JP6749471B2 - Air conditioner - Google Patents
Air conditioner Download PDFInfo
- Publication number
- JP6749471B2 JP6749471B2 JP2019508425A JP2019508425A JP6749471B2 JP 6749471 B2 JP6749471 B2 JP 6749471B2 JP 2019508425 A JP2019508425 A JP 2019508425A JP 2019508425 A JP2019508425 A JP 2019508425A JP 6749471 B2 JP6749471 B2 JP 6749471B2
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- temperature
- indoor
- heat exchanger
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003507 refrigerant Substances 0.000 claims description 59
- 238000010438 heat treatment Methods 0.000 claims description 34
- 238000004378 air conditioning Methods 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 9
- 230000001143 conditioned effect Effects 0.000 claims description 3
- 230000002051 biphasic effect Effects 0.000 claims 1
- 230000006835 compression Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 claims 1
- 239000010721 machine oil Substances 0.000 description 7
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- FXRLMCRCYDHQFW-UHFFFAOYSA-N 2,3,3,3-tetrafluoropropene Chemical compound FC(=C)C(F)(F)F FXRLMCRCYDHQFW-UHFFFAOYSA-N 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Description
この発明は、空気調和装置の運転制御に係り、特に運転起動時の圧縮機の信頼性を向上させる制御に関する。 The present invention relates to operation control of an air conditioner, and more particularly to control for improving reliability of a compressor at the time of starting operation.
一般に、空気調和機による空調運転で、冷房運転シーズンと暖房運転シーズンとの間の中間期などの低負荷時には、圧縮機の回転数(運転周波数)を低下させることで空調能力を下げて運転することになる。このような圧縮機回転数が低い運転では、冷媒回路を循環する冷媒の高圧側圧力と低圧側圧力との差である高低圧差が付きにくく、圧縮機からの吐出冷媒過熱度(吐出SH)が低下し易い状態となる。この吐出SHが低下すると、圧縮機内の冷凍機油濃度が低下することに伴い、シール性が低下するため圧縮機故障の原因となる。また、吐出SHが低下した状態で停止すると、圧縮機が再起動する際に急激な差圧の上昇で圧縮機に溜められている冷媒及び冷凍機油が冷媒回路内に持ち出され、さらなる冷凍機油濃度低下に至り圧縮機故障の原因となることがある。 Generally, during air-conditioning operation by an air conditioner, when the load is low, such as in the intermediate period between the cooling operation season and the heating operation season, the air conditioning capacity is lowered to operate by lowering the rotation speed (operating frequency) of the compressor. It will be. In such a low compressor rotation speed operation, a high-low pressure difference, which is a difference between the high-pressure side pressure and the low-pressure side pressure of the refrigerant circulating in the refrigerant circuit, is unlikely to occur, and the refrigerant superheat degree (discharge SH) discharged from the compressor is low. It will be in a state where it easily falls. When the discharge SH is lowered, the concentration of the refrigerating machine oil in the compressor is lowered, and the sealing property is lowered, which causes a compressor failure. Further, if the discharge SH is stopped in the state of being lowered, the refrigerant and the refrigerating machine oil accumulated in the compressor are taken out into the refrigerant circuit due to a sharp increase in the differential pressure when the compressor is restarted, and the refrigerating machine oil concentration is further increased. This may lead to a decrease and cause a compressor failure.
それを改善する従来の技術としては、圧縮機が停止するときに、圧縮機吐出冷媒過熱度(吐出SH)を検出して、その吐出SHが一定以上となるまで圧縮機の停止を遅延させる制御が開示されている(例えば、特許文献1参照)。 As a conventional technique for improving it, a control for detecting the compressor discharge refrigerant superheat degree (discharge SH) when the compressor is stopped and delaying the stop of the compressor until the discharge SH becomes a certain value or more. Is disclosed (for example, see Patent Document 1).
しかしながら、特許文献1に記載された空気調和機では、吐出SHが低下し冷凍機油濃度が低下したままの状態で長時間運転が継続されるケースがあり、そうした際の圧縮機の信頼性低下を防ぐことができないという問題がある。また、不必要な運転時間の継続によりそれによる消費電力増加となり省エネ性が悪化するという問題もある。 However, in the air conditioner described in Patent Document 1, there is a case in which the discharge SH is reduced and the refrigerating machine oil concentration is kept low for a long period of time, and the reliability of the compressor is deteriorated. There is a problem that cannot be prevented. There is also a problem in that the energy consumption is deteriorated due to an increase in power consumption due to unnecessary continuation of the operating time.
この発明は、上記のよう課題を解決するためになされたもので、圧縮機停止時に冷媒吐出SHが所定値以上となるように圧縮機内の冷媒のガス化を促進させることで冷媒吐出SHを上昇させ、圧縮機の信頼性を向上することを目的とする。 The present invention has been made to solve the above problems, and increases the refrigerant discharge SH by promoting gasification of the refrigerant in the compressor so that the refrigerant discharge SH becomes a predetermined value or more when the compressor is stopped. The purpose is to improve the reliability of the compressor.
この発明に係る空気調和装置は、圧縮機と、室外熱交換器と、膨張弁と、室内熱交換器と、暖房運転及び冷房運転の冷媒の流れ方向を切換える四方弁と、を備える冷媒回路と、圧縮機から吐出される冷媒の吐出配管温度を検出する吐出配管温度センサと、圧縮機の外郭シェル温度を検出する圧縮機温度センサと、室外熱交換器の気液二相状態の冷媒の温度を検出する室外熱交換器二相温度センサと、室内熱交換器の気液二相状態の冷媒の温度を検出する室内熱交換器二相温度センサと、室内熱交換器により空調された室内空気の温度を検出する室内吸込温度センサと、室内吸込温度センサにより検出した室内吸込温度と室内空調の設定温度との差に基づいて圧縮機を制御する制御装置と、を備え、制御装置は、室内吸込温度と設定温度に基づくサーモOFFを判定したら、外郭シェル温度と吐出配管温度のどちらか高い方を吐出冷媒温度とし、この吐出冷媒温度から凝縮器側の気液二相冷媒温度を差し引いて算出した圧縮機吐出SHが所定の閾値より小さい場合は圧縮機運転を継続させるとともに圧縮機加熱手段を動作させ、圧縮機吐出SHが所定の閾値以上となったら圧縮機を停止させるものである。 An air conditioner according to the present invention includes a compressor, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger, and a four-way valve that switches a flow direction of the refrigerant in heating operation and cooling operation, and a refrigerant circuit. a discharge pipe temperature sensor for detecting the discharge pipe temperature of the refrigerant discharged from the compressor, a compressor temperature sensor for detecting the outer shell temperature of the compressor, the temperature of the gas-liquid two-phase refrigerant of the outdoor heat exchanger Outdoor heat exchanger two-phase temperature sensor to detect the, indoor heat exchanger two-phase temperature sensor to detect the temperature of the refrigerant in the gas-liquid two-phase state of the indoor heat exchanger, indoor air conditioned by the indoor heat exchanger An indoor suction temperature sensor that detects the temperature of the indoor suction temperature sensor, and a control device that controls the compressor based on the difference between the indoor suction temperature detected by the indoor suction temperature sensor and the set temperature of the indoor air conditioning, and the control device is the indoor When it is determined the thermo OFF based on the suction temperature and the set temperature, the higher one of the outer Guo shell temperature and the discharge pipe temperature of the discharge refrigerant temperature, by subtracting the gas-liquid two-phase refrigerant temperature of the condenser side from the discharge refrigerant temperature When the calculated compressor discharge SH is smaller than the predetermined threshold value, the compressor operation is continued and the compressor heating means is operated, and when the compressor discharge SH becomes the predetermined threshold value or more, the compressor is stopped.
この発明に係る空気調和装置は、圧縮機と、室外熱交換器と、膨張弁と、室内熱交換器と、暖房運転及び冷房運転の冷媒の流れ方向を切換える四方弁と、を備える冷媒回路と、圧縮機から吐出される冷媒の吐出配管温度を検出する吐出配管温度センサと、圧縮機の外郭シェル温度を検出する圧縮機温度センサと、室外熱交換器の気液二相状態の冷媒の温度を検出する室外熱交換器二相温度センサと、室内熱交換器の気液二相状態の冷媒の温度を検出する室内熱交換器二相温度センサと、室内熱交換器により空調された室内空気の温度を検出する室内吸込温度センサと、室内吸込温度センサにより検出した室内吸込温度と室内空調の設定温度との差に基づいて圧縮機を制御する制御装置とを備え、制御装置は、室内吸込温度と設定温度に基づくサーモOFFを判定したら、外郭シェル温度と吐出配管温度のどちらか高い方を吐出冷媒温度とし、この吐出冷媒温度から凝縮器側の気液二相冷媒温度を差し引いて算出した圧縮機吐出SHが所定の閾値より小さい場合は圧縮機運転を継続させるとともに圧縮機加熱手段を動作させ、圧縮機吐出SHが所定の閾値以上となったら圧縮機を停止させるので、停止時の冷凍機油濃度低下を防ぎ圧縮機の信頼性を向上するとともに、運転継続時間の削減により省エネ性を向上することができるという効果を奏する。 An air conditioner according to the present invention includes a compressor, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger, and a four-way valve that switches a flow direction of the refrigerant in heating operation and cooling operation, and a refrigerant circuit. a discharge pipe temperature sensor for detecting the discharge pipe temperature of the refrigerant discharged from the compressor, a compressor temperature sensor for detecting the outer shell temperature of the compressor, the temperature of the gas-liquid two-phase refrigerant of the outdoor heat exchanger Outdoor heat exchanger two-phase temperature sensor to detect the, indoor heat exchanger two-phase temperature sensor to detect the temperature of the refrigerant in the gas-liquid two-phase state of the indoor heat exchanger, indoor air conditioned by the indoor heat exchanger The indoor suction temperature sensor that detects the temperature of the indoor suction temperature sensor, and the control device that controls the compressor based on the difference between the indoor suction temperature detected by the indoor suction temperature sensor and the set temperature of the indoor air conditioning, When it is determined the thermo OFF based on the temperature and the set temperature, the higher one of the outer Guo shell temperature and the discharge pipe temperature of the discharged refrigerant temperature, calculated by subtracting the gas-liquid two-phase refrigerant temperature of the condenser side from the discharge refrigerant temperature When the compressor discharge SH is smaller than the predetermined threshold value, the compressor operation is continued and the compressor heating means is operated, and when the compressor discharge SH becomes equal to or larger than the predetermined threshold value, the compressor is stopped. It is possible to prevent a decrease in refrigerating machine oil concentration, improve the reliability of the compressor, and reduce energy consumption by reducing the operation duration time.
実施の形態1.
図1〜図2は、本発明の実施の形態1に係る空気調和装置を説明するものであって、図1は冷媒回路の構成を模式的に示す冷媒回路構成図、図2は空気調和装置を説明する制御フローを示すフローチャートである。Embodiment 1.
1 and 2 illustrate an air conditioning apparatus according to Embodiment 1 of the present invention, FIG. 1 is a refrigerant circuit configuration diagram schematically showing a configuration of a refrigerant circuit, and FIG. 2 is an air conditioning apparatus. 3 is a flowchart showing a control flow for explaining the above.
図1において、空気調和装置は互いに冷媒配管によって接続された室外機17と室内機18から構成されている。
室外機17には、冷媒を圧縮する運転周波数(圧縮機運転周波数)を変更可能な圧縮機1と、冷媒の流れ方向を切換えるための四方弁2と、室外空気との間で熱交換する室外熱交換器3と、室外熱交換器3に向けて室外空気を供給する室外ファン4と、冷媒を膨張する膨張弁5とが設けられている。一方、室内機18には、室内空気との間で熱交換する室内熱交換器6と、室内熱交換器6に向けて室内空気を供給する室内ファン7とが設けられている。そして、室外機17と室内機16は、ガス側接続配管20と液側接続配管21とで配管接続され冷媒が循環する。冷媒は、例えば、HFO−1234yfなどのHFO単体冷媒、又はHFO冷媒とR32などのHFC冷媒との混合冷媒である。In FIG. 1, the air conditioner includes an outdoor unit 17 and an indoor unit 18, which are connected to each other by a refrigerant pipe.
The outdoor unit 17 includes a compressor 1 capable of changing an operating frequency for compressing the refrigerant (compressor operating frequency), a four-
空気調和装置の空調運転において、室内を冷房する場合には、圧縮機1から吐出された冷媒は、四方弁2、室外熱交換器3、膨張弁5、室内熱交換器6の順に流れ、再度四方弁2を経由して冷媒容器8から圧縮機1に戻る冷媒回路が形成され、冷凍サイクルが実行される。また、室内を暖房する場合には、圧縮機1から吐出された冷媒は、四方弁2、室内熱交換器6、膨張弁5、室外熱交換器3の順に流れ、再度四方弁2を経由して圧縮機1に戻る冷媒回路が形成され、冷凍サイクルが実行される。
In the air conditioning operation of the air conditioner, when cooling the room, the refrigerant discharged from the compressor 1 flows in the order of the four-
空気調和装置は、リモコン22と、室内機18の室内制御装置10と、室外機17の室外制御装置9とが通信線で接続され運転制御情報を互いに送受信して利用者の設定条件を満たすように空調制御を行う。
In the air conditioner, the remote controller 22, the
空気調和装置には各種センサが設置されている。室外機17には、圧縮機1の外郭シェル温度を検出するための圧縮機温度センサ11、吐出冷媒温度として吐出配管温度Tdを検出する吐出配管温度センサ12、室外熱交換器3での気液二相状態の冷媒の温度を検出するための室外熱交換器二相温度センサ13が設けられている。そして、室内機18には、室内熱交換器6での気液二相状態の冷媒の温度を検出するための室内熱交換器二相温度センサ14、室内空気の温度を検出する室内吸込温度センサ15が設けられている。
Various sensors are installed in the air conditioner. The outdoor unit 17 includes a compressor temperature sensor 11 for detecting an outer shell temperature of the compressor 1, a discharge pipe temperature sensor 12 for detecting a discharge pipe temperature Td as a discharge refrigerant temperature, and a gas-liquid in the
また、室外制御装置9は、内部に圧縮機運転継続手段を有し、圧縮機温度センサ11と吐出配管温度センサ12と室外熱交換器二相温度センサ13と室内熱交換器二相温度センサ14とから検知されたそれぞれの温度を用いて圧縮機運転継続中は逐次、圧縮機吐出SH(吐出冷媒過熱度)を算出し、運転停止時にこの圧縮機吐出SHが一定以上となるように運転を制御する。
Further, the outdoor control device 9 has a compressor operation continuation means inside thereof, and has a compressor temperature sensor 11, a discharge pipe temperature sensor 12, an outdoor heat exchanger two-
さらに、室外制御装置9は、内部に圧縮機加熱制御手段を有し、空調運転継続中の圧縮機1を加熱することで吐出SHを上昇させるために設けた圧縮機加熱手段16を動作制御する。 Further, the outdoor control device 9 has a compressor heating control means inside, and controls the operation of the compressor heating means 16 provided to raise the discharge SH by heating the compressor 1 during the air conditioning operation. ..
この圧縮機加熱手段16は、室外制御装置9による空調のための圧縮機の運転回転数は変化させずに電流のみを増大させて発熱を促進させる制御手段でも、または圧縮機外郭に電熱線を巻き付けて通電することで加熱する電気ヒータ加熱手段でもよく、その両方を組み合わせても良い。 The compressor heating means 16 may be a control means that accelerates heat generation by increasing only the current without changing the operating speed of the compressor for air conditioning by the outdoor control device 9, or by supplying a heating wire to the outer shell of the compressor. An electric heater heating means for heating by winding and energizing may be used, or both may be combined.
例えば、制御手段による圧縮機加熱手段16では、圧縮機1の電動機部モータの各相への通電する電流を変化させてジュール熱が通常より高く発生するように構成される。 For example, the compressor heating means 16 by the control means is configured so that the current flowing to each phase of the electric motor motor of the compressor 1 is changed to generate Joule heat higher than usual.
次に、空気調和装置の制御動作について説明する。
図2は本発明の実施の形態1に係る制御フローである。図2は空気調和装置がリモコン22からユーザーが設定する設定温度と室内吸込温度センサ15により検出された室内吸込温度によりサーモONやサーモOFFする場合について記載しているが、サーモOFFについては、例えばユーザーがリモコン22から空調運転を停止した場合についても同様であるので説明は省略する。Next, the control operation of the air conditioner will be described.
FIG. 2 is a control flow according to the first embodiment of the present invention. FIG. 2 shows the case where the air conditioner turns on or off the thermostat depending on the set temperature set by the user from the remote controller 22 and the indoor suction temperature detected by the indoor suction temperature sensor 15. The same applies to the case where the user stops the air conditioning operation from the remote controller 22, and the description thereof will be omitted.
まず、ユーザーがリモコン22から運転開始指示(運転ON指令)を発信する(S1)。そして、室内制御装置10及び室外制御装置9は、このリモコン22からの運転開始指示を受けてサーモON判定を行う。例えば、冷房運転の場合、室内吸込温度センサ15により検出された室内吸込温度が、リモコン22からの設定温度より高いと冷房サーモONが成立し、一方、暖房運転の場合、室内吸込温度センサ15により検出された室内吸込温度がリモコン22からの設定温度より低いと暖房サーモONが成立する(S2)。
First, the user sends an operation start instruction (operation ON instruction) from the remote controller 22 (S1). Then, the
次に、サーモON判定が成立したら、圧縮機1の運転を開始する(S3)。それと同時に、室外ファン4や室内ファン7も運転を開始するが、圧縮機1以外のアクチュエータ動作についての説明は省略する。
Next, when the thermo-ON determination is established, the operation of the compressor 1 is started (S3). At the same time, the
室内制御装置10及び室外制御装置9は、圧縮機1の運転中は常にサーモOFF判定を行う(S4)。例えば、冷房運転の場合、室内吸込温度センサ15により検出された室内吸込温度がリモコン22の設定温度以下となるまで圧縮機1の運転を行い、室内吸込温度センサ15により検出された室内吸込温度がリモコン22の設定温度以下となるとサーモOFFが成立したと判定する。
The
そして、サーモOFFが成立したら室外制御装置9は、再度、圧縮機吐出SHを算出する。冷房運転の場合は、圧縮機シェル温度センサ11により検出された圧縮機シェル温度と吐出配管温度センサ12により検出された吐出冷媒温度のどちらか高い方から、室外熱交換器二相温度センサ13により検出された凝縮器の冷媒凝縮飽和温度である室外熱交換器二相温度を差し引いた値として算出される。暖房運転の場合は、圧縮機シェル温度と吐出冷媒温度のどちらか高い方から、室内熱交換器二相温度センサ14により検出した室内熱交換器二相温度を差し引いた値として算出される。
Then, when the thermo OFF is established, the outdoor control device 9 calculates the compressor discharge SH again. In the case of the cooling operation, the outdoor heat exchanger two-
次に、室外制御装置9は、算出された圧縮機吐出SHが予め設定された閾値以上であるかどうかを判定する(S5)。例えば、予め設定された閾値を10degとすると、圧縮機吐出SH≧10degであれば、YESの判定となり圧縮機1の運転を停止させ(S7)、NOの判定である圧縮機吐出SH<10degの場合は圧縮機の継続運転を実行させる。 Next, the outdoor control device 9 determines whether the calculated compressor discharge SH is equal to or more than a preset threshold value (S5). For example, assuming that the preset threshold value is 10 deg, if the compressor discharge SH≧10 deg, the determination is YES, the operation of the compressor 1 is stopped (S7), and the NO determination is that the compressor discharge SH<10 deg. In this case, continue operation of the compressor.
この吐出SH判定(S5)にてNOの判定で圧縮機継続運転となると、室外制御装置9は、圧縮機の運転継続中に、圧縮機加熱手段16へ動作指令を送信し、圧縮機加熱動作を行う(S6)。 When the discharge SH determination (S5) is NO and the compressor is in continuous operation, the outdoor control device 9 transmits an operation command to the compressor heating means 16 while the compressor is continuously operating to perform the compressor heating operation. (S6).
室外制御装置9は、その動作の間も圧縮機吐出SH判定(S5)を行い、圧縮機吐出SH≧10deg(閾値)となるまで圧縮機加熱動作を継続し、測定算出する圧縮機吐出SHが10deg以上となると圧縮機1の運転を停止させる(S7)。 The outdoor control device 9 also performs the compressor discharge SH determination (S5) during the operation, continues the compressor heating operation until the compressor discharge SH≧10 deg (threshold value), and the compressor discharge SH to be measured and calculated is When it becomes 10 deg or more, the operation of the compressor 1 is stopped (S7).
また、上述の実施例では、サーモOFF判定(S4)を実施し、その判定結果に基づき次ステップの吐出SH判定(S5)に移り、この吐出SH判定により圧縮機加熱ON(S6)動作を実行するかどうかとなる制御フローを説明したが、サーモOFF判定(S4)で確定する前の段階にて吐出SH判定(S5)を行い、その判定に伴う圧縮機加熱ON(S6)を実行する制御フローでも良く、より早く吐出SHを所定の閾値以上に上昇到達できる。 In addition, in the above-described embodiment, the thermostat OFF determination (S4) is performed, and the discharge SH determination (S5) of the next step is performed based on the determination result, and the compressor heating ON (S6) operation is executed by this discharge SH determination. Although the control flow as to whether or not to perform is described, the discharge SH determination (S5) is performed at a stage before being determined by the thermo OFF determination (S4), and the compressor heating ON (S6) associated with the determination is executed. A flow may be used, and the discharge SH can be raised and reached to a predetermined threshold value or more faster.
その際、圧縮機ON(S3)以降の継続運転中には、空調運転時間の経過につれて、室内吸込温度と設定温度との差が小さくなる傾向を示すので、その温度差の変化に基づき、サーモOFF判定(S4)で確定するよりも以前に圧縮機加熱ON(S6)動作を実施することとなる。 At that time, during the continuous operation after the compressor is turned on (S3), the difference between the indoor intake temperature and the set temperature tends to become smaller as the air conditioning operation time elapses. The compressor heating ON (S6) operation is carried out before the determination by the OFF judgment (S4).
室内吸込温度と設定温度との温度差の変化について、例えば、継続運転によりサーモOFFに到達するであろうと予測できると、この温度差が0.5deg以内になったら圧縮機加熱ON(S6)を実行することでも良く、又は、この温度差の時間変化率からサーモOFFに到達するであろう残りの運転時間を算出し、到達までに5分となった時点で圧縮機加熱ONを実行することでも良い。 Regarding the change in the temperature difference between the indoor suction temperature and the set temperature, for example, if it can be predicted that the thermostat will reach the thermo-OFF state due to the continuous operation, the compressor heating ON (S6) is turned on when the temperature difference falls within 0.5 deg. It is also possible to execute it, or calculate the remaining operating time that will reach the thermostat OFF from the time change rate of this temperature difference, and execute the compressor heating ON when it reaches 5 minutes before reaching it. But good.
このような制御フローに基づく、圧縮機吐出SHによる圧縮機加熱動作を行うことにより、圧縮機1が運転停止する時には常に圧縮機内の冷凍機油濃度を所定値までに維持し、圧縮機1の駆動機構の冷凍機油によるシール性を確保することができるので、圧縮機の信頼性を高めることができる効果を有する。 By performing the compressor heating operation by the compressor discharge SH based on such a control flow, the refrigerating machine oil concentration in the compressor is always maintained to a predetermined value when the compressor 1 is stopped, and the compressor 1 is driven. Since the sealability of the mechanism with the refrigerating machine oil can be secured, there is an effect that the reliability of the compressor can be enhanced.
1 圧縮機
2 四方弁
3 室外熱交換器
4 室外ファン
5 膨張弁
6 室内熱交換器
7 室内ファン
8 冷媒容器
9 室外制御装置
10 室内制御装置
11 圧縮機温度センサ
12 吐出配管温度センサ
13 室外熱交換器二相温度センサ
14 室内熱交換器二相温度センサ
15 室内吸込温度センサ
16 圧縮機加熱手段
17 室外機
18 室内機
19 通信線
20 ガス側接続配管
21 液側接続配管
22 リモコン1
Claims (3)
前記圧縮機から吐出される冷媒の吐出配管温度を検出する吐出配管温度センサと、
前記圧縮機の外郭シェル温度を検出する圧縮機温度センサと、
前記室外熱交換器の気液二相状態の冷媒の温度を検出する室外熱交換器二相温度センサと、
前記室内熱交換器の気液二相状態の冷媒の温度を検出する室内熱交換器二相温度センサと、
前記室内熱交換器により空調された室内空気の温度を検出する室内吸込温度センサと、
前記室内吸込温度センサにより検出した室内吸込温度と室内空調の設定温度との差に基づいて前記圧縮機を制御する制御装置と、
を備え、
前記制御装置は、
前記室内吸込温度と前記設定温度に基づくサーモOFFを判定したら、前記外郭シェル温度と前記吐出配管温度のどちらか高い方を吐出冷媒温度とし、該吐出冷媒温度から前記室外熱交換器二相温度センサ又は前記室内熱交換器二相温度センサにより検出した凝縮器側の気液二相冷媒温度を差し引いて算出した圧縮機吐出SHが所定の閾値より小さい場合は圧縮機運転を継続させるとともに圧縮機加熱手段を動作させ、前記圧縮機吐出SHが所定の閾値以上となったら前記圧縮機を停止させることを特徴とする空気調和装置。 A compressor, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger, and a four-way valve that switches the flow direction of the refrigerant in the heating operation and the cooling operation, a refrigerant circuit provided with,
A discharge pipe temperature sensor for detecting the discharge pipe temperature of the refrigerant discharged from the compressor ,
A compressor temperature sensor for detecting the outer shell temperature before Symbol compressor,
An outdoor heat exchanger two-phase temperature sensor that detects the temperature of the refrigerant in the gas-liquid two-phase state of the outdoor heat exchanger,
An indoor heat exchanger two-phase temperature sensor that detects the temperature of the refrigerant in the gas-liquid two-phase state of the indoor heat exchanger,
An indoor suction temperature sensor for detecting the temperature of indoor air conditioned by the indoor heat exchanger,
A control device for controlling the compressor based on the difference between the indoor suction temperature detected by the indoor suction temperature sensor and the set temperature of indoor air conditioning,
Equipped with
The control device is
The indoor inlet temperature and when it is determined the thermo OFF based on the set temperature, before Kigai and Guo shell temperature either higher the discharge refrigerant temperature of the discharge pipe temperature, the outdoor heat exchanger biphasic from the discharged refrigerant temperature When the compressor discharge SH calculated by subtracting the gas-liquid two-phase refrigerant temperature on the condenser side detected by the temperature sensor or the indoor heat exchanger two-phase temperature sensor is smaller than a predetermined threshold value, the compressor operation is continued and compression is performed. An air conditioner which operates a machine heating means and stops the compressor when the compressor discharge SH becomes equal to or higher than a predetermined threshold value.
前記圧縮機が運転作動中は逐次、前記圧縮機吐出SHを算出し、前記室内吸込温度と前記設定温度に基づくサーモOFFの判定より前に前記圧縮機加熱手段を動作させることを特徴とする請求項1記載の空気調和装置。 The control device is
During the operation of the compressor, the compressor discharge SH is sequentially calculated, and the compressor heating means is operated before the thermostat OFF determination based on the indoor suction temperature and the set temperature. Item 1. The air conditioner according to Item 1.
前記圧縮機の運転回転数は変化させずに前記圧縮機の電動機部モータの各相への電流を変化させる加熱制御手段、又は圧縮機外郭に電熱線を巻き付けて通電する電気ヒータ加熱手段であることを特徴とする請求項1または2記載の空気調和装置。 The compressor heating means,
Heating control means for changing the current to each phase of the electric motor motor of the compressor without changing the operating speed of the compressor, or electric heater heating means for energizing by energizing a heating wire around the compressor shell. The air conditioner according to claim 1 or 2, characterized in that.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/012900 WO2018179137A1 (en) | 2017-03-29 | 2017-03-29 | Air conditioning device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018179137A1 JPWO2018179137A1 (en) | 2019-11-07 |
JP6749471B2 true JP6749471B2 (en) | 2020-09-02 |
Family
ID=63674608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019508425A Active JP6749471B2 (en) | 2017-03-29 | 2017-03-29 | Air conditioner |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6749471B2 (en) |
WO (1) | WO2018179137A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111322729B (en) * | 2018-12-17 | 2022-02-01 | 浙江盾安自控科技有限公司 | Air conditioner control method, device, system, equipment and storage medium |
CN111780382A (en) * | 2020-07-15 | 2020-10-16 | 海信(山东)空调有限公司 | Air conditioner |
AU2020468256B2 (en) * | 2020-09-17 | 2024-03-07 | Mitsubishi Electric Corporation | Refrigeration-cycle device, air conditioner comprising same, and method for controlling refrigeration-cycle device |
CN112352991B (en) * | 2020-11-18 | 2022-12-06 | 青岛海信日立空调系统有限公司 | Tobacco dryer and control method for electric heating of tobacco dryer |
JP2024141183A (en) * | 2023-03-29 | 2024-10-10 | 株式会社富士通ゼネラル | Refrigeration Cycle Equipment |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4636918Y1 (en) * | 1969-03-18 | 1971-12-20 | ||
JP4725387B2 (en) * | 2006-03-28 | 2011-07-13 | 三菱電機株式会社 | Air conditioner |
JP2011196272A (en) * | 2010-03-19 | 2011-10-06 | Daikin Industries Ltd | Screw compressor |
JP2014122769A (en) * | 2012-12-21 | 2014-07-03 | Daikin Ind Ltd | Refrigeration apparatus |
US10598413B2 (en) * | 2015-07-08 | 2020-03-24 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
-
2017
- 2017-03-29 WO PCT/JP2017/012900 patent/WO2018179137A1/en active Application Filing
- 2017-03-29 JP JP2019508425A patent/JP6749471B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2018179137A1 (en) | 2018-10-04 |
JPWO2018179137A1 (en) | 2019-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6749471B2 (en) | Air conditioner | |
WO2009119023A1 (en) | Freezing apparatus | |
JP5077414B2 (en) | Refrigeration unit outdoor unit | |
JP5982017B2 (en) | Dual refrigeration cycle equipment | |
JP6138711B2 (en) | Air conditioner | |
JP6071648B2 (en) | Air conditioner | |
JP5278575B1 (en) | Floor heating system and temperature control system | |
JP4270274B2 (en) | Outdoor unit | |
JP2010096474A (en) | Air-conditioning control device and air conditioning system | |
JP2013119954A (en) | Heat pump hot water heater | |
JP2009058222A (en) | Outdoor unit | |
JP2013200085A (en) | Air conditioner | |
JP6079707B2 (en) | air conditioner | |
JP2008241065A (en) | Refrigerating device and oil returning method of refrigerating device | |
JP6672619B2 (en) | Air conditioning system | |
JP2012007851A (en) | Heat pump cycle device | |
JP2015148387A (en) | Air conditioning device | |
JP5516332B2 (en) | Heat pump type hot water heater | |
JP2011242097A (en) | Refrigerating apparatus | |
JP6105270B2 (en) | Air conditioner | |
JP4796949B2 (en) | Air conditioner | |
JP2018179346A (en) | Refrigeration cycle device and hot water generation device including the same | |
JP2015148414A (en) | air conditioner | |
JP6367642B2 (en) | Air conditioner | |
JP7086276B2 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190628 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200428 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200626 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200714 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200811 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6749471 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |