JP3232755B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3232755B2
JP3232755B2 JP06505393A JP6505393A JP3232755B2 JP 3232755 B2 JP3232755 B2 JP 3232755B2 JP 06505393 A JP06505393 A JP 06505393A JP 6505393 A JP6505393 A JP 6505393A JP 3232755 B2 JP3232755 B2 JP 3232755B2
Authority
JP
Japan
Prior art keywords
pressure
air volume
temperature
signal
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06505393A
Other languages
Japanese (ja)
Other versions
JPH06272942A (en
Inventor
雅章 竹上
英樹 辻井
賢治 宮田
哲也 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP06505393A priority Critical patent/JP3232755B2/en
Publication of JPH06272942A publication Critical patent/JPH06272942A/en
Application granted granted Critical
Publication of JP3232755B2 publication Critical patent/JP3232755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、暖房運転可能な空気調
和装置に関し、特に、熱源側ファンの風量制御に係るも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner capable of performing a heating operation, and more particularly to control of an air flow rate of a heat source side fan.

【0002】[0002]

【従来の技術】一般に、例えば、空気調和装置には、実
公昭52−39238号公報に開示されているように、
圧縮機と、四路切換弁と、室外ファンを有する室外熱交
換器と、冷房用電動膨脹弁と、暖房用電動膨脹弁と、室
内ファンを有する室内熱交換器とが順に可逆運転可能に
接続されて冷媒循環回路が形成されるものがある。
2. Description of the Related Art In general, for example, in an air conditioner, as disclosed in Japanese Utility Model Publication No. 52-39238,
A compressor, a four-way switching valve, an outdoor heat exchanger having an outdoor fan, an electric expansion valve for cooling, an electric expansion valve for heating, and an indoor heat exchanger having an indoor fan are sequentially connected so as to be capable of reversible operation. In some cases, a refrigerant circulation circuit is formed.

【0003】そして、外気温度を検出し、冷房運転サイ
クル時に外気温度が上昇すると、室外ファンの風量を高
速回転させる一方、暖房運転サイクル時に外気温度が上
昇すると、室外ファンの風量を低速回転させて、高圧冷
媒圧力の上昇を防止するようにしている。
When the outside air temperature is detected and the outside air temperature rises during the cooling operation cycle, the air flow of the outdoor fan is rotated at a high speed. On the other hand, when the outside air temperature rises during the heating operation cycle, the air flow of the outdoor fan is rotated at a low speed. In addition, the pressure of the high-pressure refrigerant is prevented from rising.

【0004】[0004]

【発明が解決しようとする課題】上述した空気調和装置
において、室外ファンの風量を外気温度のみで制御して
おり、低圧冷媒の圧力状態を何ら考慮していないので、
圧縮機の信頼性が低いという問題があった。
In the above-described air conditioner, the air flow rate of the outdoor fan is controlled only by the outside air temperature, and the pressure state of the low-pressure refrigerant is not considered at all.
There was a problem that the reliability of the compressor was low.

【0005】つまり、例えば、暖房運転サイクル時にお
いて、外気温度が高い場合、高圧冷媒圧力が高いので、
サンプリングタイム毎に順次室外ファンの風量を低下さ
せることになる。これでは、高圧冷媒圧力の上昇を防止
することはできるものゝ、室外ファンの風量が必要以上
に低下し、低圧冷媒圧力が低下し過ぎることになり、圧
縮機が湿り運転を行う場合が生じ、該圧縮機の負荷が逆
に大きくなり、信頼性が低下することになるという問題
があった。
That is, for example, when the outside air temperature is high during the heating operation cycle, the high-pressure refrigerant pressure is high.
The air volume of the outdoor fan is sequentially reduced for each sampling time. In this case, it is possible to prevent the increase in the high-pressure refrigerant pressure.However, the air flow of the outdoor fan is reduced more than necessary, and the low-pressure refrigerant pressure is excessively reduced, which may cause the compressor to perform wet operation. On the contrary, there is a problem that the load on the compressor is increased and the reliability is reduced.

【0006】本発明は、斯かる点に鑑みてなされたもの
で、熱源側ファンの風量を必要以上に低下させないよう
にして、圧縮機の信頼性を向上させることを目的とする
ものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to improve the reliability of a compressor by preventing the air flow of a heat source side fan from unnecessarily decreasing.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明が講じた手段は、暖房運転サイクル時の蒸
発圧力相当飽和温度と考慮して熱源側ファンの風量を制
御するようにしたものである。
Means for Solving the Problems In order to achieve the above-mentioned object, a means taken by the present invention is to control the air flow rate of the heat source side fan in consideration of the saturation temperature corresponding to the evaporating pressure during the heating operation cycle. It was done.

【0008】具体的に、図1に示すように、請求項1に
係る発明が講じた手段は、先ず、圧縮機(21)と、熱源側
ファン(26)を備えた熱源側熱交換器(23)と、膨脹機構(2
5)と、利用側熱交換器(31)とが順に接続されて暖房運転
可能な冷媒循環回路(1)が設けられている。そして、上
記熱源側ファン(26)の風量を複数段に切換えて該風量を
調節する風量調節手段(72)と、上記熱源側熱交換器(23)
における蒸発圧力相当飽和温度を検出する蒸発温度検出
手段(Thc)と、上記冷媒循環回路(1)における凝縮温度相
当飽和圧力を検出する高圧検出手段(HPS2)とが設けられ
ている。更に、該高圧検出手段(HPS2)の圧力信号を取込
み、検出圧力が設定圧力以上であると高圧信号を、検出
圧力が設定圧力より低いと低圧信号をそれぞれ所定時間
毎に出力する圧力判別手段(73)が設けられている。加え
て、上記蒸発温度検出手段(Thc)の温度信号を取込み、
圧力判別手段(73)が高圧信号を出力する毎に、蒸発圧力
相当飽和温度に対応した低風量になるように熱源側ファ
ン(26)の風量を順次低下させる低下信号を上記風量調節
手段(72)に出力すると共に、圧力判別手段(73)が低圧信
号を出力する毎に、蒸発圧力相当飽和温度に対応した高
風量になるように熱源側ファン(26)の風量を順次増大さ
せる増大信号を上記風量調節手段(72)に出力する風量制
御手段(75)が設けられている。
More specifically, as shown in FIG. 1, means taken by the invention according to claim 1 firstly includes a compressor (21) and a heat source side heat exchanger () having a heat source side fan (26). 23) and the expansion mechanism (2
5) and a use-side heat exchanger (31) are connected in order to provide a refrigerant circulation circuit (1) capable of performing a heating operation. And an air volume adjusting means (72) for adjusting the air volume by switching the air volume of the heat source side fan (26) to a plurality of stages, and the heat source side heat exchanger (23)
Evaporation temperature detection means for detecting the evaporation pressure corresponding saturation temperature (Thc), a high pressure detection means (HPS2) for detecting a condensation temperature corresponding saturation pressure at the top Symbol refrigerant circuit (1) and is provided in
ing. Further, a pressure discriminating means for taking in the pressure signal of the high pressure detecting means (HPS2) and outputting a high pressure signal when the detected pressure is equal to or higher than the set pressure and outputting a low pressure signal when the detected pressure is lower than the set pressure at predetermined time intervals. 73) is provided. In addition
Then, take in the temperature signal of the evaporation temperature detecting means (Thc),
Each time the pressure discriminating means (73) outputs a high pressure signal, the air volume adjusting means (72) outputs a decrease signal for sequentially decreasing the air volume of the heat source side fan (26) so that the air volume becomes a low air volume corresponding to the evaporating pressure equivalent saturation temperature. ), And every time the pressure discriminating means (73) outputs a low pressure signal, an increasing signal for sequentially increasing the air volume of the heat source side fan (26) so as to have a high air volume corresponding to the evaporating pressure equivalent saturation temperature is output. An air volume control means (75) for outputting to the air volume adjustment means (72) is provided.

【0009】また、請求項2に係る発明が講じた手段
は、先ず、圧縮機(21)と、熱源側ファン(26)を備えた熱
源側熱交換器(23)と、膨脹機構(25)と、利用側熱交換器
(31)とが順に接続されて暖房運転可能な冷媒循環回路
(1)が設けられている。そして、上記熱源側ファン(26)
の風量を複数段に切換えて該風量を調節する風量調節手
段(72)と、上記熱源側熱交換器(23)における蒸発圧力相
当飽和温度を検出する蒸発温度検出手段(Thc)と、上記
冷媒循環回路(1)における凝縮温度相当飽和圧力を検出
する高圧検出手段(HPS2)と、外気温度を検出する外気温
検出手段(Tha)と、上記高圧検出手段(HPS2)の圧力信号
を取込み、検出圧力が設定圧力以上であると高圧信号
を、検出圧力が設定圧力より低いと低圧信号をそれぞれ
所定時間毎に出力する圧力判別手段(73)と、上記外気温
検出手段(Tha)の温度信号を取込み、検出外気温度が設
定温度以上であると高温信号を、検出外気温度が設定温
度より低いと低温信号をそれぞれ所定時間毎に出力する
外気温判別手段(74)とが設けられている。そして、上記
蒸発温度検出手段(Thc)の温度信号を取込み、圧力判別
手段(73)が高圧信号を出力する毎に、外気温判別手段(7
4)の高温信号及び低温信号に基づく蒸発圧力相当飽和温
度に対応した低風量になるように熱源側ファン(26)の風
量を順次低下させる低下信号を上記風量調節手段(72)に
出力すると共に、圧力判別手段(73)が低圧信号を出力す
る毎に、外気温判別手段(74)の高温信号及び低温信号に
基づく蒸発圧力相当飽和温度に対応した高風量になるよ
うに熱源側ファン(26)の風量を順次増大させる増大信号
を上記風量調節手段(72)に出力する風量制御手段(75)が
設けられている
Further, the means taken by the invention according to claim 2 is that a heat source provided with a compressor (21) and a heat source side fan (26) is first provided.
Source side heat exchanger (23), expansion mechanism (25), user side heat exchanger
(31) are connected in order and a refrigerant circulation circuit capable of heating operation
(1) is provided. And the heat source side fan (26)
Air volume adjusting means for adjusting the air volume by switching the air volume to multiple stages
Stage (72) and the evaporation pressure phase in the heat source side heat exchanger (23)
Evaporating temperature detecting means (Thc) for detecting the saturation temperature;
Detects saturation pressure equivalent to condensation temperature in refrigerant circuit (1)
High-pressure detection means (HPS2) to detect the outside air temperature
Pressure signal of the detecting means (Tha) and the high pressure detecting means (HPS2)
High pressure signal when the detected pressure is higher than the set pressure.
If the detected pressure is lower than the set pressure,
Pressure discriminating means (73) for outputting at predetermined time intervals, and the outside air temperature
The temperature signal of the detection means (Tha) is taken in, and the detected outside air temperature is set.
If the temperature is higher than the predetermined temperature, a high temperature signal is
If the temperature is lower than the specified temperature, a low-temperature signal is output every predetermined time
Outside temperature determining means (74) is provided. Then, the temperature signal of the evaporating temperature detecting means (Thc) is fetched, and each time the pressure determining means (73) outputs the high pressure signal, the outside air temperature determining means (7
Outputting a decrease signal for sequentially decreasing the air volume of the heat source side fan (26) to a low air volume corresponding to the evaporating pressure equivalent saturation temperature based on the high temperature signal and the low temperature signal of 4) to the air volume adjusting means (72), Each time the pressure discriminating means (73) outputs a low pressure signal, the heat source side fan (26) is controlled so as to have a high air volume corresponding to the evaporating pressure equivalent saturation temperature based on the high temperature signal and the low temperature signal of the outside air temperature discriminating means (74). air volume control means for the increase signal for sequentially increasing the air volume is outputted to the air volume adjusting means (72) (75) is provided for).

【0010】また、請求項3に係る発明が講じた手段
は、先ず、圧縮機(21)と、熱源側ファン(26)を備えた熱
源側熱交換器(23)と、膨脹機構(25)と、利用側熱交換器
(31)とが順に接続されて暖房運転可能な冷媒循環回路
(1)と、上記熱源側ファン(26)の風量を複数段に切換え
て該風量を調節する風量調節手段(72)とが設けられてい
る。そして、上記冷媒循環回路(1)における凝縮温度相
当飽和圧力を検出する高圧検出手段(HPS2)と、該高圧検
出手段(HPS2)の圧力信号をサンプリングタイム毎に取込
み、検出圧力が設定圧力以上であると熱源側ファン(26)
の風量を低下させる低下信号を、検出圧力が設定圧力よ
り低いと熱源側ファン(26)の風量を増大させる増大信号
をそれぞれ上記風量調節手段(72)に出力する風量制御手
段(76)と、該風量制御手段(76)が低下信号及び増大信号
を出力すると、該低下信号及び増大信号に対応した待機
時間が経過するまで、上記風量制御手段(76)の出力を停
止させる風量保持手段(77)とが設けられている
A third aspect of the present invention is to provide a heat pump provided with a compressor (21) and a heat source side fan (26).
Source side heat exchanger (23), expansion mechanism (25), user side heat exchanger
(31) are connected in order and a refrigerant circulation circuit capable of heating operation
(1) Switch the air volume of the heat source side fan (26) to multiple stages
Air volume adjusting means (72) for adjusting the air volume.
You. Then, a high-pressure detecting means (HPS2) for detecting a condensing temperature equivalent saturated pressure in the refrigerant circuit (1) and a pressure signal of the high-pressure detecting means (HPS2) are taken in at each sampling time, and the detected pressure is higher than a set pressure. When there is a heat source side fan (26)
Air flow control means (76) for outputting a decrease signal for reducing the air flow of the air flow control means (72) to the air flow control means (72), respectively, when the detected pressure is lower than the set pressure, an increase signal for increasing the air flow of the heat source side fan (26). When the air volume control unit (76) outputs the decrease signal and the increase signal, the air volume holding unit (77) stops the output of the air volume control unit (76) until the standby time corresponding to the decrease signal and the increase signal elapses. ) are provided.

【0011】[0011]

【作用】上記の構成により、請求項1に係る発明では、
先ず、暖房運転時において、圧縮機(21)より吐出した高
圧の冷媒は、利用側熱交換器(31)で凝縮して液化し、こ
の液冷媒は、電動膨脹弁(25)で減圧し、その後、熱源側
熱交換器(23)で蒸発して圧縮機(21)に戻る循環となる。
According to the above construction, according to the first aspect of the present invention,
First, during the heating operation, the high-pressure refrigerant discharged from the compressor (21) is condensed and liquefied in the use-side heat exchanger (31), and the liquid refrigerant is decompressed by the electric expansion valve (25). After that, a circulation returns to the compressor (21) after evaporating in the heat source side heat exchanger (23).

【0012】そして、この暖房運転時において、蒸発温
度検出手段(Thc)が熱源側熱交換器(23)における蒸発圧
力相当飽和温度、つまり、蒸発温度を検出すると共に、
圧検出手段(HPS2)が凝縮温度相当飽和圧力、つまり、
高圧冷媒圧力を検出している。また、請求項2に係る発
明では、高圧冷媒圧力を検出すると共に、外気温検出手
段(Tha)が外気温度を検出している。
[0012] Then, during the heating operation, the evaporation pressure corresponding saturation temperature evaporation temperature detection means (Thc) is in the heat source-side heat exchanger (23), i.e., the co detects the evaporation temperature,
High pressure detecting means (HPS2) condensation temperature corresponding saturation pressure, i.e.,
High pressure refrigerant pressure is detected. In the invention according to claim 2 , the high-pressure refrigerant pressure is detected, and the outside air temperature detection method is performed.
The stage (Tha) detects the outside air temperature .

【0013】更に、圧力判別手段(73)が、上記高圧検出
手段(HPS2)の圧力信号を取込み、検出圧力が設定圧力以
上であると高圧信号を、検出圧力が設定圧力より低いと
低圧信号をそれぞれ所定時間毎に出力する。そして、風
量制御手段(75)は、上記蒸発温度検出手段(Thc)の温度
信号を取込み、圧力判別手段(73)が高圧信号を出力する
毎に、蒸発温度に対応した低風量になるように熱源側フ
ァン(26)の風量を順次低下させる低下信号を上記風量調
節手段(72)に出力すると共に、圧力判別手段(73)が低圧
信号を出力する毎に、蒸発温度に対応した高風量になる
ように熱源側ファン(26)の風量を順次増大させる増大信
号を上記風量調節手段(72)に出力する。この結果、熱源
側ファン(26)の風量が低下し過ぎることなく、高圧冷媒
圧力の上昇を防止する。
[0013] Further, the pressure determining means (73) takes in the pressure signal of the pressure detection means (HPS2), a high-pressure signal when there in detected pressure set pressure or more, the detected pressure is lower than the set pressure low Signals are output at predetermined time intervals. Then, the air volume control means (75) takes in the temperature signal of the evaporating temperature detection means (Thc) so that each time the pressure discriminating means (73) outputs a high pressure signal, a low air volume corresponding to the evaporation temperature is obtained. A lowering signal for sequentially reducing the air volume of the heat source side fan (26) is output to the air volume adjusting means (72), and each time the pressure discriminating means (73) outputs a low pressure signal, the air volume is increased to a high air volume corresponding to the evaporation temperature. An increase signal for sequentially increasing the air volume of the heat source side fan (26) is output to the air volume adjusting means (72). As a result, the heat source
The pressure of the high-pressure refrigerant
Prevent pressure build-up.

【0014】また、請求項2の発明では、上記外気温検
出手段(Tha)の温度信号を取込み、検出外気温度が設定
温度以上であると高温信号を、検出外気温度が設定温度
より低いと低温信号をそれぞれ所定時間毎に出力する。
そして、風量制御手段(75)は、上記蒸発温度検出手段(T
hc)の温度信号を取込み、圧力判別手段(73)が高圧信号
を出力する毎に、外気温判別手段(74)の高温信号及び低
温信号に基づく蒸発温度に対応した低風量になるように
熱源側ファン(26)の風量を順次低下させる低下信号を上
記風量調節手段(72)に出力すると共に、圧力判別手段(7
3)が低圧信号を出力する毎に、外気温判別手段(74)の高
温信号及び低温信号に基づく蒸発温度に対応した高風量
になるように熱源側ファン(26)の風量を順次増大させる
増大信号を上記風量調節手段(72)に出力し、高圧冷媒圧
力の上昇を防止する。
[0014] In the invention of claim 2 , the outside air temperature detection is performed.
Takes in the temperature signal of the output means (Tha) and sets the detected outside air temperature
If the temperature is higher than the specified temperature, a high temperature signal is output.
If the temperature is lower, a low-temperature signal is output every predetermined time.
Then, the air volume control means (75) is connected to the evaporation temperature detection means (T
hc), and every time the pressure discriminating means (73) outputs a high-pressure signal, the heat source is set so as to have a low air volume corresponding to the evaporation temperature based on the high temperature signal and the low temperature signal of the outside air temperature discriminating means (74). A decrease signal for sequentially decreasing the air volume of the side fan (26) is output to the air volume adjusting means (72), and the pressure discriminating means (7
3) Each time the low pressure signal is output, the air flow of the heat source side fan (26) is sequentially increased so that the air flow becomes high corresponding to the evaporation temperature based on the high temperature signal and the low temperature signal of the outside air temperature determination means (74). A signal is output to the air volume adjusting means (72) to prevent an increase in the high-pressure refrigerant pressure.

【0015】また、請求項3に係る発明では、暖房運転
時において、風量制御手段(76)は、高圧検出手段(HPS2)
の圧力信号をサンプリングタイム毎に取込み、検出圧力
が設定圧力以上であると熱源側ファン(26)の風量を低下
させる低下信号を、検出圧力が設定圧力より低いと熱源
側ファン(26)の風量を増大させる増大信号をそれぞれ上
記風量調節手段(72)に出力する。そして、該風量制御手
段(76)が低下信号及び増大信号を出力すると、風量保持
手段(77)は、該低下信号及び増大信号に対応した待機時
間が経過するまで、上記風量制御手段(76)の出力を停止
させることになる。この結果、熱源側ファン(26)の風量
の低下し過ぎを防止すると共に、風量変化のハンチング
が防止される。
Further, in the invention according to claim 3, during the heating operation, the air volume control means (76) is provided with the high pressure detection means (HPS2).
Signal at each sampling time.If the detected pressure is equal to or higher than the set pressure, a decrease signal that decreases the air volume of the heat source side fan (26) is obtained.If the detected pressure is lower than the set pressure, the air volume of the heat source side fan (26) is reduced. Are output to the air volume adjusting means (72). When the air volume control means (76) outputs the decrease signal and the increase signal, the air volume holding means (77) updates the air volume control means (76) until the standby time corresponding to the decrease signal and the increase signal elapses. Will be stopped. As a result, the air volume of the heat source side fan (26) is prevented from being excessively reduced, and hunting of the air volume change is prevented.

【0016】[0016]

【発明の効果】従って、請求項1の発明によれば、外気
温度又は凝縮圧力相当飽和圧力が所定値より大きくなる
と、熱源側ファン(26)の風量を蒸発圧力相当飽和温度に
対応した低風量にするので、高圧冷媒圧力の上昇を防止
することができると同時に、低圧冷媒圧力が低下し過ぎ
ることがなく、熱源側熱交換器(23)の凍結を防止するこ
とができると共に、圧縮機の湿り運転を防止することが
できる。この結果、該圧縮機の過負荷を防止することが
できることから、信頼性の向上を図ることができる。
According to the first aspect of the present invention, when the outside air temperature or the saturation pressure equivalent to the condensing pressure becomes larger than a predetermined value, the air volume of the heat source side fan (26) is reduced to a low air volume corresponding to the saturation temperature equivalent to the evaporation pressure. Therefore, it is possible to prevent the high-pressure refrigerant pressure from rising, and at the same time, prevent the low-pressure refrigerant pressure from excessively lowering, thereby preventing the heat source side heat exchanger (23) from freezing, and Wet operation can be prevented. As a result, it is possible to prevent the compressor from being overloaded, thereby improving reliability.

【0017】また、請求項2の発明によれば、凝縮圧力
相当飽和圧力が所定値になると、外気温度に基づく蒸発
圧力相当飽和温度に対応した低風量に熱源側ファン(26)
を設定するので、より確実に低圧冷媒圧力が低下し過ぎ
ることを防止することができ、圧縮機の信頼性をより向
上させることができる。
According to the second aspect of the present invention, when the condensing pressure-equivalent saturation pressure reaches a predetermined value, the heat source side fan (26) has a low air flow corresponding to the evaporation pressure-equivalent saturation temperature based on the outside air temperature.
Is set, it is possible to more reliably prevent the low-pressure refrigerant pressure from excessively lowering, and to further improve the reliability of the compressor.

【0018】また、請求項3の発明によれば、熱源側フ
ァン(26)の風量が変化すると、所定時間風量が変化しな
いようにしたので、風量が急激に低下しないので、低圧
冷媒圧力が低下し過ぎることを防止することができる。
更に、風量変化のハンチングを防止することができるこ
とから、快適性の向上を図ることができると共に、圧縮
機の負荷変動を抑制することができ、信頼性の向上を図
ることができる。
According to the third aspect of the present invention, when the air volume of the heat source side fan (26) changes, the air volume does not change for a predetermined period of time. It is possible to prevent the user from doing too much.
Furthermore, since hunting of a change in air volume can be prevented, comfort can be improved, and load fluctuation of the compressor can be suppressed, and reliability can be improved.

【0019】[0019]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0020】図2は、請求項2に係る発明の空気調和装
置における冷媒配管系統を示し、(1)は、冷媒循環回路
であって、一台の室外ユニット(2)に対して一台の室内
ユニット(3)が接続された所謂セパレートタイプに構成
されている。
FIG. 2 shows a refrigerant piping system in the air conditioner according to the second aspect of the present invention. (1) is a refrigerant circulation circuit, and one outdoor unit (2) is provided for one outdoor unit (2). It is configured as a so-called separate type to which the indoor unit (3) is connected.

【0021】上記室外ユニット(2)には、インバータに
より運転周波数を可変に調節されるスクロールタイプの
圧縮機(21)と、冷房運転時には図中実線のごとく、暖房
運転時には図中破線のごとく切換わる四路切換弁(22)
と、冷房運転時に凝縮器として、暖房運転時に蒸発器と
して機能する熱源側熱交換器である室外熱交換器(23)
と、該室外熱交換器(23)の補助熱交換器(24)と、冷媒を
減圧するための膨脹機構である電動膨脹弁(25)と、冷媒
調節器(4)とが配置されると共に、上記室外熱交換器(2
3)の近傍に熱源側ファンである室外ファン(26)が配置さ
れている。一方また、上記室内ユニット(3)には、冷房
運転時に蒸発器として、暖房運転時に凝縮器として機能
する利用側熱交換器である室内熱交換器(31)が配置され
ると共に、上記室内熱交換器(31)の近傍に室内ファン(3
2)が配置されている。
The outdoor unit (2) includes a scroll type compressor (21) whose operating frequency is variably adjusted by an inverter, and a cutoff as shown by a solid line in the cooling operation and a broken line in the heating operation. Replacement Four Way Switching Valve (22)
And an outdoor heat exchanger (23) that is a heat source side heat exchanger that functions as a condenser during cooling operation and as an evaporator during heating operation.
An auxiliary heat exchanger (24) of the outdoor heat exchanger (23), an electric expansion valve (25) that is an expansion mechanism for reducing the pressure of the refrigerant, and a refrigerant regulator (4). , The outdoor heat exchanger (2
An outdoor fan (26), which is a heat source side fan, is arranged near 3). On the other hand, the indoor unit (3) is provided with an indoor heat exchanger (31), which is a use side heat exchanger that functions as an evaporator during the cooling operation and as a condenser during the heating operation. The indoor fan (3
2) is located.

【0022】そして、上記圧縮機(21)と四路切換弁(22)
と室外熱交換器(23)と補助熱交換器(24)と電動膨脹弁(2
5)と冷媒調節器(4)と室内熱交換器(31)とが順に冷媒配
管(11)によって接続され、上記冷媒循環回路(1)は、冷
媒の循環により熱移動を生ぜしめるように冷房運転サイ
クルと暖房運転サイクルとに可逆運転可能な閉回路に構
成されている。
The compressor (21) and the four-way switching valve (22)
And outdoor heat exchanger (23), auxiliary heat exchanger (24) and electric expansion valve (2
5), a refrigerant regulator (4) and an indoor heat exchanger (31) are connected in order by a refrigerant pipe (11), and the refrigerant circulation circuit (1) cools down so as to generate heat transfer by circulation of the refrigerant. The closed circuit is capable of reversible operation between an operation cycle and a heating operation cycle.

【0023】また、上記冷媒循環回路(1)は、上記電動
膨脹弁(25)を冷媒が双方向に流れるように配置して構成
され、、つまり、電動膨脹弁(25)は、冷房運転サイクル
と暖房運転サイクルとで冷媒が異なる方向に流れて減圧
するように構成されている(図2の実線は冷房、破線は
暖房参照)。更に、上記冷媒循環回路(1)は、アキュム
レータを備えていないチャージレス回路に構成され、上
記室内熱交換器(31)の一端、具体的に、冷房運転サイク
ル時における冷媒の出口側で、暖房運転サイクル時にお
ける冷媒の入口側が四路切換弁(22)を介して直接に圧縮
機(21)に接続されている。
Further, the refrigerant circuit (1) is configured by arranging the electric expansion valve (25) so that the refrigerant flows in both directions. That is, the electric expansion valve (25) is provided with a cooling operation cycle. The refrigerant flows in different directions between the heating operation cycle and the heating operation cycle to reduce the pressure (solid line in FIG. 2 indicates cooling, and broken line indicates heating). Further, the refrigerant circulation circuit (1) is configured as a chargeless circuit without an accumulator, and heats at one end of the indoor heat exchanger (31), specifically, at the refrigerant outlet side during a cooling operation cycle. The inlet side of the refrigerant during the operation cycle is directly connected to the compressor (21) via the four-way switching valve (22).

【0024】一方、上記冷媒調節器(4)は、冷房運転サ
イクル時に低圧液ラインとなり、暖房運転サイクル時に
高圧液ラインとなる冷媒配管(11)に介設され、液冷媒の
貯溜可能に形成されている。そして、該冷媒調節器(4)
は、冷房運転サイクル時に冷媒循環量を調節すると共
に、暖房運転サイクル時に余剰冷媒を貯溜するように構
成されている。
On the other hand, the refrigerant regulator (4) is interposed in a refrigerant pipe (11) that becomes a low-pressure liquid line during a cooling operation cycle and becomes a high-pressure liquid line during a heating operation cycle, and is formed to be able to store liquid refrigerant. ing. And the refrigerant controller (4)
Is configured to adjust the amount of circulating refrigerant during a cooling operation cycle and store excess refrigerant during a heating operation cycle.

【0025】尚、図2において、(F1〜F3)は、冷媒中の
塵埃を除去するためのフィルタ、(ER)は、圧縮機(21)の
運転音を低減させるための消音器である。
In FIG. 2, (F1 to F3) are filters for removing dust in the refrigerant, and (ER) is a silencer for reducing the operation noise of the compressor (21).

【0026】更に、上記空気調和装置にはセンサ類が設
けられており、上記圧縮機(21)の吐出管には、吐出管温
度Tdを検出する吐出管センサ(Thd)が配置され、上記室
外ユニット(2)の空気吸込口には、外気温度である室外
空気温度Taを検出する外気温検出手段である外気温セン
サ(Tha)が配置され、上記室外熱交換器(23)には、冷房
運転時に凝縮温度となり、暖房運転時に蒸発温度(蒸発
圧力相当飽和温度)となる室外熱交温度Tcを検出する蒸
発温度検出手段である室外熱交センサ(Thc)が配置さ
れ、上記室内ユニット(3)の空気吸込口には、室内温度
である室内空気温度Trを検出する室温センサ(Thr)が配
置され、上記室内熱交換器(31)には、冷房運転時に蒸発
温度となり、暖房運転時に凝縮温度となる室内熱交温度
Teを検出する室内熱交センサ(The)が配置されている。
更に、上記圧縮機(21)の吐出管には、高圧冷媒圧力HPを
検出して、該高圧冷媒圧力HPの過上昇によりオンとなっ
て高圧保護信号を出力する高圧保護圧力スイッチ(HPS1)
と、上記高圧冷媒圧力HP(凝縮温度相当飽和圧力)を検
出して、該高圧冷媒圧力HPが所定値になるとオン信号を
出力する高圧検出手段である高圧制御圧力スイッチ(HPS
2)とが配置され、上記圧縮機(21)の吸込管には、低圧冷
媒圧力を検出して、該低圧冷媒圧力の過低下によりオン
となって低圧保護信号を出力する低圧保護圧力スイッチ
(LPS1)が配置されている。
Further, sensors are provided in the air conditioner, and a discharge pipe sensor (Thd) for detecting a discharge pipe temperature Td is disposed in a discharge pipe of the compressor (21). At the air suction port of the unit (2), an outside air temperature sensor (Tha) which is an outside air temperature detecting means for detecting an outside air temperature Ta which is an outside air temperature is arranged, and the outdoor heat exchanger (23) has a cooling unit. An outdoor heat exchange sensor (Thc), which is an evaporating temperature detecting means for detecting an outdoor heat exchange temperature Tc that becomes a condensing temperature during operation and becomes an evaporating temperature (saturated temperature corresponding to evaporating pressure) during heating operation, is arranged. A room temperature sensor (Thr) that detects the indoor air temperature Tr, which is the indoor temperature, is disposed at the air suction port of () .The indoor heat exchanger (31) has an evaporation temperature during cooling operation and condenses during heating operation. Indoor heat exchange temperature
An indoor heat exchange sensor (The) for detecting Te is arranged.
Further, in the discharge pipe of the compressor (21), a high-pressure protection pressure switch (HPS1) that detects a high-pressure refrigerant pressure HP and is turned on by a rise in the high-pressure refrigerant pressure HP to output a high-pressure protection signal.
And a high-pressure control pressure switch (HPS) which is a high-pressure detection means for detecting the high-pressure refrigerant pressure HP (saturation pressure corresponding to the condensing temperature) and outputting an ON signal when the high-pressure refrigerant pressure HP reaches a predetermined value.
2) and a low-pressure protection pressure switch that detects a low-pressure refrigerant pressure in the suction pipe of the compressor (21) and turns on to output a low-pressure protection signal when the low-pressure refrigerant pressure drops excessively.
(LPS1).

【0027】そして、上記各センサ(Thd,〜,The)及び各
スイッチ(HPS1,HPS2,LPS1)の出力信号は、コントローラ
(7)に入力されており、該コントローラ(7)は、入力信号
に基づいて空調運転を制御するように構成され、圧縮機
(21)の容量制御手段(71)と、風量調節手段(72)と、圧力
判別手段(73)と、外気温判別手段(74)と、風量制御手段
(75)とが設けられている。
The output signals of the sensors (Thd,..., The) and the switches (HPS1, HPS2, LPS1) are sent to the controller.
(7), the controller (7) is configured to control the air-conditioning operation based on the input signal,
(21) capacity control means (71), air volume adjustment means (72), pressure determination means (73), outside air temperature determination means (74), air volume control means
(75).

【0028】そして、該容量制御手段(71)は、インバー
タの運転周波数を零から最大周波数まで20ステップN
に区分すると共に、例えば、室外熱交センサ(Thc)が検
出する凝縮温度又は蒸発温度より最適な冷凍効果を与え
る吐出管温度Tdの最適値Tkを算出し、該吐出管温度Tdが
最適値Tkになるように周波数ステップNを設定して圧縮
機(21)の容量を制御し、所謂吐出管温度制御に構成され
ている。
The capacity control means (71) changes the operating frequency of the inverter from zero to the maximum frequency by 20 steps N
In addition, for example, the optimum value Tk of the discharge pipe temperature Td that gives an optimum refrigeration effect from the condensation temperature or the evaporation temperature detected by the outdoor heat exchange sensor (Thc) is calculated, and the discharge pipe temperature Td is set to the optimum value Tk. Is set so as to control the capacity of the compressor (21) by setting the frequency step N so that the discharge pipe temperature is controlled.

【0029】また、上記風量調節手段(72)は、室外ファ
ン(26)の風量を複数段、例えば、最高風量のHHからH
及びLの低風量とOFFの停止状態との4段階に切換え
て風量を調節する。
The air volume adjusting means (72) adjusts the air volume of the outdoor fan (26) to a plurality of stages, for example, from HH of the maximum air volume to H
And the air flow rate is adjusted by switching to four stages of a low air flow rate of L and an OFF stop state.

【0030】また、上記圧力判別手段(73)は、高圧制御
圧力スイッチ(HPS2)の圧力信号を取込み、検出圧力が設
定圧力(例えば、24Kg/cm2)以上であると高圧信号
を、検出圧力が設定圧力(例えば、24Kg/cm2)より
低いと低圧信号をそれぞれ所定時間毎に出力す。
The pressure discriminating means (73) takes in the pressure signal of the high pressure control pressure switch (HPS2), and outputs the high pressure signal when the detected pressure is equal to or higher than a set pressure (for example, 24 kg / cm 2 ). If the pressure is lower than a set pressure (for example, 24 kg / cm 2 ), a low pressure signal is output at each predetermined time.

【0031】また、上記外気温判別手段(74)は、外気温
センサ(Tha)の温度信号を取込み、検出外気温度が設定
温度(例えば、15℃又は2℃)以上であると高温信号
を、検出外気温度が設定温度(例えば、15℃又は2
℃)より低いと低温信号をそれぞれ所定時間毎に出力す
る。
The outside air temperature determining means (74) takes in the temperature signal of the outside air temperature sensor (Tha), and outputs a high temperature signal when the detected outside air temperature is higher than a set temperature (for example, 15 ° C. or 2 ° C.). If the detected outside air temperature is equal to the set temperature (for example, 15 ° C. or 2
If the temperature is lower than (° C), a low-temperature signal is output at predetermined time intervals.

【0032】また、上記風量制御手段(75)は、室外熱交
センサ(Thc)の温度信号を取込み、圧力判別手段(73)が
高圧信号を出力する毎に、外気温判別手段(74)の高温信
号及び低温信号に基づく室外熱交温度Tcに対応した低風
量になるように室外ファン(26)の風量を順次低下させる
低下信号を上記風量調節手段(72)に出力すると共に、上
記圧力判別手段(73)が低圧信号を出力する毎に、外気温
判別手段(74)の高温信号及び低温信号に基づく室外熱交
温度Tcに対応した高風量になるように室外ファン(26)の
風量を順次増大させる増大信号を上記風量調節手段(72)
に出力する。
The air volume control means (75) takes in the temperature signal of the outdoor heat exchange sensor (Thc), and every time the pressure determination means (73) outputs a high pressure signal, the outside air temperature determination means (74) A lowering signal for sequentially reducing the airflow of the outdoor fan (26) so as to have a lower airflow corresponding to the outdoor heat exchange temperature Tc based on the high temperature signal and the low temperature signal is output to the air volume adjusting means (72), and the pressure discrimination is performed. Each time the means (73) outputs a low pressure signal, the air flow rate of the outdoor fan (26) is adjusted so that the air flow rate becomes high corresponding to the outdoor heat exchange temperature Tc based on the high temperature signal and the low temperature signal of the outside air temperature determination means (74). The increase signal for sequentially increasing the air flow amount adjusting means (72)
Output to

【0033】次に、上述した空気調和装置の冷暖房運転
動作について説明する。
Next, the cooling and heating operation of the above-described air conditioner will be described.

【0034】先ず、上記冷媒循環回路(1)において、冷
房運転サイクル時には、圧縮機(21)より吐出した高圧の
冷媒は、室外熱交換器(23)で凝縮して液化し、この液冷
媒は、電動膨脹弁(25)で減圧された後、冷媒調節器(4)
に流入し、その後、室内熱交換器(31)で蒸発して圧縮機
(21)に戻る循環となる。一方、暖房運転サイクル時に
は、圧縮機(21)より吐出した高圧の冷媒は、室内熱交換
器(31)で凝縮して液化し、この液冷媒は、冷媒調節器
(4)に流入した後、電動膨脹弁(25)で減圧し、その後、
室外熱交換器(23)で蒸発して圧縮機(21)に戻る循環とな
る。
First, in the refrigerant circuit (1), during the cooling operation cycle, the high-pressure refrigerant discharged from the compressor (21) is condensed and liquefied in the outdoor heat exchanger (23), and this liquid refrigerant is After the pressure is reduced by the electric expansion valve (25), the refrigerant controller (4)
And then evaporates in the indoor heat exchanger (31) to
The circulation returns to (21). On the other hand, during the heating operation cycle, the high-pressure refrigerant discharged from the compressor (21) is condensed and liquefied in the indoor heat exchanger (31), and this liquid refrigerant is
After flowing into (4), the pressure is reduced by the electric expansion valve (25), and then
The circulation evaporates in the outdoor heat exchanger (23) and returns to the compressor (21).

【0035】この各運転サイクル時において、容量制御
手段(71)は、上記室外熱交センサ(Thc)が検出する凝縮
温度又は蒸発温度より最適な冷凍効果を与える吐出管温
度Tdの最適値Tkを算出し、該吐出管温度Tdが最適値Tkに
なるように周波数ステップNを設定して圧縮機(21)の容
量を制御し、室内負荷に対応した空調運転を行ってい
る。
In each of the operation cycles, the capacity control means (71) determines the optimum value Tk of the discharge pipe temperature Td which gives an optimum refrigerating effect from the condensation temperature or the evaporation temperature detected by the outdoor heat exchange sensor (Thc). Calculated, the frequency step N is set so that the discharge pipe temperature Td becomes the optimum value Tk, the capacity of the compressor (21) is controlled, and the air conditioning operation corresponding to the indoor load is performed.

【0036】次に、上記暖房運転サイクル時における室
外ファン(26)の風量制御について、図3及び図4に基づ
き説明する。
Next, the control of the air flow rate of the outdoor fan (26) during the heating operation cycle will be described with reference to FIGS.

【0037】先ず、室外ファン(26)の制御がスタートす
ると、ステップST1において、風量制御手段(75)は、圧
力判別手段(73)が高圧制御圧力スイッチ(HPS2)のオン信
号に基づき高圧信号を出力したか否かを判別し、高圧信
号を出力すると、判定がイエスとなってステップST2に
移り、外気温判別手段(74)が外気温センサ(Tha)の温度
信号に基づき高温信号を出力したか否かを判別する。
First, when the control of the outdoor fan (26) is started, in step ST1, the air volume control means (75) sends the high pressure signal based on the ON signal of the high pressure control pressure switch (HPS2). It is determined whether or not the output has been performed, and when a high-pressure signal is output, the determination is yes and the process proceeds to step ST2, where the outside temperature determination means (74) outputs a high temperature signal based on the temperature signal of the outside temperature sensor (Tha). It is determined whether or not.

【0038】そして、該外気温判別手段(74)は、外気温
度Taが15℃以上であると、高温信号を出力するので、
ステップST2からステップST3に移り、また、外気温度
Taが15℃未満であると、低温信号を出力するので、ス
テップST2からステップST4に移ることになる。
When the outside air temperature Ta is equal to or higher than 15 ° C., the outside air temperature determination means (74) outputs a high temperature signal.
The process moves from step ST2 to step ST3.
If Ta is less than 15 ° C., a low-temperature signal is output, so that the process moves from step ST2 to step ST4.

【0039】その後、上記ステップST3において、室外
熱交センサ(Thc)の温度信号を受けて蒸発温度である室
外熱交温度Tcが5℃以上か否かを判別し、5℃未満であ
ると、ステップST3からステップST5に移り、また、5
℃以上であると、ステップST3からステップST6に移る
ことになる。
Thereafter, in step ST3, the temperature signal of the outdoor heat exchange sensor (Thc) is received to determine whether or not the outdoor heat exchange temperature Tc, which is the evaporation temperature, is 5 ° C. or more. The process moves from step ST3 to step ST5, and
If it is not less than ° C., the process moves from step ST3 to step ST6.

【0040】続いて、該ステップST5において、風量制
御手段(75)は、風量の低下信号を出力し、この低下信号
を風量調節手段(72)が受け、該風量調節手段(72)は、室
外ファン(26)が現在最高風量のHHであれば、中風量の
Hに、また、現在中風量のHであれば、低風量のLに設
定してリターンすることになる。また、上記ステップST
6において、風量制御手段(75)は、風量の低下信号を出
力し、この低下信号を風量調節手段(72)が受け、該風量
調節手段(72)は、室外ファン(26)が現在最高風量のHH
であれば、中風量のHに、また、現在中風量のHであれ
ば、低風量のLに、また、現在中風量のLであれば、停
止のOFFに設定してリターンすることになる。
Subsequently, in step ST5, the air volume control means (75) outputs a signal for reducing the air volume, and the air volume control means (72) receives this reduction signal, and the air volume control means (72) If the fan (26) is currently at the highest air flow HH, the air flow is set to H at the medium air flow. Also, the above step ST
In 6, the air volume control means (75) outputs a signal for reducing the air volume, and the air volume control means (72) receives the reduced signal, and the air volume control means (72) outputs the current maximum air volume to the outdoor fan (26). HH
If it is, the medium air volume is set to H. If the current medium air volume is H, the air volume is set to L for low air volume. .

【0041】一方、上記ステップST4において、室外熱
交センサ(Thc)の温度信号を受けて蒸発温度である室外
熱交温度Tcが0℃以上か否かを判別し、0℃未満である
と、ステップST4からステップST7に移り、また、0℃
以上であると、ステップST4からステップST8に移るこ
とになる。
On the other hand, in step ST4, it is determined whether or not the outdoor heat exchange temperature Tc, which is the evaporation temperature, is equal to or higher than 0 ° C. based on the temperature signal of the outdoor heat exchange sensor (Thc). Move from step ST4 to step ST7,
If so, the process moves from step ST4 to step ST8.

【0042】続いて、該ステップST7において、風量制
御手段(75)は、風量の低下信号を出力し、この低下信号
を風量調節手段(72)が受け、該風量調節手段(72)は、室
外ファン(26)が現在最高風量のHHであれば、中風量の
Hに設定してリターンすることになる。また、上記ステ
ップST8において、風量制御手段(75)は、風量の低下信
号を出力し、この低下信号を風量調節手段(72)が受け、
該風量調節手段(72)は、室外ファン(26)が現在最高風量
のHHであれば、中風量のHに、また、現在中風量のH
であれば、低風量のLに設定してリターンすることにな
る。
Subsequently, in step ST7, the air volume control means (75) outputs a signal for reducing the air volume, and the air volume control means (72) receives the reduction signal, and the air volume control means (72) If the fan (26) is currently at the HH with the highest air volume, it is set to H at the middle air volume and returns. Further, in the above step ST8, the air volume control means (75) outputs an air volume reduction signal, and the air volume adjustment means (72) receives this reduction signal,
If the outdoor fan (26) is currently at the highest air volume HH, the air volume adjusting means (72) will set the medium air volume to H and the current medium air volume to H.
If so, the flow is set to L with a low air flow and the routine returns.

【0043】つまり、例えば、上記ステップST6におい
ては、室外熱交温度Tcが5℃以上であるので、室外ファ
ン(26)を停止状態にしても凍結等が生じないので、風量
を順次停止状態にまで低下させることになり、各室外熱
交温度Tcの温度状態おいて低下させる最低風量を設定し
ている。
That is, for example, in step ST6, since the outdoor heat exchange temperature Tc is 5 ° C. or higher, freezing does not occur even when the outdoor fan (26) is stopped. Therefore, the minimum air volume to be reduced in the temperature state of each outdoor heat exchange temperature Tc is set.

【0044】また一方、上記ステップST1において、風
量制御手段(75)は、圧力判別手段(73)が低圧信号を出力
すると、判定がノーとなってステップST9に移り、外気
温判別手段(74)が外気温センサ(Tha)の温度信号に基づ
き高温信号を出力したか否かを判別する。
On the other hand, in step ST1, when the pressure discriminating means (73) outputs a low pressure signal, the air volume control means (75) makes a negative decision and proceeds to step ST9, where the outside air temperature discriminating means (74) Determines whether a high temperature signal has been output based on the temperature signal of the outside air temperature sensor (Tha).

【0045】そして、該外気温判別手段(74)は、外気温
度Taが2℃以上であると、高温信号を出力するので、ス
テップST9からステップST10に移り、また、外気温度Ta
が2℃未満であると、低温信号を出力するので、ステッ
プST9からステップST11に移ることになる。
When the outside air temperature Ta is 2 ° C. or higher, the outside air temperature determination means (74) outputs a high-temperature signal, so that the routine proceeds from step ST9 to step ST10.
Is less than 2 ° C., a low-temperature signal is output, so that the process moves from step ST9 to step ST11.

【0046】その後、上記ステップST10において、室外
熱交センサ(Thc)の温度信号を受けて蒸発温度である室
外熱交温度Tcが−5℃以上か否かを判別し、−5℃未満
であると、ステップST10からステップST12に移り、ま
た、−5℃以上であると、ステップST10からステップST
13に移ることになる。
Thereafter, in step ST10, the temperature signal of the outdoor heat exchange sensor (Thc) is received, and it is determined whether or not the outdoor heat exchange temperature Tc, which is the evaporation temperature, is -5 ° C or higher, and is lower than -5 ° C. The process proceeds from step ST10 to step ST12, and if the temperature is -5 ° C. or more, the process proceeds from step ST10 to step ST12.
It will move to 13.

【0047】続いて、該ステップST12において、風量制
御手段(75)は、風量の増大信号を出力し、この増大信号
を風量調節手段(72)が受け、該風量調節手段(72)は、室
外ファン(26)が現在停止状態のOFFであれば、低風量
のLに、また、現在低風量のLであれば、中風量のHに
設定してリターンすることになる。また、上記ステップ
ST13において、風量制御手段(75)は、風量の増大信号を
出力し、この増大信号を風量調節手段(72)が受け、該風
量調節手段(72)は、室外ファン(26)が現在停止状態のO
FFであれば、低風量のLに設定してリターンすること
になる。
Subsequently, in step ST12, the air volume control means (75) outputs an air volume increase signal, and the air volume control means (72) receives the increase signal, and the air volume control means (72) If the fan (26) is currently in the OFF state of the stopped state, the flow is set to L with a low air flow, and if the fan is currently at a low air flow, the air is set to H with a medium air flow and the routine returns. Also, the above steps
In ST13, the air volume control unit (75) outputs an air volume increase signal, and the air volume adjustment unit (72) receives the increase signal, and the air volume adjustment unit (72) is in a state where the outdoor fan (26) is currently stopped. O
If it is FF, it will be set to L with a low air flow and return.

【0048】一方、上記ステップST11において、室外熱
交センサ(Thc)の温度信号を受けて蒸発温度である室外
熱交温度Tcが−10℃以上か否かを判別し、−10℃未
満であると、ステップST11からステップST14に移り、ま
た、−10℃以上であると、ステップST11からステップ
ST15に移ることになる。
On the other hand, in step ST11, it is determined whether or not the outdoor heat exchange temperature Tc, which is the evaporation temperature, is equal to or higher than -10.degree. C. by receiving the temperature signal from the outdoor heat exchange sensor (Thc). Then, the process proceeds from step ST11 to step ST14.
It will move to ST15.

【0049】続いて、該ステップST14において、風量制
御手段(75)は、風量の増大信号を出力し、この増大信号
を風量調節手段(72)が受け、該風量調節手段(72)は、室
外ファン(26)が現在停止状態のOFFであれば、低風量
のLに、また、現在低風量のLであれば、中風量のH
に、また、現在中風量のHであれば、最高風量のHHに
設定してリターンすることになる。また、上記ステップ
ST15において、風量制御手段(75)は、風量の増大信号を
出力し、この増大信号を風量調節手段(72)が受け、該風
量調節手段(72)は、室外ファン(26)が現在停止状態のO
FFであれば、低風量のL、また、現在低風量のLであ
れば、中風量のHにに設定してリターンすることにな
る。
Subsequently, in step ST14, the air volume control means (75) outputs an air volume increase signal, and the air volume control means (72) receives the increase signal, and the air volume control means (72) If the fan (26) is currently in the OFF state of the stopped state, it is set to L at a low air volume, and if it is currently at a low air volume, it is set to H at a medium air volume.
If the current air volume is H, the program returns to the highest air volume HH. Also, the above steps
In ST15, the air volume control unit (75) outputs an air volume increase signal, and the air volume adjustment unit (72) receives the increase signal, and the air volume adjustment unit (72) is in a state where the outdoor fan (26) is currently stopped. O
If it is FF, it is set to L of low air flow, and if it is L of low air flow at present, it is set to H of medium air flow and returns.

【0050】つまり、各室外熱交温度Tcの温度状態にお
いて増大させる最高風量を設定している。
That is, the maximum air volume to be increased in each outdoor heat exchange temperature Tc is set.

【0051】従って、本実施例によれば、外気温度Ta及
び高圧冷媒圧力HPが所定値より大きくなると、室外ファ
ン(26)の風量を室外熱交温度Tcに対応した低風量にする
ので、高圧冷媒圧力HPの上昇を防止することができると
同時に、低圧冷媒圧力が低下し過ぎることがなく、室外
熱交換器(23)の凍結を防止することができると共に、圧
縮機(21)の湿り運転を防止することができる。この結
果、該圧縮機(21)の過負荷を防止することができること
から、信頼性の向上を図ることができる。
Therefore, according to this embodiment, when the outside air temperature Ta and the high-pressure refrigerant pressure HP become larger than the predetermined values, the air flow of the outdoor fan (26) is reduced to a low air flow corresponding to the outdoor heat exchange temperature Tc. It is possible to prevent the refrigerant pressure HP from rising, and at the same time, prevent the low-pressure refrigerant pressure from dropping too much, prevent the outdoor heat exchanger (23) from freezing, and perform the wet operation of the compressor (21). Can be prevented. As a result, the compressor (21) can be prevented from being overloaded, so that reliability can be improved.

【0052】特に、高圧冷媒圧力HPが所定値になると、
外気温度Taに基づく室外熱交温度Tcに対応した低風量に
室外ファン(26)を設定するので、より確実に低圧冷媒圧
力が低下し過ぎることを防止することができ、圧縮機(2
1)の信頼性をより向上させることができる。
In particular, when the high-pressure refrigerant pressure HP reaches a predetermined value,
Since the outdoor fan (26) is set to a low air flow corresponding to the outdoor heat exchange temperature Tc based on the outdoor air temperature Ta, it is possible to more reliably prevent the low-pressure refrigerant pressure from excessively decreasing, and to prevent the compressor (2
As possible out to improve the reliability of the 1).

【0053】また、図示しないが、請求項1に係る発明
の実施例として、上記高圧冷媒圧力HPと室外熱交温度Tc
とにより上記室外ファン(26)の風量を制御するようにし
てもよい。
Although not shown, as an embodiment of the first aspect of the present invention, the high-pressure refrigerant pressure HP and the outdoor heat exchange temperature Tc
Thus, the air volume of the outdoor fan (26) may be controlled.

【0054】つまり、外気温度Taでは室外ファン(26)の
風量を制御せず、高圧冷媒圧力HPが、例えば、24Kg/
cm2以上になると、図3における上記ステップST1から
ステップST3に移り、ステップST5及びステップST6の
低下制御を行う一方、高圧冷媒圧力HPが、例えば、24
Kg/cm2未満になると、図4におけるステップST1から
ステップST11に移り、ステップST14及びステップST15の
増大制御を行うことになる。
That is, at the outside air temperature Ta, the air volume of the outdoor fan (26) is not controlled, and the high-pressure refrigerant pressure HP becomes, for example, 24 kg /
When the pressure is equal to or more than cm 2, the process proceeds from step ST1 to step ST3 in FIG. 3 to perform the lowering control in step ST5 and step ST6.
When it is less than Kg / cm 2, the process proceeds from step ST1 in FIG. 4 to step ST11, and the increase control in step ST14 and step ST15 is performed.

【0055】尚、本実施例では、外気温判別手段(74)は
設けられていない。
In this embodiment, the outside temperature determining means (74) is not provided.

【0056】従って、本実施例においても、室外ファン
(26)の風量を室外熱交温度Tcに対応した低風量にするの
で、高圧冷媒圧力HPの上昇を防止することができると同
時に、室外熱交換器(23)の凍結を防止することができる
と共に、圧縮機(21)の湿り運転を防止することができ
る。この結果、該圧縮機(21)の過負荷を防止し、信頼性
の向上を図ることができる。
Therefore, also in this embodiment, the outdoor fan
Since the air volume of (26) is set to a low air volume corresponding to the outdoor heat exchange temperature Tc, it is possible to prevent an increase in the high-pressure refrigerant pressure HP and, at the same time, to prevent the outdoor heat exchanger (23) from freezing. At the same time, the wet operation of the compressor (21) can be prevented. As a result, overload of the compressor (21) can be prevented, and reliability can be improved.

【0057】図5は、請求項3に係る発明の実施例を示
す制御フローであって、図2におけるコントローラ(7)
に1点鎖線で示すように、圧力判別手段(73)と外気温判
別手段(74)と風量制御手段(75)に代えて他の風量制御手
段(76)と風量保持手段(77)とを設けたものである。
FIG. 5 is a control flow showing an embodiment of the third aspect of the present invention.
As shown by a one-dot chain line, another air flow control means (76) and air flow holding means (77) are provided in place of the pressure determination means (73), the outside air temperature determination means (74), and the air flow control means (75). It is provided.

【0058】該風量制御手段(76)は、高圧制御圧力スイ
ッチ(HPS2)の圧力信号をサンプリングタイム毎に取込
み、検出圧力が設定圧力(例えば、24Kg/cm2)以上
であると室外ファン(26)の風量を低下させる低下信号
を、検出圧力が設定圧力(例えば、24Kg/cm2)より
低いと室外ファン(26)の風量を増大させる増大信号をそ
れぞれ風量調節手段(72)に出力する。
The air volume control means (76) takes in the pressure signal of the high pressure control pressure switch (HPS2) every sampling time, and when the detected pressure is higher than the set pressure (for example, 24 kg / cm 2 ), the outdoor fan (26). If the detected pressure is lower than the set pressure (for example, 24 kg / cm 2 ), an increase signal for increasing the air volume of the outdoor fan (26) is output to the air volume adjusting means (72).

【0059】また、上記風量制御手段(76)は、該風量制
御手段(76)が低下信号及び増大信号を出力すると、該低
下信号及び増大信号に対応した待機時間が経過するま
で、上記風量制御手段(76)の出力を停止させる。
When the air volume control means (76) outputs the decrease signal and the increase signal, the air volume control means (76) controls the air volume control until the standby time corresponding to the decrease signal and the increase signal elapses. The output of the means (76) is stopped.

【0060】次に、上記暖房運転サイクル時における室
外ファン(26)の風量制御について、図5に基づき説明す
る。
Next, control of the air volume of the outdoor fan (26) during the heating operation cycle will be described with reference to FIG .

【0061】先ず、室外ファン(26)の制御がスタートす
ると、ステップST21において、風量制御手段(76)は、高
圧制御圧力スイッチ(HPS2)のオン信号がされたか否かを
判別し、オン信号が出力されと、判定がイエスとなって
ステップST22に移り、室外ファン(26)の風量が現在低風
量のLか否かを判別する。この室外ファン(26)の風量が
低風量のLでない場合には、ステップST23に移り、室外
ファン(26)の風量が現在中風量のHか否かを判別する。
この室外ファン(26)の風量が中風量のHでない場合に
は、現在最高風量のHHであるので、ステップST24に移
り、風量制御手段(76)が低下信号を出力し、風量調節手
段(72)が室外ファン(26)の風量を中風量のHに設定す
る。その後、上記ステップST24からステップST25に移
り、風量保持手段(77)が風量制御手段(76)の出力を10
分間停止し、風量を中風量のHに保持してリターンする
ことになる。
First, when the control of the outdoor fan (26) is started, in step ST21, the air volume control means (76) determines whether or not the ON signal of the high pressure control pressure switch (HPS2) has been issued. When the output is made, the determination becomes yes and the process moves to step ST22, where it is determined whether or not the air volume of the outdoor fan (26) is the current low air volume L. If the air volume of the outdoor fan (26) is not L with a low air volume, the process proceeds to step ST23, and it is determined whether or not the air volume of the outdoor fan (26) is currently at a medium air volume H.
If the air volume of the outdoor fan (26) is not H at the medium air volume, it is currently the highest air volume HH, so the flow proceeds to step ST24, where the air volume control means (76) outputs a decrease signal, and the air volume adjustment means (72). ) Sets the air volume of the outdoor fan (26) to H, which is a medium air volume. Thereafter, the process proceeds from step ST24 to step ST25, where the air volume holding means (77) outputs the output of the air volume control
After stopping for a minute, the air flow is held at the medium air flow H and the routine returns.

【0062】また、上記ステップST23において、室外フ
ァン(26)の風量が中風量のHである場合には、判定がイ
エスとなってステップST26に移り、風量制御手段(76)が
低下信号を出力し、風量調節手段(72)が室外ファン(26)
の風量を低風量のLに設定する。その後、上記ステップ
ST26からステップST27に移り、風量保持手段(77)が風量
制御手段(76)の出力を7分間停止し、風量を低風量のL
に保持してリターンすることになる。
In step ST23, when the air volume of the outdoor fan (26) is the middle air volume H, the determination is YES and the process proceeds to step ST26, where the air volume control means (76) outputs a decrease signal. And the air volume adjusting means (72) is an outdoor fan (26)
Is set to L, which is a low air flow. Then the above steps
Moving from ST26 to step ST27, the air volume holding means (77) stops the output of the air volume control means (76) for 7 minutes, and reduces the air volume to a low air volume L.
And return.

【0063】また、上記ステップST22において、室外フ
ァン(26)の風量が低風量のLである場合には、判定がイ
エスとなってステップST28に移り、風量制御手段(76)が
低下信号を出力し、風量調節手段(72)が室外ファン(26)
の風量を停止状態のOFFに設定する。その後、上記ス
テップST28からステップST29に移り、風量保持手段(77)
が風量制御手段(76)の出力を5分間停止し、室外ファン
(26)を停止に保持してリターンすることになる。
If it is determined in step ST22 that the air flow rate of the outdoor fan (26) is L, which is a low air flow rate, the determination is YES and the process proceeds to step ST28, where the air flow rate control means (76) outputs a decrease signal. And the air volume adjusting means (72) is an outdoor fan (26)
Is set to OFF in the stopped state. Thereafter, the process proceeds from step ST28 to step ST29, where the air volume holding unit (77)
Stopped the output of the air volume control means (76) for 5 minutes,
(26) is stopped and the routine returns.

【0064】つまり、室外ファン(26)の風量を低下する
毎にその変化状態を所定時間保持させることになる。
That is, every time the air flow rate of the outdoor fan (26) is reduced, the change state is maintained for a predetermined time.

【0065】一方、上記ステップST21において、上記風
量制御手段(76)は、高圧制御圧力スイッチ(HPS2)がオン
信号を出力しないと、判定がノーとなってステップST30
に移り、室外ファン(26)の風量が現在停止状態のOFF
か否かを判別する。この室外ファン(26)の風量が停止状
態のOFFでない場合には、ステップST31に移り、室外
ファン(26)の風量が現在低風量のLか否かを判別する。
この室外ファン(26)の風量が低風量のLでない場合に
は、ステップST32に移り、室外ファン(26)の風量が現在
中風量のHか否かを判別する。この室外ファン(26)の風
量が中風量のHでない場合には、現在最高風量のHHで
あるので、そのまゝリターンすることになる。
On the other hand, in step ST21, if the high-pressure control pressure switch (HPS2) does not output an ON signal, the air volume control means (76) makes a negative determination and returns to step ST30.
And the air flow of the outdoor fan (26) is OFF
It is determined whether or not. If the air flow of the outdoor fan (26) is not OFF in the stopped state, the process proceeds to step ST31, and it is determined whether or not the air flow of the outdoor fan (26) is currently low L.
If the air volume of the outdoor fan (26) is not L with a low air volume, the process proceeds to step ST32, and it is determined whether or not the air volume of the outdoor fan (26) is currently at a medium air volume H. If the air volume of the outdoor fan (26) is not H, which is the middle air volume, since the air volume is HH, which is currently the maximum air volume, the flow returns.

【0066】また、上記ステップST32において、室外フ
ァン(26)の風量が中風量のHである場合には、判定がイ
エスとなってステップST33に移り、風量制御手段(76)が
増大信号を出力し、風量調節手段(72)が室外ファン(26)
の風量を最高風量のHHに設定する。その後、上記ステ
ップST33からステップST34に移り、風量保持手段(77)が
風量制御手段(76)の出力を10分間停止し、風量を最高
風量のHHに保持してリターンすることになる。
In step ST32, when the air volume of the outdoor fan (26) is the middle air volume H, the determination is YES and the process proceeds to step ST33, where the air volume control means (76) outputs an increase signal. And the air volume adjusting means (72) is an outdoor fan (26)
Is set to the maximum air flow HH. Thereafter, the process proceeds from step ST33 to step ST34, in which the air volume holding means (77) stops the output of the air volume control means (76) for 10 minutes, holds the air volume at the maximum air volume HH, and returns.

【0067】また、上記ステップST31において、室外フ
ァン(26)の風量が低風量のLである場合には、判定がイ
エスとなってステップST35に移り、風量制御手段(76)が
増大信号を出力し、風量調節手段(72)が室外ファン(26)
の風量を中風量のHに設定する。その後、上記ステップ
ST35からステップST36に移り、風量保持手段(77)が風量
制御手段(76)の出力を7分間停止し、室外ファン(26)を
中風量のHに保持してリターンすることになる。
If the air flow rate of the outdoor fan (26) is low L in step ST31, the determination is yes and the process proceeds to step ST35, where the air flow rate control means (76) outputs an increase signal. And the air volume adjusting means (72) is an outdoor fan (26)
Is set to H of the middle air volume. Then the above steps
The process moves from ST35 to step ST36, where the air volume holding means (77) stops the output of the air volume control means (76) for 7 minutes, and returns with the outdoor fan (26) held at the medium air volume H.

【0068】また、上記ステップST30において、室外フ
ァン(26)の風量が停止状態のOFFである場合には、判
定がイエスとなってステップST37に移り、風量制御手段
(76)が増大信号を出力し、風量調節手段(72)が室外ファ
ン(26)の風量を低風量のLに設定する。その後、上記ス
テップST37からステップST38に移り、風量保持手段(77)
が風量制御手段(76)の出力を5分間停止し、室外ファン
(26)を低風量のLに保持してリターンすることになる。
If the air flow of the outdoor fan (26) is OFF in the stopped state in step ST30, the determination is yes and the process moves to step ST37, where the air flow control means
(76) outputs an increase signal, and the air volume adjusting means (72) sets the air volume of the outdoor fan (26) to L at a low air volume. Thereafter, the process proceeds from step ST37 to step ST38, where the air volume holding unit (77)
Stopped the output of the air volume control means (76) for 5 minutes,
(26) is held at the low airflow L, and the process returns.

【0069】つまり、室外ファン(26)の風量を増大する
毎にその変化状態を所定時間保持させることになる。
That is, each time the air flow rate of the outdoor fan (26) is increased, the change state is maintained for a predetermined time.

【0070】従って、本実施例によれば、室外ファン(2
6)の風量が変化すると、所定時間風量が変化しないよう
にしたので、風量が急激に低下しないので、低圧冷媒圧
力が低下し過ぎることを防止することができる。更に、
風量変化のハンチングを防止することができることか
ら、快適性の向上を図ることができると共に、圧縮機(2
1)の負荷変動を抑制することができ、信頼性の向上を図
ることができる。
Therefore, according to the present embodiment, the outdoor fan (2
When the air volume changes in 6), the air volume does not change for a predetermined period of time, so that the air volume does not decrease rapidly, so that the low-pressure refrigerant pressure can be prevented from excessively lowering. Furthermore,
Since it is possible to prevent hunting of the change in air volume, it is possible to improve the comfort and improve the compressor (2
The load fluctuation of 1) can be suppressed, and the reliability can be improved.

【0071】尚、上記実施例おいて、高圧冷媒圧力HPを
高圧制御圧力スイッチ(HPS2)で検出するようにしたが、
室内熱交センサ(The)が検出する暖房運転サイクル時の
凝縮温度Te(室内熱交温度)を用いてもよい。
In the above embodiment, the high-pressure refrigerant pressure HP is detected by the high-pressure control pressure switch (HPS2).
The condensing temperature Te (indoor heat exchange temperature) during the heating operation cycle detected by the indoor heat exchange sensor (The) may be used.

【0072】また、室外熱交温度Tcは、室外熱交センサ
(Thc)に代えて圧力センサを用いて検出するようにして
もよい。
The outdoor heat exchange temperature Tc is determined by an outdoor heat exchange sensor.
The detection may be performed using a pressure sensor instead of (Thc).

【0073】また、上記室外ファン(26)の風量段数は、
実施例に限られないことは勿論である。
The number of air flow stages of the outdoor fan (26) is as follows:
Needless to say, the present invention is not limited to the embodiment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】冷媒循環回路を示す冷媒配管系統図である。FIG. 2 is a refrigerant piping system diagram showing a refrigerant circulation circuit.

【図3】高圧時の室外ファンの風量制御を示す制御フロ
ー図である。
FIG. 3 is a control flowchart showing air volume control of an outdoor fan at high pressure.

【図4】低圧時の室外ファンの風量制御を示す制御フロ
ー図である。
FIG. 4 is a control flowchart showing air volume control of an outdoor fan at low pressure.

【図5】他の室外ファンの風量制御を示す制御フロー図
である。
FIG. 5 is a control flowchart showing air volume control of another outdoor fan.

【符号の説明】[Explanation of symbols]

1 冷媒循環回路 4 冷媒調節器 21 圧縮機 23 室外熱交換器(熱源側熱交換器) 25 電動膨脹弁 26 室外ファン(熱源側ファン) 31 室内熱交換器(利用側熱交換器) 72 風量調節手段 73 圧力判別手段 74 外気温判別手段 75,76 風量制御手段 77 風量保持手段 Thc 室外熱交センサ Tha 外気温センサ HPS2 高圧制御圧力スイッチ 1 Refrigerant circuit 4 Refrigerant controller 21 Compressor 23 Outdoor heat exchanger (heat source side heat exchanger) 25 Electric expansion valve 26 Outdoor fan (heat source side fan) 31 Indoor heat exchanger (use side heat exchanger) 72 Air volume control Means 73 Pressure discriminating means 74 Outside air temperature discriminating means 75,76 Air flow control means 77 Air flow holding means Thc Outdoor heat exchange sensor Tha Outside air temperature sensor HPS2 High pressure control pressure switch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 隅田 哲也 大阪府堺市金岡町1304番地 ダイキン工 業株式会社 堺製作所 金岡工場内 (56)参考文献 特開 昭57−92641(JP,A) 特開 昭61−38344(JP,A) 実開 平1−70046(JP,U) 実開 平4−18264(JP,U) (58)調査した分野(Int.Cl.7,DB名) F24F 11/02 102 F25B 1/00 381 F25B 1/00 383 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuya Sumida 1304 Kanaokacho, Sakai-shi, Osaka Daikin Industries, Ltd. Sakai Works Kanaoka Factory (56) References JP-A-57-92641 (JP, A) Sho 61-38344 (JP, A) Japanese Utility Model 1-70046 (JP, U) Japanese Utility Model 4-18264 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F24F 11 / 02 102 F25B 1/00 381 F25B 1/00 383

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機(21)と、熱源側ファン(26)を備え
た熱源側熱交換器(23)と、膨脹機構(25)と、利用側熱交
換器(31)とが順に接続されて暖房運転可能な冷媒循環回
路(1)と、 上記熱源側ファン(26)の風量を複数段に切換えて該風量
を調節する風量調節手段(72)と、 上記熱源側熱交換器(23)における蒸発圧力相当飽和温度
を検出する蒸発温度検出手段(Thc)と、 上記冷媒循環回路(1)における凝縮温度相当飽和圧力を
検出する高圧検出手段(HPS2)と、 該高圧検出手段(HPS2)の圧力信号を取込み、検出圧力が
設定圧力以上であると高圧信号を、検出圧力が設定圧力
より低いと低圧信号をそれぞれ所定時間毎に出力する圧
力判別手段(73)と、 上記蒸発温度検出手段(Thc)の温度信号を取込み、圧力
判別手段(73)が高圧信号を出力する毎に、蒸発圧力相当
飽和温度に対応した低風量になるように熱源側ファン(2
6)の風量を順次低下させる低下信号を上記風量調節手段
(72)に出力すると共に、圧力判別手段(73)が低圧信号を
出力する毎に、蒸発圧力相当飽和温度に対応した高風量
になるように熱源側ファン(26)の風量を順次増大させる
増大信号を上記風量調節手段(72)に出力する風量制御手
段(75)とを備えていることを特徴とする空気調和装置。
1. A compressor (21), a heat source side heat exchanger (23) having a heat source side fan (26), an expansion mechanism (25), and a use side heat exchanger (31) are connected in order. A refrigerant circulation circuit (1) capable of performing a heating operation, an air volume adjusting means (72) for adjusting the air volume by switching the air volume of the heat source side fan (26) to a plurality of stages, and the heat source side heat exchanger (23). Evaporating temperature detecting means (Thc) for detecting an evaporating pressure equivalent saturation temperature in the refrigerant circuit (1), a high pressure detecting means (HPS2) for detecting a condensing temperature equivalent saturated pressure in the refrigerant circuit (1), and the high pressure detecting means (HPS2). Pressure discriminating means (73) for outputting a high-pressure signal when the detected pressure is equal to or higher than the set pressure, and outputting a low-pressure signal when the detected pressure is lower than the set pressure at predetermined time intervals, and the evaporating temperature detecting means. (Thc) temperature signal, and each time the pressure discriminating means (73) outputs a high pressure signal, it corresponds to the evaporating pressure equivalent saturation temperature. So that the low air volume heat source-side fan (2
The lowering signal for sequentially reducing the air volume of 6) is sent to the air volume adjusting means.
(72), and each time the pressure discriminating means (73) outputs a low-pressure signal, the air volume of the heat source side fan (26) is sequentially increased so that the air volume becomes a high air volume corresponding to the evaporating pressure equivalent saturation temperature. An air conditioner comprising an air volume control means (75) for outputting a signal to the air volume adjustment means (72).
【請求項2】 圧縮機(21)と、熱源側ファン(26)を備え
た熱源側熱交換器(23)と、膨脹機構(25)と、利用側熱交
換器(31)とが順に接続されて暖房運転可能な冷媒循環回
路(1)と、 上記熱源側ファン(26)の風量を複数段に切換えて該風量
を調節する風量調節手段(72)と、 上記熱源側熱交換器(23)における蒸発圧力相当飽和温度
を検出する蒸発温度検出手段(Thc)と、 上記冷媒循環回路(1)における凝縮温度相当飽和圧力を
検出する高圧検出手段(HPS2)と、 外気温度を検出する外気温検出手段(Tha)と、 上記高圧検出手段(HPS2)の圧力信号を取込み、検出圧力
が設定圧力以上であると高圧信号を、検出圧力が設定圧
力より低いと低圧信号をそれぞれ所定時間毎に出力する
圧力判別手段(73)と、 上記外気温検出手段(Tha)の温度信号を取込み、検出外
気温度が設定温度以上であると高温信号を、検出外気温
度が設定温度より低いと低温信号をそれぞれ所定時間毎
に出力する外気温判別手段(74)と、 上記蒸発温度検出手段(Thc)の温度信号を取込み、圧力
判別手段(73)が高圧信号を出力する毎に、外気温判別手
段(74)の高温信号及び低温信号に基づく蒸発圧力相当飽
和温度に対応した低風量になるように熱源側ファン(26)
の風量を順次低下させる低下信号を上記風量調節手段(7
2)に出力すると共に、圧力判別手段(73)が低圧信号を出
力する毎に、外気温判別手段(74)の高温信号及び低温信
号に基づく蒸発圧力相当飽和温度に対応した高風量にな
るように熱源側ファン(26)の風量を順次増大させる増大
信号を上記風量調節手段(72)に出力する風量制御手段(7
5)とを備えていることを特徴とする空気調和装置。
2. A compressor (21), a heat source side heat exchanger (23) having a heat source side fan (26), an expansion mechanism (25), and a use side heat exchanger (31) are connected in order. A refrigerant circulation circuit (1) capable of performing a heating operation, an air volume adjusting means (72) for adjusting the air volume by switching the air volume of the heat source side fan (26) to a plurality of stages, and the heat source side heat exchanger (23). ), High-pressure detection means (HPS2) for detecting the saturation pressure corresponding to the condensation temperature in the refrigerant circuit (1), and outside air temperature for detecting the outside air temperature. Takes in pressure signals from the detection means (Tha) and the high pressure detection means (HPS2), and outputs a high pressure signal when the detected pressure is higher than the set pressure, and outputs a low pressure signal when the detected pressure is lower than the set pressure at predetermined time intervals. Temperature detection means (73) and the temperature signal of the outside air temperature detection means (Tha), and the detected outside air temperature is equal to or higher than the set temperature. Then, when the detected outside air temperature is lower than the set temperature, a low-temperature signal is output at predetermined time intervals, and the temperature signal of the evaporation temperature detection means (Thc) is taken in. Each time the means (73) outputs a high-pressure signal, the heat-source-side fan (26) so as to have a low air flow corresponding to the evaporating pressure-equivalent saturation temperature based on the high-temperature signal and the low-temperature signal of the outside air temperature determination means (74)
Of the air flow rate adjusting means (7
2), and each time the pressure discriminating means (73) outputs a low pressure signal, a high air volume corresponding to the evaporating pressure equivalent saturation temperature based on the high temperature signal and the low temperature signal of the outside air temperature discriminating means (74) is obtained. The air volume control means (7) outputs to the air volume adjustment means (72) an increase signal for sequentially increasing the air volume of the heat source side fan (26).
5) An air conditioner comprising:
【請求項3】 圧縮機(21)と、熱源側ファン(26)を備え
た熱源側熱交換器(23)と、膨脹機構(25)と、利用側熱交
換器(31)とが順に接続されて暖房運転可能な冷媒循環回
路(1)と、 上記熱源側ファン(26)の風量を複数段に切換えて該風量
を調節する風量調節手段(72)と、 上記冷媒循環回路(1)における凝縮温度相当飽和圧力を
検出する高圧検出手段(HPS2)と、 該高圧検出手段(HPS2)の圧力信号をサンプリングタイム
毎に取込み、検出圧力が設定圧力以上であると熱源側フ
ァン(26)の風量を低下させる低下信号を、検出圧力が設
定圧力より低いと熱源側ファン(26)の風量を増大させる
増大信号をそれぞれ上記風量調節手段(72)に出力する風
量制御手段(76)と、 該風量制御手段(76)が低下信号及び増大信号を出力する
と、該低下信号及び増大信号に対応した待機時間が経過
するまで、上記風量制御手段(76)の出力を停止させる風
量保持手段(77)とを備えていることを特徴とする空気調
和装置。
3. A compressor (21), a heat source side heat exchanger (23) having a heat source side fan (26), an expansion mechanism (25), and a use side heat exchanger (31) are connected in order. A refrigerant circulation circuit (1) capable of performing a heating operation, an air volume adjusting means (72) for adjusting the air volume by switching the air volume of the heat source side fan (26) to a plurality of stages, and in the refrigerant circulation circuit (1). High pressure detection means (HPS2) for detecting the saturation pressure equivalent to the condensing temperature, and the pressure signal of the high pressure detection means (HPS2) are taken in at each sampling time, and when the detected pressure is higher than the set pressure, the air volume of the heat source side fan (26) Air flow control means (76) for outputting a decrease signal for reducing the air flow of the heat source side fan (26) to the air flow amount adjusting means (72) when the detected pressure is lower than the set pressure. When the control means (76) outputs the decrease signal and the increase signal, the waiting time corresponding to the decrease signal and the increase signal elapses. Until the air conditioning apparatus characterized by and a air volume holding means for stopping the output of the air volume control means (76) (77).
JP06505393A 1993-03-24 1993-03-24 Air conditioner Expired - Fee Related JP3232755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06505393A JP3232755B2 (en) 1993-03-24 1993-03-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06505393A JP3232755B2 (en) 1993-03-24 1993-03-24 Air conditioner

Publications (2)

Publication Number Publication Date
JPH06272942A JPH06272942A (en) 1994-09-27
JP3232755B2 true JP3232755B2 (en) 2001-11-26

Family

ID=13275835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06505393A Expired - Fee Related JP3232755B2 (en) 1993-03-24 1993-03-24 Air conditioner

Country Status (1)

Country Link
JP (1) JP3232755B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387225B1 (en) 1995-09-19 2002-05-14 Seiko Epson Corporation Thin piezoelectric film element, process for the preparation thereof and ink jet recording head using thin piezoelectric film element

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6530236B2 (en) * 2001-04-20 2003-03-11 York International Corporation Method and apparatus for controlling the removal of heat from the condenser in a refrigeration system
JP2008039289A (en) * 2006-08-07 2008-02-21 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP5524571B2 (en) * 2009-10-28 2014-06-18 株式会社コロナ Heat pump equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387225B1 (en) 1995-09-19 2002-05-14 Seiko Epson Corporation Thin piezoelectric film element, process for the preparation thereof and ink jet recording head using thin piezoelectric film element

Also Published As

Publication number Publication date
JPH06272942A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
US5771704A (en) Operation control apparatus for air conditioner
JP2003240391A (en) Air conditioner
JP3208923B2 (en) Operation control device for air conditioner
JP2508860B2 (en) Operation control device for air conditioner
JP3232755B2 (en) Air conditioner
JP2017015318A (en) Air conditioner
JP3334222B2 (en) Air conditioner
JP3097323B2 (en) Operation control device for air conditioner
JPH043865A (en) Freezing cycle device
JP2684845B2 (en) Operation control device for air conditioner
JP3198859B2 (en) Multi-type air conditioner
JP3149625B2 (en) Operation control device for air conditioner
JP3353367B2 (en) Air conditioner
JP3189492B2 (en) Operation control device for air conditioner
JP2842020B2 (en) Operation control device for air conditioner
JP2701627B2 (en) Operation control device for air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
JP2523534B2 (en) Air conditioner
JP2503699B2 (en) Compressor discharge pipe temperature control device
JPH10132406A (en) Refrigerating system
JPH0772647B2 (en) Pressure equalizer for air conditioner
JP2002228284A (en) Refrigerating machine
JP2768148B2 (en) Operation control device for air conditioner
JPH05256496A (en) Operation controller for air conditioner
JPH08128747A (en) Controller for air conditioner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees