JPH09236299A - Running control device for air conditioning apparatus - Google Patents

Running control device for air conditioning apparatus

Info

Publication number
JPH09236299A
JPH09236299A JP8042443A JP4244396A JPH09236299A JP H09236299 A JPH09236299 A JP H09236299A JP 8042443 A JP8042443 A JP 8042443A JP 4244396 A JP4244396 A JP 4244396A JP H09236299 A JPH09236299 A JP H09236299A
Authority
JP
Japan
Prior art keywords
compressor
temperature
expansion valve
electric expansion
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8042443A
Other languages
Japanese (ja)
Inventor
Hirotaka Nakajima
洋登 中嶋
Shinichi Oka
伸一 岡
Iwao Shinohara
巌 篠原
Yuji Nishiyama
裕二 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP8042443A priority Critical patent/JPH09236299A/en
Publication of JPH09236299A publication Critical patent/JPH09236299A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a comfortable air conditioning control by ensuring a power- operated expansion valve to obtain a given opening degree. SOLUTION: A running volume of a compressor 21 is controlled in response to an air conditioning load while an opening rate of a power-operated expansion valve EV is controlled based on a detected temperature of a discharge pipe sensor Th-d such that a discharge-pipe temperature of the compressor 21 becomes an optimum discharge-pipe temperature. Furthermore, in the case where the running volume of the compressor 21 is large, a control speed for changing the opening rate of the electrically-operated expansion valve EV is accelerate, while in case that the operation volume of the compressor 21 is small, the control speed for changing the opening rate of the power-operated expansion valve EV is decelerated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和装置の運
転制御装置に関し、特に、電動膨張弁の駆動制御対策に
係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner operation control device, and more particularly to a drive control measure for an electric expansion valve.

【0002】[0002]

【従来の技術】従来より、空気調和装置には、特開平7
−120120号公報に開示されているように、圧縮機
と室外熱交換器と電動膨張弁と室内熱交換器とが順に冷
媒配管によって接続されて成る冷媒回路を備えたものが
ある。そして、冷房運転時には、室外熱交換器で凝縮し
た液冷媒が電動膨張弁で減圧した後、室内熱交換器で蒸
発して圧縮機に戻る循環となる一方、暖房運転時には、
室内熱交換器で凝縮した液冷媒が電動膨張弁で減圧した
後、室外熱交換器で蒸発して圧縮機に戻る循環となる。
2. Description of the Related Art Conventionally, air conditioners have been disclosed in
As disclosed in Japanese Patent Laid-Open No. 120120, there is one provided with a refrigerant circuit in which a compressor, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger are sequentially connected by a refrigerant pipe. Then, during the cooling operation, after the liquid refrigerant condensed in the outdoor heat exchanger is decompressed by the electric expansion valve, it is circulated to evaporate in the indoor heat exchanger and return to the compressor, while in the heating operation,
The liquid refrigerant condensed in the indoor heat exchanger is decompressed by the electric expansion valve, then evaporated in the outdoor heat exchanger and returned to the compressor for circulation.

【0003】[0003]

【発明が解決しようとする課題】上述した空気調和装置
において、従来、圧縮機の吐出管温度が目標吐出管温度
になるように電動膨張弁の開度を一定時間毎に調節して
いるが、圧縮機の運転周波数によっては、電動膨張弁開
度の収束が遅くなったり、又は収束しない場合があっ
た。
In the above-mentioned air conditioner, conventionally, the opening degree of the electric expansion valve is adjusted at regular intervals so that the discharge pipe temperature of the compressor becomes the target discharge pipe temperature. Depending on the operating frequency of the compressor, the electric expansion valve opening may converge slowly or may not converge.

【0004】つまり、圧縮機が高圧ドーム型の場合、例
えば、圧縮機モータの運転周波数を高くすると、冷媒温
度自体は直ちに上昇するものの、ドームなどは温度上昇
に時間を要することになる。逆に、圧縮機モータの運転
周波数数を低くすると、冷媒温度自体は直ちに低下する
ものの、ドームなどは温度低下に時間を要することにな
る。
That is, when the compressor is a high-pressure dome type, for example, when the operating frequency of the compressor motor is increased, the refrigerant temperature itself rises immediately, but the dome or the like requires a long time to rise in temperature. On the contrary, when the number of operating frequencies of the compressor motor is lowered, the temperature of the refrigerant itself is immediately lowered, but it takes time for the temperature of the dome or the like to be lowered.

【0005】このドームなどの温度変化は、圧縮機の運
転容量が小さいほど冷媒温度の変化に追随し難くなる。
そして、従来、上述したように電動膨張弁を吐出管温度
で常に一定時間毎に制御しているため、圧縮機の運転容
量が小さい場合、吐出管温度が実際の冷媒温度に対して
遅れることになる。
The temperature change of the dome or the like becomes more difficult to follow the change of the refrigerant temperature as the operating capacity of the compressor is smaller.
Further, conventionally, as described above, the electric expansion valve is always controlled by the discharge pipe temperature at regular intervals, so that when the operating capacity of the compressor is small, the discharge pipe temperature is delayed with respect to the actual refrigerant temperature. Become.

【0006】この結果、電動膨張弁が所定開度に収束す
るまでの時間が長くな場合があり、また、電動膨張弁を
開け過ぎたり、絞り過ぎたりしてハンチングが生ずる場
合があり、正確な空調制御を行うことができないという
問題があった。
As a result, the electric expansion valve may take a long time to converge to a predetermined opening degree, and the electric expansion valve may open too much or may be throttled too much, resulting in hunting. There is a problem that air conditioning control cannot be performed.

【0007】本発明は、斯かる点に鑑みてなされたもの
で、電動膨張弁が確実に所定開度に収束するようにして
快適な空調制御を行い得るようにすることを目的とする
ものである。
The present invention has been made in view of the above problems, and an object thereof is to ensure that the electric expansion valve converges to a predetermined opening degree and to perform comfortable air conditioning control. is there.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

−発明の概要− 本発明は、圧縮機(21)の運転容量は空調負荷に対応し
て制御すると共に、吐出管センサ(Th-d)の検出温度に
基いて、圧縮機(21)の吐出管温度が最適吐出管温度に
なるように電動膨張弁(EV)の開度を制御する一方、圧
縮機(21)の運転容量が大きいと電動膨張弁(EV)の開
度変更の制御速度を早くし、圧縮機(21)の運転容量が
小さいと電動膨張弁(EV)の開度変更の制御速度を遅く
するように制御する。
-Summary of the Invention-The present invention controls the operating capacity of the compressor (21) in accordance with the air conditioning load, and discharges the compressor (21) based on the temperature detected by the discharge pipe sensor (Th-d). While controlling the opening of the electric expansion valve (EV) so that the pipe temperature becomes the optimum discharge pipe temperature, if the operating capacity of the compressor (21) is large, the control speed for changing the opening of the electric expansion valve (EV) will be adjusted. If the operating capacity of the compressor (21) is small, the control speed for changing the opening degree of the electric expansion valve (EV) is controlled to be slow.

【0009】−発明の特定事項− 具体的に、図1に示すように、請求項1に係る発明が講
じた手段は、先ず、運転容量の可変な高圧ドーム型の圧
縮機(21)と熱源側熱交換器(23)と開度の可変な電動
膨張弁(EV)と利用側熱交換器(31)とが順に接続され
て成る冷媒回路(12)を備えた空気調和装置を前提とし
ている。
-Specific matters of the invention-Specifically, as shown in FIG. 1, the means taken by the invention according to claim 1 is as follows. First, a high pressure dome type compressor (21) having a variable operating capacity and a heat source. It is premised on an air conditioner including a refrigerant circuit (12) in which a side heat exchanger (23), an electric expansion valve (EV) with a variable opening degree, and a utilization side heat exchanger (31) are sequentially connected. .

【0010】そして、上記電動膨張弁(EV)の開度を制
御する開度制御手段(52)が設けられている。加えて、
上記圧縮機(21)の運転容量が大きいと電動膨張弁(E
V)の開度変更の制御速度を早くし、圧縮機(21)の運
転容量が小さいと電動膨張弁(EV)の開度変更の制御速
度を遅くするように上記開度制御手段(52)に変更信号
を出力する速度変更手段(53)が設けられている。
An opening control means (52) for controlling the opening of the electric expansion valve (EV) is provided. in addition,
If the operating capacity of the compressor (21) is large, the electric expansion valve (E
The opening control means (52) is configured to increase the control speed for changing the opening degree of V) and decrease the control speed for changing the opening degree of the electric expansion valve (EV) when the operating capacity of the compressor (21) is small. Is provided with speed changing means (53) for outputting a change signal.

【0011】また、請求項2記載の発明が講じた手段
は、上記請求項1記載の発明において、圧縮機(21)の
吐出管温度を検出する温度検出手段(Th-d)が設けられ
る一方、開度制御手段(52)が、温度検出手段(Th-d)
の温度信号を受けて、圧縮機(21)の吐出管温度が目標
吐出管温度になるように電動膨張弁(EV)の開度を制御
する構成としている。
The means taken by the invention of claim 2 is, in the invention of claim 1 above, provided with temperature detecting means (Th-d) for detecting the temperature of the discharge pipe of the compressor (21). The opening control means (52) is a temperature detection means (Th-d)
In response to this temperature signal, the opening of the electric expansion valve (EV) is controlled so that the discharge pipe temperature of the compressor (21) reaches the target discharge pipe temperature.

【0012】また、請求項3記載の発明が講じた手段
は、上記請求項1記載の発明において、圧縮機(21)の
吐出管温度を検出する温度検出手段(Th-d)が設けられ
る一方、速度変更手段(53)が、温度検出手段(Th-d)
の温度信号を受けて、吐出管温度が所定温度より高くな
ると開度制御手段(52)に変更信号を出力する構成とし
ている。
The means taken by the invention according to claim 3 is the same as the invention according to claim 1, wherein temperature detecting means (Th-d) for detecting the discharge pipe temperature of the compressor (21) is provided. , Speed change means (53), temperature detection means (Th-d)
When the temperature of the discharge pipe becomes higher than a predetermined temperature in response to the temperature signal of, the change signal is output to the opening degree control means (52).

【0013】また、請求項4記載の発明が講じた手段
は、上記請求項1記載の発明において、速度変更手段
(53)は、開度制御手段(52)が制御間隔を変更するよ
うに変更信号を出力する構成としている。
The means taken by the invention of claim 4 is the invention of claim 1 in which the speed changing means (53) is changed so that the opening control means (52) changes the control interval. It is configured to output a signal.

【0014】−作用− 上記の発明特定事項により、請求項1記載の発明では、
空調運転時において、圧縮機(21)の運転容量は空調負
荷に対応して制御される一方、開度制御手段(52)は、
請求項2記載の発明では、温度検出手段(Th-d)の温度
信号を受けて、圧縮機(21)の吐出管温度が最適吐出管
温度になるように電動膨張弁(EV)の開度を制御してい
る。
-Operation- Due to the above-mentioned matters specifying the invention, in the invention according to claim 1,
During air conditioning operation, the operating capacity of the compressor (21) is controlled according to the air conditioning load, while the opening control means (52)
In the invention according to claim 2, the opening degree of the electric expansion valve (EV) is received so that the discharge pipe temperature of the compressor (21) becomes the optimum discharge pipe temperature by receiving the temperature signal of the temperature detecting means (Th-d). Are in control.

【0015】この開度制御手段(52)の開度制御におい
て、速度変更手段(53)が、圧縮機(21)の運転容量が
大きいと電動膨張弁(EV)の開度変更の制御速度を早く
し、圧縮機(21)の運転容量が小さいと電動膨張弁(E
V)の開度変更の制御速度を遅くするように制御する。
In the opening control of the opening control means (52), the speed changing means (53) controls the opening speed of the electric expansion valve (EV) when the operating capacity of the compressor (21) is large. If the operating capacity of the compressor (21) is small, the electric expansion valve (E
Control so that the control speed for changing the V) opening is slowed.

【0016】具体的に、上記速度変更手段(53)は、例
えば、請求項3記載の発明では、温度検出手段(Th-d)
の温度信号を受けて、吐出管温度が50℃未満の場合、
冷媒の湿り運転を迅速に抜け出すために変更信号出力す
ることなく、開度制御手段(52)は、5分毎の制御間隔
でもって電動膨張弁(EV)の開度を制御する。
Specifically, the speed changing means (53) is, for example, in the invention according to claim 3, a temperature detecting means (Th-d).
When the temperature of the discharge pipe is less than 50 ℃,
The opening control means (52) controls the opening of the electric expansion valve (EV) at a control interval of 5 minutes without outputting a change signal in order to quickly exit the wet operation of the refrigerant.

【0017】一方、例えば、上記吐出管温度が50℃以
上の通常運転の場合、速度変更手段(53)は、圧縮機
(21)の運転容量信号を受けて、例えば、圧縮機(21)
の運転容量が小さい周波数ステップN1及びN2では、
低速度制御信号を出力し、開度制御手段(52)が、請求
項4記載の発明では、15分毎の制御間隔でもって電動
膨張弁(EV)の開度を制御する。
On the other hand, for example, in the normal operation in which the discharge pipe temperature is 50 ° C. or higher, the speed changing means (53) receives the operation capacity signal of the compressor (21) and, for example, the compressor (21).
In the frequency steps N1 and N2 where the operating capacity of
In the invention according to claim 4, the opening control means (52) outputs the low speed control signal and controls the opening of the electric expansion valve (EV) at a control interval of every 15 minutes.

【0018】また、上記速度変更手段(53)は、例え
ば、圧縮機(21)の運転容量が中間の周波数ステップN
3〜N5では、中速度制御信号を出力し、開度制御手段
(52)が、10分毎の制御間隔でもって電動膨張弁(E
V)の開度を制御する。
The speed changing means (53) has a frequency step N in which the operating capacity of the compressor (21) is in the middle, for example.
In 3 to N5, the medium speed control signal is output, and the opening control means (52) outputs the electric expansion valve (E) at a control interval of 10 minutes.
V) control the opening.

【0019】また、上記速度変更手段(53)は、例え
ば、圧縮機(21)の運転容量が大きい周波数ステップN
6〜N8では、高速度制御信号を出力し、開度制御手段
(52)が、5分毎の制御間隔でもって電動膨張弁(EV)
の開度を制御するように変更信号を出力する。
Further, the speed changing means (53) is, for example, a frequency step N with a large operating capacity of the compressor (21).
In 6 to N8, a high speed control signal is output, and the opening degree control means (52) has an electric expansion valve (EV) at a control interval of 5 minutes.
A change signal is output to control the opening degree of.

【0020】この結果、圧縮機(21)の運転容量が小さ
い場合、電動膨張弁(EV)の開度がゆっくり変動し、逆
に、圧縮機(21)の運転容量が大きい場合、電動膨張弁
(EV)の開度が早く変動することになる。
As a result, when the operating capacity of the compressor (21) is small, the opening degree of the electric expansion valve (EV) fluctuates slowly, and conversely, when the operating capacity of the compressor (21) is large, the electric expansion valve. The opening of (EV) will change rapidly.

【0021】[0021]

【発明の効果】したがって、請求項1記載の発明によれ
ば、圧縮機(21)の運転容量が大きいと電動膨張弁(E
V)の開度変更の制御速度を早くし、圧縮機(21)の運
転容量が小さいと電動膨張弁(EV)の開度変更の制御速
度を遅くするようにしたために、電動膨張弁(EV)を所
定の開度に迅速に収束させることができると共に、開度
のハンチングを確実に防止することができる。この結
果、冷媒循環量を正確に制御することができることか
ら、快適な空調制御を実行することができる。
Therefore, according to the first aspect of the invention, when the operating capacity of the compressor (21) is large, the electric expansion valve (E
The control speed for changing the opening of the electric expansion valve (EV) is increased by increasing the control speed for changing the opening of the electric expansion valve (EV) when the operating capacity of the compressor (21) is small. ) Can be quickly converged to a predetermined opening, and hunting of the opening can be reliably prevented. As a result, the refrigerant circulation amount can be accurately controlled, so that comfortable air conditioning control can be executed.

【0022】特に、請求項2記載の発明によれば、上記
電動膨張弁(EV)の開度を圧縮機(21)の吐出管温度に
基いて制御する際、吐出管温度の遅れを吸収することが
でき、電動膨張弁(EV)の開度を正確に制御することが
できる。
Particularly, according to the second aspect of the invention, when the opening degree of the electric expansion valve (EV) is controlled based on the discharge pipe temperature of the compressor (21), the delay of the discharge pipe temperature is absorbed. Therefore, the opening degree of the electric expansion valve (EV) can be accurately controlled.

【0023】また、請求項3記載の発明によれば、上記
圧縮機(21)の吐出管温度が低い状態では、速度変更手
段(53)が制御を実行しないので、冷媒の湿り運転を迅
速に抜け出すことができ、圧縮機(21)の保護を確実に
行うことができると同時に、圧縮機(21)の吐出管温度
が通常状態では、電動膨張弁(EV)の開度のハンチング
等を確実に防止することができ、電動膨張弁(EV)の開
度制御の信頼性を向上させることができる。
According to the third aspect of the invention, the speed changing means (53) does not execute the control when the temperature of the discharge pipe of the compressor (21) is low. The compressor (21) can be removed without fail, and at the same time, when the discharge pipe temperature of the compressor (21) is in a normal state, hunting of the opening degree of the electric expansion valve (EV) is ensured. Therefore, the reliability of the opening control of the electric expansion valve (EV) can be improved.

【0024】また、請求項4記載の発明によれば、上記
電動膨張弁(EV)の制御間隔を変更して制御速度を変え
るようにしたために、簡易な制御でもって電動膨張弁
(EV)の開度制御の信頼性を向上させることができる。
According to the invention of claim 4, since the control interval of the electric expansion valve (EV) is changed to change the control speed, the electric expansion valve (EV) of the electric expansion valve (EV) can be controlled with simple control. The reliability of the opening control can be improved.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0026】図2に示すように、本実施形態における空
気調和装置(10)は、一台の室外ユニット(20)に対し
て一台の室内ユニット(30)が接続されたいわゆるセパ
レートタイプの空気調和装置である。
As shown in FIG. 2, the air conditioner (10) in this embodiment is a so-called separate type air in which one indoor unit (30) is connected to one outdoor unit (20). It is a harmony device.

【0027】上記室外ユニット(20)は、インバータに
より運転周波数(運転容量)を可変に調節されるロータ
リタイプの高圧ドーム型圧縮機(21)と、冷房運転時に
図中実線の如く、暖房運転時に図中破線の如く切換わる
四路切換弁(22)と、冷房運転時に凝縮器として、暖房
運転時に蒸発器として機能する熱源側熱交換器である室
外熱交換器(23)と、冷媒を減圧するための膨張回路
(24)とを備えており、上記室外熱交換器(23)には室
外ファン(Fo)が設けられている。
The outdoor unit (20) includes a rotary type high-pressure dome compressor (21) whose operating frequency (operating capacity) is variably adjusted by an inverter, and a heating type during heating operation as indicated by the solid line in the figure during cooling operation. A four-way switching valve (22) that switches as indicated by the broken line in the figure, an outdoor heat exchanger (23) that is a heat source side heat exchanger that functions as a condenser during cooling operation and as an evaporator during heating operation, and decompresses the refrigerant. And an expansion fan (Fo) for the outdoor heat exchanger (23).

【0028】また、室内ユニット(30)は、冷房運転時
に蒸発器として、暖房運転時に凝縮器として機能する利
用側熱交換器である室内熱交換器(31)が配置され、上
記室内熱交換器(31)には室内ファン(Fr)が設けられ
ている。
Further, the indoor unit (30) is provided with an indoor heat exchanger (31) which is a utilization side heat exchanger functioning as an evaporator during cooling operation and as a condenser during heating operation. An indoor fan (Fr) is provided at (31).

【0029】そして、上記圧縮機(21)と四路切換弁
(22)と室外熱交換器(23)と膨張回路(24)と室内熱
交換器(31)とは、冷媒配管(11)により順次接続さ
れ、冷媒の循環により熱移動を生ぜしめる冷媒回路(1
2)が構成されている。
The compressor (21), the four-way switching valve (22), the outdoor heat exchanger (23), the expansion circuit (24) and the indoor heat exchanger (31) are connected by a refrigerant pipe (11). Refrigerant circuits that are connected in sequence and generate heat transfer by circulating the refrigerant (1
2) is configured.

【0030】上記膨張回路(24)は、ブリッジ状の方向
制御回路(2a)と、該方向制御回路(2a)に接続された
一方向通路(2b)とを備え、該一方向通路(2b)には、
上流側に位置して液冷媒を貯溜する受液器(2c)と、下
流側に位置する開度調整自在な電動膨張弁(EV)とが直
列に配置されている。
The expansion circuit (24) includes a bridge-shaped direction control circuit (2a) and a one-way passage (2b) connected to the direction control circuit (2a), and the one-way passage (2b). Has
A liquid receiver (2c) located on the upstream side for storing the liquid refrigerant and an electric expansion valve (EV) located on the downstream side with adjustable opening are arranged in series.

【0031】上記方向制御回路(2a)は、逆止弁(CV,
CV,…)をそれぞれ備えた第1流入路(2d)と第1流出
路(2e)と第2流入路(2f)と第2流出路(2g)とがブ
リッジ状に接続されて構成されている。
The direction control circuit (2a) includes a check valve (CV,
CV, ...) each having a first inflow path (2d), a first outflow path (2e), a second inflow path (2f) and a second outflow path (2g) connected in a bridge shape. There is.

【0032】上記第1流入路(2d)は、室外熱交換器
(23)が接続される第1接続点(P1)から、一方向通路
(2b)の上流端が接続される第2接続点(P2)に向う冷
媒流れを形成し、また、第1流出路(2e)は、一方向通
路(2b)の下流端が接続される第3接続点(P3)から、
室内熱交換器(31)が接続される第4接続点(P4)に向
う冷媒流れを形成している。
The first inflow passage (2d) is connected to the first connection point (P1) to which the outdoor heat exchanger (23) is connected to the second connection point to which the upstream end of the one-way passage (2b) is connected. A refrigerant flow is formed toward (P2), and the first outflow passage (2e) is connected from the third connection point (P3) to which the downstream end of the one-way passage (2b) is connected,
A refrigerant flow is formed toward the fourth connection point (P4) to which the indoor heat exchanger (31) is connected.

【0033】上記第2流入路(2f)は、第4接続点(P
4)から第2接続点(P2)に向う冷媒流れを形成し、ま
た、第2流出路(2g)は、第3接続点(P3)から第1接
続点(P1)に向う冷媒流れを形成している。
The second inflow path (2f) is connected to the fourth connection point (P
4) to form a refrigerant flow toward the second connection point (P2), and the second outflow passage (2g) forms a refrigerant flow from the third connection point (P3) toward the first connection point (P1). doing.

【0034】また、上記一方向通路(2b)が接続される
方向制御回路(2a)の第2接続点(P2)と第3接続点
(P3)との間には、キャピラリチューブ(CP)を有する
液封防止通路(2h)が設けられ、該液封防止通路(2h)
は、圧縮機(21)の停止時における液封を防止してい
る。尚、上記キャピラリチューブ(CP)の減圧度は、電
動膨張弁(EV)よりも十分大きくなるように設定されて
いて、通常運転時における電動膨張弁(EV)による冷媒
流量調節機能を良好に維持し得るように構成されてい
る。
Further, a capillary tube (CP) is provided between the second connection point (P2) and the third connection point (P3) of the direction control circuit (2a) to which the one-way passage (2b) is connected. A liquid seal prevention passage (2h) is provided, and the liquid seal prevention passage (2h) is provided.
Prevents liquid sealing when the compressor (21) is stopped. In addition, the pressure reduction degree of the capillary tube (CP) is set to be sufficiently larger than that of the electric expansion valve (EV), and the refrigerant flow rate control function of the electric expansion valve (EV) during normal operation is well maintained. Is configured to be able to.

【0035】また、上記受液器(2c)の上部と、常時低
圧液ラインとなる一方向通路(2b)における電動膨張弁
(EV)より下流側との間には、開閉弁(SV)が設けられ
て上記電動膨張弁(EV)をバイパスするバイパス通路
(2i)が接続されて受液器(2c)内のガス冷媒を抜くよ
うになっている。
An on-off valve (SV) is provided between the upper part of the liquid receiver (2c) and the downstream side of the electric expansion valve (EV) in the one-way passage (2b) which is always the low pressure liquid line. A bypass passage (2i) that is provided and bypasses the electric expansion valve (EV) is connected to remove the gas refrigerant in the liquid receiver (2c).

【0036】尚、(ER)は、圧縮機(21)の吐出管に設け
られて該圧縮機(21)の運転音を低減するための消音器
である。
Incidentally, (ER) is a silencer provided in the discharge pipe of the compressor (21) for reducing the operating noise of the compressor (21).

【0037】更に、上記空気調和装置(10)にはセンサ
類が設けられている。つまり、上記圧縮機(21)の吐出
管には、該圧縮機(21)の吐出側の冷媒圧力相当飽和温
度である吐出管温度Tdを検出する温度検出手段としての
吐出管センサ(Th-d)が配置され、室外ユニット(20)
の空気吸込口には、室外空気温度である外気温度Taを検
出する外気温センサ(Th-a)が配置され、室外熱交換器
(23)には、冷房運転時には凝縮温度となり、暖房運転
時には蒸発温度となる外熱交温度Tcを検出する外熱交セ
ンサ(Th-c)が配置されている。
Further, the air conditioner (10) is provided with sensors. That is, in the discharge pipe of the compressor (21), there is a discharge pipe sensor (Th-d as a temperature detecting means for detecting the discharge pipe temperature Td which is the saturation temperature equivalent to the refrigerant pressure on the discharge side of the compressor (21). ) Is placed, outdoor unit (20)
The outside air temperature sensor (Th-a) that detects the outside air temperature Ta, which is the outside air temperature, is arranged at the air intake port of the outside heat exchanger (23), and the outside heat exchanger (23) has the condensation temperature during the cooling operation and the heating temperature during the heating operation. An external heat exchange sensor (Th-c) for detecting the external heat exchange temperature Tc which is the evaporation temperature is arranged.

【0038】また、上記室内ユニット(30)の空気吸込
口には、室内空気温度である室内温度Trを検出する室温
センサ(Th-r)が配置され、室内熱交換器(31)には、
冷房運転時には蒸発温度となり、暖房運転時には凝縮温
度となる内熱交温度Teを検出する内熱交センサ(Th-e)
が配置されている。
A room temperature sensor (Th-r) for detecting an indoor temperature Tr, which is an indoor air temperature, is arranged at the air inlet of the indoor unit (30), and the indoor heat exchanger (31) is
Internal heat exchange sensor (Th-e) that detects the internal heat exchange temperature Te that becomes the evaporation temperature during the cooling operation and becomes the condensation temperature during the heating operation
Is arranged.

【0039】また、上記圧縮機(21)の吐出管には、高
圧冷媒圧力を検出して、該高圧冷媒圧力の過上昇により
オンとなって高圧信号を出力する高圧圧力スイッチ(PS
-1)が配置されている。
Further, the discharge pipe of the compressor (21) has a high-pressure pressure switch (PS) which detects a high-pressure refrigerant pressure and turns on when the high-pressure refrigerant pressure rises to output a high-pressure signal.
-1) is located.

【0040】そして、上記各センサ(Th-d〜Th-e)及び
高圧圧力スイッチ(PS-1)の出力信号は、コントローラ
(50)に入力されており、該コントローラ(50)は、入
力信号に基づいて空調運転を制御するように構成されて
いる。
The output signals of the sensors (Th-d to Th-e) and the high-pressure pressure switch (PS-1) are input to the controller (50), and the controller (50) outputs the input signals. It is configured to control the air conditioning operation based on the.

【0041】上述した冷媒回路(12)において、冷房運
転時には、室外熱交換器(23)で凝縮して液化した液冷
媒が第1流入路(2d)を通って受液器(2c)に貯溜さ
れ、電動膨張弁(EV)で減圧した後、第1流出路(2e)
を経て室内熱交換器(31)で蒸発して圧縮機(21)に戻
る循環となる一方、暖房運転時には、室内熱交換器(3
1)で凝縮して液化した液冷媒が第2流入路(2f)を通
って受液器(2c)に貯溜され、電動膨張弁(EV)で減圧
した後、第2流出路(2g)を経て室外熱交換器(23)で
蒸発して圧縮機(21)に戻る循環となる。
In the above-mentioned refrigerant circuit (12), during the cooling operation, the liquid refrigerant condensed and liquefied in the outdoor heat exchanger (23) is stored in the liquid receiver (2c) through the first inflow path (2d). After being decompressed by the electric expansion valve (EV), the first outflow path (2e)
Then, the heat is evaporated in the indoor heat exchanger (31) and returned to the compressor (21) for circulation, while the indoor heat exchanger (3
The liquid refrigerant condensed and liquefied in 1) passes through the second inflow path (2f) and is stored in the liquid receiver (2c), and the electric expansion valve (EV) decompresses it, and then the second outflow path (2g). Then, the heat is evaporated in the outdoor heat exchanger (23) and returned to the compressor (21) for circulation.

【0042】一方、上記コントローラ(50)は、圧縮機
(21)の運転容量である運転周波数を制御する容量制御
手段(51)が設けられている。該容量制御手段(51)
は、インバータの出力周波数を8つの周波数ステップN
に区分して、各周波数ステップNを設定温度と室内温度
Trとの差温に基いて設定して室内温度Trが設定温度にな
るように圧縮機(21)の運転周波数を制御している。つ
まり、上記容量制御手段(51)は、インバータの出力周
波数及び出力電圧である圧縮機モータ(CM)の供給周波
数及び印加電圧に予め所定の関係(V/F)を保持させ
た各周波数ステップNが設定され、この周波数ステップ
Nを設定温度と室内温度Trとの差温に基いて算出し、こ
の算出した周波数ステップNの周波数で電圧を圧縮機モ
ータ(CM)に印加するようにインバータを制御してい
る。
On the other hand, the controller (50) is provided with a capacity control means (51) for controlling the operating frequency which is the operating capacity of the compressor (21). The capacity control means (51)
Represents the output frequency of the inverter in eight frequency steps N
Each frequency step N is divided into
The operating frequency of the compressor (21) is controlled so that the room temperature Tr is set based on the temperature difference with the Tr so that the indoor temperature Tr becomes the set temperature. That is, the capacity control means (51) has each frequency step N in which the supply frequency and the applied voltage of the compressor motor (CM), which are the output frequency and the output voltage of the inverter, hold a predetermined relationship (V / F) in advance. Is set, the frequency step N is calculated based on the temperature difference between the set temperature and the room temperature Tr, and the inverter is controlled so that the voltage is applied to the compressor motor (CM) at the calculated frequency step N frequency. doing.

【0043】また、上記コントローラ(50)には、電動
膨張弁(EV)の開度を制御する開度制御手段(52)が設
けられており、該開度制御手段(52)は、圧縮機(21)
の最適吐出管温度を導出して、該吐出管温度Tdが最適吐
出管温度になるように電動膨張弁(EV)の開度を制御し
ている。
Further, the controller (50) is provided with an opening control means (52) for controlling the opening of the electric expansion valve (EV), and the opening control means (52) is a compressor. (twenty one)
The optimum discharge pipe temperature is derived and the opening degree of the electric expansion valve (EV) is controlled so that the discharge pipe temperature Td becomes the optimum discharge pipe temperature.

【0044】具体的に、外熱交センサ(Th-c)が検出す
る外熱交温度Tcと、内熱交センサ(Th-e)が検出する内
熱交温度Teと、外気温センサ(Th-a)が検出する外気温
度Taと、容量制御手段(51)が設定する圧縮機(21)の
供給周波数とに基いて開度制御手段(52)は圧縮機(2
1)の最適吐出管温度を導出し、吐出管センサ(Th-d)
の温度信号を受けて、吐出管温度Tdが最適吐出管温度に
なるように電動膨張弁(EV)の開度を制御している。
Specifically, the external heat exchange temperature Tc detected by the external heat exchange sensor (Th-c), the internal heat exchange temperature Te detected by the internal heat exchange sensor (Th-e), and the external air temperature sensor (Th -a) detects the outside air temperature Ta and the supply frequency of the compressor (21) set by the capacity control means (51), and the opening control means (52) controls the compressor (2).
1) Derivation of the optimum discharge pipe temperature and discharge pipe sensor (Th-d)
In response to this temperature signal, the opening degree of the electric expansion valve (EV) is controlled so that the discharge pipe temperature Td becomes the optimum discharge pipe temperature.

【0045】また、上記コントローラ(50)には、本発
明の特徴として、電動膨張弁(EV)の速度変更手段(5
3)が設けられ、該速度変更手段(53)は、下記の表1
に示すように、圧縮機(21)の運転容量が大きいと電動
膨張弁(EV)の開度変更の制御速度を早くし、圧縮機
(21)の運転容量が小さいと電動膨張弁(EV)の開度変
更の制御速度を遅くするように開度制御手段(52)に変
更信号を出力する。
Further, the controller (50) is characterized by the speed changing means (5) of the electric expansion valve (EV) as a feature of the present invention.
3) is provided, and the speed changing means (53) is shown in Table 1 below.
As shown in, when the operating capacity of the compressor (21) is large, the control speed for changing the opening degree of the electric expansion valve (EV) is increased, and when the operating capacity of the compressor (21) is small, the electric expansion valve (EV) is increased. A change signal is output to the opening control means (52) so as to slow down the control speed for changing the opening.

【0046】[0046]

【表1】 [Table 1]

【0047】具体的に、上記速度変更手段(53)は、吐
出管センサ(Th-d)の温度信号を受けて、吐出管温度Td
が所定温度、例えば、50℃未満の場合、冷媒の湿り運
転を迅速に抜け出すために変更信号出力することなく、
開度制御手段(52)は、5分毎の制御間隔でもって電動
膨張弁(EV)の開度を制御する。
Specifically, the speed changing means (53) receives the temperature signal of the discharge pipe sensor (Th-d) and outputs the discharge pipe temperature Td.
Is less than a predetermined temperature, for example, less than 50 ° C., without outputting a change signal in order to quickly exit the wet operation of the refrigerant,
The opening control means (52) controls the opening of the electric expansion valve (EV) at control intervals of 5 minutes.

【0048】一方、上記速度変更手段(53)は、例え
ば、吐出管温度Tdが50℃以上の場合、容量制御手段
(51)の周波数ステップ信号を受けて、圧縮機(21)の
運転容量が小さい周波数ステップN1及びN2では、開
度制御手段(52)は、15分毎の制御間隔でもって電動
膨張弁(EV)の開度を制御するように変更信号を出力す
る。また、上記速度変更手段(53)は、圧縮機(21)の
運転容量が中間の周波数ステップN3〜N5では、開度
制御手段(52)は、10分毎の制御間隔でもって電動膨
張弁(EV)の開度を制御するように変更信号を出力す
る。また、上記速度変更手段(53)は、圧縮機(21)の
運転容量が大きい周波数ステップN6〜N8では、開度
制御手段(52)は、5分毎の制御間隔でもって電動膨張
弁(EV)の開度を制御するように変更信号を出力する。
On the other hand, when the discharge pipe temperature Td is 50 ° C. or higher, the speed changing means (53) receives the frequency step signal of the capacity control means (51) to change the operating capacity of the compressor (21). In the small frequency steps N1 and N2, the opening degree control means (52) outputs a change signal so as to control the opening degree of the electric expansion valve (EV) at control intervals of 15 minutes. Further, in the speed changing means (53), in the frequency steps N3 to N5 in which the operating capacity of the compressor (21) is in the middle, the opening degree control means (52) sets the electric expansion valve (at an interval of 10 minutes). Output a change signal to control the opening of EV). Further, in the speed changing means (53), in the frequency steps N6 to N8 in which the operating capacity of the compressor (21) is large, the opening control means (52) has an electric expansion valve (EV) at a control interval of 5 minutes. ) Outputs a change signal to control the opening degree.

【0049】つまり、圧縮機(21)が高圧ドーム型の場
合、吸い込んだ低圧冷媒がロータリ圧縮部に直接導入さ
れて圧縮され、高圧冷媒がドーム内に吐出されて吐出管
より冷媒配管に吐出することになる。したがって、圧縮
機モータ(CM)の回転数を高くして運転容量を大きくす
ると、冷媒温度自体は直ちに上昇するものの、ドームな
どは温度上昇に時間を要することになる。逆に、圧縮機
モータ(CM)の回転数を低くして運転容量を小さくする
と、冷媒温度自体は直ちに低下するものの、ドームなど
は温度低下に時間を要することになる。
That is, when the compressor (21) is a high-pressure dome type, the sucked low-pressure refrigerant is directly introduced into the rotary compression section and compressed, and the high-pressure refrigerant is discharged into the dome and discharged from the discharge pipe to the refrigerant pipe. It will be. Therefore, if the operating speed is increased by increasing the rotation speed of the compressor motor (CM), the refrigerant temperature itself immediately rises, but it takes time for the temperature of the dome or the like to rise. Conversely, if the operating speed is reduced by lowering the rotation speed of the compressor motor (CM), the refrigerant temperature itself immediately decreases, but it takes time for the temperature of the dome or the like to decrease.

【0050】そして、上記ドームなどの温度変化は、圧
縮機(21)の運転容量が小さいほど冷媒温度の変化に追
随し難くなる。
The change in temperature of the dome or the like becomes more difficult to follow the change in refrigerant temperature as the operating capacity of the compressor (21) is smaller.

【0051】一方、上述したように電動膨張弁(EV)を
吐出管温度Tdで制御しているため、圧縮機(21)の運転
容量が小さい場合、吐出管温度Tdが実際の冷媒温度に対
して遅れることになる。このことから、圧縮機(21)の
運転容量が小さい場合、電動膨張弁(EV)の制御間隔を
大きくして制御速度を遅くするようにしている。
On the other hand, since the electric expansion valve (EV) is controlled by the discharge pipe temperature Td as described above, when the operating capacity of the compressor (21) is small, the discharge pipe temperature Td is lower than the actual refrigerant temperature. Will be delayed. Therefore, when the operating capacity of the compressor (21) is small, the control interval of the electric expansion valve (EV) is increased to slow down the control speed.

【0052】−空気調和装置(10)の制御動作− 次に、上記空気調和装置(10)における制御動作につい
て説明する。
-Control Operation of Air Conditioner (10)-Next, the control operation of the air conditioner (10) will be described.

【0053】先ず、冷房運転時及び暖房運転時の何れに
おいても、容量制御手段(51)は、インバータの周波数
ステップNを設定温度と室内温度Trとの差温に基いて算
出する。この周波数ステップNには、予め圧縮機モータ
(CM)の供給周波数及び印加電圧に所定の関係(V/
F)が設定されており、容量制御手段(51)は、算出し
た周波数ステップNの周波数で電圧を圧縮機モータ(C
M)に印加して圧縮機(21)の運転周波数(運転容量)
を制御している。
First, in both the cooling operation and the heating operation, the capacity control means (51) calculates the frequency step N of the inverter based on the temperature difference between the set temperature and the room temperature Tr. In this frequency step N, a predetermined relationship (V /
F) is set, the capacity control means (51) controls the voltage at the frequency of the calculated frequency step N to the compressor motor (C).
M) applied to the compressor (21) operating frequency (operating capacity)
Is controlling.

【0054】また、開度制御手段(52)は、外熱交セン
サ(Th-c)が検出する外熱交温度Tcと、内熱交センサ
(Th-e)が検出する内熱交温度Teと、外気温センサ(Th
-a)が検出する外気温度Taと、容量制御手段(51)が設
定する圧縮機(21)の供給周波数とに基いて圧縮機(2
1)の最適吐出管温度を導出している。そして、上記開
度制御手段(52)は、吐出管センサ(Th-d)の温度信号
を受けて、吐出管温度Tdが最適吐出管温度になるように
電動膨張弁(EV)の開度を制御している。
Further, the opening control means (52) includes an outer heat exchange temperature Tc detected by the outer heat exchange sensor (Th-c) and an inner heat exchange temperature Te detected by the inner heat exchange sensor (Th-e). And the outside temperature sensor (Th
-a) detects the outside air temperature Ta and the compressor (2) based on the supply frequency of the compressor (21) set by the capacity control means (51).
The optimum discharge pipe temperature of 1) is derived. The opening control means (52) receives the temperature signal from the discharge pipe sensor (Th-d) and adjusts the opening of the electric expansion valve (EV) so that the discharge pipe temperature Td becomes the optimum discharge pipe temperature. Have control.

【0055】この開度制御手段(52)の開度制御におい
て、速度変更手段(53)が、表1に示すように、圧縮機
(21)の運転容量が大きいと電動膨張弁(EV)の開度変
更の制御速度を早くし、圧縮機(21)の運転容量が小さ
いと電動膨張弁(EV)の開度変更の制御速度を遅くする
ように制御する。
In the opening control of the opening control means (52), as shown in Table 1, when the operating capacity of the compressor (21) is large, the speed changing means (53) operates the electric expansion valve (EV). The control speed for changing the opening is increased, and when the operating capacity of the compressor (21) is small, the control speed for changing the opening of the electric expansion valve (EV) is controlled to be slow.

【0056】具体的に、上記速度変更手段(53)は、例
えば、吐出管センサ(Th-d)の温度信号を受けて、吐出
管温度Tdが50℃未満の場合、変更信号出力することな
く、開度制御手段(52)は、5分毎の短い制御間隔でも
って電動膨張弁(EV)の開度を制御し、湿り運転を迅速
に抜け出すように制御する。
Specifically, the speed changing means (53) receives the temperature signal of the discharge pipe sensor (Th-d), for example, and outputs no change signal when the discharge pipe temperature Td is less than 50 ° C. The opening degree control means (52) controls the opening degree of the electric expansion valve (EV) at a short control interval of every 5 minutes, and controls so as to quickly exit the wet operation.

【0057】一方、例えば、上記吐出管温度Tdが50℃
以上の通常運転の場合、速度変更手段(53)は、容量制
御手段(51)の周波数ステップ信号を受けて、圧縮機
(21)の運転容量が小さい周波数ステップN1及びN2
では、低速度制御信号を出力し、開度制御手段(52)
が、15分毎の制御間隔でもって電動膨張弁(EV)の開
度を制御する。
On the other hand, for example, the discharge pipe temperature Td is 50 ° C.
In the above normal operation, the speed changing means (53) receives the frequency step signal of the capacity control means (51), and the frequency steps N1 and N2 in which the operating capacity of the compressor (21) is small.
Then, the low speed control signal is output and the opening control means (52)
However, the opening degree of the electric expansion valve (EV) is controlled at a control interval of every 15 minutes.

【0058】また、上記速度変更手段(53)は、圧縮機
(21)の運転容量が中間の周波数ステップN3〜N5で
は、中速度制御信号を出力し、開度制御手段(52)が、
10分毎の制御間隔でもって電動膨張弁(EV)の開度を
制御する。
Further, the speed changing means (53) outputs a middle speed control signal in the frequency steps N3 to N5 in which the operating capacity of the compressor (21) is intermediate, and the opening control means (52)
The opening degree of the electric expansion valve (EV) is controlled at a control interval of every 10 minutes.

【0059】また、上記速度変更手段(53)は、圧縮機
(21)の運転容量が大きい周波数ステップN6〜N8で
は、高速度制御信号を出力し、開度制御手段(52)が、
5分毎の制御間隔でもって電動膨張弁(EV)の開度を制
御するように変更信号を出力する。
The speed changing means (53) outputs a high speed control signal in the frequency steps N6 to N8 in which the operating capacity of the compressor (21) is large, and the opening control means (52)
A change signal is output so as to control the opening degree of the electric expansion valve (EV) at control intervals of 5 minutes.

【0060】この結果、圧縮機(21)の運転周波数が低
周波数の場合、電動膨張弁(EV)の開度がゆっくり変動
し、逆に、圧縮機(21)の運転周波数が高周波数の場
合、電動膨張弁(EV)の開度が早く変動することにな
る。
As a result, when the operating frequency of the compressor (21) is low, the opening degree of the electric expansion valve (EV) changes slowly, and conversely, when the operating frequency of the compressor (21) is high. The opening degree of the electric expansion valve (EV) fluctuates quickly.

【0061】−本実施形態の効果− 以上のように、本実施形態によれば、圧縮機(21)の運
転容量が大きいと電動膨張弁(EV)の開度変更の制御速
度を早くし、圧縮機(21)の運転容量が小さいと電動膨
張弁(EV)の開度変更の制御速度を遅くするようにした
ために、電動膨張弁(EV)を所定の開度に迅速に収束さ
せることができると共に、開度のハンチングを確実に防
止することができる。この結果、冷媒循環量を正確に制
御することができることから、快適な空調制御を実行す
ることができる。
-Effect of this Embodiment- As described above, according to this embodiment, when the operating capacity of the compressor (21) is large, the control speed for changing the opening degree of the electric expansion valve (EV) is increased, When the operating capacity of the compressor (21) is small, the control speed for changing the opening of the electric expansion valve (EV) is slowed down, so that the electric expansion valve (EV) can be quickly converged to a predetermined opening. In addition to this, hunting of the opening can be reliably prevented. As a result, the refrigerant circulation amount can be accurately controlled, so that comfortable air conditioning control can be executed.

【0062】特に、上記電動膨張弁(EV)の開度を圧縮
機(21)の吐出管温度Tdに基いて制御する際、吐出管温
度Tdの遅れを吸収することができ、電動膨張弁(EV)の
開度を正確に制御することができる。
Particularly, when the opening degree of the electric expansion valve (EV) is controlled based on the discharge pipe temperature Td of the compressor (21), the delay of the discharge pipe temperature Td can be absorbed, and the electric expansion valve (EV The opening degree of EV) can be controlled accurately.

【0063】また、上記圧縮機(21)の吐出管温度Tdが
低い状態では、速度変更手段(53)が制御を実行しない
ので、冷媒の湿り運転を迅速に抜け出すことができ、圧
縮機(21)の保護を確実に行うことができると同時に、
圧縮機(21)の吐出管温度Tdが通常状態では、電動膨張
弁(EV)の開度のハンチング等を確実に防止することが
でき、電動膨張弁(EV)の開度制御の信頼性を向上させ
ることができる。
Further, when the discharge pipe temperature Td of the compressor (21) is low, the speed changing means (53) does not execute the control, so that the wet operation of the refrigerant can be quickly exited, and the compressor (21 ) Can be surely protected,
When the discharge pipe temperature Td of the compressor (21) is in a normal state, hunting of the opening of the electric expansion valve (EV) can be reliably prevented, and the reliability of the opening control of the electric expansion valve (EV) is improved. Can be improved.

【0064】また、上記電動膨張弁(EV)の制御間隔を
変更して制御速度を変えるようにしたために、簡易な制
御でもって電動膨張弁(EV)の開度制御の信頼性を向上
させることができる。
Further, since the control interval of the electric expansion valve (EV) is changed to change the control speed, the reliability of the opening control of the electric expansion valve (EV) can be improved by simple control. You can

【0065】[0065]

【発明の他の実施の形態】本実施形態においては、電動
膨張弁(EV)の制御間隔を変更して制御速度を変更する
ようにしたが、請求項1〜請求項3記載の発明では、電
動膨張弁(EV)の駆動速度自体を変更するようにしても
よい。
Other Embodiments In the present embodiment, the control interval of the electric expansion valve (EV) is changed to change the control speed. However, in the inventions according to claims 1 to 3, The drive speed itself of the electric expansion valve (EV) may be changed.

【0066】また、本発明は、ロータリタイプの圧縮機
(21)の他、スクロールタイプの圧縮機等であってもよ
く、要するに高圧ドーム型の圧縮機に適用することがで
きる。
In addition to the rotary type compressor (21), the present invention may be a scroll type compressor or the like, and can be applied to a high pressure dome type compressor.

【0067】また、本発明は、セパレートタイプの空気
調和装置(10)の他、マルチ型の空気調和装置などに適
用してもよいことは勿論である。
The present invention may of course be applied to a multi-type air conditioner as well as the separate type air conditioner (10).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】本発明の実施形態を示す冷媒回路図である。FIG. 2 is a refrigerant circuit diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 空気調和装置 12 冷媒回路 20 室外ユニット 21 圧縮機 22 四路切換弁 23 室外熱交換器(熱源側熱交換器) EV 電動膨張弁 30 室内ユニット 31 室内熱交換器(利用側熱交換器) 50 コントローラ 51 容量制御手段(51) 52 開度制御手段 53 速度変更手段 10 Air conditioner 12 Refrigerant circuit 20 Outdoor unit 21 Compressor 22 Four-way switching valve 23 Outdoor heat exchanger (heat source side heat exchanger) EV electric expansion valve 30 Indoor unit 31 Indoor heat exchanger (use side heat exchanger) 50 Controller 51 Capacity control means (51) 52 Opening control means 53 Speed changing means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠原 巌 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)発明者 西山 裕二 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Iwao Shinohara 1304 Kanaoka-machi, Sakai City, Osaka Prefecture Daikin Industries, Ltd. Kanaoka Factory, Sakai Factory (72) Yuji Nishiyama 1304, Kanaoka-machi, Sakai City, Osaka Daikin Industries, Ltd. Sakai Plant Kanaoka Factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 運転容量の可変な高圧ドーム型の圧縮機
(21)と熱源側熱交換器(23)と開度の可変な電動膨張
弁(EV)と利用側熱交換器(31)とが順に接続されて成
る冷媒回路(12)を備えた空気調和装置において、 上記電動膨張弁(EV)の開度を制御する開度制御手段
(52)と、 上記圧縮機(21)の運転容量が大きいと電動膨張弁(E
V)の開度変更の制御速度を早くし、圧縮機(21)の運
転容量が小さいと電動膨張弁(EV)の開度変更の制御速
度を遅くするように上記開度制御手段(52)に変更信号
を出力する速度変更手段(53)とを備えていることを特
徴とする空気調和装置の運転制御装置。
1. A high-pressure dome type compressor (21) having a variable operating capacity, a heat source side heat exchanger (23), an electric expansion valve (EV) having a variable opening degree, and a use side heat exchanger (31). In an air conditioner equipped with a refrigerant circuit (12) in which are sequentially connected, an opening control means (52) for controlling the opening of the electric expansion valve (EV) and an operating capacity of the compressor (21). Is large, the electric expansion valve (E
The opening control means (52) is configured to increase the control speed for changing the opening degree of V) and decrease the control speed for changing the opening degree of the electric expansion valve (EV) when the operating capacity of the compressor (21) is small. And a speed changing unit (53) for outputting a change signal to the air conditioner.
【請求項2】 請求項1記載の空気調和装置の運転制御
装置において、 圧縮機(21)の吐出管温度を検出する温度検出手段(Th
-d)が設けられる一方、 開度制御手段(52)は、温度検出手段(Th-d)の温度信
号を受けて、圧縮機(21)の吐出管温度が目標吐出管温
度になるように電動膨張弁(EV)の開度を制御している
ことを特徴とする空気調和装置の運転制御装置。
2. The operation control device for an air conditioner according to claim 1, wherein a temperature detecting means (Th) for detecting a discharge pipe temperature of the compressor (21).
-d) is provided, the opening control means (52) receives the temperature signal of the temperature detection means (Th-d) so that the discharge pipe temperature of the compressor (21) becomes the target discharge pipe temperature. An air conditioner operation control device characterized by controlling the opening of an electric expansion valve (EV).
【請求項3】 請求項1記載の空気調和装置の運転制御
装置において、 圧縮機(21)の吐出管温度を検出する温度検出手段(Th
-d)が設けられる一方、 速度変更手段(53)は、温度検出手段(Th-d)の温度信
号を受けて、吐出管温度が所定温度より高くなると開度
制御手段(52)に変更信号を出力することを特徴とする
空気調和装置の運転制御装置。
3. The operation control device for an air conditioner according to claim 1, wherein the temperature detection means (Th is for detecting the discharge pipe temperature of the compressor (21).
-d) is provided, the speed changing means (53) receives a temperature signal from the temperature detecting means (Th-d), and when the discharge pipe temperature becomes higher than a predetermined temperature, the speed changing means (52) sends a change signal to the opening control means (52). An operation control device for an air conditioner, which is characterized in that:
【請求項4】 請求項1記載の空気調和装置の運転制御
装置において、 速度変更手段(53)は、開度制御手段(52)が制御間隔
を変更するように変更信号を出力することを特徴とする
空気調和装置の運転制御装置。
4. The operation control device for an air conditioner according to claim 1, wherein the speed changing means (53) outputs a change signal so that the opening degree control means (52) changes the control interval. The air conditioner operation control device.
JP8042443A 1996-02-29 1996-02-29 Running control device for air conditioning apparatus Pending JPH09236299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8042443A JPH09236299A (en) 1996-02-29 1996-02-29 Running control device for air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8042443A JPH09236299A (en) 1996-02-29 1996-02-29 Running control device for air conditioning apparatus

Publications (1)

Publication Number Publication Date
JPH09236299A true JPH09236299A (en) 1997-09-09

Family

ID=12636227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8042443A Pending JPH09236299A (en) 1996-02-29 1996-02-29 Running control device for air conditioning apparatus

Country Status (1)

Country Link
JP (1) JPH09236299A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064927A1 (en) * 2009-11-25 2011-06-03 ダイキン工業株式会社 Refrigeration device for container
JP2011112252A (en) * 2009-11-25 2011-06-09 Corona Corp Heat pump water heater
WO2014068821A1 (en) * 2012-10-31 2014-05-08 ダイキン工業株式会社 Air conditioner
WO2014103620A1 (en) * 2012-12-28 2014-07-03 ダイキン工業株式会社 Refrigeration device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064927A1 (en) * 2009-11-25 2011-06-03 ダイキン工業株式会社 Refrigeration device for container
JP2011112252A (en) * 2009-11-25 2011-06-09 Corona Corp Heat pump water heater
JP2015038388A (en) * 2009-11-25 2015-02-26 ダイキン工業株式会社 Refrigeration device for container
WO2014068821A1 (en) * 2012-10-31 2014-05-08 ダイキン工業株式会社 Air conditioner
JP2014089006A (en) * 2012-10-31 2014-05-15 Daikin Ind Ltd Air conditioner
CN104736944A (en) * 2012-10-31 2015-06-24 大金工业株式会社 Air conditioner
CN104736944B (en) * 2012-10-31 2016-08-10 大金工业株式会社 Air conditioner
WO2014103620A1 (en) * 2012-12-28 2014-07-03 ダイキン工業株式会社 Refrigeration device
JP2014142168A (en) * 2012-12-28 2014-08-07 Daikin Ind Ltd Freezer

Similar Documents

Publication Publication Date Title
JP2783065B2 (en) Operation control device for air conditioner
JP2010506132A (en) Method and apparatus for controlling stop operation of air conditioner
JP2500519B2 (en) Operation control device for air conditioner
JPH04240355A (en) Controlling method for electronic expansion valve of air conditioner
JP2002081769A (en) Air conditioner
JP2943685B2 (en) Operation control device for air conditioner
JPH11230624A (en) Apparatus and method of controlling electronic expansion valve
JPH09236299A (en) Running control device for air conditioning apparatus
JPH03260561A (en) Air conditioner
JP2842020B2 (en) Operation control device for air conditioner
JPH0611174A (en) Operation control device for air conditioner
JPH05264113A (en) Operation control device of air conditioner
JPH1038387A (en) Operation controller of air conditioner
JP2701627B2 (en) Operation control device for air conditioner
JP2943684B2 (en) Operation control device for air conditioner
JPH0493558A (en) Operation-controlling device for refrigeration arrangement
JPH0694954B2 (en) Refrigerator superheat control device
JP3232755B2 (en) Air conditioner
JP2768148B2 (en) Operation control device for air conditioner
JP2765391B2 (en) Oil recovery operation control device for air conditioner
JP3337264B2 (en) Air conditioner defroster
JP3067629B2 (en) Operation control device for air conditioner
JPH03213957A (en) Air conditioner
JPH05256496A (en) Operation controller for air conditioner
JP2760227B2 (en) Operation control device for refrigeration equipment