JP2013224754A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2013224754A
JP2013224754A JP2012096251A JP2012096251A JP2013224754A JP 2013224754 A JP2013224754 A JP 2013224754A JP 2012096251 A JP2012096251 A JP 2012096251A JP 2012096251 A JP2012096251 A JP 2012096251A JP 2013224754 A JP2013224754 A JP 2013224754A
Authority
JP
Japan
Prior art keywords
pressure
switching valve
way switching
heat exchanger
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012096251A
Other languages
Japanese (ja)
Other versions
JP5776620B2 (en
Inventor
Akihiko Oguri
昭彦 小栗
Motonobu Ikeda
基伸 池田
Hiroshi Domae
浩 堂前
Junichi Shimoda
順一 下田
Tatsuya Makino
達也 牧野
Yukako Kanazawa
友佳子 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2012096251A priority Critical patent/JP5776620B2/en
Publication of JP2013224754A publication Critical patent/JP2013224754A/en
Application granted granted Critical
Publication of JP5776620B2 publication Critical patent/JP5776620B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of suppressing that the pressure of a refrigerant compressed by a compressor exceeds a pressure reference value.SOLUTION: A compressor 10 has an electric motor M1 and compresses a refrigerant. A four-way switching valve 12 switches a warming connecting state H that an inlet port and a discharge port of the compressor 10 are connected to one end 11a of an outdoor heat exchanger 11 and one end 21a of an indoor heat exchanger 21, respectively, and a cooling connecting state C that the one end 21a and the one end 11a are connected to each other. A pressure detection part detects pressure at the discharge port side of the refrigerant. The four-way switching valve control part 41 has a function for controlling the four-way switching valve 12, and when pressure while the four-way switching valve 12 is made to select the warming connecting state H is higher than the pressure reference value, makes the four-way switching valve 12 selects the cooling connecting state C.

Description

本発明は、空気調和機に関し、特に圧縮機の吐出口側の冷媒の圧力を抑制する技術に関する。   The present invention relates to an air conditioner, and more particularly to a technique for suppressing the pressure of a refrigerant on the discharge port side of a compressor.

空気調和機は室内機と室外機とを備える。室内機は室内熱交換器と膨張弁とを備え、室外機は室外熱交換器と圧縮機と四方切替弁とを備える。室内熱交換器と膨張弁と室外熱交換器と圧縮機と四方切替弁とは冷媒配管で適宜に接続されて冷媒回路を構成する。   The air conditioner includes an indoor unit and an outdoor unit. The indoor unit includes an indoor heat exchanger and an expansion valve, and the outdoor unit includes an outdoor heat exchanger, a compressor, and a four-way switching valve. The indoor heat exchanger, the expansion valve, the outdoor heat exchanger, the compressor, and the four-way switching valve are appropriately connected by a refrigerant pipe to constitute a refrigerant circuit.

四方切替弁は自身の接続状態を切り替えて、圧縮機と室内熱交換器の一端と室外熱交換器の一端との接続状態を切り替える。圧縮機は、四方切替弁の接続状態によって、室内熱交換器から流れる冷媒を圧縮して室外熱交換器に供給し、或いはその逆に室外熱交換器から流れる冷媒を圧縮して室内熱交換器へと供給する。膨張弁は室内熱交換器の他端と室外熱交換器の他端との間に設けられて冷媒を絞り膨張する。   The four-way switching valve switches its connection state to switch the connection state between the compressor, one end of the indoor heat exchanger, and one end of the outdoor heat exchanger. The compressor compresses the refrigerant flowing from the indoor heat exchanger and supplies it to the outdoor heat exchanger depending on the connection state of the four-way switching valve, or conversely compresses the refrigerant flowing from the outdoor heat exchanger to compress the refrigerant flowing from the outdoor heat exchanger. To supply. The expansion valve is provided between the other end of the indoor heat exchanger and the other end of the outdoor heat exchanger to squeeze and expand the refrigerant.

例えば暖房運転では、室外熱交換器で蒸発した冷媒が四方切替弁を介して圧縮機に供給され、圧縮機で圧縮された冷媒が四方切替弁を介して室内熱交換器に供給される。このとき室内熱交換器では冷媒が凝縮する。これに伴って室内へと熱量が与えられて室内が暖められる。一方で冷房運転では、室内熱交換器で蒸発した冷媒が四方切替弁を介して圧縮機に供給され、圧縮機で圧縮された冷媒が四方切替弁を介して室外熱交換器に供給される。このとき室内熱交換器において冷媒の蒸発に伴う熱量が室内から吸収されて室内が冷やされる。   For example, in the heating operation, the refrigerant evaporated in the outdoor heat exchanger is supplied to the compressor via the four-way switching valve, and the refrigerant compressed by the compressor is supplied to the indoor heat exchanger via the four-way switching valve. At this time, the refrigerant condenses in the indoor heat exchanger. Along with this, heat is given to the room to warm the room. On the other hand, in the cooling operation, the refrigerant evaporated in the indoor heat exchanger is supplied to the compressor via the four-way switching valve, and the refrigerant compressed by the compressor is supplied to the outdoor heat exchanger via the four-way switching valve. At this time, in the indoor heat exchanger, the amount of heat accompanying the evaporation of the refrigerant is absorbed from the room to cool the room.

なお、本発明に関連する技術として特許文献1が開示されている。   Patent Document 1 is disclosed as a technique related to the present invention.

特開2003−222415号公報JP 2003-222415 A

空気調和機において、圧縮機で圧縮された冷媒の圧力が所定の圧力基準値を超えると、圧縮機に不具合が生じ得る。   In the air conditioner, if the pressure of the refrigerant compressed by the compressor exceeds a predetermined pressure reference value, a malfunction may occur in the compressor.

そこで、本発明は、圧縮機によって圧縮される冷媒の圧力が圧力基準値を超えることを抑制できる空気調和機を提供することを目的とする。   Then, an object of this invention is to provide the air conditioner which can suppress that the pressure of the refrigerant | coolant compressed with a compressor exceeds a pressure reference value.

本発明にかかる空気調和機の第1の態様は、電動機(M1)を有して冷媒を圧縮する圧縮機(10)と、室内熱交換器(21)と、室外熱交換器(11)と、前記圧縮機の吸入口(10b)および吐出口(10a)をそれぞれ前記室外熱交換器の一端(11a)および前記室内熱交換器の一端(21a)に接続する暖房接続状態(H)と前記吸入口及び前記吐出口をそれぞれ前記室内熱交換器の前記一端および前記室外熱交換器の前記一端に接続する冷房接続状態(C)とを切り替える四方切替弁(12)と、前記室内熱交換器の他端(21b)と前記室外熱交換器の他端(11b)との間に設けられる膨張機構(22)とを有し、前記冷媒が循環する冷媒回路(300)と、前記冷媒の前記吐出口側における圧力を検出する圧力検出部(51,33)と、前記四方切替弁を制御する機能を有し、前記四方切替弁に前記暖房接続状態を選択させた状態での前記圧力が圧力基準値よりも大きいときに前記四方切替弁に前記冷房接続状態を選択させる四方切替弁制御部(41)とを備える。   A first aspect of an air conditioner according to the present invention includes a compressor (10) having an electric motor (M1) and compressing a refrigerant, an indoor heat exchanger (21), and an outdoor heat exchanger (11). A heating connection state (H) in which the suction port (10b) and the discharge port (10a) of the compressor are connected to one end (11a) of the outdoor heat exchanger and one end (21a) of the indoor heat exchanger, respectively. A four-way switching valve (12) for switching between a cooling connection state (C) for connecting the suction port and the discharge port to the one end of the indoor heat exchanger and the one end of the outdoor heat exchanger, respectively, and the indoor heat exchanger An expansion mechanism (22) provided between the other end (21b) of the outdoor heat exchanger and the other end (11b) of the outdoor heat exchanger, a refrigerant circuit (300) through which the refrigerant circulates, and the refrigerant A pressure detection unit (51, 33) for detecting pressure on the discharge port side, and a function of controlling the four-way switching valve, wherein the heating connection state is selected by the four-way switching valve Provided said pressure is four-way switching valve control unit for selecting the cooling connection state to the four-way switching valve when greater than the pressure reference value (41) at.

本発明にかかる空気調和機の第2の態様は、第1の態様にかかる空気調和機であって、前記圧力検出部は、前記冷媒の前記圧力として前記室内熱交換器(21)の温度を検出する温度検出部(51)を有し、前記四方切替弁制御部(41)は、前記四方切替弁(12)に前記暖房接続状態(H)を選択させた状態での前記温度が、前記圧力基準値に対応する温度基準値よりも大きいときに、前記四方切替弁に前記冷房接続状態(C)を選択させる。   A second aspect of the air conditioner according to the present invention is the air conditioner according to the first aspect, wherein the pressure detector uses the temperature of the indoor heat exchanger (21) as the pressure of the refrigerant. A temperature detection unit (51) for detecting, the four-way switching valve control unit (41), the temperature in a state in which the four-way switching valve (12) has selected the heating connection state (H), When the temperature is larger than the temperature reference value corresponding to the pressure reference value, the cooling connection state (C) is selected by the four-way switching valve.

本発明にかかる空気調和機の第3の態様は、第1の態様にかかる空気調和機であって、前記圧力検出部は、前記冷媒の前記圧力として前記電動機(M1)の電流を検出する電流検出部(33)を有し、前記四方切替弁制御部(41)は、前記四方切替弁(12)に前記暖房接続状態(H)を選択させた状態において前記圧力基準値に対応する電流基準値よりも、前記電流が大きいときに前記四方切替弁に前記冷房接続状態(C)を選択させる。   A third aspect of the air conditioner according to the present invention is the air conditioner according to the first aspect, wherein the pressure detector detects a current of the electric motor (M1) as the pressure of the refrigerant. A detection unit (33), the four-way switching valve control unit (41), the current reference corresponding to the pressure reference value in the state where the four-way switching valve (12) has selected the heating connection state (H) When the current is larger than the value, the cooling connection state (C) is selected by the four-way switching valve.

本発明にかかる空気調和機の第4の態様は、第2の態様にかかる空気調和機であって、前記圧力検出部は、前記冷媒の前記圧力として前記電動機(M1)の電流を検出する電流検出部(33)をさらに有し、前記空気調和機は、前記四方切替弁(12)が前記冷房接続状態(C)を採用した状態において、前記圧力基準値に対応する電流基準値よりも前記電流が大きいときに、前記電動機(M1)を停止して前記圧縮機(10)を停止させる圧縮機停止部(35)を更に備える。   The 4th aspect of the air conditioner concerning this invention is an air conditioner concerning a 2nd aspect, Comprising: The said pressure detection part detects the electric current of the said motor (M1) as the said pressure of the said refrigerant | coolant The air conditioner further includes a detection unit (33), in which the four-way switching valve (12) adopts the cooling connection state (C), the current reference value corresponding to the pressure reference value. A compressor stop unit (35) for stopping the electric motor (M1) and stopping the compressor (10) when the current is large is further provided.

本発明にかかる空気調和機の第1の態様によれば、冷媒の吐出口側の圧力(以下、高圧)が圧力基準値よりも大きいときに四方切替弁に冷房接続状態を選択させる。これによって冷媒の高圧を低減させることができる。   According to the 1st aspect of the air conditioner concerning this invention, when the pressure (henceforth high pressure) by the side of the refrigerant | coolant discharge port is larger than a pressure reference value, a four-way switching valve is made to select a cooling connection state. As a result, the high pressure of the refrigerant can be reduced.

本発明にかかる空気調和機の第2の態様によれば、温度検出部を採用しているので、圧力検出センサーを用いる場合に比してコストを低減できる。   According to the 2nd aspect of the air conditioner concerning this invention, since the temperature detection part is employ | adopted, cost can be reduced compared with the case where a pressure detection sensor is used.

本発明にかかる空気調和機の第3の態様によれば、電流検出部を採用しているので、圧力検出センサーを用いる場合に比してコストを低減できる。   According to the 3rd aspect of the air conditioner concerning this invention, since the electric current detection part is employ | adopted, cost can be reduced compared with the case where a pressure detection sensor is used.

本発明にかかる空気調和機の第4の態様によれば、温度検出部で検出した圧力の検出精度は電流で検出した圧力の検出精度よりも低い。これは例えば次の理由による。即ち、温度検出部は室内熱交換器の温度を検出しており、実際の冷媒の飽和温度とのずれが生じるからである。   According to the 4th aspect of the air conditioner concerning this invention, the detection accuracy of the pressure detected by the temperature detection part is lower than the detection accuracy of the pressure detected by the electric current. This is due to the following reason, for example. That is, the temperature detection unit detects the temperature of the indoor heat exchanger, and a deviation from the actual refrigerant saturation temperature occurs.

一方で、冷房接続状態が採用された状態での圧力基準値に対応する電流基準値は、暖房接続状態が採用された状態での圧力基準値に対応する電流基準値よりも高い。これは、圧縮機の電動機へと流れる電流が同じであれば、冷房運転における冷媒の高圧は暖房運転における冷媒の高圧よりも小さいからである。   On the other hand, the current reference value corresponding to the pressure reference value in the state where the cooling connection state is adopted is higher than the current reference value corresponding to the pressure reference value in the state where the heating connection state is adopted. This is because the high pressure of the refrigerant in the cooling operation is smaller than the high pressure of the refrigerant in the heating operation if the currents flowing to the motor of the compressor are the same.

空気調和機の第4の態様では、暖房接続状態ではより精度の低い温度により圧力を検出し、温度が温度基準値よりも大きいときに冷房接続状態を採用し、冷房接続状態ではより精度の高い電流により圧力を検出する。したがって、暖房接続状態で電流を検出し、冷房接続状態で温度を検出する場合に比べて、より正確に高圧が圧力基準値を超えることを抑制することができる。   In the fourth aspect of the air conditioner, the pressure is detected at a temperature with lower accuracy in the heating connection state, the cooling connection state is adopted when the temperature is higher than the temperature reference value, and the accuracy is higher in the cooling connection state. The pressure is detected by current. Therefore, compared with the case where the current is detected in the heating connection state and the temperature is detected in the cooling connection state, it is possible to suppress the high pressure from exceeding the pressure reference value more accurately.

空気調和機の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of an air conditioner. 冷媒の圧力と飽和温度との関係の一例を示す図である。It is a figure which shows an example of the relationship between the pressure of a refrigerant | coolant, and saturation temperature. モリエル線図において冷房運転のサイクルと暖房運転のサイクルとの一例を示す図である。It is a figure which shows an example of the cycle of air_conditionaing | cooling operation and the cycle of heating operation in a Mollier diagram. 等電流線の一例を示す図である。It is a figure which shows an example of an equicurrent line. 空気調和機の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of an air conditioner. 空気調和機の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of an air conditioner.

第1の実施の形態.
図1に例示するように、空気調和機は圧縮機10と熱交換器11,21と四方切替弁12と膨張機構22とを備え、これらは冷媒回路300を形成する。
First embodiment.
As illustrated in FIG. 1, the air conditioner includes a compressor 10, heat exchangers 11 and 21, a four-way switching valve 12, and an expansion mechanism 22, which form a refrigerant circuit 300.

圧縮機10は吐出口10aと吸入口10bと電動機M1と圧縮機構(不図示)とを有する。圧縮機構は電動機M1によって駆動されて、吸入口10bから吸入された冷媒を圧縮して吐出口10aから吐出する。四方切替弁12は、吐出口10aを熱交換器21の一端21aに接続し吸入口10bを熱交換器11の一端11aに接続する暖房接続状態Hと、吐出口10aを熱交換器11の一端11aに接続し吸入口10bを熱交換器21の一端21aに接続する冷房接続状態Cとを選択する。   The compressor 10 includes a discharge port 10a, a suction port 10b, an electric motor M1, and a compression mechanism (not shown). The compression mechanism is driven by the electric motor M1, compresses the refrigerant sucked from the suction port 10b, and discharges it from the discharge port 10a. The four-way switching valve 12 includes a heating connection state H in which the discharge port 10a is connected to one end 21a of the heat exchanger 21 and the suction port 10b is connected to one end 11a of the heat exchanger 11, and the discharge port 10a is connected to one end of the heat exchanger 11. The cooling connection state C in which the suction port 10b is connected to the one end 21a of the heat exchanger 21 is selected.

熱交換器11,21はそれぞれ内部を流れる冷媒と外部の空気との間で熱交換を実行する。膨張機構22は熱交換器11の他端11bと熱交換器21の他端21bとの間に設けられる。膨張機構22は冷媒を絞り膨張させる。膨張機構22は例えば電動弁であってもよく、或いは配管の構造により実現されてもよい。   The heat exchangers 11 and 21 perform heat exchange between the refrigerant flowing inside and the outside air, respectively. The expansion mechanism 22 is provided between the other end 11 b of the heat exchanger 11 and the other end 21 b of the heat exchanger 21. The expansion mechanism 22 squeezes and expands the refrigerant. The expansion mechanism 22 may be, for example, an electric valve or may be realized by a pipe structure.

図1の例示では、圧縮機10と熱交換器11と四方切替弁12とは室外機100に設けられており、熱交換器21と膨張機構22とは室内機200に設けられている。また熱交換器(室外熱交換器)11へと送風するファン13が室外機100に設けられ、熱交換器(室内熱交換器)21へと送風するファン23が室内機200に設けられる。ファン13,23はそれぞれ熱交換器11,21における熱交換を促進させる。   In the illustration of FIG. 1, the compressor 10, the heat exchanger 11, and the four-way switching valve 12 are provided in the outdoor unit 100, and the heat exchanger 21 and the expansion mechanism 22 are provided in the indoor unit 200. A fan 13 that blows air to the heat exchanger (outdoor heat exchanger) 11 is provided in the outdoor unit 100, and a fan 23 that blows air to the heat exchanger (indoor heat exchanger) 21 is provided in the indoor unit 200. The fans 13 and 23 promote heat exchange in the heat exchangers 11 and 21, respectively.

また室外機100には室外制御部4が設けられる。室外制御部4は圧縮機10、四方切替弁12およびファン13を制御して室外機100の制御を実行する。なお図1では、室外制御部4に属する四方切替弁制御部41が例示されている。四方切替弁制御部41は四方切替弁12を制御する機能を有する。また図1の例示では室外制御部4は圧縮機制御部3へと指令を行うことで圧縮機10の制御を行うものの、この点については後に述べる。   The outdoor unit 100 is provided with an outdoor control unit 4. The outdoor control unit 4 controls the outdoor unit 100 by controlling the compressor 10, the four-way switching valve 12 and the fan 13. In FIG. 1, a four-way switching valve control unit 41 belonging to the outdoor control unit 4 is illustrated. The four-way switching valve control unit 41 has a function of controlling the four-way switching valve 12. In the example of FIG. 1, the outdoor control unit 4 controls the compressor 10 by giving a command to the compressor control unit 3, which will be described later.

室内機200には室内制御部5が設けられる。室内制御部5はファン23を制御する。また膨張機構22が被制御の膨張弁であれば室内制御部5は膨張機構22も制御する。室外制御部4と室内制御部5とは互いに通信可能に接続されて、互いに協動して空調運転(冷房運転/暖房運転など)を実行する。   The indoor unit 200 is provided with an indoor control unit 5. The indoor control unit 5 controls the fan 23. If the expansion mechanism 22 is a controlled expansion valve, the indoor control unit 5 also controls the expansion mechanism 22. The outdoor control unit 4 and the indoor control unit 5 are communicably connected to each other, and cooperate with each other to execute an air conditioning operation (such as a cooling operation / a heating operation).

より詳細には、本空気調和機において、四方切替弁制御部41が四方切替弁12に暖房接続状態Hを選択させ、室外制御部4が適宜に圧縮機10およびファン13を制御するとともに、室内制御部5が適宜にファン23および膨張機構22を制御する。このとき圧縮機10によって圧縮された冷媒が熱交換器21において凝縮して室内の空気へと熱量を与える。熱交換器21からの冷媒は膨張機構22によって膨張し、その後、熱交換器11において蒸発して室外の空気から熱量を吸収し、再び圧縮機10へと流れる。このようにして空気調和機は暖房運転を実行できる。   More specifically, in the present air conditioner, the four-way switching valve control unit 41 causes the four-way switching valve 12 to select the heating connection state H, and the outdoor control unit 4 appropriately controls the compressor 10 and the fan 13. The controller 5 appropriately controls the fan 23 and the expansion mechanism 22. At this time, the refrigerant compressed by the compressor 10 condenses in the heat exchanger 21 and gives heat to the indoor air. The refrigerant from the heat exchanger 21 expands by the expansion mechanism 22, and then evaporates in the heat exchanger 11 to absorb heat from the outdoor air and flows again to the compressor 10. In this way, the air conditioner can perform the heating operation.

また四方切替弁制御部41が四方切替弁12に冷房接続状態Cを選択させ、室外制御部4が適宜に圧縮機10およびファン13を制御するとともに、室内制御部5が適宜にファン23および膨張機構22を制御する。このとき圧縮機10からの冷媒が熱交換器11において凝縮して室外の空気へと熱量を与える。熱交換器11からの冷媒は膨張機構22によって膨張し、その後、熱交換器21において蒸発して室内の空気から熱量を吸収し、再び圧縮機10へと流れる。このようにして空気調和機は冷房運転を実行できる。   Further, the four-way switching valve control unit 41 causes the four-way switching valve 12 to select the cooling connection state C, the outdoor control unit 4 appropriately controls the compressor 10 and the fan 13, and the indoor control unit 5 appropriately controls the fan 23 and expansion. The mechanism 22 is controlled. At this time, the refrigerant from the compressor 10 condenses in the heat exchanger 11 and gives heat to the outdoor air. The refrigerant from the heat exchanger 11 expands by the expansion mechanism 22, and then evaporates in the heat exchanger 21 to absorb heat from the indoor air and flows to the compressor 10 again. In this way, the air conditioner can perform a cooling operation.

なお図1の例示では圧縮機構を駆動する電動機M1には電力変換部1が接続され、電力変換部1には電源E1が接続される。電力変換部1は圧縮機制御部3によって制御されて電源E1からの電圧を適宜に変換し、これを電動機M1へと印加する。電動機M1は印加される電圧に応じて回転し、圧縮機構を駆動する。   In the illustration of FIG. 1, the power conversion unit 1 is connected to the electric motor M <b> 1 that drives the compression mechanism, and the power conversion unit 1 is connected to the power source E <b> 1. The power conversion unit 1 is controlled by the compressor control unit 3 to appropriately convert the voltage from the power source E1, and applies this to the motor M1. The electric motor M1 rotates according to the applied voltage and drives the compression mechanism.

電力変換部1は例えば三相インバータであり、電動機M1も三相電動機である。電力変換部1は圧縮機制御部3によって制御されて、電源E1からの直流電圧を三相交流電圧に変換して電動機M1に印加する。例えば圧縮機制御部3は室外制御部4から指令値(例えば電動機M1の回転速度、トルク又は電流などの指令値)を受け取り、当該指令に基づいて電力変換部1を制御する。よって室外制御部4は圧縮機制御部3を介して圧縮機10を制御することができる。なお、電力変換部1は単相インバータであってもよく、三相以上のインバータであってもよい。このとき電動機M1の相数はインバータに合わせられる。   The power converter 1 is, for example, a three-phase inverter, and the motor M1 is also a three-phase motor. The power conversion unit 1 is controlled by the compressor control unit 3 to convert the DC voltage from the power source E1 into a three-phase AC voltage and apply it to the motor M1. For example, the compressor control unit 3 receives a command value (for example, a command value such as the rotation speed, torque, or current of the electric motor M1) from the outdoor control unit 4, and controls the power conversion unit 1 based on the command. Therefore, the outdoor control unit 4 can control the compressor 10 via the compressor control unit 3. Note that the power conversion unit 1 may be a single-phase inverter or an inverter having three or more phases. At this time, the number of phases of the electric motor M1 is adjusted to the inverter.

またここでは、圧縮機制御部3、室外制御部4および室内制御部5はマイクロコンピュータと記憶装置を含んで構成される。マイクロコンピュータは、プログラムに記述された各処理ステップ(換言すれば手順)を実行する。上記記憶装置は、例えばROM(Read-Only-Memory)、RAM(Random-Access-Memory)、書き換え可能な不揮発性メモリ(EPROM(Erasable-Programmable-ROM)等)、ハードディスク装置などの各種記憶装置の1つ又は複数で構成可能である。当該記憶装置は、各種の情報やデータ等を格納し、またマイクロコンピュータが実行するプログラムを格納し、また、プログラムを実行するための作業領域を提供する。なお、マイクロコンピュータは、プログラムに記述された各処理ステップに対応する各種手段として機能するとも把握でき、あるいは、各処理ステップに対応する各種機能を実現するとも把握できる。また、圧縮機制御部3、室外制御部4および室内制御部5はこれに限らず、これらの制御部によって実行される各種手順、あるいは実現される各種手段又は各種機能の一部又は全部をハードウェアで実現しても構わない。   Here, the compressor control unit 3, the outdoor control unit 4, and the indoor control unit 5 include a microcomputer and a storage device. The microcomputer executes each processing step (in other words, a procedure) described in the program. The storage device is, for example, a ROM (Read-Only-Memory), a RAM (Random-Access-Memory), a rewritable nonvolatile memory (EPROM (Erasable-Programmable-ROM), etc.), and various storage devices such as a hard disk device. One or more can be configured. The storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program. It can be understood that the microcomputer functions as various means corresponding to each processing step described in the program, or can realize that various functions corresponding to each processing step are realized. The compressor control unit 3, the outdoor control unit 4 and the indoor control unit 5 are not limited to this, and various procedures executed by these control units, various means to be realized, or some or all of various functions are hardware. It may be realized by hardware.

また図1に示すように、室内制御部5には圧力検出部の一例たる温度検出部51が接続されている。温度検出部51は室内熱交換器21に設けられて、冷媒の飽和温度Tを検出する。冷媒の飽和温度Tは図2に示すように冷媒の圧力と正の相関関係を有するので、冷媒の飽和温度Tを圧力と対応付けることができる。なお図2の例示では複数種類の冷媒についての圧力−飽和温度の曲線が示されている。   As shown in FIG. 1, a temperature detection unit 51, which is an example of a pressure detection unit, is connected to the indoor control unit 5. The temperature detector 51 is provided in the indoor heat exchanger 21 and detects the saturation temperature T of the refrigerant. Since the saturation temperature T of the refrigerant has a positive correlation with the pressure of the refrigerant as shown in FIG. 2, the saturation temperature T of the refrigerant can be associated with the pressure. In the illustration of FIG. 2, pressure-saturation temperature curves for a plurality of types of refrigerants are shown.

図1を参照して、温度検出部51から冷媒の飽和温度Tを受け取った室内制御部5はこれを室外制御部4へと送信する。これによって室外制御部4は室内熱交換器21における冷媒の飽和温度Tを認識することができる。なおここでは圧縮機10の吐出口10aにおける冷媒の圧力(以下、高圧とも呼ぶ)を検出することを想定している。つまり圧縮機10によって圧縮された後の冷媒の圧力を検出することを想定している。また室内熱交換器21に圧縮後の冷媒が供給されるときは暖房接続状態Hが採用されたときである。したがって暖房接続状態Hが採用されているときの飽和温度Tが高圧と対応付けられる。   Referring to FIG. 1, the indoor control unit 5 that has received the saturation temperature T of the refrigerant from the temperature detection unit 51 transmits this to the outdoor control unit 4. Accordingly, the outdoor control unit 4 can recognize the refrigerant saturation temperature T in the indoor heat exchanger 21. Here, it is assumed that the pressure of the refrigerant at the discharge port 10a of the compressor 10 (hereinafter also referred to as high pressure) is detected. That is, it is assumed that the pressure of the refrigerant after being compressed by the compressor 10 is detected. The compressed refrigerant is supplied to the indoor heat exchanger 21 when the heating connection state H is adopted. Therefore, the saturation temperature T when the heating connection state H is employed is associated with a high pressure.

ここでは上述のように圧力検出部の一例として温度検出部51を採用するが、これに限らず、圧縮機10の吐出口10aにおける冷媒の圧力を検出する圧力検出センサーを採用しても良い。ただし圧力検出センサーは比較的コストが高いので、温度検出部51を採用すればコストを低減できる。   Here, as described above, the temperature detection unit 51 is employed as an example of the pressure detection unit, but not limited thereto, a pressure detection sensor that detects the pressure of the refrigerant at the discharge port 10a of the compressor 10 may be employed. However, since the pressure detection sensor is relatively expensive, if the temperature detection unit 51 is employed, the cost can be reduced.

このような空気調和機において、四方切替弁制御部41は次のように動作する。即ち、暖房運転において高圧が圧力基準値Prefよりも大きいときに、四方切替弁制御部41は四方切替弁12に冷房接続状態Cを選択させる。言い換えれば、四方切替弁制御部41は、四方切替弁12に暖房接続状態Hを選択させた状態での高圧が圧力基準値Prefよりも大きいときに、四方切替弁12に冷房接続状態Cを選択させる。   In such an air conditioner, the four-way switching valve control unit 41 operates as follows. That is, when the high pressure is larger than the pressure reference value Pref in the heating operation, the four-way switching valve control unit 41 causes the four-way switching valve 12 to select the cooling connection state C. In other words, the four-way switching valve control unit 41 selects the cooling connection state C for the four-way switching valve 12 when the high pressure in the state where the heating connection state H is selected by the four-way switching valve 12 is greater than the pressure reference value Pref. Let

より具体的な動作の一例として、室外制御部4は例えば四方切替弁12の接続状態を不図示の記憶媒体に記憶する。また室外制御部4は飽和温度Tが温度基準値Trefよりも大きいかどうかを判断する。この温度基準値Trefは圧力基準値Prefに対応するものである。より詳細には温度基準値Trefは高圧が圧力基準値Prefを採るときの飽和温度Tと等しい値である。そして四方切替弁12が暖房接続状態Hを選択し、かつ飽和温度Tが温度基準値Trefよりも大きいときに、室外制御部4はその旨を四方切替弁制御部41に通知する。当該通知を受け取った四方切替弁制御部41は四方切替弁12に冷房接続状態Cを選択させる。   As an example of a more specific operation, the outdoor control unit 4 stores, for example, the connection state of the four-way switching valve 12 in a storage medium (not shown). The outdoor control unit 4 determines whether the saturation temperature T is higher than the temperature reference value Tref. This temperature reference value Tref corresponds to the pressure reference value Pref. More specifically, the temperature reference value Tref is a value equal to the saturation temperature T when the high pressure takes the pressure reference value Pref. When the four-way switching valve 12 selects the heating connection state H and the saturation temperature T is larger than the temperature reference value Tref, the outdoor control unit 4 notifies the four-way switching valve control unit 41 to that effect. The four-way switching valve control unit 41 that has received the notification causes the four-way switching valve 12 to select the cooling connection state C.

このように冷房接続状態Cが採用されることで、高圧が低下する。これは以下の理由によると考察される。図3にはモリエル線図における冷房運転時のサイクルと暖房運転時のサイクルが示されている。図3では冷房運転時のサイクルが実線かつ太線で示され、暖房運転時のサイクルが破線かつ太線で示されている。ここではまず図3を参照して冷房運転における圧縮機10の仕事量と暖房運転における圧縮機の仕事量10とについて考察する。図3に例示するように仕事量の相違を分かりやすく説明するために、ここでは高圧が等しい場合を考察する。高圧が同じ値を採る場合、圧縮機10の吸入口10b側の冷媒の圧力(以下、低圧と呼ぶ)は暖房運転時に比べて冷房運転時の方が高い。これは、低圧は蒸発器と熱交換する空気の温度が高いほど高いからであり、冷房運転における室外の温度は暖房運転における室内の温度よりも高いからである。よって圧縮機10で増大するエンタルピーは暖房運転に比べて冷房運転の方が小さい。図3の例示では、冷房運転におけるエンタルピーΔh1は約15kJ/kgであり、暖房運転におけるエンタルピーΔh2は約20kJ/kgである。よってこのときエンタルピーΔh1はエンタルピーΔh2の約3/4倍である。   By adopting the cooling connection state C in this way, the high pressure is reduced. This is considered for the following reasons. FIG. 3 shows a cycle during cooling operation and a cycle during heating operation in the Mollier diagram. In FIG. 3, the cycle during the cooling operation is indicated by a solid line and a thick line, and the cycle during the heating operation is indicated by a broken line and a thick line. Here, the work of the compressor 10 in the cooling operation and the work 10 of the compressor in the heating operation will first be considered with reference to FIG. In order to explain the difference in work amount as illustrated in FIG. 3 in an easy-to-understand manner, the case where the high pressure is equal is considered here. When the high pressure takes the same value, the refrigerant pressure (hereinafter referred to as low pressure) on the suction port 10b side of the compressor 10 is higher during the cooling operation than during the heating operation. This is because the low pressure is higher as the temperature of the air exchanging heat with the evaporator is higher, and the outdoor temperature in the cooling operation is higher than the indoor temperature in the heating operation. Therefore, the enthalpy that increases in the compressor 10 is smaller in the cooling operation than in the heating operation. In the illustration of FIG. 3, the enthalpy Δh1 in the cooling operation is about 15 kJ / kg, and the enthalpy Δh2 in the heating operation is about 20 kJ / kg. Therefore, at this time, the enthalpy Δh1 is about 3/4 times the enthalpy Δh2.

一方で、圧縮機10に流れる冷媒の流量は低圧に比例する。冷房運転における低圧PL1は暖房運転における低圧PL2よりも大きいので、冷房運転における冷媒の流量G1は暖房運転における流量G2よりも大きい。図3の例示では、低圧PL1は約12kgf/cmであり、低圧PL2は約5kgf/cmである。よってこのとき、低圧PL1は低圧PL2の約2.4倍であり、流量G1も流量G2の約2.4倍である。 On the other hand, the flow rate of the refrigerant flowing through the compressor 10 is proportional to the low pressure. Since the low pressure PL1 in the cooling operation is larger than the low pressure PL2 in the heating operation, the refrigerant flow rate G1 in the cooling operation is larger than the flow rate G2 in the heating operation. In the illustration of FIG. 3, the low pressure PL1 is about 12 kgf / cm 2 and the low pressure PL2 is about 5 kgf / cm 2 . Therefore, at this time, the low pressure PL1 is about 2.4 times the low pressure PL2, and the flow rate G1 is also about 2.4 times the flow rate G2.

圧縮機10の仕事量はエンタルピーと流量との積で表される。上述のように流量G1,G2の比(G1/G2)の方がエンタルピーΔh1,Δh2の比(Δh1/Δh2)よりも高くなるので、結果として冷房運転における圧縮機10の仕事量W1は暖房運転における圧縮機10の仕事量W2よりも大きくなる。例えば図3の例示では冷房運転における当該仕事量W1は暖房運転における当該仕事量W2の約1.8倍(=2.4×3/4)である。   The work of the compressor 10 is represented by the product of enthalpy and flow rate. As described above, the flow rate G1, G2 ratio (G1 / G2) is higher than the enthalpy Δh1, Δh2 ratio (Δh1 / Δh2). As a result, the work amount W1 of the compressor 10 in the cooling operation is the heating operation. It becomes larger than the work amount W2 of the compressor 10 at. For example, in the illustration of FIG. 3, the work amount W1 in the cooling operation is approximately 1.8 times (= 2.4 × 3/4) the work amount W2 in the heating operation.

さて暖房運転において四方切替弁12が暖房接続状態Hから冷房接続状態Cへと切り替えれば、室内熱交換器21の機能は蒸発器の機能から凝縮器の機能へと切り替わり、室外熱交換器11の機能は凝縮器の機能から蒸発器の機能へと切り替わる。冷媒の低圧は上述のように蒸発器と熱交換する空気の温度に依存するところ、蒸発器として機能する室内熱交換器11と熱交換する室内の温度(例えば20℃)は、切り替え前に蒸発器として機能していた室外熱交換器21と熱交換する室内の温度(例えば7℃)よりも高い。よって、当該切り替りによって低圧が増大することとなる。これによって冷媒の流量は増大する一方で熱交換器11,21の熱交換率は低下する。なぜなら、室内の目標温度は暖房運転時のままであって、冷房運転によっては室内を暖めることができないので、目標温度に対して行われる温度制御において圧縮機10の仕事量も低下するからである。したがって冷媒の高圧も低下する。つまり、本来暖房運転が行われる温度条件(室内、室外の温度及び目標温度)で冷房運転を行うのでので、これに起因して高圧が低下するのである。なお冷房運転で用いられる目標温度が暖房運転で採用される目標温度以上であれば、当該切り替えに伴って冷房運転で用いられる目標温度を採用しても良い。この目標温度に対する温度制御によっても圧縮機10の仕事量も低下するので、高圧は低減される。   If the four-way switching valve 12 is switched from the heating connection state H to the cooling connection state C in the heating operation, the function of the indoor heat exchanger 21 is switched from the function of the evaporator to the function of the condenser, and the function of the outdoor heat exchanger 11 is changed. The function switches from the condenser function to the evaporator function. The low pressure of the refrigerant depends on the temperature of the air that exchanges heat with the evaporator as described above. However, the temperature of the indoor heat exchanger 11 that functions as an evaporator (for example, 20 ° C.) evaporates before switching. The temperature is higher than the indoor temperature (for example, 7 ° C.) for exchanging heat with the outdoor heat exchanger 21 functioning as a heat exchanger. Therefore, the low pressure increases due to the switching. As a result, the flow rate of the refrigerant increases while the heat exchange rate of the heat exchangers 11 and 21 decreases. This is because the target temperature in the room remains at the time of heating operation, and the room cannot be warmed by cooling operation, so the work amount of the compressor 10 is also reduced in the temperature control performed for the target temperature. . Therefore, the high pressure of the refrigerant also decreases. That is, since the cooling operation is performed under the temperature conditions (room temperature, outdoor temperature and target temperature) where the heating operation is originally performed, the high pressure decreases due to this. In addition, as long as the target temperature used by air_conditionaing | cooling operation is more than the target temperature employ | adopted by heating operation, you may employ | adopt the target temperature used by air_conditionaing | cooling operation with the said switching. Since the work amount of the compressor 10 is also reduced by the temperature control with respect to the target temperature, the high pressure is reduced.

また上述のように冷房運転における圧縮機の仕事量は暖房運転における圧縮機の仕事量よりも小さい。これも高圧の低下に資する。以上のように、暖房接続状態Hでの高圧が圧力基準値Prefよりも大きいときに四方切替弁12が冷房接続状態Cを選択することによって、高圧を低減することができる。よって高圧が圧力基準値Prefを超えることを抑制することができる。   Further, as described above, the work of the compressor in the cooling operation is smaller than the work of the compressor in the heating operation. This also contributes to a decrease in high pressure. As described above, when the high pressure in the heating connection state H is larger than the pressure reference value Pref, the four-way switching valve 12 selects the cooling connection state C, whereby the high pressure can be reduced. Therefore, it is possible to suppress the high pressure from exceeding the pressure reference value Pref.

<圧力検出部>
上述の説明では圧力検出部の一例として温度検出部51を採用している。しかしながら図1に例示する電流検出部33を圧力検出部として採用してもよい。この場合、温度検出部51は必須要件ではない。
<Pressure detector>
In the above description, the temperature detector 51 is employed as an example of the pressure detector. However, you may employ | adopt the electric current detection part 33 illustrated in FIG. 1 as a pressure detection part. In this case, the temperature detector 51 is not an essential requirement.

電流検出部33は電動機M1へと流れる電流を検出する。ただし図1の例示では、電流検出部33は電力変換部1に入力される直流電流(以下、電流Iとも呼ぶ)を検出する。これは、当該直流電流が電力変換部1によって三相交流電流に変換されて電動機M1を流れるので、当該直流電流も電動機M1を流れる電流として把握することができるからである。なお図1の例示とは異なって、電流検出部33は電動機M1を流れる三相の交流電流(線電流)の少なくとも何れか1相の線電流を検出しても良い。   The current detection unit 33 detects a current flowing to the electric motor M1. However, in the illustration of FIG. 1, the current detection unit 33 detects a direct current (hereinafter also referred to as current I) input to the power conversion unit 1. This is because the direct current is converted into a three-phase alternating current by the power converter 1 and flows through the motor M1, so that the direct current can also be grasped as a current flowing through the motor M1. Unlike the example of FIG. 1, the current detection unit 33 may detect at least one of the three-phase AC currents (line currents) flowing through the electric motor M <b> 1.

図4には、電動機M1の回転速度を横軸に採り、高圧を縦軸に採った座標上での、電動機M1に流れる電流(電流I或いは線電流の振幅)の等電流線が例示される。図4の例示では、四角形、三角形、逆三角形、菱形、円形、星形、五角形および台形が付記された等電流線が、それぞれ電流値10A,12A,14A,16A,17A,18A,20A及び22Aを示す。図4に例示するように、電動機M1の回転速度が等しければ冷媒の高圧は電動機M1に流れる電流が大きいほど高い。   FIG. 4 illustrates an equicurrent line of the current (current I or the amplitude of the line current) flowing through the motor M1 on the coordinates where the rotation speed of the motor M1 is taken on the horizontal axis and the high voltage is taken on the vertical axis. . In the illustration of FIG. 4, equicurrent lines with squares, triangles, inverted triangles, rhombuses, circles, stars, pentagons, and trapezoids are shown as current values 10A, 12A, 14A, 16A, 17A, 18A, 20A and 22A, respectively. Indicates. As illustrated in FIG. 4, if the rotation speed of the electric motor M1 is equal, the higher the refrigerant pressure, the higher the current flowing through the electric motor M1.

電動機M1に流れる電流は電流基準値IrefHと比較される。電流基準値IrefHは圧力基準値Prefに対応するものである。より詳細には電流基準値IrefHは、暖房運転において高圧が圧力基準値Prefを採るときに電動機M1に流れる電流(交流電流であればその振幅)と等しい値である。またこの値が回転速度に応じて複数存在する場合は、それら値のうち最小値を採用するとよい。例えば図4において圧力基準値Prefが45kgf/cmであれば、電流基準値IrefHは例えば約15.8Aである。なお電流基準値IrefHとして例えば16Aを採用すれば、圧力基準値Prefは約46.2kgf/cmを採用したと見なすことができる。これによって、暖房運転において回転速度がどのような値を採ったとしても、電動機M1に流れる電流が電流基準値IrefHよりも小さければ高圧は圧力基準値Prefよりも小さい。 The current flowing through the motor M1 is compared with the current reference value IrefH. The current reference value IrefH corresponds to the pressure reference value Pref. More specifically, the current reference value IrefH is a value equal to the current flowing through the electric motor M1 when the high pressure takes the pressure reference value Pref in the heating operation (the amplitude of the alternating current). In addition, when there are a plurality of these values according to the rotation speed, it is preferable to adopt the minimum value among these values. For example, if the pressure reference value Pref is 45 kgf / cm 2 in FIG. 4, the current reference value IrefH is about 15.8 A, for example. If, for example, 16 A is adopted as the current reference value IrefH, it can be considered that the pressure reference value Pref is about 46.2 kgf / cm 2 . As a result, no matter what value the rotation speed takes in the heating operation, if the current flowing through the motor M1 is smaller than the current reference value IrefH, the high pressure is smaller than the pressure reference value Pref.

四方切替弁制御部41は、暖房接続状態Hが採用されたときの電流Iが電流基準値IrefHよりも大きいときに、四方切替弁12に冷房接続状態Cを選択させる。より具体的な動作の一例について説明する。図1の例示では、圧縮機制御部3に電流検出部33が接続されており、圧縮機制御部3は電流検出部33によって検出された電流Iと電流基準値IrefHとを比較する。そして圧縮機制御部3は暖房運転において電流Iが電流基準値IrefHよりも大きいときに、その旨を室外制御部4に通知する。当該通知を受け取った室外制御部4は四方切替弁12が暖房接続状態Hを選択しているときに四方切替弁制御部41にその旨を通知し、四方切替弁制御部41が四方切替弁12に冷房接続状態Cを選択させる。   The four-way switching valve control unit 41 causes the four-way switching valve 12 to select the cooling connection state C when the current I when the heating connection state H is adopted is larger than the current reference value IrefH. An example of a more specific operation will be described. In the example of FIG. 1, the current detection unit 33 is connected to the compressor control unit 3, and the compressor control unit 3 compares the current I detected by the current detection unit 33 with the current reference value IrefH. When the current I is larger than the current reference value IrefH in the heating operation, the compressor control unit 3 notifies the outdoor control unit 4 to that effect. The outdoor control unit 4 that has received the notification notifies the four-way switching valve control unit 41 when the four-way switching valve 12 selects the heating connection state H, and the four-way switching valve control unit 41 notifies the four-way switching valve 12. Allows the cooling connection state C to be selected.

したがって高圧を低減することができる。また圧力を検出する圧力検出部として電流検出部33を採用しているので、圧力検出センサーを用いる場合に比してコストを低減できる。   Therefore, high pressure can be reduced. Moreover, since the current detection unit 33 is employed as a pressure detection unit for detecting pressure, the cost can be reduced as compared with the case where a pressure detection sensor is used.

第2の実施の形態.
図5に例示する空気調和機の概念的な構成は、圧縮機制御部3の内部構成を除いて図1の空気調和機と同一である。なお第2の実施の形態では電流検出部33と温度検出部51との両方が設けられる。
Second embodiment.
The conceptual configuration of the air conditioner illustrated in FIG. 5 is the same as the air conditioner of FIG. 1 except for the internal configuration of the compressor control unit 3. In the second embodiment, both the current detection unit 33 and the temperature detection unit 51 are provided.

圧縮機制御部3はスイッチング信号生成部31と電流基準値設定部34と圧縮機停止部35とを備える。スイッチング信号生成部31は電力変換部1に与えるスイッチング信号を生成する。例えばスイッチング信号生成部31は室外制御部4から指令値(例えば電動機M1の回転速度、トルク又は電流などの指令値)を受け取って、当該指令値に基づいてスイッチング信号を生成する。   The compressor control unit 3 includes a switching signal generation unit 31, a current reference value setting unit 34, and a compressor stop unit 35. The switching signal generator 31 generates a switching signal to be given to the power converter 1. For example, the switching signal generation unit 31 receives a command value (for example, a command value such as the rotation speed, torque, or current of the electric motor M1) from the outdoor control unit 4, and generates a switching signal based on the command value.

電流基準値設定部34は電動機M1に流れる電流についての電流基準値IrefCを設定し、これを圧縮機停止部35へと出力する。この電流基準値IrefCは圧力基準値Prefに対応するものである。より詳細には電流基準値IrefCは、冷房運転において高圧が圧力基準値Prefを採るときに電動機M1に流れる電流(交流電流であればその振幅)と等しい値である。またこの値が回転速度に応じて複数存在する場合は、それら値のうち最小値を採用するとよい。この場合、冷房運転において回転速度がどのような値を採ったとしても、電動機M1に流れる電流が電流基準値IrefCよりも小さければ高圧は圧力基準値Prefよりも小さい。   The current reference value setting unit 34 sets a current reference value IrefC for the current flowing through the motor M1 and outputs this to the compressor stop unit 35. This current reference value IrefC corresponds to the pressure reference value Pref. More specifically, the current reference value IrefC is a value equal to the current flowing through the electric motor M1 when the high pressure takes the pressure reference value Pref in the cooling operation (the amplitude of the alternating current). In addition, when there are a plurality of these values according to the rotation speed, it is preferable to adopt the minimum value among these values. In this case, no matter what value the rotation speed takes in the cooling operation, if the current flowing through the motor M1 is smaller than the current reference value IrefC, the high pressure is smaller than the pressure reference value Pref.

なお電流基準値IrefCは電流基準値IrefHよりも大きい。これは次の理由による。即ち、図3を参照して説明したように高圧が同じであれば冷房運転における仕事量W1は暖房運転における仕事量W2よりも高い。言い換えれば、高圧が同じであれば冷房運転における電流は暖房運転における電流よりも高い。   The current reference value IrefC is larger than the current reference value IrefH. This is due to the following reason. That is, as described with reference to FIG. 3, if the high pressure is the same, the work amount W1 in the cooling operation is higher than the work amount W2 in the heating operation. In other words, if the high pressure is the same, the current in the cooling operation is higher than the current in the heating operation.

電流検出部33によって検出された電流Iは圧縮機停止部35に入力される。圧縮機停止部35は比較器351を備え、比較器351は電流Iと電流基準値IrefCとの大小を比較する。比較器351は例えばオペアンプによって形成される。圧縮機停止部35は電流Iが電流基準値IrefCよりも大きいときに電力変換部1を制御して電動機M1を停止させる。ひいては圧縮機10を停止させる。   The current I detected by the current detection unit 33 is input to the compressor stop unit 35. The compressor stop unit 35 includes a comparator 351. The comparator 351 compares the current I with the current reference value IrefC. The comparator 351 is formed by an operational amplifier, for example. The compressor stop unit 35 controls the power conversion unit 1 to stop the motor M1 when the current I is larger than the current reference value IrefC. As a result, the compressor 10 is stopped.

図5の例示では、例えば圧縮機停止部35は論理回路352を備えている。論理回路352は比較器351の出力とスイッチング信号生成部31の出力とが入力される。論理回路352は、電流Iが電流基準値IrefCよりも大きいときに電力変換部1を停止させるスイッチング信号を出力し、電流Iが電流基準値IrefCよりも小さいときにスイッチング信号生成部31からのスイッチング信号を電力変換部1に出力する。例えば比較器351は電流Iが電流基準値IrefCよりも大きいときに活性した信号を出力する。また例えば電力変換部1に属する不図示のスイッチング素子は活性したスイッチング信号が入力されて導通する。この場合、論理回路352は例えばアンド回路である。これによって論理回路352は、比較器351から活性した信号を受け取っているときにスイッチング信号生成部31からのスイッチング信号を電力変換部1に出力し、比較器351から非活性した信号を受け取っているときに、非活性したスイッチング信号を電力変換部1に出力する。これによって電流Iが電流基準値IrefCよりも大きいときに電動機M1を停止できる。   In the example of FIG. 5, for example, the compressor stop unit 35 includes a logic circuit 352. The logic circuit 352 receives the output of the comparator 351 and the output of the switching signal generator 31. The logic circuit 352 outputs a switching signal that stops the power conversion unit 1 when the current I is larger than the current reference value IrefC, and performs switching from the switching signal generation unit 31 when the current I is smaller than the current reference value IrefC. The signal is output to the power converter 1. For example, the comparator 351 outputs an active signal when the current I is larger than the current reference value IrefC. Further, for example, a switching element (not shown) belonging to the power converter 1 is turned on when an active switching signal is input. In this case, the logic circuit 352 is, for example, an AND circuit. As a result, the logic circuit 352 outputs the switching signal from the switching signal generation unit 31 to the power conversion unit 1 while receiving the activated signal from the comparator 351, and receives the inactivated signal from the comparator 351. Sometimes, an inactive switching signal is output to the power converter 1. Accordingly, the motor M1 can be stopped when the current I is larger than the current reference value IrefC.

さて上述したように電流基準値IrefCは電流基準値IrefHよりも大きい。そして暖房運転において高圧が圧力基準値Prefよりも小さいときには、電流Iは電流基準値IrefHよりも小さいので電流基準値IrefCを超えない。したがって、圧縮機停止部35による圧縮機10の停止は暖房運転においては実行されずに冷房運転において実行される。   As described above, the current reference value IrefC is larger than the current reference value IrefH. When the high pressure is smaller than the pressure reference value Pref in the heating operation, the current I does not exceed the current reference value IrefC because it is smaller than the current reference value IrefH. Therefore, the stop of the compressor 10 by the compressor stop unit 35 is not executed in the heating operation but executed in the cooling operation.

四方切替弁制御部41は第1の実施の形態で説明したように、暖房運転において温度検出部51によって検出される飽和温度Tが温度基準値Trefを超えたときに、四方切替弁制御部41が四方切替弁12に冷房接続状態Cを選択させる。したがって、暖房接続状態Hが採用された状態で高圧が圧力基準値Prefを超えることを回避できる。   As described in the first embodiment, the four-way switching valve control unit 41 has a four-way switching valve control unit 41 when the saturation temperature T detected by the temperature detection unit 51 in the heating operation exceeds the temperature reference value Tref. Causes the four-way switching valve 12 to select the cooling connection state C. Therefore, it can be avoided that the high pressure exceeds the pressure reference value Pref in the state where the heating connection state H is adopted.

以上のように、暖房接続状態Hが採用されるときには、飽和温度Tに基づいて冷房接続状態Cを採用することで圧力が圧力基準値Prefを超えることを回避でき、冷房接続状態Cが採用されるときには、電流Iに基づいて圧縮機10を停止することで圧力が圧力基準値Prefを超えることを回避する。   As described above, when the heating connection state H is adopted, it is possible to avoid the pressure from exceeding the pressure reference value Pref by adopting the cooling connection state C based on the saturation temperature T, and the cooling connection state C is adopted. In order to prevent the pressure from exceeding the pressure reference value Pref, the compressor 10 is stopped based on the current I.

さて温度検出部51で検出した圧力の検出精度は電流検出部33で検出した圧力の検出精度よりも低い。これは例えば次の理由によると考察される。即ち、温度検出部51は室内熱交換器21の温度を検出しており、実際の冷媒の飽和温度Tとのずれが生じるからである。   The pressure detection accuracy detected by the temperature detection unit 51 is lower than the pressure detection accuracy detected by the current detection unit 33. This is considered, for example, for the following reason. That is, the temperature detector 51 detects the temperature of the indoor heat exchanger 21, and a deviation from the actual refrigerant saturation temperature T occurs.

第2の実施の形態によれば、暖房接続状態Hではより精度の低い飽和温度Tにより圧力を検出し、冷房接続状態Cではより精度の高い電流Iにより圧力を検出する。したがって暖房接続状態Hで電流Iを検出し冷房接続状態Cで飽和温度Tを検出する場合に比べて、より正確に高圧が圧力基準値Prefを超えることを抑制することができる。   According to the second embodiment, in the heating connection state H, the pressure is detected by the saturation temperature T with lower accuracy, and in the cooling connection state C, the pressure is detected by the current I with higher accuracy. Therefore, compared with the case where the current I is detected in the heating connection state H and the saturation temperature T is detected in the cooling connection state C, it is possible to suppress the high pressure from exceeding the pressure reference value Pref more accurately.

しかも図5の例示では、圧縮機停止部35は比較器351と論理回路352とを有している。よって高圧をその圧力基準値Pref以下に維持することをハードウェアで実現できる。したがってソフトウェアで実現する場合に比べて信頼性が高い。もちろん、ソフトウェアで実現してもよい。   In addition, in the illustration of FIG. 5, the compressor stop unit 35 includes a comparator 351 and a logic circuit 352. Therefore, it is possible to realize the maintenance of the high pressure below the pressure reference value Pref by hardware. Therefore, the reliability is higher than that realized by software. Of course, it may be realized by software.

また図6に例示するように電力変換部1はスイッチS1を備えていても良い。スイッチS1は電源E1と電力変換部1aとの間に設けられ、電源E1から電力変換部1aへの電源の供給/遮断を選択する。なお電力変換部1aは図1の電力変換部1と同じであって例えば電源E1からの直流電圧を交流電圧に変換する。また図6の例示では2つスイッチS1が電源E1と電力変換部1aとの間に設けられているが、いずれか一方のみが設けられてもよい。   Further, as illustrated in FIG. 6, the power conversion unit 1 may include a switch S1. The switch S1 is provided between the power supply E1 and the power conversion unit 1a, and selects supply / cutoff of power from the power supply E1 to the power conversion unit 1a. The power conversion unit 1a is the same as the power conversion unit 1 in FIG. 1 and converts, for example, a DC voltage from the power source E1 into an AC voltage. In the illustration of FIG. 6, two switches S1 are provided between the power source E1 and the power conversion unit 1a, but only one of them may be provided.

そして比較器351は電流Iと電流基準値IrefCとを比較し、電流Iが電流基準値IrefCよりも大きいときにスイッチS1を遮断する信号をスイッチS1へと与える。これによって電動機M1が停止し、ひいては圧縮機10が停止する。このような構成でも、ハードウェアで圧縮機停止部35を実現できるので信頼性が高い。   The comparator 351 compares the current I with the current reference value IrefC, and gives a signal to the switch S1 to cut off the switch S1 when the current I is larger than the current reference value IrefC. As a result, the electric motor M1 stops, and as a result, the compressor 10 stops. Even in such a configuration, the compressor stop unit 35 can be realized by hardware, so that the reliability is high.

3 圧縮機制御部
10 圧縮機
11,21 熱交換器
12 四方切替弁
22 膨張機構
33 電流検出部
41 四方切替弁制御部
51 温度検出部
300 冷媒回路
DESCRIPTION OF SYMBOLS 3 Compressor control part 10 Compressor 11, 21 Heat exchanger 12 Four-way switching valve 22 Expansion mechanism 33 Current detection part 41 Four-way switching valve control part 51 Temperature detection part 300 Refrigerant circuit

Claims (4)

電動機(M1)を有して冷媒を圧縮する圧縮機(10)と、室内熱交換器(21)と、室外熱交換器(11)と、前記圧縮機の吸入口(10b)および吐出口(10a)をそれぞれ前記室外熱交換器の一端(11a)および前記室内熱交換器の一端(21a)に接続する暖房接続状態(H)と前記吸入口及び前記吐出口をそれぞれ前記室内熱交換器の前記一端および前記室外熱交換器の前記一端に接続する冷房接続状態(C)とを切り替える四方切替弁(12)と、前記室内熱交換器の他端(21b)と前記室外熱交換器の他端(11b)との間に設けられる膨張機構(22)とを有し、前記冷媒が循環する冷媒回路(300)と、
前記冷媒の前記吐出口側における圧力を検出する圧力検出部(51,33)と、
前記四方切替弁を制御する機能を有し、前記四方切替弁に前記暖房接続状態を選択させた状態での前記圧力が圧力基準値よりも大きいときに前記四方切替弁に前記冷房接続状態を選択させる四方切替弁制御部(41)と
を備える、空気調和機。
A compressor (10) having an electric motor (M1) for compressing refrigerant, an indoor heat exchanger (21), an outdoor heat exchanger (11), and an intake port (10b) and a discharge port ( 10a) is connected to one end (11a) of the outdoor heat exchanger and one end (21a) of the indoor heat exchanger, respectively, in a heating connection state (H), and the suction port and the discharge port are respectively connected to the indoor heat exchanger. The one-way switching valve (12) for switching between the one end and the cooling connection state (C) connected to the one end of the outdoor heat exchanger, the other end (21b) of the indoor heat exchanger, and the other of the outdoor heat exchanger An expansion mechanism (22) provided between the end (11b), and a refrigerant circuit (300) through which the refrigerant circulates,
A pressure detector (51, 33) for detecting the pressure of the refrigerant on the outlet side;
Having the function of controlling the four-way switching valve, and selecting the cooling connection state for the four-way switching valve when the pressure is larger than a pressure reference value when the heating connection state is selected by the four-way switching valve. An air conditioner comprising a four-way switching valve control unit (41).
前記圧力検出部は、前記冷媒の前記圧力として前記室内熱交換器(21)の温度を検出する温度検出部(51)を有し、
前記四方切替弁制御部(41)は、前記四方切替弁(12)に前記暖房接続状態(H)を選択させた状態での前記温度が、前記圧力基準値に対応する温度基準値よりも大きいときに、前記四方切替弁に前記冷房接続状態(C)を選択させる、請求項1に記載の空気調和機。
The pressure detection unit has a temperature detection unit (51) for detecting the temperature of the indoor heat exchanger (21) as the pressure of the refrigerant,
The four-way switching valve controller (41) is configured such that the temperature in a state where the heating connection state (H) is selected by the four-way switching valve (12) is larger than a temperature reference value corresponding to the pressure reference value. The air conditioner according to claim 1, wherein the four-way switching valve is caused to select the cooling connection state (C).
前記圧力検出部は、前記冷媒の前記圧力として前記電動機(M1)の電流を検出する電流検出部(33)を有し、
前記四方切替弁制御部(41)は、前記四方切替弁(12)に前記暖房接続状態(H)を選択させた状態において前記圧力基準値に対応する電流基準値よりも、前記電流が大きいときに前記四方切替弁に前記冷房接続状態(C)を選択させる、請求項1に記載の空気調和機。
The pressure detection unit includes a current detection unit (33) that detects a current of the electric motor (M1) as the pressure of the refrigerant,
The four-way switching valve control unit (41), when the current is larger than the current reference value corresponding to the pressure reference value in the state where the heating connection state (H) is selected by the four-way switching valve (12). The air conditioner according to claim 1, wherein the four-way switching valve is caused to select the cooling connection state (C).
前記圧力検出部は、前記冷媒の前記圧力として前記電動機(M1)の電流を検出する電流検出部(33)をさらに有し、
前記空気調和機は、前記四方切替弁(12)が前記冷房接続状態(C)を採用した状態において、前記圧力基準値に対応する電流基準値よりも前記電流が大きいときに、前記電動機(M1)を停止して前記圧縮機(10)を停止させる圧縮機停止部(35)を更に備える、請求項2に記載の空気調和機。
The pressure detection unit further includes a current detection unit (33) that detects a current of the electric motor (M1) as the pressure of the refrigerant,
When the current is larger than the current reference value corresponding to the pressure reference value in a state where the four-way switching valve (12) adopts the cooling connection state (C), the air conditioner has the electric motor (M1 The air conditioner according to claim 2, further comprising a compressor stop section (35) for stopping the compressor (10) by stopping the compressor.
JP2012096251A 2012-04-20 2012-04-20 Air conditioner Expired - Fee Related JP5776620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012096251A JP5776620B2 (en) 2012-04-20 2012-04-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012096251A JP5776620B2 (en) 2012-04-20 2012-04-20 Air conditioner

Publications (2)

Publication Number Publication Date
JP2013224754A true JP2013224754A (en) 2013-10-31
JP5776620B2 JP5776620B2 (en) 2015-09-09

Family

ID=49594922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012096251A Expired - Fee Related JP5776620B2 (en) 2012-04-20 2012-04-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP5776620B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208370A (en) * 1990-11-30 1992-07-30 Daikin Ind Ltd Operation controller for air conditioner
JPH05256543A (en) * 1992-03-10 1993-10-05 Daikin Ind Ltd Operational failure detector for air conditioner
JPH10132406A (en) * 1996-10-31 1998-05-22 Daikin Ind Ltd Refrigerating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208370A (en) * 1990-11-30 1992-07-30 Daikin Ind Ltd Operation controller for air conditioner
JPH05256543A (en) * 1992-03-10 1993-10-05 Daikin Ind Ltd Operational failure detector for air conditioner
JPH10132406A (en) * 1996-10-31 1998-05-22 Daikin Ind Ltd Refrigerating system

Also Published As

Publication number Publication date
JP5776620B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5474048B2 (en) Air conditioner
WO2019172008A1 (en) Refrigeration cycle device
JP2015045479A (en) Hot-cold water air conditioning system
WO2013108290A1 (en) Air conditioner
JP5908183B1 (en) Air conditioner
JPWO2015162679A1 (en) Refrigeration cycle equipment
JP5846226B2 (en) Air conditioner
JPWO2014203364A1 (en) Heat pump equipment
JP2013210145A (en) Floor heating device and temperature control system
JP6578920B2 (en) Air conditioner control device
JP6749471B2 (en) Air conditioner
JP2012202581A (en) Refrigeration cycle device and control method thereof
JP2013245922A (en) Air conditioning apparatus
JP2013130160A (en) Air conditioner
JP6147659B2 (en) Heat pump equipment
JP6800283B2 (en) Air conditioner
JP2016090142A (en) Two-stage compression type refrigeration cycle, and its control device and control method
JP6509047B2 (en) Air conditioner
WO2017138133A1 (en) Hot water/cold water air-conditioning system
JP6333109B2 (en) Combined heat source heat pump device
JP5776620B2 (en) Air conditioner
JP2011257097A (en) Multi-room type air conditioning apparatus
WO2015132951A1 (en) Refrigeration device
JP6359398B2 (en) Combined heat source heat pump device
JP6143682B2 (en) Combined heat source heat pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

LAPS Cancellation because of no payment of annual fees