるときに冷風が室内に吹き出される
のが防止される。
Next, regarding the operation of the above control system during heating operation,
Explaining with reference to the flowchart shown in FIG. 4, after starting, first, in step (SI), the compressor (5) is
Then, operate the outdoor fan (11) and switch the four-way selector valve (7) to the heating cycle, then step (
In step S2), the condensation temperature (Tc >
After detecting and storing, it is determined in step (S3) whether or not the condensation temperature (Tc) is 35°C or higher,
When this determination is No, the process returns to step (S2), and when the determination is YES, the indoor fan (13) is operated in step (S4). The above steps (S2) ~ <S
4) prevents cold air from being blown into the room when heat exchange in the indoor heat exchanger (12) is insufficient at the start of heating operation.

この後、ステップ(S5)で上記暖房運転開始時から所
定時間(1+ )(例えば15分間)経過したか否かの
判定を行い、この判定がNoであるときには同じステッ
プ(S5)を続行する。このステップ(S5)により暖
房運転が安定状態に移行するのを確保する。そして、上
記ステップ(S5)での判定がYESであるときにはス
テップ(S6)において室内側熱交換器〈12)での冷
媒の凝縮温度(Tc >および室温(TA )を検出し
、ステップ(S7)でこの冷媒凝縮温度(Tc )と室
温(TA >との温度差(T>をiij算して暖房運転
開始後の最大値(To ) 、すなわち室外側熱交換器
(6)に未だ着霜が発生せずに高効率で熱交換が行われ
ている状態の値としてホールドする。
Thereafter, in step (S5), it is determined whether a predetermined time (1+) (for example, 15 minutes) has elapsed since the start of the heating operation, and if this determination is No, the same step (S5) is continued. This step (S5) ensures that the heating operation shifts to a stable state. When the determination in step (S5) is YES, the condensation temperature (Tc) of the refrigerant in the indoor heat exchanger (12) and the room temperature (TA) are detected in step (S6), and step (S7) is performed. Then, the temperature difference (T>) between this refrigerant condensation temperature (Tc) and the room temperature (TA>) is calculated to find the maximum value (To) after the start of heating operation, that is, there is still frost on the outdoor heat exchanger (6). The value is held as the value in the state where heat exchange is performed with high efficiency without generation.

次いで、ステップ〈S8)で再度凝縮fffi度(Tc
)および室m(TA)を検出し、ステップ(S9)で両
温度(Tc)、(TA)の温度差(T)((T)= (
Tc > (TA ))の上記初期最大値(To )か
らの減少量(6丁)((ΔT)=(To)−(T))を
計算したのちステップ(Sho)で該減少量(ΔT)が
所定値(ΔTo>(=4゜C)を超えたか否かの判定を
行う、この判定がNOであるときにはデフロスト運転が
不必要な状態とみてステップ(S11)でメモリ信号(
N)を“OIIとしたのち上記ステップ〈S8)に戻る
Next, in step <S8), the degree of condensation fffi (Tc
) and room m (TA), and in step (S9), the temperature difference (T) between both temperatures (Tc) and (TA) ((T) = (
After calculating the amount of decrease (6 guns) ((ΔT) = (To) - (T)) of Tc > (TA)) from the above initial maximum value (To), the amount of decrease (ΔT) is calculated in step (Sho). It is determined whether or not exceeds a predetermined value (ΔTo>(=4°C)). If this determination is NO, it is assumed that defrost operation is unnecessary, and the memory signal (
After setting N) to "OII", the process returns to the above step (S8).

判定がYESであるときにはステップ(812)におい
て、上記室内側熱交換器(12)での冷媒の凝縮温度(
Tc >を変動させないようサーモの停止および暖房能
力の切換制御を共に禁止処理したのち、ステップ(SI
3>でメモリ信号(N)を” N +1 ”に置換し、
次いでステップ(814)で上記メモリ信号(N)が所
定数(t 、)(=60)以上であるか否かの判定を行
い、この判定がNOであるときには上記ステップ(S8
)に戻って制御フローを繰り返す。この制御フローの繰
返しサイクル時間を一定時間(例えば1秒間)に設定し
ておくことにより、上記ステップ(814)での判定は
上記凝縮湿度(Tc )と室温(1−A)との温度差<
 T )の初期最大値(To )がらの減少量(△T)
が所定温度(ΔTo)を越えた状態が所定時間(60秒
間)継続したか否かの判定となる。
When the determination is YES, in step (812), the condensation temperature (
After prohibiting both thermostat stop and heating capacity switching control so as not to change Tc >, step (SI
3>, replace the memory signal (N) with “N +1”,
Next, in step (814), it is determined whether the memory signal (N) is greater than or equal to a predetermined number (t,) (=60), and if this determination is NO, the step (S8) is performed.
) and repeat the control flow. By setting the repetition cycle time of this control flow to a certain period of time (for example, 1 second), the determination in step (814) can be made that the temperature difference between the condensed humidity (Tc) and the room temperature (1-A) is
Amount of decrease (△T) from the initial maximum value (To) of T )
It is determined whether or not the state in which the temperature exceeds a predetermined temperature (ΔTo) continues for a predetermined time (60 seconds).

そして、上記制御フローの繰返しににり判定がYESに
なるとステップ(Szs)において圧縮機(5)の運転
時間の積算が(ts)時間(例えば32分間)経過した
か否かの判定を行い、この判定がNoであるときには上
記ステップ〈S8)に戻る。これは一定の暖房運転時間
を確保するために行うものである。
Then, when the determination becomes YES by repeating the above control flow, it is determined in step (Szs) whether or not the cumulative operating time of the compressor (5) has elapsed (ts) time (for example, 32 minutes); If this determination is No, the process returns to step <S8>. This is done to ensure a constant heating operation time.

一方、上記ステップ(Szs)での判定がYESである
ときにはステップ(SI6>で室外および室内ファン(
11)、(13)を停止するとともに四路切換弁(7)
を冷房サイクルに切り換えてデフロスト運転を開始した
のち、ステップ(Say)で室内側熱交換器(12)で
の冷媒の凝縮温度(Tc )と室内ファン(13)の設
定風量とにJ:り除霜時間(t4)(例えば4〜10分
間)を設定し、この除霜時間(t4)が経過したか否か
の判定をステップ(S’s)で行いつつ除霜時間(t4
)が経過するまでの間デフロス1へ運転を行う。
On the other hand, if the determination in the above step (Szs) is YES, the outdoor and indoor fans (
11), (13) and four-way switching valve (7).
After switching to the cooling cycle and starting the defrost operation, in step (Say), the refrigerant condensation temperature (Tc) in the indoor heat exchanger (12) and the set air volume of the indoor fan (13) are set. Defrosting time (t4) (for example, 4 to 10 minutes) is set, and while determining whether or not this defrosting time (t4) has elapsed in step (S's), the defrosting time (t4) is set.
), the defrost 1 operation is performed until the time period elapses.

上記除霜時間(t4)が経過してステップ(S’s)で
の判定がYESになるとステップ(Szs)で圧縮m(
5)の運転を停止するとともに室外ファン(11)の運
転を開始し、この状態をステップ(S〜)で所定時間(
ts)(例えば1分間)規制保持したのちステップ(8
2+)で圧縮機(5)を運転する。このように圧縮II
I (5)を室外ファン(11)よりも遅れて運転開始
することにより、後述のステップ(823)にて四路切
換弁(7)を切り換える際の該四路切換弁(7)両側の
冷媒圧力が均衡して異音の発生が防止される。この後ス
テップ(822)で圧縮機(5)の運転開始から所定時
間(js)(例えば2秒間)vl過するのを規制したの
ち最後のステップ<823 )で四路切換弁(7)を暖
房サイクルに切り換える。この四路切換弁(7)の遅延
切換えを行うのはその切換不良が発生Jるのを防止する
ためである。上記ステップ(S23 )の後はステップ
(S2)に戻り、以上によって全ての制御フローの1サ
イクルが終了し、以後上記と同じサイクルが繰り返され
る。
When the defrosting time (t4) has elapsed and the determination in step (S's) becomes YES, the compression m(
At the same time as stopping the operation of the outdoor fan (11), the operation of the outdoor fan (11) is started, and this state is maintained for a predetermined time (
ts) (for example, 1 minute), then step (8)
2+) to operate the compressor (5). Compressed II like this
By starting the I (5) later than the outdoor fan (11), the refrigerant on both sides of the four-way selector valve (7) when switching the four-way selector valve (7) in step (823) described later. The pressure is balanced and abnormal noise is prevented. After this, in step (822), the predetermined time (js) (for example, 2 seconds) vl is regulated from the start of operation of the compressor (5), and in the last step <823), the four-way switching valve (7) is heated. Switch to cycle. The reason for performing delayed switching of the four-way switching valve (7) is to prevent switching failure from occurring. After the above step (S23), the process returns to step (S2), and one cycle of all control flows is thus completed, and the same cycle as above is repeated thereafter.

したがって、この場合、空気調和機の暖房運転時にデフ
ロスト運転を行うときには、室内側熱交換器(12)で
の冷媒の凝縮温度(Tc )と室温(TA )との温度
差(T)の初期の最大値(To )からの減少変化温度
(ΔT)が所定温度(ΔTo)以上にある温度差変化状
態が所定時間(t2)だけ継続すると初めてデフロスト
運転を行うため、室内ファン(13)から吹き出された
温風が外乱により室温センサ(17)に当たって該室温
センサ(17)から実際の室温(TA )よりも高い温
度を示す温度信号が一時的に出力されても、そのことに
よって直ちにデフロスト運転が開始されることはなく、
よって空気調和機のデフロスト運転を安定して制御する
ことができる。
Therefore, in this case, when performing defrost operation during heating operation of the air conditioner, the initial temperature difference (T) between the refrigerant condensation temperature (Tc) and room temperature (TA) in the indoor heat exchanger (12) is When the temperature difference change state in which the decreasing change temperature (ΔT) from the maximum value (To) continues for a predetermined time (t2), defrost operation is performed for the first time, and the air is blown from the indoor fan (13). Even if the heated air hits the room temperature sensor (17) due to a disturbance and the room temperature sensor (17) temporarily outputs a temperature signal indicating a temperature higher than the actual room temperature (TA), the defrost operation starts immediately. will not be done,
Therefore, the defrost operation of the air conditioner can be stably controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の全体構成図、第2図ないし第4図は本
発明の実施例を示し、第2図は冷媒回路図、第3図は制
御システムのブロック図、第4図は同フローチャート図
である。
Fig. 1 is an overall configuration diagram of the present invention, Figs. 2 to 4 show embodiments of the present invention, Fig. 2 is a refrigerant circuit diagram, Fig. 3 is a block diagram of the control system, and Fig. 4 is the same. It is a flowchart figure.

Claims (1)

【特許請求の範囲】[Claims] (1)室外側熱交換器(6)に生じlC着霜をデフロス
ト運転により除去するようにした空気調和機において、
室titil(1−八)を検出する室温検出手段(17
)と、暖房運転時の室内側熱交換器(12)での冷媒凝
縮温度(Tc )を検出する凝縮温度検出手段(18)
と、該凝縮温度検出手段(18)および室温検出手段〈
17)の出力を受け、凝縮混痘(Tc )と室温(TA
 )との温度差(T)が初期最大値(TO)よりも所定
1m (ΔTo)以上減少変化したことを判別して温度
差変化状態を出力づる判別手段(25)と、該判別手段
(25)の出力を受け、温度差変化状態が所定時間(t
2)継続したときにデフロス1ル運転指令信号を出力す
る制御手段く26)とを備えていることを特徴とする空
気調和機の運転制御装置。
(1) In an air conditioner configured to remove 1C frost formed on the outdoor heat exchanger (6) by defrosting operation,
Room temperature detection means (17) for detecting the room titil (1-8)
), and a condensation temperature detection means (18) for detecting the refrigerant condensation temperature (Tc) in the indoor heat exchanger (12) during heating operation.
and the condensation temperature detection means (18) and room temperature detection means
17), condensed variola (Tc) and room temperature (TA
) for determining that the temperature difference (T) has decreased by a predetermined 1 m (ΔTo) or more from the initial maximum value (TO) and outputting a temperature difference change state; ), the temperature difference change state continues for a predetermined time (t
2) An operation control device for an air conditioner characterized by comprising: 26) a control means for outputting a defrost operation command signal when the defrost operation continues.
JP58230997A 1983-12-06 1983-12-06 Operation control device for air conditioner Pending JPS60122848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58230997A JPS60122848A (en) 1983-12-06 1983-12-06 Operation control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58230997A JPS60122848A (en) 1983-12-06 1983-12-06 Operation control device for air conditioner

Publications (1)

Publication Number Publication Date
JPS60122848A true JPS60122848A (en) 1985-07-01

Family

ID=16916612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58230997A Pending JPS60122848A (en) 1983-12-06 1983-12-06 Operation control device for air conditioner

Country Status (1)

Country Link
JP (1) JPS60122848A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090747A (en) * 2004-09-21 2006-04-06 Mitsutoyo Corp Surface-flaw inspection device
CN104159759A (en) * 2012-03-08 2014-11-19 雷诺股份公司 Automatic control method used for defrosting a heat pump for a vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210121U (en) * 1975-07-08 1977-01-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210121U (en) * 1975-07-08 1977-01-24

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090747A (en) * 2004-09-21 2006-04-06 Mitsutoyo Corp Surface-flaw inspection device
CN104159759A (en) * 2012-03-08 2014-11-19 雷诺股份公司 Automatic control method used for defrosting a heat pump for a vehicle
CN104159759B (en) * 2012-03-08 2017-03-22 雷诺股份公司 Automatic control method used for defrosting a heat pump for a vehicle

Similar Documents

Publication Publication Date Title
JP2010506132A (en) Method and apparatus for controlling stop operation of air conditioner
JP2002081769A (en) Air conditioner
JPH04240355A (en) Controlling method for electronic expansion valve of air conditioner
WO2016062430A1 (en) Selecting control strategy for an expansion valve
JPH0498040A (en) Operation control device for air conditioner
JP2605614B2 (en) Operation control device for air conditioner
JPS60122848A (en) Operation control device for air conditioner
JPH05264113A (en) Operation control device of air conditioner
JPH1038387A (en) Operation controller of air conditioner
JPH1038398A (en) Controller of electric expansion valve
JPH02192536A (en) Heater device
JP2839347B2 (en) Air conditioner
JPH09236299A (en) Running control device for air conditioning apparatus
JP2522116B2 (en) Operation control device for air conditioner
JP2912811B2 (en) Air conditioner
JP7400583B2 (en) air conditioner
JPH0527019B2 (en)
JP3337264B2 (en) Air conditioner defroster
JPH0510626A (en) Air conditioner
JPH05288386A (en) Operation controller for outdoor fan in air conditioner
JPH081343B2 (en) Air conditioner
JPH0719575A (en) Air conditioner
JPH02106662A (en) Freezer device
JPS6399472A (en) Air conditioner
JPH04369368A (en) Defrosting operation controller