JPH10132406A - Refrigerating system - Google Patents
Refrigerating systemInfo
- Publication number
- JPH10132406A JPH10132406A JP28991696A JP28991696A JPH10132406A JP H10132406 A JPH10132406 A JP H10132406A JP 28991696 A JP28991696 A JP 28991696A JP 28991696 A JP28991696 A JP 28991696A JP H10132406 A JPH10132406 A JP H10132406A
- Authority
- JP
- Japan
- Prior art keywords
- cycle
- heating
- refrigerant
- stop processing
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷凍装置に関し、
特に、リトライ制御対策に係るものである。[0001] The present invention relates to a refrigeration apparatus,
In particular, it relates to retry control measures.
【0002】[0002]
【従来の技術】従来より、冷凍装置としての空気調和装
置には、特開平6−11207号公報に開示されている
ように、圧縮機と四路切換弁と室外熱交換器と室外膨張
弁と室内膨張弁と室内熱交換器とが順に接続されて構成
された主冷媒回路を備えているものがある。この主冷媒
回路には、圧縮機の吐出冷媒の高圧圧力(凝縮圧力)を
検出する高圧センサ及び吐出冷媒の吐出管温度を検出す
る吐出管温度センサが設けられている。2. Description of the Related Art Conventionally, an air conditioner as a refrigerating apparatus has a compressor, a four-way switching valve, an outdoor heat exchanger, an outdoor expansion valve, as disclosed in JP-A-6-11207. Some include a main refrigerant circuit in which an indoor expansion valve and an indoor heat exchanger are sequentially connected. The main refrigerant circuit is provided with a high-pressure sensor for detecting a high-pressure pressure (condensing pressure) of the refrigerant discharged from the compressor and a discharge-pipe temperature sensor for detecting the discharge pipe temperature of the discharged refrigerant.
【0003】上記空気調和装置は、高圧センサが検出す
る高圧圧力が所定値以上になると、圧縮機の運転を一旦
停止し、所定時間待機させて運転を再開させるリトライ
制御を行うようにしている。また、吐出管温度が異常に
上昇した場合も圧縮機の運転を一旦停止し、所定時間待
機させて運転を再開させるリトライ制御を行うようにし
ている。In the above air conditioner, when the high pressure detected by the high pressure sensor becomes equal to or higher than a predetermined value, retry control is performed to temporarily stop the operation of the compressor, wait for a predetermined time, and restart the operation. Also, when the discharge pipe temperature rises abnormally, retry control is performed to temporarily stop the operation of the compressor, wait a predetermined time and restart the operation.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上述し
た空気調和装置において、暖房運転時に単に暖房サイク
ルままリトライ制御を実行させるのみであるので、高圧
圧力が低下しないまま、又は、吐出管温度が低下しない
まま再起動を行うという問題があった。However, in the above-described air conditioner, the retry control is only executed in the heating cycle during the heating operation, so that the high pressure does not decrease or the discharge pipe temperature does not decrease. There was a problem of restarting as is.
【0005】つまり、暖房運転時において、圧縮機の容
量制御の遅れ等により高圧圧力が過上昇した場合、四路
切換弁から室内熱交換器までの吐出ラインの冷媒配管が
高温に成っているので、再起動時には、高圧圧力が上昇
し易い状態となっている。特に、圧縮機の吐出側と吸込
側とを均圧する均圧ラインを備えていない主冷媒回路に
おいては、吐出ラインの冷媒圧力が比較的高い状態で圧
縮機を再起動することになる。この結果、リトライ時に
再び高圧圧力が上昇し、最終的に高圧異常の異常処理を
実行することになる。In other words, during the heating operation, if the high pressure is excessively increased due to a delay in control of the capacity of the compressor, etc., the refrigerant pipe in the discharge line from the four-way switching valve to the indoor heat exchanger is at a high temperature. At the time of restart, the high pressure is easily increased. In particular, in a main refrigerant circuit having no equalizing line for equalizing the discharge side and the suction side of the compressor, the compressor is restarted in a state where the refrigerant pressure in the discharge line is relatively high. As a result, the high pressure increases again at the time of retry, and finally, the abnormal processing of the high pressure abnormality is executed.
【0006】また、吐出管温度の過上昇の原因として
は、急激な冷媒循環量の変化に対して電動膨張弁の制
御が間に合わない場合、圧縮機の吸込圧力と吐出圧力
との差が大きい場合(圧縮比が高い場合)、冷媒量が
少ない場合(ガス欠運転の場合)が挙げられる。[0006] The cause of the excessive rise in the discharge pipe temperature is that the control of the electric expansion valve cannot keep up with a sudden change in the amount of refrigerant circulation, or that the difference between the suction pressure and the discharge pressure of the compressor is large. (When the compression ratio is high) and when the amount of refrigerant is small (in the case of running out of gas).
【0007】これらの何れの場合におても、圧縮機の吸
込圧力が非常に低い状態であると考えられる。特に、暖
房運転時は、高圧圧力はある程度の圧力状態(14kg/
cm2 )に保たれており、均圧ラインを備えていない主冷
媒回路においては、再起動時は圧縮比が高くなる傾向が
ある。この結果、リトライ時に再び吐出管温度が上昇
し、最終的に吐出管温度の異常となって異常処理を実行
することになる。[0007] In any of these cases, it is considered that the suction pressure of the compressor is very low. In particular, during the heating operation, the high pressure is maintained at a certain pressure (14 kg /
In the main refrigerant circuit, which is maintained at cm 2 ) and does not include the pressure equalizing line, the compression ratio tends to increase when restarting. As a result, at the time of retry, the discharge pipe temperature rises again, and finally the discharge pipe temperature becomes abnormal, and the abnormal processing is executed.
【0008】以上のことから、均圧ラインを備えていな
い主冷媒回路においては、高圧圧力及び吐出管温度のリ
トライ制御が円滑に行われず、快適な空調運転を行うこ
とができないという問題があった。As described above, in the main refrigerant circuit having no pressure equalizing line, there is a problem that the retry control of the high pressure and the discharge pipe temperature is not smoothly performed, and a comfortable air conditioning operation cannot be performed. .
【0009】本発明は、斯かる点に鑑みてなされたもの
で、高圧圧力等の過上昇によるリトライ制御を円滑に行
えるようにすることを目的とするものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to enable smooth retry control due to an excessive rise in high pressure or the like.
【0010】[0010]
−発明の概要− 本発明は、冷房サイクルと暖房サイクルとに冷媒循環の
可逆な主冷媒回路(18)において、暖房運転時に圧縮機
(1a,1b)の吐出側の高圧圧力等が過上昇すると、圧縮
機(1a,1b)の運転を一旦停止させる。その後、主冷媒
回路(18)を冷房サイクルに一旦切り換えて逆サイクル
運転を行った後、暖房サイクルに切り換えて通常の暖房
運転を再開させる。−Summary of the Invention− The present invention relates to a reversible main refrigerant circuit (18) for circulating a refrigerant between a cooling cycle and a heating cycle, when a high pressure or the like on the discharge side of the compressor (1a, 1b) excessively increases during a heating operation. Then, the operation of the compressors (1a, 1b) is temporarily stopped. Thereafter, the main refrigerant circuit (18) is temporarily switched to the cooling cycle to perform the reverse cycle operation, and then switched to the heating cycle to resume the normal heating operation.
【0011】−解決手段− 具体的に、図1に示すように、請求項1に係る発明が講
じた手段は、先ず、圧縮機(1a,1b)と熱源側熱交換器
(14)と膨張機構(EV-1,EV-2)と利用側熱交換器(3
0)とが順に接続されて冷房サイクルと暖房サイクルと
に冷媒循環の可逆な主冷媒回路(18)が設けられてい
る。上記圧縮機(1a,1b)における吐出側の冷媒状態を
検出する状態検出手段(SS)が設けられている。更に、
該状態検出手段(SS)が検出した冷媒状態が予め定めら
れた設定状態に達すると、圧縮機(1a,1b)の運転を停
止させる停止処理手段(41)が設けられている。加え
て、上記主冷媒回路(18)を暖房サイクルにした暖房運
転時に停止処理手段(41)の停止処理が終了すると、主
冷媒回路(18)を冷房サイクルに一旦切り換えて逆サイ
クル運転を行った後、暖房サイクルに切り換えて通常の
暖房運転を再開させる逆サイクル運転手段(42)が設け
られている。[Solution Means] Specifically, as shown in FIG. 1, the means adopted by the invention according to claim 1 includes a compressor (1a, 1b), a heat source side heat exchanger (14) and an expansion Mechanism (EV-1, EV-2) and user-side heat exchanger (3
0) are sequentially connected, and a reversible main refrigerant circuit (18) for circulating refrigerant is provided in the cooling cycle and the heating cycle. State detection means (SS) for detecting the state of the refrigerant on the discharge side of the compressor (1a, 1b) is provided. Furthermore,
Stop processing means (41) for stopping the operation of the compressors (1a, 1b) when the refrigerant state detected by the state detection means (SS) reaches a predetermined set state is provided. In addition, when the stop processing of the stop processing means (41) is completed during the heating operation in which the main refrigerant circuit (18) is set to the heating cycle, the main refrigerant circuit (18) is temporarily switched to the cooling cycle to perform the reverse cycle operation. Thereafter, a reverse cycle operation means (42) for switching to the heating cycle and restarting the normal heating operation is provided.
【0012】請求項2記載の発明が講じた手段は、上記
請求項1記載の発明において、予め設定された所定の運
転時間毎に主冷媒回路(18)を冷房サイクルにして油戻
し運転を実行する油戻し運転手段(43)が設けられてい
る。逆サイクル運転手段(42)は、停止処理手段(41)
の停止処理が終了した後の逆サイクル運転が油戻し運転
手段(43)に換って油戻し運転を兼用するように構成さ
れている。According to a second aspect of the present invention, in the first aspect of the present invention, the oil return operation is performed by setting the main refrigerant circuit (18) to a cooling cycle every predetermined operation time. Oil return operation means (43) is provided. The reverse cycle operation means (42) includes a stop processing means (41)
The reverse cycle operation after the end of the stop processing is replaced with the oil return operation means (43) and is also used as the oil return operation.
【0013】請求項3記載の発明が講じた手段は、上記
請求項1記載の発明において、主冷媒回路(18)は、圧
縮機(1a,1b)と吐出側と吸込側とを均圧する均圧ライ
ンを備えていない構成としている。According to a third aspect of the present invention, in the first aspect of the present invention, the main refrigerant circuit (18) is configured to equalize the compressor (1a, 1b), the discharge side and the suction side. It does not have a pressure line.
【0014】請求項4記載の発明が講じた手段は、上記
請求項1記載の発明において、状態検出手段(SS)が、
圧縮機(1a,1b)の吐出側の冷媒圧力又は冷媒温度を検
出する構成としている。According to a fourth aspect of the present invention, in the first aspect of the present invention, the state detecting means (SS) comprises:
The refrigerant pressure or the refrigerant temperature on the discharge side of the compressor (1a, 1b) is detected.
【0015】−作用− 上記の発明特定事項により、本発明では、先ず、状態検
出手段(SS)が空調運転時における圧縮機(1a,1b)の
吐出側の冷媒状態を検出し、具体的に、請求項4記載の
発明では、圧縮機(1a,1b)の吐出側の冷媒圧力である
高圧圧力、又は冷媒温度である吐出管温度を検出する。According to the present invention, first, the state detecting means (SS) detects the state of the refrigerant on the discharge side of the compressors (1a, 1b) during the air-conditioning operation. According to the fourth aspect of the present invention, the high pressure, which is the refrigerant pressure on the discharge side of the compressor (1a, 1b), or the discharge pipe temperature, which is the refrigerant temperature, is detected.
【0016】そして、主冷媒回路(18)を暖房サイクル
にした暖房運転時において、吐出管温度が所定値になっ
たか否か、又は、高圧圧力が所定値になったか否かを判
定する。この吐出管温度などが正常な場合、暖房運転を
継続する一方、吐出管温度が所定値に達した場合、又
は、高圧圧力が所定値に達した場合、停止処理手段(4
1)が、圧縮機(1a,1b)を一旦停止し、リトライ停止
の処理を実行する。その後、停止処理手段(41)は、圧
縮機(1a,1b)の運転を所定時間が経過するまで待機さ
せ、この再起動待機の処理が終了すると、逆サイクル運
転手段(42)が逆サイクル運転を行って通常の暖房運転
を再開させる。Then, during the heating operation in which the main refrigerant circuit (18) is in a heating cycle, it is determined whether or not the discharge pipe temperature has reached a predetermined value or whether or not the high pressure has reached a predetermined value. If the discharge pipe temperature is normal, the heating operation is continued, and if the discharge pipe temperature has reached a predetermined value or the high pressure has reached a predetermined value, the stop processing means (4
1) temporarily stops the compressors (1a, 1b) and executes a retry stop process. Thereafter, the stop processing means (41) causes the operation of the compressors (1a, 1b) to wait until a predetermined time elapses, and when the restart standby processing is completed, the reverse cycle operation means (42) starts the reverse cycle operation. To resume normal heating operation.
【0017】つまり、上記逆サイクル運転は、主冷媒回
路(18)が暖房サイクルで停止している状態から冷房サ
イクルにして圧縮機(1a,1b)を起動する。その際、室
内ファン(Fr)を停止すると共に、各電動膨張弁(EV-
1,EV-2)を全開として逆サイクル運転を行う。That is, in the above-described reverse cycle operation, the compressor (1a, 1b) is started by changing the state in which the main refrigerant circuit (18) is stopped in the heating cycle to the cooling cycle. At this time, the indoor fan (Fr) is stopped, and each electric expansion valve (EV-
Perform reverse cycle operation with 1, EV-2) fully open.
【0018】請求項2記載の発明では、上記逆サイクル
運転手段(42)の逆サイクル運転が、油戻し運転手段
(43)の油戻し運転を兼用し、主冷媒回路(18)の潤滑
油を圧縮機(1a,1b)に戻す。この油戻し運転手段(4
3)は、所定の時間間隔毎に油戻し運転を行うことにし
ているが、上記逆サイクル運転手段(42)が逆サイクル
運転を実行すると、この時間間隔をリセットし、逆サイ
クル運転手段(42)の逆サイクル運転から所定の時間間
隔が経過すると、油戻し運転を実行する。According to the second aspect of the invention, the reverse cycle operation of the reverse cycle operation means (42) also serves as the oil return operation of the oil return operation means (43), and the lubricating oil of the main refrigerant circuit (18) is used. Return to the compressor (1a, 1b). This oil return operation means (4
In 3), the oil return operation is performed at predetermined time intervals. However, when the reverse cycle operation means (42) executes the reverse cycle operation, the time interval is reset and the reverse cycle operation means (42) is reset. When a predetermined time interval elapses from the reverse cycle operation of the above), the oil return operation is executed.
【0019】[0019]
【発明の効果】したがって、本発明によれば、圧縮機
(1a,1b)の吐出側の冷媒圧力等が過上昇すると、主冷
媒回路(18)を暖房サイクルから冷房サイクルに切り換
えて逆サイクル運転を行った後、通常の暖房運転を再開
させるようにしたために、高温状態に加熱された暖房運
転の起動時の吐出側冷媒配管が、圧縮機(1a,1b)に吸
入される冷媒によって冷却され、高圧ガス冷媒と低圧ガ
ス冷媒とが混合する効果によって、暖房運転の起動時に
おける高圧側の冷媒圧力を確実に低下させることができ
る。そのため、暖房運転の起動時における吐出側の冷媒
温度を確実に低下させることができる。Therefore, according to the present invention, when the refrigerant pressure on the discharge side of the compressors (1a, 1b) rises excessively, the main refrigerant circuit (18) is switched from the heating cycle to the cooling cycle to perform the reverse cycle operation. After that, the normal heating operation is resumed, so that the discharge side refrigerant pipe at the time of starting the heating operation heated to a high temperature state is cooled by the refrigerant sucked into the compressors (1a, 1b). In addition, due to the effect of mixing the high-pressure gas refrigerant and the low-pressure gas refrigerant, the pressure of the high-pressure refrigerant at the time of starting the heating operation can be reliably reduced. Therefore, the temperature of the refrigerant on the discharge side at the time of starting the heating operation can be reliably reduced.
【0020】この結果、暖房運転時の再起動時における
冷媒凝縮圧力及び吐出側の冷媒温度の再度の過上昇を確
実に抑制することができるので、暖房運転の再開を円滑
に行うことができ、暖房の快適性の向上を図ることがで
きる。As a result, the refrigerant condensing pressure and the refrigerant temperature on the discharge side at the time of restarting during the heating operation can be reliably suppressed from excessively rising again, so that the heating operation can be restarted smoothly. Heating comfort can be improved.
【0021】また、請求項2記載の発明によれば、上記
逆サイクル運転が油戻し運転を兼用するようにしたため
に、本来の油戻し運転の間隔を延長することができるの
で、暖房能力の低減を抑制することができる。According to the second aspect of the present invention, since the reverse cycle operation also serves as the oil return operation, the interval of the original oil return operation can be extended, so that the heating capacity is reduced. Can be suppressed.
【0022】また、請求項3記載の発明によれば、圧縮
機(1a,1b)の吐出側と吸込側とを連通させる均圧ライ
ンを主冷媒回路(18)に設けていない場合であっても、
リトライ時の冷媒圧力等の過上昇を抑制することができ
るので、信頼性の向上を図ることができる。According to the third aspect of the present invention, the pressure equalizing line for communicating the discharge side and the suction side of the compressors (1a, 1b) is not provided in the main refrigerant circuit (18). Also,
Since an excessive rise in the refrigerant pressure or the like at the time of retry can be suppressed, reliability can be improved.
【0023】[0023]
【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0024】図2及び図3に示すように、本実施形態の
空気調和装置は、1台の室外ユニット(1A)に複数の室
内ユニット(1B)が接続された冷凍装置としてのマルチ
型空気調和装置を構成し、室外ユニット(1A)と複数の
室内ユニット(1B)とは液側及びガス側の連絡配管(L
L,LG)を介して接続されている。尚、図2は、室外ユ
ニット(1A)の冷媒配管系統を示す一方、上記各室内ユ
ニット(1B)は同一の構成であるので、図3は、1台の
室内ユニット(1B)の冷媒配管系統を示している。As shown in FIGS. 2 and 3, the air conditioner of the present embodiment is a multi-type air conditioner as a refrigerating device in which one outdoor unit (1A) is connected to a plurality of indoor units (1B). The outdoor unit (1A) and multiple indoor units (1B) are connected to the liquid side and gas side communication pipes (L
L, LG). FIG. 2 shows the refrigerant piping system of the outdoor unit (1A), whereas the indoor units (1B) have the same configuration. FIG. 3 shows the refrigerant piping system of one indoor unit (1B). Is shown.
【0025】上記室外ユニット(1A)は、圧縮機構(1
0)と、油分離器(2a,2b)と、四路切換弁(13)と、
熱源側熱交換器である室外熱交換器(14)と、膨張機構
である室外電動膨張弁(EV-1)と、レシーバ(15)と、
アキュムレータ(16)とを主要機器として備えている。
これら各機器(10〜16,EV-1)は冷媒配管(RP)によっ
て接続されて冷媒が流通する主冷媒回路(18)の室外側
を構成している。The outdoor unit (1A) includes a compression mechanism (1A).
0), an oil separator (2a, 2b), a four-way switching valve (13),
An outdoor heat exchanger (14) as a heat source side heat exchanger, an outdoor electric expansion valve (EV-1) as an expansion mechanism, and a receiver (15);
An accumulator (16) is provided as main equipment.
These devices (10 to 16, EV-1) are connected by a refrigerant pipe (RP) and constitute an outdoor side of a main refrigerant circuit (18) through which the refrigerant flows.
【0026】上記圧縮機構(10)は、第1圧縮機(1a)
と第2圧縮機(1b)とが互いに並列に接続されて構成さ
れている。該第1圧縮機(1a)は、駆動と停止の制御の
みが行われ、第2圧縮機(1b)は、吐出側と吸入側とが
キャピラリチューブ(CP)及び電磁弁(SV-1)を備えた
アンロード回路(11)によって接続され、この電磁弁
(SV-1)の開閉動作によって容量が変化する。The compression mechanism (10) includes a first compressor (1a)
And the second compressor (1b) are connected in parallel with each other. The first compressor (1a) controls only driving and stopping, and the second compressor (1b) uses a capillary tube (CP) and a solenoid valve (SV-1) on the discharge side and the suction side. The capacity is changed by the opening and closing operation of the solenoid valve (SV-1).
【0027】上記各圧縮機(1a,1b)の吸入側には、キ
ャピラリチューブ(CP,CP)を備えた油回収管(12a, 1
2b)により油分離器(2a,2b)が接続されると共に、各
圧縮機(1a,1b)は、均油管(1c)によって接続されて
いる。An oil recovery pipe (12a, 1b) provided with a capillary tube (CP, CP) is provided on the suction side of each of the compressors (1a, 1b).
The oil separators (2a, 2b) are connected by 2b), and the compressors (1a, 1b) are connected by oil equalizing pipes (1c).
【0028】上記四路切換弁(13)は、冷房運転時には
図中実線の如く切り換わり、暖房運転時には図中破線の
如く切り換わって冷媒循環動作を切り換える。上記室外
熱交換器(14)は、2台の室外ファン(Fo,Fo)が付設
され、冷媒と外気とを熱交換し、冷房運転時には凝縮器
として機能し、暖房運転時には蒸発器として機能する。
更に、上記室外電動膨張弁(EV-1)は、冷房運転時には
冷媒流量を調節し、暖房運転時には冷媒の減圧作用を行
う。The four-way switching valve (13) switches as shown by the solid line in the drawing during the cooling operation, and switches as shown by the broken line in the drawing during the heating operation to switch the refrigerant circulation operation. The outdoor heat exchanger (14) is provided with two outdoor fans (Fo, Fo), exchanges heat between the refrigerant and the outside air, functions as a condenser during a cooling operation, and functions as an evaporator during a heating operation. .
Further, the outdoor electric expansion valve (EV-1) adjusts the flow rate of the refrigerant during the cooling operation, and performs the pressure reducing operation of the refrigerant during the heating operation.
【0029】上記主冷媒回路(18)には、インジェクシ
ョン通路(LJ)及びバイパス通路(21)が設けられてい
る。該インジェクション通路(LJ)は、冷暖房運転時に
各圧縮機(1a,1b)に液冷媒を供給して該圧縮機(1a,
1b)の吐出冷媒を冷却する。該インジェクション通路
(LJ)は、一端が室外電動膨張弁(EV-1)とレシーバ
(15)との間に接続され、他端が各圧縮機(1a,1b)に
分岐接続され、この分岐部には、キャピラリチューブ
(CP,CP)と、吐出管温度の過上昇時に開く電磁弁(SV
-2,SV-2)とが設けられている。The main refrigerant circuit (18) is provided with an injection passage (LJ) and a bypass passage (21). The injection passage (LJ) supplies a liquid refrigerant to each of the compressors (1a, 1b) during the cooling / heating operation, and supplies the liquid refrigerant to the compressors (1a, 1a).
Cool the discharged refrigerant of 1b). One end of the injection passage (LJ) is connected between the outdoor electric expansion valve (EV-1) and the receiver (15), and the other end is branched and connected to each of the compressors (1a, 1b). Has a capillary tube (CP, CP) and a solenoid valve (SV
-2, SV-2).
【0030】上記バイパス通路(21)は、暖房過負荷制
御用の通路であり、一端は、油分離器(2a,2b)と四路
切換弁(13)との間に接続され、他端は、室外熱交換器
(14)と室外電動膨張弁(EV-1)の間に接続されてい
る。該バイパス路(21)は、補助熱交換器(22)と電磁
弁(SV-3)とキャピラリチューブ(CP)とが順次直列に
接続されて成り、四路切換弁(13)及び室外熱交換器
(14)に対して並列に接続されている。この電磁弁(SV
-3)は、冷房運転時には常時、暖房運転時には高圧圧力
の過上昇時に開き、吐出ガスの一部をバイパス通路(2
1)にバイパスさせ、吐出ガスの一部を補助熱交換器(2
2)で凝縮させる。The bypass passage (21) is a passage for heating overload control, and one end is connected between the oil separators (2a, 2b) and the four-way switching valve (13), and the other end is connected. , Is connected between the outdoor heat exchanger (14) and the outdoor electric expansion valve (EV-1). The bypass path (21) is composed of an auxiliary heat exchanger (22), an electromagnetic valve (SV-3), and a capillary tube (CP) connected in series in order, and includes a four-way switching valve (13) and an outdoor heat exchanger. It is connected in parallel to the vessel (14). This solenoid valve (SV
-3) is open at all times during the cooling operation, and opens when the high pressure is excessively increased during the heating operation.
A part of the discharge gas is bypassed to the auxiliary heat exchanger (2).
Condensate in 2).
【0031】尚、上記主冷媒回路(18)は、圧縮機(1
a,1b)の停止時などに圧縮機構(10)の吐出側と吸込
側とを連通する均圧ラインは備えられていない。The main refrigerant circuit (18) is provided with a compressor (1).
There is no pressure equalizing line that connects the discharge side and the suction side of the compression mechanism (10) when the a, 1b) is stopped.
【0032】一方、上記室内ユニット(1B)は、冷房運
転時には蒸発器、暖房運転時には凝縮器となる利用側熱
交換器である室内熱交換器(30)及びそのファン(Fr)
を備え、且つ該室内熱交換器(30)の液管側には、暖房
運転時に冷媒流量を調節し、冷房運転時に冷媒の減圧作
用を行う膨張機構である室内電動膨張弁(EV-2)が設け
られている。On the other hand, the indoor unit (1B) includes an indoor heat exchanger (30), which is a use side heat exchanger serving as an evaporator during a cooling operation and a condenser during a heating operation, and a fan (Fr) thereof.
And an indoor electric expansion valve (EV-2), which is an expansion mechanism for adjusting the flow rate of the refrigerant during the heating operation and reducing the pressure of the refrigerant during the cooling operation, on the liquid pipe side of the indoor heat exchanger (30). Is provided.
【0033】また、この空気調和装置には各種のセンサ
類が配置されている。(Th-1)は室内温度を検出する室
温センサ、(Th-2)及び(Th-3)はそれぞれ室内熱交換
器(30)の液側及びガス側配管における冷媒の温度を検
出する室内液温センサ及び室内ガス温センサ、(Th-4)
は各圧縮機(1a,1b)の吐出管温度を検出する吐出管セ
ンサ、(Th-5)は暖房運転時に室外熱交換器(14)の冷
媒温度から着霜状態を検出するデフロストセンサ、(Th
-6)は圧縮機(1a,1b)の吸入管温度を検出する吸入管
センサ、(Th-7)は室外熱交換器(14)の空気吸込口に
配置されて室外空気温度を検出する外気温センサであ
る。Further, various sensors are arranged in this air conditioner. (Th-1) is a room temperature sensor that detects the indoor temperature, and (Th-2) and (Th-3) are indoor liquids that detect the temperature of the refrigerant in the liquid and gas pipes of the indoor heat exchanger (30), respectively. Temperature sensor and indoor gas temperature sensor, (Th-4)
Is a discharge pipe sensor that detects the discharge pipe temperature of each compressor (1a, 1b), (Th-5) is a defrost sensor that detects the frost state from the refrigerant temperature of the outdoor heat exchanger (14) during the heating operation, Th
-6) is a suction pipe sensor that detects the suction pipe temperature of the compressors (1a, 1b), and (Th-7) is an outside heat sensor that is located at the air suction port of the outdoor heat exchanger (14) and detects the outdoor air temperature. It is a temperature sensor.
【0034】(SP-H)は圧縮機(1a,1b)の吐出管に配
設され、主冷媒回路(18)の高圧側圧力を検出する高圧
センサ、(SP-L)は圧縮機(1a,1b)の吸入ラインに配
設され、低圧側圧力を検出する低圧センサである。ま
た、(HP-S)は圧縮機(1a,1b)の保護用の高圧圧力開
閉器である。[0034] (SP-H) is disposed in the discharge pipe of the compressor (1a, 1b) and detects a high-pressure side pressure of the main refrigerant circuit (18). (SP-L) is a compressor (1a). , 1b) is a low-pressure sensor that is disposed in the suction line and detects the low-pressure side pressure. (HP-S) is a high-pressure switch for protecting the compressors (1a, 1b).
【0035】上記高圧センサ(SP-H)と吐出管センサ
(Th-4)とは、圧縮機(1a,1b)の吐出側の冷媒状態を
検出する状態検出手段(SS)を構成している。The high pressure sensor (SP-H) and the discharge pipe sensor (Th-4) constitute state detection means (SS) for detecting the state of the refrigerant on the discharge side of the compressors (1a, 1b). .
【0036】上記室温センサ(Th-1)等のセンサ類は、
コントロールユニット(40)に信号線で接続され、該コ
ントロールユニット(40)は各センサ類の信号を受けて
各電動弁(EV-1,EV-2)の開閉制御や圧縮機(1a,1b)
の容量制御などを行う。Sensors such as the above-mentioned room temperature sensor (Th-1)
The control unit (40) is connected by signal lines to the control unit (40). The control unit (40) receives signals from the sensors and controls the opening and closing of each motor-operated valve (EV-1, EV-2) and the compressor (1a, 1b).
Control of the capacity.
【0037】上記コントロールユニット(40)には、本
発明の特徴として、停止処理手段(41)と逆サイクル運
転手段(42)とが設けられている。The control unit (40) is provided with stop processing means (41) and reverse cycle operation means (42) as features of the present invention.
【0038】該停止処理手段(41)は、状態検出手段
(SS)が検出した冷媒状態が予め定められた設定状態に
達すると、圧縮機(1a,1b)の運転を停止させる。つま
り、停止処理手段(41)は、高圧センサ(SP-H)が検出
した高圧圧力が過上昇した場合、吐出管センサ(Th-4)
が検出した吐出管温度が過上昇した場合、圧縮機(1a,
1b)を所定時間が経過するまで一旦停止させる。The stop processing means (41) stops the operation of the compressors (1a, 1b) when the state of the refrigerant detected by the state detecting means (SS) reaches a predetermined set state. That is, when the high pressure detected by the high pressure sensor (SP-H) rises excessively, the stop processing means (41) outputs the discharge pipe sensor (Th-4)
If the detected discharge pipe temperature rises excessively, the compressor (1a,
1b) is temporarily stopped until a predetermined time has elapsed.
【0039】上記逆サイクル運転手段(42)は、暖房運
転時において、停止処理手段(41)の停止処理が終了す
ると、四路切換弁(13)を切り換えて主冷媒回路(18)
を冷房サイクルに一旦切り換えて逆サイクル運転を行っ
た後、暖房サイクルに切り換えて通常の暖房運転を再開
させてリトライさせる。The reverse cycle operating means (42) switches the four-way switching valve (13) to switch the main refrigerant circuit (18) when the stop processing of the stop processing means (41) is completed during the heating operation.
Is temporarily switched to the cooling cycle to perform the reverse cycle operation, and then switched to the heating cycle to resume the normal heating operation and retry.
【0040】また、上記コントロールユニット(40)に
は油戻し運転手段(43)が設けられ、該油戻し運転手段
(43)は、所定の運転時間毎、例えば、8時間毎の油戻
し運転間隔を計数する油戻しタイマがタイムアップする
と、主冷媒回路(18)を冷房サイクルにした逆サイクル
の油戻し運転を実行し、その際、室内ファン(Fr)を停
止すると共に、各電動膨張弁(EV-1,EV-2)を全開と
し、潤滑油を圧縮機構(10)に戻すようにしている。The control unit (40) is provided with an oil return operation means (43). The oil return operation means (43) is provided for every predetermined operation time, for example, every 8 hours. When the oil return timer that counts the time is up, an oil return operation of a reverse cycle in which the main refrigerant circuit (18) is set to the cooling cycle is executed, and at this time, the indoor fan (Fr) is stopped and each electric expansion valve ( EV-1 and EV-2) are fully opened to return the lubricating oil to the compression mechanism (10).
【0041】上記逆サイクル運転手段(42)は、油戻し
運転を兼用している。つまり、該逆サイクル運転手段
(42)は、暖房運転時に高圧圧力等が過上昇すると、圧
縮機(1a,1b)を一旦停止してリトライ制御するが、冷
房サイクルの逆サイクル運転を所定時間行い、例えば、
4分間の逆サイクル運転を行い、油戻し運転を兼用す
る。一方、上記油戻し運転手段(43)は、逆サイクル運
転手段(42)が逆サイクル運転を行うと、油戻しタイマ
をリセットし、該逆サイクル運転手段(42)の逆サイク
ル運転後に8時間が経過すると、油戻し運転を実行す
る。The reverse cycle operation means (42) also serves as an oil return operation. In other words, the reverse cycle operation means (42) temporarily stops the compressors (1a, 1b) and performs retry control when the high pressure or the like excessively increases during the heating operation, but performs the reverse cycle operation of the cooling cycle for a predetermined time. For example,
The reverse cycle operation for 4 minutes is performed, and the oil return operation is also used. On the other hand, when the reverse cycle operation means (42) performs reverse cycle operation, the oil return operation means (43) resets the oil return timer, and 8 hours after the reverse cycle operation of the reverse cycle operation means (42). After the elapse, the oil return operation is performed.
【0042】−空調運転動作− 次に、上記空気調和装置の運転動作について説明する。-Air-conditioning operation- Next, the operation of the air conditioner will be described.
【0043】冷房運転時は、四路切換弁(13)を図2実
線側に切り換えて主冷媒回路(18)を冷房サイクルにす
る。室外ユニット(1A)の電動膨張弁(EV-1)は全開状
態にし、室内電動膨張弁(EV-2)は室内熱交換器(30)
の出口側の冷媒過熱度を一定にするよう制御される。ま
た、バイパス通路(21)の電磁弁(SV-3)は常時開放す
る。During the cooling operation, the four-way switching valve (13) is switched to the solid line side in FIG. 2 to set the main refrigerant circuit (18) to the cooling cycle. The electric expansion valve (EV-1) of the outdoor unit (1A) is fully opened, and the indoor electric expansion valve (EV-2) is the indoor heat exchanger (30)
Is controlled so as to keep the degree of superheat of the refrigerant at the outlet side of. In addition, the solenoid valve (SV-3) in the bypass passage (21) is always opened.
【0044】この状態で、圧縮機構(10)で圧縮された
冷媒は、室外熱交換器(14)及び補助熱交換器(22)で
凝縮し、その後、液側連絡配管(LL)を経て室内ユニッ
ト(1B)に流れる。各室内ユニット(1B)では、液冷媒
が室内電動膨張弁(EV-2)で減圧し、室内熱交換器(3
0)で蒸発した後、ガス側連絡配管(LG)を経て室外ユ
ニット(1A)に戻り、圧縮機構(10)に吸入される。こ
の冷媒循環を繰り返し、液冷媒が室内熱交換器(30)に
おいて室内空気と熱交換して蒸発し、室内空気を冷却す
る。In this state, the refrigerant compressed by the compression mechanism (10) is condensed by the outdoor heat exchanger (14) and the auxiliary heat exchanger (22), and then passes through the liquid side communication pipe (LL) to the room. Flow to unit (1B). In each indoor unit (1B), the liquid refrigerant is depressurized by the indoor electric expansion valve (EV-2), and the indoor heat exchanger (3B)
After evaporating in 0), it returns to the outdoor unit (1A) via the gas side connection pipe (LG) and is sucked into the compression mechanism (10). This refrigerant circulation is repeated, and the liquid refrigerant exchanges heat with the indoor air in the indoor heat exchanger (30) to evaporate, thereby cooling the indoor air.
【0045】一方、暖房運転時には、四路切換弁(13)
を図2破線側に切り換えて主冷媒回路(18)を暖房サイ
クルにする。室内電動膨張弁(EV-2)は全開状態にし、
室外電動膨張弁(EV-1)は室外熱交換器(14)の出口側
の冷媒過熱度を一定にするよう制御される。On the other hand, during the heating operation, the four-way switching valve (13)
Is switched to the broken line side in FIG. 2 to make the main refrigerant circuit (18) a heating cycle. The indoor electric expansion valve (EV-2) is fully opened,
The outdoor electric expansion valve (EV-1) is controlled to keep the degree of superheat of the refrigerant at the outlet side of the outdoor heat exchanger (14) constant.
【0046】この状態で、圧縮機構(10)で圧縮された
冷媒は、ガス側連絡配管(LG)を経て室内ユニット(1
B)に流れ、室内熱交換器(30)で凝縮し、その後、液
側連絡配管(LL)を経て室外ユニット(1A)に戻る。こ
の室外ユニット(1A)において、液冷媒は、室外電動膨
張弁(EV-1)で減圧し、室外熱交換器(14)で蒸発した
後、圧縮機構(10)に吸入される。この冷媒循環を繰り
返し、ガス冷媒が室内熱交換器(30)において室内空気
と熱交換して凝縮し、室内空気を加熱する。In this state, the refrigerant compressed by the compression mechanism (10) passes through the gas side communication pipe (LG) and the indoor unit (1).
B), condenses in the indoor heat exchanger (30), and then returns to the outdoor unit (1A) via the liquid side communication pipe (LL). In the outdoor unit (1A), the liquid refrigerant is depressurized by the outdoor electric expansion valve (EV-1), evaporated in the outdoor heat exchanger (14), and then sucked into the compression mechanism (10). This refrigerant circulation is repeated, and the gas refrigerant exchanges heat with the indoor air in the indoor heat exchanger (30), condenses, and heats the indoor air.
【0047】次に、本発明の特徴とするリトライ制御の
動作を図4の制御フローに基づいて説明する。Next, the operation of the retry control, which is a feature of the present invention, will be described with reference to the control flow of FIG.
【0048】先ず、ステップST1において、上述したよ
うに、四路切換弁(13)を図2破線側に切り換えて主冷
媒回路(18)を暖房サイクルにし、暖房運転を行う。こ
の暖房運転中において、ステップST2において、吐出管
センサ(Th-4)が検出した吐出管温度が所定値Aになっ
たか否か、又は、高圧センサ(SP-H)が検出する高圧圧
力が所定値Bになったか否かを判定する。この吐出管温
度が所定値Aに達しない場合、又は、高圧圧力が所定値
Bに達しない場合、吐出管温度などは正常であるので、
上記ステップST2の判定はNOとなってステップST1に
戻り、暖房運転を継続する。First, in step ST1, as described above, the four-way switching valve (13) is switched to the dashed line in FIG. 2 to set the main refrigerant circuit (18) to the heating cycle and perform the heating operation. During this heating operation, in step ST2, it is determined whether or not the discharge pipe temperature detected by the discharge pipe sensor (Th-4) has reached a predetermined value A, or the high pressure detected by the high pressure sensor (SP-H) has reached a predetermined value. It is determined whether the value B has been reached. When the discharge pipe temperature does not reach the predetermined value A, or when the high pressure does not reach the predetermined value B, the discharge pipe temperature and the like are normal.
The determination in step ST2 is NO, the process returns to step ST1, and the heating operation is continued.
【0049】一方、上記ステップST2において、吐出管
温度が所定値Aに達した場合、又は、高圧圧力が所定値
Bに達した場合、吐出管温度の過上昇又は高圧圧力の過
上昇が生じているので、判定がYESとなってステップ
ST3に移る。On the other hand, in step ST2, when the discharge pipe temperature has reached the predetermined value A or when the high pressure has reached the predetermined value B, the discharge pipe temperature has risen excessively or the high pressure has risen excessively. So the determination is YES and the step
Move to ST3.
【0050】このステップST3において、停止処理手段
(41)は、吐出管温度の過上昇又は高圧圧力の過上昇を
検出し、圧縮機(1a,1b)を一旦停止し、リトライ停止
の処理を実行する。その後、上記ステップST3からステ
ップST4に移り、停止処理手段(41)は、圧縮機(1a,
1b)の運転を所定時間が経過するまで待機させ、再起動
待機の処理を実行する。In this step ST3, the stop processing means (41) detects an excessive rise in the discharge pipe temperature or an excessive rise in the high pressure, temporarily stops the compressors (1a, 1b), and executes a retry stop processing. I do. Thereafter, the process proceeds from step ST3 to step ST4, and the stop processing means (41) performs the operation of the compressor (1a,
The operation of 1b) is made to wait until a predetermined time has elapsed, and a process of waiting for restart is executed.
【0051】その後、停止処理手段(41)の再起動待機
の処理が終了すると、上記ステップST4からステップST
5に移り、逆サイクル運転手段(42)が逆サイクル運転
を行って上記ステップST1に戻り、通常の暖房運転を再
開させる。After that, when the restart processing of the stop processing means (41) is completed, the above-described steps ST4 to ST4 are executed.
The process proceeds to step 5, and the reverse cycle operation means (42) performs reverse cycle operation, returns to step ST1, and resumes the normal heating operation.
【0052】つまり、上記逆サイクル運転は、主冷媒回
路(18)が暖房サイクルで停止している状態から、四路
切換弁(13)を図2実線側に切り換えて主冷媒回路(1
8)を冷房サイクルにして圧縮機(1a,1b)を起動す
る。その際、室内ファン(Fr)を停止すると共に、各電
動膨張弁(EV-1,EV-2)を全開として逆サイクル運転を
4分間行う。That is, in the reverse cycle operation, the four-way switching valve (13) is switched to the side indicated by the solid line in FIG. 2 from the state in which the main refrigerant circuit (18) is stopped in the heating cycle.
Start the compressors (1a, 1b) with 8) as the cooling cycle. At that time, the indoor fan (Fr) is stopped, and the electric expansion valves (EV-1, EV-2) are fully opened, and the reverse cycle operation is performed for 4 minutes.
【0053】この逆サイクル運転手段(42)の逆サイク
ル運転は、油戻し運転手段(43)の油戻し運転を兼用
し、主冷媒回路(18)の潤滑油を圧縮機構(10)に戻
す。この油戻し運転手段(43)は、例えば、8時間毎に
油戻し運転を行うことにしているが、上記逆サイクル運
転手段(42)が逆サイクル運転を実行すると、この8時
間をリセットし、逆サイクル運転手段(42)の逆サイク
ル運転から8時間を経過すると、油戻し運転を実行す
る。The reverse cycle operation of the reverse cycle operation means (42) also serves as the oil return operation of the oil return operation means (43), and returns the lubricating oil of the main refrigerant circuit (18) to the compression mechanism (10). The oil return operation means (43) performs the oil return operation, for example, every eight hours. However, when the reverse cycle operation means (42) executes the reverse cycle operation, the oil return operation means (43) resets the eight hours, When eight hours have passed since the reverse cycle operation of the reverse cycle operation means (42), the oil return operation is executed.
【0054】一方、上記逆サイクル運転手段(42)の逆
サイクル運転によって、暖房運転時の四路切換弁(13)
から室内熱交換器(30)側の吐出側冷媒配管(RP)が圧
縮機(1a,1b)の吸込側に連通し、暖房運転時の四路切
換弁(13)から室外熱交換器(14)側の吸入側冷媒配管
(RP)が圧縮機(1a,1b)の吐出側に連通する。このた
め、暖房運転時の高圧圧力と暖房運転時の低圧圧力とが
ミキシングされ、暖房運転時の高圧圧力が低下すると共
に、高温状態に加熱した暖房運転時の吐出側冷媒配管
(RP)が冷却される。On the other hand, by the reverse cycle operation of the reverse cycle operation means (42), the four-way switching valve (13) during the heating operation is operated.
The refrigerant pipe (RP) on the discharge side of the indoor heat exchanger (30) communicates with the suction side of the compressor (1a, 1b), and the four-way switching valve (13) during the heating operation passes through the outdoor heat exchanger (14). ) Side suction side refrigerant pipe (RP) communicates with the discharge side of the compressors (1a, 1b). For this reason, the high pressure during the heating operation and the low pressure during the heating operation are mixed, so that the high pressure during the heating operation is reduced, and the discharge side refrigerant pipe (RP) during the heating operation that has been heated to a high temperature is cooled. Is done.
【0055】−実施形態の効果− 以上のように、本実施形態によれば、高圧圧力等が過上
昇すると、主冷媒回路(18)を暖房サイクルから冷房サ
イクルに切り換えて逆サイクル運転を行った後、通常の
暖房運転を再開させるようにしたために、高温状態に加
熱された暖房運転の起動時の吐出側冷媒配管(RP)が、
圧縮機(1a,1b)に吸入される冷媒によって冷却され、
高圧ガス冷媒と低圧ガス冷媒とが混合する効果によっ
て、暖房運転の起動時における高圧圧力を確実に低下さ
せることができる。そのため、暖房運転の起動時におけ
る吐出管温度を確実に低下させることができる。-Effects of Embodiment- As described above, according to this embodiment, when the high pressure or the like is excessively increased, the main refrigerant circuit (18) is switched from the heating cycle to the cooling cycle to perform the reverse cycle operation. Later, because the normal heating operation was restarted, the discharge side refrigerant pipe (RP) at the time of starting the heating operation heated to a high temperature state,
Cooled by the refrigerant drawn into the compressors (1a, 1b),
Due to the effect of mixing the high-pressure gas refrigerant and the low-pressure gas refrigerant, the high-pressure pressure at the time of starting the heating operation can be reliably reduced. Therefore, the discharge pipe temperature at the time of starting the heating operation can be reliably reduced.
【0056】この結果、暖房運転時の再起動時における
高圧圧力(冷媒凝縮圧力)及び吐出管温度の再度の過上
昇を確実に抑制することができるので、暖房運転の再開
を円滑に行うことができ、暖房の快適性の向上を図るこ
とができる。As a result, it is possible to reliably prevent the high pressure (refrigerant condensing pressure) and the discharge pipe temperature from excessively increasing again when the heating operation is restarted, so that the heating operation can be smoothly restarted. And heating comfort can be improved.
【0057】また、上記逆サイクル運転手段(42)が油
戻し運転を兼用するようにしたために、本来の油戻し運
転の間隔を延長することができるので、暖房能力の低減
を抑制することができる。Further, since the reverse cycle operation means (42) also serves as the oil return operation, the interval of the original oil return operation can be extended, so that a decrease in the heating capacity can be suppressed. .
【0058】また、圧縮機(1a,1b)の吐出側と吸込側
とを連通させる均圧ラインを主冷媒回路(18)に設けて
いない場合であっても、リトライ時の高圧圧力等の過上
昇を抑制することができるので、信頼性の向上を図るこ
とができる。Further, even when the pressure equalizing line for communicating the discharge side and the suction side of the compressors (1a, 1b) is not provided in the main refrigerant circuit (18), the excess pressure such as the high pressure during the retry can be obtained. Since the rise can be suppressed, the reliability can be improved.
【0059】[0059]
【発明の他の実施の形態】本実施形態においては、複数
台の室内ユニット(1B)を備えたマルチ型空気調和装置
について説明したが、本発明は、1台の室内ユニット
(1B)を備えた空気調和装置であってもよく、また、主
冷媒回路(18)も実施形態に限られるものではない。Other Embodiments In the present embodiment, a multi-type air conditioner having a plurality of indoor units (1B) has been described. However, the present invention has one indoor unit (1B). The main refrigerant circuit (18) is not limited to the embodiment.
【0060】また、主冷媒回路(18)は、圧縮機(1a,
1b)の吐出側と吸込側とを連通させる均圧ラインを備え
たものであってもよく、また、圧縮機(1a,1b)をイン
バータ制御するものであってもよく、その際、リトライ
時の逆サイクル運転によってより信頼性の向上を図るこ
とができる。The main refrigerant circuit (18) includes a compressor (1a,
The compressor (1a, 1b) may be provided with an inverter for controlling the compressor (1a, 1b) by an inverter. The reliability can be further improved by the reverse cycle operation.
【0061】また、請求項1記載の発明では、逆サイク
ル運転手段(42)の逆サイクル運転に油戻し運転を兼用
させる必要はなく、つまり、油戻し運転手段(43)が逆
サイクル運転手段(42)の逆サイクル運転に拘りなく油
戻し運転を実行するようにしてもよい。In the first aspect of the present invention, it is not necessary to combine the reverse cycle operation of the reverse cycle operation means (42) with the oil return operation, that is, the oil return operation means (43) is replaced with the reverse cycle operation means (42). The oil return operation may be executed regardless of the reverse cycle operation of 42).
【0062】また、本発明は、2台の圧縮機(1a,1b)
を備えたものに限られず、1台の圧縮機を備えたもので
あってもよいことは勿論であり、また、空気調和装置に
限られず、各種の冷凍装置に適用することができること
は勿論である。The present invention also relates to two compressors (1a, 1b)
It is needless to say that the present invention is not limited to the one equipped with a compressor, and may be one equipped with one compressor, and is not limited to an air conditioner, but can be applied to various refrigeration systems. is there.
【図1】本発明の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of the present invention.
【図2】室外ユニットの主冷媒回路を示す冷媒回路図で
ある。FIG. 2 is a refrigerant circuit diagram showing a main refrigerant circuit of the outdoor unit.
【図3】室内ユニットの主冷媒回路を示す冷媒回路図で
ある。FIG. 3 is a refrigerant circuit diagram showing a main refrigerant circuit of the indoor unit.
【図4】リトライ制御を示す制御ブロック図である。FIG. 4 is a control block diagram illustrating retry control.
1A 室外ユニット 1B 室内ユニット 10 圧縮機構 1a,ab 圧縮機 13 四路切換弁 14 室外熱交換器(熱源側熱交換器) 18 主冷媒回路 RP 冷媒配管 LJ インジェクション通路 21 バイパス通路 30 室内熱交換器(利用側熱交換器) EV-1,EV-2 電動膨張弁(膨張機構) SP-H 高圧センサ Th-4 吐出管センサ SS 状態検出手段 40 コントロールユニット 41 停止処理手段 42 逆サイクル運転手段 43 油戻し運転手段 1A outdoor unit 1B indoor unit 10 compression mechanism 1a, ab compressor 13 four-way switching valve 14 outdoor heat exchanger (heat source side heat exchanger) 18 main refrigerant circuit RP refrigerant pipe LJ injection passage 21 bypass passage 30 indoor heat exchanger ( Use side heat exchanger) EV-1, EV-2 Electric expansion valve (expansion mechanism) SP-H High pressure sensor Th-4 Discharge pipe sensor SS State detection means 40 Control unit 41 Stop processing means 42 Reverse cycle operation means 43 Oil return Driving means
Claims (4)
4)と膨張機構(EV-1,EV-2)と利用側熱交換器(30)
とが順に接続されて冷房サイクルと暖房サイクルとに冷
媒循環の可逆な主冷媒回路(18)と、 上記圧縮機(1a,1b)における吐出側の冷媒状態を検出
する状態検出手段(SS)と、 該状態検出手段(SS)が検出した冷媒状態が予め定めら
れた設定状態に達すると、圧縮機(1a,1b)の運転を停
止させる停止処理手段(41)と、 上記主冷媒回路(18)を暖房サイクルにした暖房運転時
に停止処理手段(41)の停止処理が終了すると、主冷媒
回路(18)を冷房サイクルに一旦切り換えて逆サイクル
運転を行った後、暖房サイクルに切り換えて通常の暖房
運転を再開させる逆サイクル運転手段(42)とを備えて
いることを特徴とする冷凍装置。1. A compressor (1a, 1b) and a heat source side heat exchanger (1).
4) and expansion mechanism (EV-1, EV-2) and use side heat exchanger (30)
A main refrigerant circuit (18), which is connected in order to recycle the refrigerant in a cooling cycle and a heating cycle, and a state detecting means (SS) for detecting a refrigerant state on the discharge side in the compressor (1a, 1b). When the state of the refrigerant detected by the state detection means (SS) reaches a predetermined set state, stop processing means (41) for stopping the operation of the compressor (1a, 1b); and the main refrigerant circuit (18) When the stop processing of the stop processing means (41) is completed during the heating operation in which the heating cycle is changed to the heating cycle, the main refrigerant circuit (18) is temporarily switched to the cooling cycle to perform the reverse cycle operation, and then switched to the heating cycle to perform the normal operation. A refrigerating apparatus comprising: a reverse cycle operation means (42) for restarting a heating operation.
冷房サイクルにして油戻し運転を実行する油戻し運転手
段(43)と、 逆サイクル運転手段(42)は、停止処理手段(41)の停
止処理が終了した後の逆サイクル運転が油戻し運転手段
(43)に換って油戻し運転を兼用するように構成されて
いることを特徴とする冷凍装置。2. The refrigeration apparatus according to claim 1, wherein the oil return operation means (43) executes the oil return operation by setting the main refrigerant circuit (18) to a cooling cycle at every predetermined operation time set in advance. The reverse cycle operation means (42) is configured such that the reverse cycle operation after the stop processing of the stop processing means (41) ends is replaced with the oil return operation means (43) and also serves as the oil return operation. A refrigeration apparatus characterized by the above-mentioned.
側とを均圧する均圧ラインを備えていないことを特徴と
する冷凍装置。3. The refrigeration system according to claim 1, wherein the main refrigerant circuit (18) is not provided with a pressure equalizing line for equalizing the compressors (1a, 1b) and the discharge side and the suction side. Refrigeration equipment.
媒圧力又は冷媒温度を検出することを特徴とする冷凍装
置。4. The refrigerating apparatus according to claim 1, wherein the state detecting means (SS) detects the refrigerant pressure or the refrigerant temperature on the discharge side of the compressor (1a, 1b).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28991696A JPH10132406A (en) | 1996-10-31 | 1996-10-31 | Refrigerating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28991696A JPH10132406A (en) | 1996-10-31 | 1996-10-31 | Refrigerating system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10132406A true JPH10132406A (en) | 1998-05-22 |
Family
ID=17749430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28991696A Pending JPH10132406A (en) | 1996-10-31 | 1996-10-31 | Refrigerating system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10132406A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010047421A1 (en) * | 2008-10-23 | 2010-04-29 | サンデン株式会社 | Refrigeration cycle system and automotive air conditioning system using said refrigeration cycle system |
JP2011094921A (en) * | 2009-10-30 | 2011-05-12 | Yanmar Co Ltd | Refrigerant circuit |
JP2013224754A (en) * | 2012-04-20 | 2013-10-31 | Daikin Industries Ltd | Air conditioner |
WO2020059079A1 (en) * | 2018-09-20 | 2020-03-26 | 東芝キヤリア株式会社 | Air conditioner and control method |
JP2021148348A (en) * | 2020-03-18 | 2021-09-27 | 株式会社富士通ゼネラル | Air conditioning device |
-
1996
- 1996-10-31 JP JP28991696A patent/JPH10132406A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010047421A1 (en) * | 2008-10-23 | 2010-04-29 | サンデン株式会社 | Refrigeration cycle system and automotive air conditioning system using said refrigeration cycle system |
JP2010101553A (en) * | 2008-10-23 | 2010-05-06 | Sanden Corp | Refrigerating cycle system and air-conditioning system for vehicle using the refrigerating cycle system |
EP2336674A1 (en) * | 2008-10-23 | 2011-06-22 | Sanden Corporation | Refrigeration cycle system and automotive air conditioning system using said refrigeration cycle system |
EP2336674A4 (en) * | 2008-10-23 | 2012-01-04 | Sanden Corp | Refrigeration cycle system and automotive air conditioning system using said refrigeration cycle system |
JP2011094921A (en) * | 2009-10-30 | 2011-05-12 | Yanmar Co Ltd | Refrigerant circuit |
JP2013224754A (en) * | 2012-04-20 | 2013-10-31 | Daikin Industries Ltd | Air conditioner |
WO2020059079A1 (en) * | 2018-09-20 | 2020-03-26 | 東芝キヤリア株式会社 | Air conditioner and control method |
KR20210044843A (en) * | 2018-09-20 | 2021-04-23 | 도시바 캐리어 가부시키가이샤 | Air conditioning device and control method |
CN112739963A (en) * | 2018-09-20 | 2021-04-30 | 东芝开利株式会社 | Air conditioner and control method |
JPWO2020059079A1 (en) * | 2018-09-20 | 2021-08-30 | 東芝キヤリア株式会社 | Air conditioner and control method |
CN112739963B (en) * | 2018-09-20 | 2022-08-16 | 东芝开利株式会社 | Air conditioner and control method |
JP2021148348A (en) * | 2020-03-18 | 2021-09-27 | 株式会社富士通ゼネラル | Air conditioning device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0645589B1 (en) | Operation control apparatus for air-conditioner | |
JP3263579B2 (en) | Multi-room type air conditioner and heating method | |
KR102082881B1 (en) | Multi-air conditioner for heating and cooling operations at the same time | |
JPH0626716A (en) | Operation control device for air conditioner | |
JP3785893B2 (en) | Air conditioner | |
JP2002174463A (en) | Refrigerating apparatus | |
JPH04222353A (en) | Operation controller for air conditioner | |
JPH11173628A (en) | Air conditioner | |
KR20100036786A (en) | Air conditioner and control method of the same | |
JPH10132406A (en) | Refrigerating system | |
JP3175706B2 (en) | Binary refrigeration equipment | |
JPH05264113A (en) | Operation control device of air conditioner | |
JPH0727453A (en) | Air conditioner | |
JP3284588B2 (en) | Operation control device for refrigeration equipment | |
JPH0694954B2 (en) | Refrigerator superheat control device | |
JP2765391B2 (en) | Oil recovery operation control device for air conditioner | |
JPH0654186B2 (en) | Refrigeration equipment | |
JPH0634224A (en) | Room heater/cooler | |
KR100941470B1 (en) | A heat pump system and an operating control method for the same | |
JPH03122460A (en) | Operating controller for refrigerating machine | |
JPH03186156A (en) | Pressure equalizer of air conditioner | |
JPH05240522A (en) | Air conditioning apparatus | |
JPH04222354A (en) | Operation controller for refrigerating equipment | |
JP2976905B2 (en) | Air conditioner | |
JPS63161342A (en) | Electrical expansion valve control device for air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20000314 |