JPH04208370A - Operation controller for air conditioner - Google Patents

Operation controller for air conditioner

Info

Publication number
JPH04208370A
JPH04208370A JP2340052A JP34005290A JPH04208370A JP H04208370 A JPH04208370 A JP H04208370A JP 2340052 A JP2340052 A JP 2340052A JP 34005290 A JP34005290 A JP 34005290A JP H04208370 A JPH04208370 A JP H04208370A
Authority
JP
Japan
Prior art keywords
detection means
discharge pipe
low pressure
refrigerant
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2340052A
Other languages
Japanese (ja)
Other versions
JP2684845B2 (en
Inventor
Masaki Yamamoto
山本 政樹
Shinichi Nakaishi
中石 伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2340052A priority Critical patent/JP2684845B2/en
Publication of JPH04208370A publication Critical patent/JPH04208370A/en
Application granted granted Critical
Publication of JP2684845B2 publication Critical patent/JP2684845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To rapidly return liquid refrigerant to an accumulator and to recover it by switching to a room cooling cycle side by reverse cycle operation control means if a low pressure side pressure becomes lower than a predetermined pressure value or a discharge tube temperature becomes lower than a predetermined temperature value, and opening a motor-driven expansion valve to operate in a reverse cycle. CONSTITUTION:At the time of a low pressure malfunction in which a low pressure side pressure Lp, detected by a low pressure sensor P2 is lower than a predetermined pressure value Lps or a discharge tube malfunction in which a discharge tube temperature Td detected by a discharge tube sensor TH4 is lower than a predetermined temperature value Tds, a condensed state to a refrigerant gas line, etc., is sensed, a four-way switching valve 5 is switched to a room cooling cycle side by operation control means 51A, and motor-driven expansion valves 13,..., in rooms are controlled to be opened to operate in a reverse cycle. Accordingly, liquid refrigerant stored in the line, etc., is rapidly returned to an accumulator 10, and recovered.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、空気調和装置の運転制御装置に係り、特に暖
房運転時におけるガス配管への冷媒の凝縮解消対策に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an operation control device for an air conditioner, and more particularly to measures to eliminate condensation of refrigerant in gas piping during heating operation.

(従来の技術) 従来より、例えば特開平2−126044号公報に開示
される如く、1台の室外ユニットに複数台の室内ユニッ
トを並列に配置していわゆるマルチ形の空気調和装置を
構成するとともに、暖房運転時には、各室内ユニットに
おける要求能力の割合に応じて各室内電動膨張弁の開度
を調節することにより、快適な空調を行おうとするもの
は公知の技術である。
(Prior Art) Conventionally, as disclosed in, for example, Japanese Unexamined Patent Publication No. 2-126044, a so-called multi-type air conditioner has been configured by arranging a plurality of indoor units in parallel to one outdoor unit. It is a well-known technology that during heating operation, comfortable air conditioning is achieved by adjusting the opening degree of each indoor electric expansion valve according to the ratio of required capacity in each indoor unit.

(発明が解決しようとする課題) ところで、例えば上記従来のものにおいて、ある室内ユ
ニットにおける要求能力が小さい場合、その室内ユニッ
トの室内電動膨張弁の開度か絞られ、冷媒循環量が少な
くなる。そして、特に室内の温度か低いと室内熱交換器
のガスライン等に冷媒が凝縮液化して滞溜することがあ
る。このような状態になると、メイン配管の側で冷媒が
不足して能力不足をきたすだけでなく、甚だしいときに
は、低圧が過低下して吐出管温度が異常に上昇する虞れ
があった。
(Problems to be Solved by the Invention) For example, in the conventional system described above, if the required capacity of a certain indoor unit is small, the opening degree of the indoor electric expansion valve of that indoor unit is reduced, and the amount of refrigerant circulation is reduced. Particularly when the indoor temperature is low, the refrigerant may condense and liquefy and accumulate in the gas line of the indoor heat exchanger. In such a situation, not only would there be a shortage of refrigerant on the main pipe side, resulting in insufficient capacity, but in extreme cases, there was a risk that the low pressure would drop too much and the temperature of the discharge pipe would rise abnormally.

また、斯かるガスライン等における冷媒の凝縮は必ずし
もマルチ形空気調和装置だけでなく、1台の室内ユニッ
トを配置したものについても、室内ユニットの要求能力
が非常に小さいときにはやはり生じる虞れがあった。
Furthermore, condensation of refrigerant in such gas lines, etc. is not necessarily limited to multi-type air conditioners, but may also occur in systems with a single indoor unit if the required capacity of the indoor unit is very small. Ta.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、冷媒状態から斯かる冷媒の凝縮状態を検知して、
凝縮した液冷媒を冷媒配管から脱出させる手段を講する
ことにより、適正な能力の維持と信頼性の向上とを図る
ことにある。
The present invention has been made in view of these points, and its purpose is to detect the condensed state of the refrigerant from the state of the refrigerant,
The purpose is to maintain proper capacity and improve reliability by providing a means for escaping condensed liquid refrigerant from refrigerant piping.

(課題を解決するための手段) 上記目的を達成するため本発明の解決手段は、低圧側圧
力の低下又は吐出管温度の上昇から冷媒の凝縮状態を検
知して、液冷媒をアキュムレータ。
(Means for Solving the Problem) In order to achieve the above object, the solving means of the present invention detects the condensed state of the refrigerant from a decrease in the pressure on the low pressure side or an increase in the discharge pipe temperature, and converts the liquid refrigerant into an accumulator.

レシーバ等に戻す運転を行うことにある。The purpose is to perform operation to return the signal to the receiver, etc.

具体的に請求項(1)の発明の講じた手段は、第1A図
に示すように(破線m1分を除<)、圧縮機(1)、室
外熱交換器(6)、電動膨張弁(13又は8)、室内熱
交換器(12)及びアキュムレータ(10)を順次接続
してなる冷媒回路(14)と、該冷媒回路(14)の冷
媒の循環経路を正逆切換えるサイクル切換機構(5)と
を備えた空気調和装置を前提とする。
Specifically, the measures taken by the invention of claim (1), as shown in FIG. 13 or 8), a refrigerant circuit (14) formed by sequentially connecting an indoor heat exchanger (12) and an accumulator (10), and a cycle switching mechanism (5) that switches the refrigerant circulation path of the refrigerant circuit (14) between forward and reverse directions. ).

そして、空気調和装置に運転制御装置として、暖房運転
時、上記室内熱交換器(12)の要求能力を検出する要
求能力検出手段(TH1)と、暖房運転時、上記要求能
力検出手段(TH1)で検出される要求能力に基づき、
上記電動膨張弁(13)の開度を制御する通常運転制御
手段(50)とを設けるものとする。
The air conditioner includes, as an operation control device, a required capacity detection means (TH1) for detecting the required capacity of the indoor heat exchanger (12) during heating operation, and a required capacity detection means (TH1) for detecting the required capacity of the indoor heat exchanger (12) during heating operation. Based on the required capability found in
A normal operation control means (50) for controlling the opening degree of the electric expansion valve (13) is provided.

さらに、冷媒の低圧側圧力を検出する低圧検出手段(P
1)と、吐出管温度を検出する吐出管温度検出手段(T
H4)と、暖房運転時、上記低圧検出手段(P1)及び
吐出管温度検出手段(TH4)の出力を受け、低圧側圧
力が所定圧力値よりも低くなるか吐出管温度が所定温度
値よりも高くなると、一定時間の間、上記通常運転制御
手段(50)の制御を強制的に停止させて、上記サイク
ル切換機構(5)を逆サイクル側に切換え、上記電動膨
張弁(13又は8)の開度を開き側にするよう制御する
逆サイクル運転制御手段(51A)とを設ける構成とし
たものである。
Furthermore, a low pressure detection means (P
1), and a discharge pipe temperature detection means (T
H4), during heating operation, receives the outputs of the low pressure detection means (P1) and discharge pipe temperature detection means (TH4), and determines whether the low pressure side pressure becomes lower than a predetermined pressure value or the discharge pipe temperature becomes lower than a predetermined temperature value. When the temperature increases, the control of the normal operation control means (50) is forcibly stopped for a certain period of time, the cycle switching mechanism (5) is switched to the reverse cycle side, and the electric expansion valve (13 or 8) is switched to the reverse cycle side. This configuration includes a reverse cycle operation control means (51A) that controls the opening degree to the open side.

請求項(′2Jの発明の講した手段は、第1A図に示す
ように(破線部分を含む)、上記請求項(1)の発明に
おいて、暖房運転時、低圧検出手段(PL )及び吐出
管検出手段(TH4)の出力を受け、逆サイクル運転制
御手段(51A)による逆サイクル運転の終了後所定時
間が経過するまでの間、低圧側圧力が上記所定圧力値以
上の一定圧力値よりも低くなるか吐出管温度か上記所定
温度値以下の一定温度値よりも高くなると、一定時間の
間、サイクル切換機構(5)を逆サイクル側に切換え、
電動膨張弁(13又は8)の開度を開き側にして逆サイ
クル運転をするよう制御する副逆サイクル運転制御手段
(52)を設けたものである。
The means taken by the invention of claim ('2J) is as shown in FIG. In response to the output of the detection means (TH4), the low-pressure side pressure is lower than a constant pressure value equal to or higher than the above-mentioned predetermined pressure value until a predetermined time period elapses after the reverse cycle operation is completed by the reverse cycle operation control means (51A). When the discharge pipe temperature becomes higher than a certain temperature value below the predetermined temperature value, the cycle switching mechanism (5) is switched to the reverse cycle side for a certain period of time,
A sub-reverse cycle operation control means (52) is provided for controlling the opening degree of the electric expansion valve (13 or 8) to the open side to perform reverse cycle operation.

請求項(3)の発明の講じた手段は、第1B図に示すよ
うに、圧縮機(1)、室外熱交換器(6)及び該室外熱
交換器(6)用の減圧弁(8)か配置された室外ユニッ
ト(A)に対して、流量制御弁(13)及び室内熱交換
器(12)が配置された複数の室内ユニット(B)、 
 (C)・・・を互いに並列に配置し、かつ上記各機器
を冷媒配管で順次接続してなる冷媒回路(14)を備え
た空気調和装置を前提とする。
The means taken by the invention of claim (3), as shown in FIG. 1B, include a compressor (1), an outdoor heat exchanger (6), and a pressure reducing valve (8) for the outdoor heat exchanger (6). a plurality of indoor units (B) in which a flow control valve (13) and an indoor heat exchanger (12) are arranged,
(C) An air conditioner is assumed to be provided with a refrigerant circuit (14) in which the above devices are arranged in parallel with each other and each of the above devices is sequentially connected through refrigerant piping.

そして、空気調和装置の運転制御装置として、暖房運転
時、上記各室内熱交換器(13)・・・の要求能力を個
別に検出する複数の要求能力検出手段(TH1)・・・
と、暖房運転時、上記要求能力検出手段(TH1)で検
出される要求能力に基づき、上記各室内電動膨張弁(1
3)・・・の開度を制御する通常運転制御手段(50)
とを設けるものとする。
As an operation control device for the air conditioner, a plurality of required capacity detection means (TH1) for individually detecting the required capacity of each indoor heat exchanger (13) during heating operation...
During heating operation, each of the indoor electric expansion valves (1) is activated based on the required capacity detected by the required capacity detection means (TH1).
3) Normal operation control means (50) for controlling the opening degree of...
shall be established.

さらに、冷媒の低圧側圧力を検出する低圧検出手段(P
2)と、吐出管温度を検出する吐出管温度検出手段(T
H4)と、暖房運転時、上記低圧検出手段(P2)及び
吐出管温度検出手段(TH4)の出力を受け、低圧側圧
力が設定圧力値よりも低い低圧異常時又は吐出管温度が
設定温度値よりも高い吐出管異常時に、上記各室内ユニ
ット(B)、  (F)・・・のうち停止中の室内ユニ
ットの流量制御弁(13)の開度を中開度に開き、かつ
運転中の室内ユニットの流量制御弁(13)の開度を制
御目標開度よりも増大させるよう制御する開度増大手段
(53)とを備えたことを特徴とする空気調和装置の運
転制御装置。
Furthermore, a low pressure detection means (P
2), and a discharge pipe temperature detection means (T
H4) and during heating operation, receiving the output of the low pressure detection means (P2) and discharge pipe temperature detection means (TH4), the low pressure side pressure is lower than the set pressure value or the discharge pipe temperature is lower than the set temperature value. When the discharge pipe abnormality is higher than the above, the opening degree of the flow control valve (13) of the indoor unit (B), (F), etc. that is stopped is opened to the medium degree, and An operation control device for an air conditioner, comprising an opening increasing means (53) for controlling the opening of a flow control valve (13) of an indoor unit to be greater than a control target opening.

請求項(4)の発明の講じた手段は、上記請求項(3)
の発明において、サイクルを切換えるサイクル切換機構
(5)と、暖房運転時、低圧検出手段(P2)及び吐出
管温度検出手段(TH4)の出力を受け、上記開度増大
制御手段(53)による制御の終了後に、低圧側圧力が
設定圧力値以下の所定圧力値よりも低くなるか吐出管温
度が設定温度値以上の所定温度値よりも高くなると、一
定時間の間、上記通常運転制御手段(50)の制御を強
制的に停止させて、上記サイクル切換機構(5)を逆サ
イクル側に切換え、上記電動膨張弁(13)の開度を開
き側にするよう制御する逆サイクル運転制御手段(51
B)とを設ける構成としたものである。
The means taken by the invention of claim (4) are the same as those of claim (3) above.
In the invention, the cycle switching mechanism (5) switches the cycle, and the control by the opening increase control means (53) receives the outputs of the low pressure detection means (P2) and the discharge pipe temperature detection means (TH4) during heating operation. After the end of the process, if the low pressure side pressure becomes lower than a predetermined pressure value below the set pressure value or the discharge pipe temperature becomes higher than a predetermined temperature value above the set temperature value, the normal operation control means (50 ), the cycle switching mechanism (5) is switched to the reverse cycle side, and the electric expansion valve (13) is controlled to be opened.
B).

(作用) 以上の構成により、請求項(1)の発明では、空気調和
装置の暖房運転中、通常運転制御手段(50)により、
要求能力検出手段(TH1)で検出される室内の要求能
力に基づき室内電動膨張弁(13)の開度が制御される
。すなわち、室内の要求能力の小さいときには室内電動
膨張弁(13)の開度が絞られ、冷媒流量を少なくする
よう制御される。
(Function) With the above configuration, in the invention of claim (1), during the heating operation of the air conditioner, the normal operation control means (50)
The opening degree of the indoor electric expansion valve (13) is controlled based on the required indoor capacity detected by the required capacity detection means (TH1). That is, when the required capacity indoors is small, the opening degree of the indoor electric expansion valve (13) is reduced, and the refrigerant flow rate is controlled to be reduced.

そのとき、特に外気温度が低いときには、冷媒流量の低
減により室内側のガスラインで吐出冷媒が凝縮、液化し
て滞溜することがあり、そうなると、冷媒回路(14)
全体で冷媒循環量が不足して、能力不足や吐出管温度の
過熱等を生じる虞れがある。
At that time, especially when the outside temperature is low, the discharged refrigerant may condense, liquefy, and accumulate in the gas line on the indoor side due to the reduction in the refrigerant flow rate, and if this happens, the refrigerant circuit (14)
There is a risk that the total amount of refrigerant circulation will be insufficient, resulting in insufficient capacity, overheating of the discharge pipe temperature, etc.

ここで、本発明では、低圧検出手段(P2)で検出され
る低圧側圧力が所定圧力値よりも低くなるか吐出管温度
検出手段(TH4)で検出される吐出管温度が所定温度
値よりも低くなると、逆サイクル運転制御手段(51A
)により、サイクル切換機構(5)を冷房サイクル側に
切換えるとともに、電動膨張弁(13)を開いて逆サイ
クル運転をするよう制御されるので、ガスライン中に滞
溜した液冷媒が速やかにアキュムレータ(10)に戻さ
れて回収される。したがって、冷媒循環量が適正量に維
持され、低圧側圧力や吐出管温度の異常が解消されるこ
とになる。
Here, in the present invention, the low pressure side pressure detected by the low pressure detection means (P2) becomes lower than a predetermined pressure value, or the discharge pipe temperature detected by the discharge pipe temperature detection means (TH4) becomes lower than a predetermined temperature value. When it becomes low, the reverse cycle operation control means (51A
), the cycle switching mechanism (5) is switched to the cooling cycle side, and the electric expansion valve (13) is opened to perform reverse cycle operation, so that the liquid refrigerant accumulated in the gas line is quickly transferred to the accumulator. (10) and collected. Therefore, the refrigerant circulation amount is maintained at an appropriate amount, and abnormalities in the low pressure side pressure and the discharge pipe temperature are eliminated.

請求項(2の発明で4よ、上記請求項(1)の発明の逆
サイクル運転制御手段(51A)により逆サイクル運転
を行った後一定時間が経過するまでは、再度冷媒のガス
ラインでの凝縮か生じることがありうるが、副逆サイク
ル運転制御手段(52)により、低圧側圧力が上記所定
圧力値以上の一定圧力値以下になるか、吐出管温度の値
が上記所定温度値以下の一定温度値よりも高くなると、
再び逆サイクル運転が行われるので、先の逆サイクル運
転により冷媒がアキュムレータ(10)に回収された後
再びガスライン等に滞溜した状態となったときにも、こ
の滞溜状態が解消される。
Claim (4) according to the invention of claim (2), until a certain period of time has passed after the reverse cycle operation is performed by the reverse cycle operation control means (51A) of the invention of claim (1), the refrigerant gas line is not turned on again. Although condensation may occur, the sub-reverse cycle operation control means (52) controls whether the low-pressure side pressure becomes equal to or less than the predetermined pressure value or the discharge pipe temperature becomes equal to or less than the predetermined temperature value. When the temperature rises above a certain value,
Since the reverse cycle operation is performed again, even if the refrigerant is collected in the accumulator (10) due to the previous reverse cycle operation and is accumulated in the gas line etc. again, this accumulated state is cleared. .

請求項(3)の発明では、複数の室内ユニットを設けた
空気調和装置において、低圧側圧力が設定圧力値よりも
低いとき又は吐出管温度が設定温度値よりも高いときに
は、開度増大手段(53)により、停止中の流量制御弁
(13)の開度が中開度に、かつ運転中の流量制御弁(
13)の開度が制御目標開度から増大するように制御さ
れるので、冷媒流量が増大し、ガスライン等に滞溜した
液冷媒がレシーバ(9)等に回収され、冷媒の不足によ
る能力不足や吐出管温度の異常過熱が回避されることに
なる。
In the invention of claim (3), in the air conditioner provided with a plurality of indoor units, when the low pressure side pressure is lower than the set pressure value or when the discharge pipe temperature is higher than the set temperature value, the opening degree increasing means ( 53), the opening degree of the flow control valve (13) during stoppage is changed to the medium opening degree, and the opening degree of the flow control valve (13) during operation is changed to the medium opening degree.
13) is controlled to increase from the control target opening, the refrigerant flow rate increases, liquid refrigerant accumulated in the gas line, etc. is collected by the receiver (9), etc., and the capacity due to refrigerant shortage is increased. Insufficiency and abnormal overheating of the discharge pipe temperature will be avoided.

請求項(4)の発明では、開度増大制御手段(53)に
よる開度増大運転が行われた後、低圧側圧力が上記設定
圧力値以下の所定圧力値よりも低くなるか、吐出管温度
が上記設定温度値以下の所定温度値以上になると、逆サ
イクル運転制御手段(51B)により、上記請求項(1
)の発明と同様の逆サイクル運転が行われ、液冷媒がア
キュムレータ(10)に回収される。したがって、開度
増大制御手段(53)による開度増大運転を行っても、
冷媒の凝縮による冷媒循環量の不足状態が解消されずに
運転状態が悪化するようなときにも、逆サイクル運転に
より液冷媒がアキュムレータ(10)に回収される。す
なわち、暖房サイクルによる空調の快適性を維持しなが
ら、状態が悪化したときには、逆サイクル運転により適
正な冷媒循環量が確保されることになる。
In the invention of claim (4), after the opening increasing operation is performed by the opening increasing control means (53), either the low pressure side pressure becomes lower than the predetermined pressure value below the set pressure value, or the discharge pipe temperature decreases. When the temperature exceeds a predetermined temperature value that is lower than the set temperature value, the reverse cycle operation control means (51B)
), the liquid refrigerant is collected in the accumulator (10). Therefore, even if the opening increasing operation is performed by the opening increasing control means (53),
Even when the operating condition worsens because the insufficient circulating amount of refrigerant due to refrigerant condensation is not resolved, liquid refrigerant is recovered to the accumulator (10) by reverse cycle operation. That is, while maintaining the comfort of air conditioning through the heating cycle, when conditions deteriorate, an appropriate amount of refrigerant circulation can be ensured by reverse cycle operation.

(実施例) 以下、本発明の第1実施例について、・第2図〜第5図
に基づき説明する。
(Example) Hereinafter, a first example of the present invention will be described based on FIGS. 2 to 5.

第2図は本発明の実施例に係るマルチ型空気調釦装置の
冷媒配管系統を示し、(A)は室外ユニット、(B)〜
(F)は該室外ユニット(A)に並列に接続された室内
ユニットである。上記室外ユニット(A)の内部には、
出力周波数が30〜70Hzの範囲で10Hz毎に可変
に切換えられるインバータ(2a)により容量が調整さ
れる第1圧縮機(1a)と、パイロット圧の高低で差動
するアンローダ(2b)により容量かフルロード(10
0%)およびアンロード(50%)状態の2段階に調整
される第2圧縮機(1b)と′を逆止弁(1e)を介し
て並列に接続して構成される容量可変な圧縮機(1)と
、該圧縮機(1)から吐出されるガス中の油を分離する
油分離器(4)と、冷房運転時には図中実線の如く切換
わり暖房運転時には図中破線の如く切換わる四路切換弁
(5)と、冷房運転時に凝縮器、暖房運転時に蒸発器と
なる室外熱交換器(6)および該室外熱交換器(6)に
付設された室外ファン(6a)と、過冷却コイル(7)
と、冷房運転時には冷媒流量を調節し、暖房運転時には
冷媒の絞り作用を行う暖房用減圧弁としての室外電動膨
張弁(8)と、液化した冷媒を貯蔵するレシーバ(9)
と、吸入冷媒中の液冷媒を除去するためのアキュムレー
タ(10)とが主要機器として内蔵されていて、該各機
器(1)〜(10)は各々冷媒配管(11)で冷媒の流
通可能に接続されている。また上記室内ユニット(B)
〜(F)は同一構成であり、各々、冷房運転時には蒸発
器、暖房運転時には凝縮器となる室内熱交換器(12)
・・・およびそのファン    ・(12a)・・・を
備え、かつ該室内熱交換器(12)・・・の液冷媒分岐
管(11a )・・・には、暖房運転時に冷媒流量を調
節し、冷房運転時に冷媒の絞り作用を行う室内電動膨張
弁(13)・・・がそれぞれ介設され、合流後手動閉鎖
弁(17)を介し連絡配管(1lb )によって室外ユ
ニット(A)との間を接続されている。すなわち、以上
の各機器は冷媒配管(11)により、冷媒の循環可能に
接続されていて、室外空気との熱交換により得た熱を室
内空気に放出するようにした主冷媒回路(14)が構成
されている。
FIG. 2 shows a refrigerant piping system of a multi-type air conditioning button device according to an embodiment of the present invention, in which (A) is an outdoor unit, (B) -
(F) is an indoor unit connected in parallel to the outdoor unit (A). Inside the outdoor unit (A),
The first compressor (1a) whose capacity is adjusted by an inverter (2a) whose output frequency is variably switched in 10Hz increments in the range of 30 to 70Hz, and the unloader (2b) which varies depending on the pilot pressure level. Full load (10
A variable capacity compressor configured by connecting a second compressor (1b) and '' in parallel via a check valve (1e), which are adjusted in two stages: 0%) and unloaded (50%) states. (1) and an oil separator (4) that separates oil from the gas discharged from the compressor (1), which switches as shown in the solid line in the figure during cooling operation, and switches as shown in the broken line in the figure during heating operation. A four-way switching valve (5), an outdoor heat exchanger (6) that serves as a condenser during cooling operation and an evaporator during heating operation, an outdoor fan (6a) attached to the outdoor heat exchanger (6), and Cooling coil (7)
, an outdoor electric expansion valve (8) as a heating pressure reducing valve that adjusts the refrigerant flow rate during cooling operation and throttles the refrigerant during heating operation, and a receiver (9) that stores liquefied refrigerant.
and an accumulator (10) for removing liquid refrigerant in the suction refrigerant are built-in as main equipment, and refrigerant can flow through each of the equipment (1) to (10) through refrigerant piping (11). It is connected. Also, the above indoor unit (B)
~(F) have the same configuration, and each is an indoor heat exchanger (12) that functions as an evaporator during cooling operation and a condenser during heating operation.
. . . and its fan (12a) . , an indoor electric expansion valve (13) that throttles the refrigerant during cooling operation is interposed, and after merging, a connection pipe (1lb) is connected to the outdoor unit (A) via a manual shutoff valve (17). is connected. That is, the above-mentioned devices are connected to each other by refrigerant piping (11) so that refrigerant can circulate, and a main refrigerant circuit (14) is configured to release heat obtained through heat exchange with outdoor air to indoor air. It is configured.

次に、(11e )は、吐出管と液管側とを吐出ガス(
ホットガス)のバイパス可能に接続する暖房過負荷制御
用バイパス路であって、該バイパス路(11e )には
、室外熱交換器(6)と共通の空気通路に設置された補
助熱交換器(22)、キャピラリ(28)及び冷媒の高
圧時に開作動する電磁開閉弁(24)が順次直列にかつ
室外熱交換器(6)とは並列に接続されており、冷房運
転時には常時、暖房運転時には高圧が過上昇時に、上記
電磁開閉弁(24)がオンつまり開状態になって、吐出
ガスの一部を主冷媒回路(14)から暖房過負荷制御用
バイパス路(11e)にバイパスするようにしている。
Next, (11e) connects the discharge pipe and the liquid pipe side to the discharge gas (
A heating overload control bypass path (11e) connected to enable bypass of hot gas (hot gas), and the bypass path (11e) includes an auxiliary heat exchanger ( 22), a capillary (28) and an electromagnetic on-off valve (24) that opens when the refrigerant pressure is high are connected in series and in parallel with the outdoor heat exchanger (6), and are always open during cooling operation and open during heating operation. When the high pressure rises excessively, the electromagnetic on-off valve (24) is turned on or opened to bypass a portion of the discharged gas from the main refrigerant circuit (14) to the heating overload control bypass path (11e). ing.

このとき、吐出ガスの一部を補助熱交換器(22)で凝
縮させて室外熱交換器(6)の能力を補助するとともに
、キャピラリ(28)で室外熱交換器(6)側の圧力損
失とのバランスを取るようになされている。
At this time, part of the discharged gas is condensed in the auxiliary heat exchanger (22) to support the capacity of the outdoor heat exchanger (6), and the capillary (28) is used to reduce the pressure loss on the outdoor heat exchanger (6) side. It is designed to maintain a balance between

さらに、(11g )は上記暖房過負荷バイパス路(1
1e )の液冷媒側配管と主冷媒回路(14)の吸入ラ
インとの間を接続し、冷暖房運転時に吸入ガスの過熱度
を調節するためのリキッドインジェクションバイパス路
であって、該バイパス路(11g )には圧縮機(1)
のオン・オフと連動して開閉するインジェクション用電
磁弁(29)と、キャピラリ(30)とが介設されてい
る。
Furthermore, (11g) is the heating overload bypass path (1
This is a liquid injection bypass path that connects the liquid refrigerant side piping of 1e) and the suction line of the main refrigerant circuit (14) to adjust the degree of superheating of the suction gas during heating and cooling operation, and is a liquid injection bypass path that connects the liquid refrigerant side piping of ) has a compressor (1)
An injection solenoid valve (29) that opens and closes in conjunction with the on/off of the injection valve and a capillary (30) are interposed.

また、(31)は、吸入管(11)、中の吸入冷媒と液
管(11)中の液冷媒との熱交換により吸入冷媒を冷却
させて、連絡配管(llb)における冷媒の過熱度の上
昇を補償するための吸入管熱交換器である。
In addition, (31) cools the suction refrigerant through heat exchange between the suction refrigerant in the suction pipe (11) and the liquid refrigerant in the liquid pipe (11), thereby reducing the degree of superheating of the refrigerant in the connecting pipe (llb). A suction tube heat exchanger to compensate for the rise.

なお、上記各主要機器以外に補助用の諸機器が設けられ
ている。(1r)は第2圧縮機(1b)のバイパス路(
11c )に介設されて、第42圧縮機(1b)の停止
時およびアンロード状態時に「開」となり、フルロード
状態で「閉」となるアンローダ用電磁弁、(1g)は上
記バイパス路(11e )に介設されたキャピラリ、(
21)は吐出管と吸入管とを接続する均圧ホットガスバ
イパス路(11d )に介設されて、サーモオフ状態等
による圧縮機(1)の停止時、再起動前に一定時間開作
動する均圧用電磁弁、(33a)、(33b)はそれぞ
れキャピラリ(32a)、  (32b)を介して上記
第1.第2油分離器(4a)。
In addition to the above-mentioned main devices, various auxiliary devices are provided. (1r) is the bypass path (
11c) is an unloader solenoid valve that is open when the 42nd compressor (1b) is stopped and unloaded, and is closed when it is fully loaded; 11e) interposed in the capillary, (
21) is installed in the equal pressure hot gas bypass line (11d) connecting the discharge pipe and the suction pipe, and is opened for a certain period of time before restarting when the compressor (1) is stopped due to thermo-off state, etc. The pressure solenoid valves (33a) and (33b) are connected to the first valve through capillaries (32a) and (32b), respectively. Second oil separator (4a).

(4b)から第1.第2圧縮機(la ) 、  (l
b )に油を戻すための油戻し管である。
(4b) to 1st. Second compressor (la), (l
b) This is an oil return pipe for returning oil to.

また、図中、(HPS)は圧縮機保護用の高圧圧力開閉
器、(S P)はサービスポート、(CP)はゲージポ
ートである。
In the figure, (HPS) is a high pressure switch for protecting the compressor, (SP) is a service port, and (CP) is a gauge port.

また、装置には多くのセンサ類が配置されていて、(T
H1)・・・は各室内温度を検出する室温サーモスタッ
ト、(TH2)・・・および(TH3)・・・は各々室
内熱交換器(12)・・・の液側およびガス側配管にお
ける冷媒の温度を検出する室内液温センサ及び室内ガス
温センサ、(TH4)は圧縮機(1)の吐出管の温度を
検出する吐出管温度検出手段としての吐出管センサ、(
TH5)は暖房運転時に室外熱交換器(6)の入口温度
から着霜状態を検出するデフロストセンサ、(TH6)
は液管(11)との熱交換を行った後の吸入管(11)
に配置され、吸入ガスの温度を検出する温度センサ、(
TH7)は、室外熱交換器(6)の空気吸込口に配置さ
れ、吸込空気温度Tを検出する吸込温度検出手段として
の外気温センサ、(P1)は吐出管に配置され、高圧側
圧力Hpを検出する高圧センサ、(P1)は吸入管に配
置され、低圧側圧力Lpを検出する低圧検出手段として
の低圧センサである。
In addition, the device is equipped with many sensors (T
H1)... is a room temperature thermostat that detects each indoor temperature, (TH2)... and (TH3)... are the refrigerant in the liquid side and gas side pipes of the indoor heat exchanger (12), respectively. An indoor liquid temperature sensor and an indoor gas temperature sensor for detecting temperature, (TH4) a discharge pipe sensor as a discharge pipe temperature detection means for detecting the temperature of the discharge pipe of the compressor (1);
TH5) is a defrost sensor that detects frost formation from the inlet temperature of the outdoor heat exchanger (6) during heating operation; (TH6)
is the suction pipe (11) after heat exchange with the liquid pipe (11)
A temperature sensor, located at the
TH7) is an outside air temperature sensor that is placed at the air suction port of the outdoor heat exchanger (6) and serves as a suction temperature detection means for detecting the suction air temperature T, and (P1) is placed on the discharge pipe to detect the high pressure side pressure Hp. A high-pressure sensor (P1) for detecting is a low-pressure sensor arranged in the suction pipe and serving as a low-pressure detection means for detecting the low-pressure side pressure Lp.

そして、上記各電磁弁およびセンサ類は各主要機器と共
に空気調和装置の運転を制御するコントローラ(図示せ
ず)に信号の授受可能に接続されている。
Each of the electromagnetic valves and sensors described above is connected to a controller (not shown) that controls the operation of the air conditioner together with each main device so as to be able to send and receive signals.

第2図において、空気調和装置の冷房運転時、四路切換
弁(2)は図中実線のごとく切換わり、圧縮機(1)で
圧縮された冷媒が室外熱交換器(6)で凝縮された後、
各室内ユニット(B)〜(F)に分流して、各室内電動
膨張弁(13)・・・で絞り作用を受けて各室内熱交換
器(12)・・・で蒸発した後、ガス状態で圧縮機(1
)に戻るように循環する。
In Figure 2, during cooling operation of the air conditioner, the four-way switching valve (2) switches as shown by the solid line in the figure, and the refrigerant compressed by the compressor (1) is condensed in the outdoor heat exchanger (6). After
The flow is divided into each indoor unit (B) to (F), subjected to a throttling action by each indoor electric expansion valve (13), and evaporated in each indoor heat exchanger (12). compressor (1
).

一方、暖房運転時には、四路切換弁(5)が図中破線の
ごとく切換わり、圧縮された冷媒か四路切換弁(5)を
経て各室内ユニット(B)〜(F)に分岐して送られ、
各室内熱交換器(12)・・・で熱交換を受けて凝縮さ
れた後金流し、室内電動膨張弁(8)により減圧されて
室外熱交換器(6)で蒸発した後圧縮機(1)に戻るよ
うに循環する。
On the other hand, during heating operation, the four-way switching valve (5) switches as shown by the broken line in the figure, and the compressed refrigerant is distributed to each indoor unit (B) to (F) via the four-way switching valve (5). sent,
After undergoing heat exchange and condensation in each indoor heat exchanger (12)..., it is depressurized by an indoor electric expansion valve (8) and evaporated in an outdoor heat exchanger (6), and then the compressor (1 ).

そして、上記コントローラにより、室外ユニット(A)
において、冷房運転時には低圧センサ(P1)で検出さ
れる低圧側圧力つまり蒸発圧力相当飽和温度Teが、暖
房運転時には高圧センサ(PL )で検出される高圧側
圧力つまり凝縮圧力相当飽和温度Tcがそれぞれ所定の
制御目標値Tes又はTcsに収束するように圧縮機(
1)の客員が制御される(Te一定制御及びTe一定制
御)一方、各室内ユニット(B)〜(F)では、冷房運
転時には過熱度shを所定の目標値に維持するよう、暖
房運転時には過冷却度Seを所定の目標値に維持するよ
う(9)室内電動膨張弁(13)・・・の開度が制御さ
れる(Sh一定制御及びSc −定制御)。
Then, by the above controller, the outdoor unit (A)
In cooling operation, the low pressure side pressure, that is, the evaporation pressure equivalent saturation temperature Te detected by the low pressure sensor (P1), and during the heating operation, the high pressure side pressure, that is, the condensing pressure equivalent saturation temperature Tc detected by the high pressure sensor (PL), are respectively The compressor (
1) is controlled (Te constant control and Te constant control), while in each indoor unit (B) to (F), the degree of superheat sh is maintained at a predetermined target value during cooling operation, and during heating operation (9) The opening degrees of the indoor electric expansion valves (13) are controlled to maintain the degree of supercooling Se at a predetermined target value (Sh constant control and Sc - constant control).

次に上記コントローラの暖房運転時における制御内容に
ついて、第3図〜第5図に基づき説明する。
Next, the control contents of the controller during heating operation will be explained based on FIGS. 3 to 5.

第3図は、暖房運転中における液戻しのための逆サイク
ル運転を開始する判断となる液戻しスタートフラグA 
MSTFの切換えを示す制御状態遷移図であって、上記
低圧センサ(P1)で検出される低圧側圧力Lpか所定
圧力値Lps(例えば0.5Kg/c112程度の値)
よりも低くなるか、上記吐出管センサ(TH4)で検出
される吐出管温度Tdが所定温度値Tds(例えば13
0℃程度の値)よりも高くなるかいずれかの条件が成立
すると、AMSTP−0からAMSTP−1の状態つま
り逆サイクル運転を開始するフラグを立てる。一方、後
述の液戻し動作フラグAMPが「0」になると、A N
5TP −1に切換える。
Figure 3 shows the liquid return start flag A, which determines whether to start reverse cycle operation for liquid return during heating operation.
It is a control state transition diagram showing switching of MSTF, and is a low pressure side pressure Lp detected by the above-mentioned low pressure sensor (P1) or a predetermined pressure value Lps (for example, a value of about 0.5Kg/c112)
, or the discharge pipe temperature Td detected by the discharge pipe sensor (TH4) reaches a predetermined temperature value Tds (for example, 13
If either condition is satisfied, a flag is set to start AMSTP-0 to AMSTP-1, that is, a reverse cycle operation. On the other hand, when the liquid return operation flag AMP, which will be described later, becomes "0", A N
Switch to 5TP-1.

次に、第4図は、液戻し動作フラグAMPの切換えを示
す制御状!g遷移図であって、通常暖房運転中のAMF
−0の状態から後述の8時間タイマ(8hTM)がタイ
ムアツプするか、上記液戻しスタ−トフラグA MST
Fか「1」になるかいずれかの条件が成立すると、AM
P−0の状態■から4分間タイマ(4wTM)をセット
して、AMF−1の状態■に移行する。そして、この状
態で後述の逆サイクル運転を行っている間に4分間タイ
マ(4IITM)がタイムアツプすると、8時間タイマ
(8hTM)をセットして、再びAMF−0の状態■に
戻る。つまり液戻しiタートフラグA MSTFが立た
ないときでも、8時間ごとに冷媒配管中の油戻しを兼ね
て逆サイクル運転を行うようにしている。
Next, FIG. 4 shows a control state showing switching of the liquid return operation flag AMP! g Transition diagram showing AMF during normal heating operation
If the 8-hour timer (8hTM) described below times up from the -0 state, or the liquid return start flag A MST
If either the condition becomes F or “1” is satisfied, AM
A 4-minute timer (4wTM) is set from state (2) of P-0, and the state shifts to state (2) of AMF-1. When the 4-minute timer (4IITM) times up while performing the reverse cycle operation to be described later in this state, the 8-hour timer (8hTM) is set and the state returns to AMF-0 (2) again. In other words, even when the liquid return i-tart flag A MSTF is not set, reverse cycle operation is performed every 8 hours, also serving as oil return in the refrigerant piping.

次に、第5図は制御内容を示すフローチャートであって
、ステップSTIて、暖房運転か否かを判別し、暖房運
転であればステップ5−T2でサーモオンか否かを判別
して、サーモオンであればステップST3に進む。そし
てステップST3で、上記液戻し動作フラグAMPが「
1」か否かを判別し、AMP−1でなければステップS
T4に進んで、通常暖房運転つまりいわゆるTc −、
定制御を行う一方、AMP−1であれば、ステップST
5に移行して逆サイクル運転を行う。すなわち、圧縮機
(1)の容量を最大ロードに、室外ファン(6a)の風
量を標準風量rHJ又は低風量rLJに、四路切換弁(
5)を冷房側つまり図中実線側に切換え、各室内ファン
(12a)・・・を停止状態に、室外電動膨張弁(8)
及び各室内電動膨張弁(13)・・・を全開にして運転
を行うことにより、冷媒循環量を増大させて、要求能力
が小さい室内のガス側配管中に凝縮した液冷媒を逆サイ
クル運転によりアキュムレータ(10)に回収する。そ
して、ステップST6の判別で、4分が経過すると上記
逆サイクル運転を終了する。
Next, FIG. 5 is a flowchart showing the control contents, in which it is determined in step STI whether or not the heating operation is being performed, and if it is the heating operation, it is determined in step 5-T2 whether or not the thermostat is on, and whether the thermostat is on or not. If so, proceed to step ST3. Then, in step ST3, the liquid return operation flag AMP is set to "
1", and if it is not AMP-1, step S
Proceeding to T4, normal heating operation, that is, so-called Tc-,
While performing constant control, if it is AMP-1, step ST
5 to perform reverse cycle operation. That is, the capacity of the compressor (1) is set to maximum load, the air volume of the outdoor fan (6a) is set to standard air volume rHJ or low air volume rLJ, and the four-way switching valve (
5) to the cooling side, that is, the solid line side in the figure, each indoor fan (12a)... is stopped, and the outdoor electric expansion valve (8)
By operating with each indoor electric expansion valve (13) fully open, the amount of refrigerant circulation is increased, and the liquid refrigerant condensed in the indoor gas side piping, which has a small required capacity, is removed by reverse cycle operation. Collect into the accumulator (10). Then, as determined in step ST6, when four minutes have elapsed, the reverse cycle operation is ended.

一方、上記ステップST1の判別で、冷房運転であれば
、ステップST7に進んで、サーモオフ時構かを判別し
て、サーモオンであればステップST8に進んで通常の
冷房運転つまり上記Te −定制御を行い、サーモオフ
であれば暖房運転時のサーモオフ時と併せ、ステップS
T9に進んでサーモオフ運転を行う。
On the other hand, if the determination in step ST1 is that the cooling operation is being performed, the process proceeds to step ST7, where it is determined whether the thermostat is off, and if the thermostat is on, the process proceeds to step ST8, where the normal cooling operation, that is, the Te-constant control described above, is performed. If the thermometer is off, step S is performed in addition to when the thermometer is off during heating operation.
Proceed to T9 and perform thermo-off operation.

上記フローにおいて、ステップST4の制御により、暖
房運転時、上記四路切換弁(サイクル切換機構)(5)
を暖房サイクル側にして、上記各室温サーモスタット(
要求能力検出手段)  (TH1)・・・で検出される
要求能力に基づき、各室内電動膨張弁(13)・・・の
開度を制御する通常運転制御手段(50)か構成され、
ステップST5の制御により、低圧側圧力Lpが所定圧
力値Lpsよりも低くなるか吐出管温度Tdが所定温度
1iTdsよりも高くなると、一定時間の間、上記四路
切換弁(サイクル切換機構)(5)を逆サイクル側に切
換え、各室内電動膨張弁(13)〜(13)の開度を開
き側にして逆サイクル運転をするよう制御する逆サイク
ル運転制御手段(51A)が構成されている。
In the above flow, by the control in step ST4, during heating operation, the four-way switching valve (cycle switching mechanism) (5)
on the heating cycle side, and turn each room temperature thermostat above (
Normal operation control means (50) for controlling the opening degree of each indoor electric expansion valve (13) based on the required capacity detected by (TH1) (Required Capacity Detection Means) (TH1)...
By the control in step ST5, when the low pressure side pressure Lp becomes lower than the predetermined pressure value Lps or the discharge pipe temperature Td becomes higher than the predetermined temperature 1iTds, the four-way switching valve (cycle switching mechanism) (5 ) to the reverse cycle side, and controls the indoor electric expansion valves (13) to (13) to open to the open side for reverse cycle operation.

したがって、上記第1実施例では、空気調和装置の暖房
運転中、通常運転制御手段(50)により、各室温サー
モスタット(TH1)・・・で検出される各室内ユニッ
ト(B)〜(F)の要求能力に基づき、各室内電動膨張
弁(13)の開度が制御される。すなわち、要求能力の
大きい室内側では室内電動膨張弁(13)の開度が開き
側に制御される一方、要求能力の小さい室内側では室内
電動膨張弁(13)の開度が絞られ、冷媒流量を少なく
するよう制御される。そのとき、特に外気温度が低いと
きには、冷媒流量の低減により室内側のガスラインで吐
出冷媒が凝縮、液化して滞溜することがあり、そうなる
と、冷媒回路(14)全体で冷媒循環量が不足して、能
力不足や吐出管温度の過熱等を生じる虞れがある。
Therefore, in the first embodiment, during the heating operation of the air conditioner, the normal operation control means (50) controls the temperature of each indoor unit (B) to (F) detected by each room temperature thermostat (TH1). The opening degree of each indoor electric expansion valve (13) is controlled based on the required capacity. That is, on the indoor side where the required capacity is high, the opening degree of the indoor electric expansion valve (13) is controlled to the open side, while on the indoor side where the required capacity is low, the opening degree of the indoor electric expansion valve (13) is throttled, and the refrigerant The flow rate is controlled to be low. At that time, especially when the outside temperature is low, the discharged refrigerant may condense, liquefy, and stagnate in the indoor gas line due to the reduction in the refrigerant flow rate, and in this case, the refrigerant circulation amount is insufficient throughout the refrigerant circuit (14). As a result, there is a possibility that insufficient capacity or overheating of the discharge pipe temperature may occur.

ここで、上記実施例では、低圧センサ(低圧検出手段)
(P2)で検出される低圧側圧力Lpが所定圧力値Lp
sよりも低い低圧異常時、又は吐出管センサ(吐出管温
度検出手段)(TH4)で検出される吐出管温度Tdが
所定温度値Tdsよりも低い吐出管異常時のいずれかに
なったことで、上記のような冷媒のガスライン等への凝
縮状態が検知され、逆サイクル運転制御手段(51A)
により、四路切換弁(5)を冷房サイクル側に切換える
とともに、各室内電動膨張弁(13)・・・を開いて逆
サイクル運転をするよう制御されるので、ガスライン等
に滞溜した液冷媒が速やかにアキュムレータ(10)に
戻されて回収される。
Here, in the above embodiment, the low pressure sensor (low pressure detection means)
The low pressure side pressure Lp detected in (P2) is the predetermined pressure value Lp
s, or when the discharge pipe temperature Td detected by the discharge pipe sensor (discharge pipe temperature detection means) (TH4) is lower than the predetermined temperature value Tds. , the state of condensation of the refrigerant into the gas line etc. as described above is detected, and the reverse cycle operation control means (51A)
As a result, the four-way selector valve (5) is switched to the cooling cycle side, and each indoor electric expansion valve (13) is opened to perform reverse cycle operation, so that the liquid accumulated in the gas line etc. The refrigerant is quickly returned to the accumulator (10) and recovered.

したがって、冷媒の不足による能力不足や吐出管温度の
異常過熱が有効に防止され、よって、空調の快適性及び
信頼性の向上とを図ることができるのである。
Therefore, insufficient capacity due to lack of refrigerant and abnormal overheating of the discharge pipe temperature can be effectively prevented, and the comfort and reliability of air conditioning can be improved.

なお、上記第1実施例に加え、例えば第5図のフローに
おいて、ステップST5の逆サイクル運転を行った後に
、一定時間経過するまで(例えば60分間程度の間)は
、再度冷媒のガスラインで−の凝縮が生じることかあり
うるので、上記第3図の液戻しスタートフラグAMST
Fを立てる判断となる低圧側圧力Lpの値を上記設定圧
力値Lps(0゜5 (Kg/am  ) )以上の一
定値0. 7 (Kg/Cm2)に、吐出管温度Tdの
値を上記設定温度値Tds−、(130℃)以下の一定
lit 1.20℃にして、上記第5図のステップST
5の逆サイクル運転をするようにしてもよい。この制御
により、請求項(21の発明における副逆サイクル運転
制御手段(52)が構成されている。
In addition to the above first embodiment, for example, in the flow shown in FIG. 5, after performing the reverse cycle operation in step ST5, the refrigerant gas line is not connected again until a certain period of time has elapsed (for example, for about 60 minutes). - Since condensation may occur, the liquid return start flag AMST in Figure 3 above
The value of the low pressure side pressure Lp, which is used as a judgment to set F, is set to a constant value of 0. 7 (Kg/Cm2), set the value of the discharge pipe temperature Td to the above-mentioned set temperature value Tds-, a constant lit 1.20°C below (130°C), and perform step ST in Fig. 5 above.
5 may be operated in the reverse cycle. This control constitutes the auxiliary reverse cycle operation control means (52) in the invention of claim (21).

したがって、上記逆サイクル運転制御手段(5IA)に
よる逆サイクル運転により冷媒がアキュムレータ(10
)に回収された後再びガスライン等に滞溜した状態とな
ったとき、この滞溜状態を有効に解消することができる
Therefore, the refrigerant is supplied to the accumulator (10) by the reverse cycle operation by the reverse cycle operation control means (5IA).
) When the gas is collected in the gas line or the like and becomes accumulated again in the gas line, this accumulation state can be effectively eliminated.

なお、上記第1実施例はマルチ形空気調和装置について
請求項(1)の発明を適用した例であるが、請求項(1
)及び(2の発明は斯かる実施例に限定されるものでは
なく、1台の室外ユニットに対して1台の室内ユニット
を備えた空気調和装置についても適用しうるちのであっ
て、その場合、電動膨張弁は室内又は室外に1個あれば
よい。
Note that the above first embodiment is an example in which the invention of claim (1) is applied to a multi-type air conditioner;
) and (2) are not limited to such embodiments, but can also be applied to air conditioners that have one indoor unit for one outdoor unit, and in that case. It is sufficient to have one electric expansion valve indoors or outdoors.

次に、本発明の第2実施例について、第6図及び第7図
に基づき説明する。第2実施例においても、冷媒配管系
統の構成は上記第1実施例と同様である。第6因は後述
の開度増大運転を行う判断となる開度増大フラグOLT
Fの設定のための制御内容を示すフローチャートであっ
て、ステップSR1てLp < 1. 5 (Kg/e
gg2)  (設定圧力tti>か否かを、ステップS
R2でTd>120℃(設定温度値)か否かをそれぞれ
判別し、いずれかの条件が成立するとステップSR4で
0LTF−1に設定する一方、いずれの条件も成立しな
いときにはステップSR3で0LTF−0に設定する。
Next, a second embodiment of the present invention will be described based on FIGS. 6 and 7. Also in the second embodiment, the configuration of the refrigerant piping system is the same as in the first embodiment. The sixth factor is the opening increase flag OLT, which determines whether to perform the opening increase operation described later.
It is a flowchart showing the control contents for setting F, and in step SR1, Lp < 1. 5 (Kg/e
gg2) (Check whether the set pressure tti> or not in step S.
R2 determines whether Td>120°C (set temperature value) or not, and if any of the conditions is met, it is set to 0LTF-1 in step SR4, while if neither condition is met, it is set to 0LTF-0 in step SR3. Set to .

第7図は制御内容を示すフローチャートであって、ステ
ップSPIで暖房運転か否かを判別し、暖房運転であれ
ば、ステップSP2に進んでサーモオンか否かを判別し
、サーモオンであれば、ステップSP3で、上記第6因
のフローチャートで設定した開度増大フラグOLTFが
「1」か否かを判別し、0LTF−1でなければステッ
プSP4で通常暖房運転を行って、各室内電動膨張弁(
13)・・・の開度を上記Sc一定制御により制御する
一方、0LTP−1であれば、ステップSP5に移行し
て、各室内電動膨張弁(13)の開度を上記Sc一定制
御による制御目標開度に1.5を乗じた値に増大させる
よう制御する。
FIG. 7 is a flowchart showing the control contents, in which it is determined in step SPI whether or not the heating operation is being performed, and if it is the heating operation, the process proceeds to step SP2 to determine whether or not the thermostat is on, and if the thermostat is on, the step In SP3, it is determined whether the opening increase flag OLTF set in the flowchart for the sixth factor is "1" or not. If it is not 0LTF-1, normal heating operation is performed in step SP4, and each indoor electric expansion valve (
13) Control the opening degree of each indoor electric expansion valve (13) by the constant Sc control, while if it is 0LTP-1, proceed to step SP5 and control the opening degree of each indoor electric expansion valve (13) by the constant Sc control. Control is performed to increase the target opening degree to a value obtained by multiplying the target opening degree by 1.5.

一方、上記ステップSP2の判別で、サーモオンでない
サーモオフ時には、ステップSP6に移行して、0LT
F−1か否かを判別し、0LTF−1でなければステッ
プSP7で各室内電動膨張弁(13)・・・の開度を小
開度240 (pis )にする。
On the other hand, in the determination in step SP2 above, if the thermostat is not on but the thermostat is off, the process moves to step SP6 and the 0LT
It is determined whether it is F-1 or not, and if it is not 0LTF-1, the opening degree of each indoor electric expansion valve (13) is set to a small opening degree of 240 (pis) in step SP7.

そして、上記ステップSP6の判別で、0LTF−1で
あればステップ5−P8に移行して、室内電動膨張弁(
13)・・・の開度を1000 (pls)(全開20
00(pls)の半分)にする。つまり、サーモオン中
(運転中)の室内では室内電動膨張弁(13)の開度を
Sc一定制御の制御目標開度に1.5を乗じた値に増大
し、サーモオフ中(停止中)の室内では、室内電動膨張
弁(13)の開度を一律に半開にするようになされてい
る。
Then, in the determination in step SP6 above, if it is 0LTF-1, the process moves to step 5-P8, and the indoor electric expansion valve (
13)... 1000 (pls) (fully open 20)
half of 00 (pls)). In other words, the opening degree of the indoor electric expansion valve (13) is increased to the value obtained by multiplying the control target opening degree of constant Sc control by 1.5 in the room when the thermostat is on (operating), and when the indoor electric expansion valve (13) is in the room when the thermostat is off (stopping). In this case, the opening degree of the indoor electric expansion valve (13) is uniformly set to half open.

なお、上記ステップSPIの判別で、暖房運転でない冷
房運転のときには、ステップSP9に移行して、通常の
冷房運転つまり過熱度sh一定制開制御う。
It should be noted that if it is determined in step SPI that the cooling operation is not the heating operation, the process proceeds to step SP9, where normal cooling operation, that is, constant superheat degree sh constant braking control is performed.

上記フローにおいて、ステップSP5及びSr1の制御
により、低圧異常時又は吐出管異常時に、各室内ユニッ
ト(B)〜(F)のうち停止中の室内ユニットの室内電
動膨張弁(流量制御弁)(13)の開度を中開度に開き
、かつ運転中の室内ユニットの室内電動膨張弁(13)
の開度を制御目標開度よりも増大させるよう制御する開
度増大手段(53)が構成されている。
In the above flow, by the control in steps SP5 and Sr1, when a low pressure abnormality or a discharge pipe abnormality occurs, the indoor electric expansion valve (flow rate control valve) (13 ) is opened to a medium opening degree and the indoor electric expansion valve (13) of the indoor unit is in operation.
An opening increasing means (53) is configured to control the opening of the opening to be greater than the control target opening.

したがって、上記第2実施例では、低圧異常時又は吐出
管異常時には、開度増大手段(53)により、停止中の
室内電動膨張弁(13)の開度を半開(中開度)にかつ
運転中の電動膨張弁(13)の開度を制御目標開度から
1.5を乗じた値に増大させるよう制御する開度増大運
転が行われるので、冷媒流量が増大し、ガスライン等に
滞溜した液冷媒がレシーバ(9)等に回収され、冷媒の
不足による能力不足や吐出管温度Tdの異常過熱が回避
されることになる。
Therefore, in the second embodiment, when the low pressure is abnormal or the discharge pipe is abnormal, the opening degree increasing means (53) sets the opening degree of the stopped indoor electric expansion valve (13) to half open (medium opening degree) and starts operation. Opening increase operation is performed to increase the opening of the electric expansion valve (13) in the center to a value obtained by multiplying the control target opening by 1.5. The accumulated liquid refrigerant is collected by the receiver (9) or the like, thereby avoiding insufficient capacity due to a shortage of refrigerant or abnormal overheating of the discharge pipe temperature Td.

次に、実施例は省略するが、上記第2実施例の開度項内
運転を行っ−た後に上記第1実施例の逆サイクル運転を
行うようにしてもよい。
Next, although an example will be omitted, the reverse cycle operation of the first embodiment may be performed after the operation within the opening term of the second embodiment.

すなわち、上記第2実施例における第7図のステップS
T5及びSr1の制御による開度増大運転を行った後、
上記請求項(1)の発明における逆サイクル運転を行う
。この制御により、請求項(4)の発明における逆サイ
クル運転制御手段(51B)が構成されている。
That is, step S in FIG. 7 in the second embodiment
After performing an opening increase operation by controlling T5 and Sr1,
The reverse cycle operation in the invention of claim (1) is performed. This control constitutes the reverse cycle operation control means (51B) in the invention of claim (4).

ここで、上記第2実施例における開度増大制御手段(5
3)による開度増大運転を行う判断となる低圧異常の検
出は設定圧力値1.5 (Kg/c厘 )で、吐出管異
常の検出は設定温度値120℃でそれぞれ行われ、上記
逆サイクル運転制御手段(51B)による低圧異常の検
出は上記設定圧力値以下の所定圧力値0. 5 (Kg
/cm  )で、吐出管異常の検出は上記設定温度値以
上の所定温度値130℃でそれぞれ行われる。
Here, the opening degree increase control means (5
Detection of low pressure abnormality, which is the decision to perform operation with increased opening according to 3), is performed at a set pressure value of 1.5 (Kg/c), and detection of discharge pipe abnormality is performed at a set temperature value of 120°C, and the above reverse cycle is performed. The operation control means (51B) detects a low pressure abnormality when the predetermined pressure value 0. 5 (Kg
/cm 2 ), and detection of discharge pipe abnormality is performed at a predetermined temperature value of 130° C., which is higher than the above-mentioned set temperature value.

したがって、開度増大制御手段(53)による開度増大
運転を行っても、冷媒の凝縮による冷媒循環量の不足状
態が解消せず、運転状態が悪化するときには、逆サイク
ル運転制御手段(51B)により液冷媒をアキュムレー
タ(10)に戻すことができる。つまり、逆サイクル運
転に至るまでに、なるべく暖房サイクルによる開度増大
だけで冷媒の滞溜の解消を図りながら、状態が悪化した
ときには、逆サイクル運転により適正な冷媒循環量を確
保することができ、よって、著効を発揮することができ
る。
Therefore, even if the opening increasing control means (53) performs the opening increasing operation, the insufficient refrigerant circulation amount due to condensation of the refrigerant is not resolved, and when the operating condition deteriorates, the reverse cycle operation controlling means (51B) The liquid refrigerant can be returned to the accumulator (10). In other words, while trying to eliminate refrigerant accumulation by simply increasing the opening of the heating cycle before starting reverse cycle operation, if the situation worsens, reverse cycle operation can ensure an appropriate amount of refrigerant circulation. , Therefore, it can be highly effective.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、サ
イクル切換え可能に構成された冷媒回路を備え、暖房運
転時、室内の要求能力に基づき電動膨張弁の開度を制御
するようにした空気調和装置において、低圧側圧力か所
定圧力値よりも低くなるか吐出管温度が所定温度値より
も高くなると、一定時間の間、サイクルを切換え、電動
膨張弁を開き側にして逆サイクル運転をするようにした
ので、低要求能力によりガスラインに滞溜した液冷媒を
アキュムレータに回収して、適正な冷媒循環量を確保す
ることができ、よって、空調の快適性及び信頼性の向上
を図ることかできる。
(Effects of the Invention) As explained above, according to the invention of claim (1), the refrigerant circuit is configured such that the cycle can be changed, and during heating operation, the opening of the electric expansion valve is determined based on the required indoor capacity. In an air conditioner that controls the air conditioner, when the low-pressure side pressure becomes lower than a predetermined pressure value or the discharge pipe temperature becomes higher than a predetermined temperature value, the cycle is switched for a certain period of time and the electric expansion valve is opened. Since the reverse cycle operation is performed with low required capacity, the liquid refrigerant accumulated in the gas line can be collected into the accumulator and an appropriate amount of refrigerant circulation can be ensured, thereby improving the comfort and comfort of air conditioning. It is possible to improve reliability.

請求項(′2Jの発明によれば、上記請求項(1)の発
明において、逆サイクル運転を行った後、所定時間が経
過するまでの間、低圧側圧力が上記所定圧力値以上の一
定圧力値よりも低くなるか吐出管温度が上記所定温度値
以下の一定温度値以上になると、再度逆サイクル運転を
行うようにしたので、冷媒の再度の滞溜を有効に解消す
ることができ、よって、請求項(1)の発明の効果をよ
り確実化することかできる。
According to the invention of claim ('2J), in the invention of claim (1), the low pressure side pressure is a constant pressure equal to or higher than the predetermined pressure value until a predetermined time has elapsed after performing the reverse cycle operation. When the discharge pipe temperature becomes lower than the specified temperature value or exceeds a certain temperature value below the above-mentioned predetermined temperature value, the reverse cycle operation is performed again, so that re-stagnation of refrigerant can be effectively eliminated. , the effect of the invention of claim (1) can be further ensured.

請求項(3)の発明によれば、1台の室外ユニットに複
数の室内ユニットを接続してなる空気調和装置において
、暖房運転時、低圧側圧力が設定圧力値よりも低いとき
又は吐出管温度値が設定温度値よりも高いときには、停
止中の室内の電動膨張弁は中開度に、運転中の室内の電
動膨張弁は制御目標値よりも増大させるようにしたので
、ガスライン等に滞溜した液冷媒をレシーバ等に回収し
て適正な冷媒循環量を確保することができ、よって、上
記請求項(1)の発明と同様の効果を発揮することがで
きる。
According to the invention of claim (3), in the air conditioner in which a plurality of indoor units are connected to one outdoor unit, during heating operation, when the low pressure side pressure is lower than the set pressure value, or when the discharge pipe temperature When the temperature value is higher than the set temperature value, the indoor electric expansion valve that is stopped is set to a medium opening degree, and the indoor electric expansion valve that is in operation is opened to a higher value than the control target value, so there is no stagnation in the gas line, etc. The accumulated liquid refrigerant can be collected into a receiver or the like to ensure an appropriate amount of refrigerant circulation, and therefore, the same effect as the invention of claim (1) above can be achieved.

請求項(4)の発明によれば、上記請求項(3)の発°
明において、空気調和装置をサイクル切換え可能に構成
し、電動膨張弁の開度増大制御を行った後、低圧側圧力
が設定圧力値以下の所定圧力値よりも低くなるか吐出管
温度値が設定温度値以上の所定温度値よりも高くなると
、一定時間の間、サイクルを切換え、各室内電動膨張弁
を開き側にして逆サイクル運転をするようにしたので、
冷媒のガスラインへの滞溜をできるだけ開度増大による
液戻しで解消して空調の快適性を維持しながら、状態が
悪化したときには、逆サイクル運転により液冷媒の回収
を行うことができ、よって、著効を発揮することができ
る。
According to the invention of claim (4), the invention of claim (3)
In this case, the air conditioner is configured to be cycle-switchable, and after controlling the electric expansion valve to increase the opening, the low pressure side pressure becomes lower than a predetermined pressure value that is less than the set pressure value, or the discharge pipe temperature value is set. When the temperature rises above a predetermined temperature value, the cycle is switched for a certain period of time, and each indoor electric expansion valve is set to the open side for reverse cycle operation.
While maintaining the comfort of air conditioning by eliminating the accumulation of refrigerant in the gas line by returning the liquid by increasing the opening as much as possible, when the condition worsens, the liquid refrigerant can be recovered by reverse cycle operation. , can be very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図である。 第2図〜第5図は本発明の実施例を示し、第2図は空気
調和装置の全体構成を示す冷媒配管系統図、第3図は液
戻しスタートフラグの切換えを示す制御状態遷移図、第
4図は通常暖房運転と逆サイクル運転との間の制御状態
の変化を示す制御状態遷移図、第5図は空気調和装置の
運転制御内容を示すフローチャート図である。第6図及
び第7図は第2実施例を示し、第6図は開度増大フラグ
の設定制御の内容を示すフローチャート図、第7図は空
気調和装置の道、転制御内容を示すフローチャート図で
ある。 1  圧縮機 5  四路切換弁 (サイクル切換機構) 6  室外熱交換器 8  室外電動膨張弁 (減圧弁) 10 アキュムレータ 12 室内熱交換器 13 室内電動膨張弁 (流量制御弁) 14 主冷媒回路 50 通常運転制御手段 51 逆サイクル運転制御手段 52 副逆サイクル運転制御手段 53 開度増大手段 P2 低圧センサ (低圧検出手段) THI  室温サーモスタット (要求能力検出手段) TH4吐出管センサ (吐出管温度検出手段) 特許出願人    ダイキン工業株式会計代理人 弁理
士 前 1)弘 (ほか1名)第6図 1  圧縮機 5  四路切換弁 (サイクル切換機構) 6  室外熱交換器 8  室外電動膨張弁 (減圧弁) 10 アキュムレータ 12 室内熱交換器 13 室内電動膨張弁 (流量側口弁) 14 主冷媒回路 50 j!常運転制御手段 51 逆サイクル運転制御手段 52 制逆サイクル運転制−手段 53 開度増大手段 P2 低圧センサ (低圧検出手段) TRI  !温す−モスタット (要求能力検出手段) T114  吐出管センサ ・   (吐出管温度検出手段) Pe < Pes 第3図 第4図
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 5 show embodiments of the present invention, FIG. 2 is a refrigerant piping system diagram showing the overall configuration of the air conditioner, FIG. 3 is a control state transition diagram showing switching of the liquid return start flag, FIG. 4 is a control state transition diagram showing changes in control states between normal heating operation and reverse cycle operation, and FIG. 5 is a flow chart showing operation control details of the air conditioner. 6 and 7 show the second embodiment, FIG. 6 is a flowchart showing the contents of the opening increase flag setting control, and FIG. 7 is a flowchart showing the contents of the control of the air conditioner. It is. 1 Compressor 5 Four-way switching valve (cycle switching mechanism) 6 Outdoor heat exchanger 8 Outdoor electric expansion valve (pressure reducing valve) 10 Accumulator 12 Indoor heat exchanger 13 Indoor electric expansion valve (flow rate control valve) 14 Main refrigerant circuit 50 Normal Operation control means 51 Reverse cycle operation control means 52 Sub-reverse cycle operation control means 53 Opening degree increasing means P2 Low pressure sensor (low pressure detection means) THI Room temperature thermostat (required capacity detection means) TH4 discharge pipe sensor (discharge pipe temperature detection means) Patent Applicant Daikin Industries Stock Accounting Agent Patent Attorney Mae 1) Hiroshi (and 1 other person) Figure 6 1 Compressor 5 Four-way switching valve (cycle switching mechanism) 6 Outdoor heat exchanger 8 Outdoor electric expansion valve (pressure reducing valve) 10 Accumulator 12 Indoor heat exchanger 13 Indoor electric expansion valve (flow rate side port valve) 14 Main refrigerant circuit 50 j! Regular operation control means 51 Reverse cycle operation control means 52 Reverse cycle operation control means 53 Opening degree increasing means P2 Low pressure sensor (low pressure detection means) TRI! Warming-mostat (required capacity detection means) T114 Discharge pipe sensor (discharge pipe temperature detection means) Pe < Pes Fig. 3 Fig. 4

Claims (4)

【特許請求の範囲】[Claims] (1)圧縮機(1)、室外熱交換器(6)、電動膨張弁
(13又は8)、室内熱交換器(12)及びアキュムレ
ータ(10)を順次接続してなる冷媒回路(14)と、
該冷媒回路(14)の冷媒の循環経路を正逆切換えるサ
イクル切換機構(5)とを備えた空気調和装置において
、暖房運転時、上記室内熱交換器(12)の要求能力を
検出する要求能力検出手段(TH1)と、暖房運転時、
上記要求能力検出手段(TH1)で検出される要求能力
に基づき、上記電動膨張弁(13)の開度を制御する通
常運転制御手段(50)とを備えるとともに、 冷媒の低圧側圧力を検出する低圧検出手段 (P1)と、吐出管温度を検出する吐出管温度検出手段
(TH4)と、暖房運転時、上記低圧検出手段(P1)
及び吐出管温度検出手段(TH4)の出力を受け、低圧
側圧力が所定圧力値よりも低くなるか吐出管温度か所定
温度値よりも高くなると、一定時間の間、上記通常運転
制御手段(50)の制御を強制的に停止させて、上記サ
イクル切換機構(5)を逆サイクル側に切換え、上記電
動膨張弁(13又は8)の開度を開き側にするよう制御
する逆サイクル運転制御手段(51A)とを備えたこと
を特徴とする空気調和装置の運転制御装置。
(1) A refrigerant circuit (14) formed by sequentially connecting a compressor (1), an outdoor heat exchanger (6), an electric expansion valve (13 or 8), an indoor heat exchanger (12), and an accumulator (10). ,
In an air conditioner equipped with a cycle switching mechanism (5) that switches the refrigerant circulation path of the refrigerant circuit (14) between forward and reverse directions, a required ability to detect the required ability of the indoor heat exchanger (12) during heating operation. Detection means (TH1) and during heating operation,
normal operation control means (50) for controlling the opening degree of the electric expansion valve (13) based on the required capacity detected by the required capacity detection means (TH1), and detecting the low pressure side pressure of the refrigerant; A low pressure detection means (P1), a discharge pipe temperature detection means (TH4) that detects the discharge pipe temperature, and the above-mentioned low pressure detection means (P1) during heating operation.
In response to the output of the discharge pipe temperature detection means (TH4), when the low pressure side pressure becomes lower than a predetermined pressure value or when the discharge pipe temperature becomes higher than a predetermined temperature value, the normal operation control means (50 ), the cycle switching mechanism (5) is switched to the reverse cycle side, and the opening degree of the electric expansion valve (13 or 8) is controlled to be on the open side. (51A) An operation control device for an air conditioner, characterized by comprising: (51A).
(2)請求項(1)記載の空気調和装置の運転制御装置
において、 暖房運転時、低圧検出手段(P1)及び吐出管検出手段
(TH4)の出力を受け、逆サイクル運転制御手段(5
1A)による逆サイクル運転の終了後所定時間が経過す
るまでの間、低圧側圧力が上記所定圧力値以上の一定圧
力値よりも低くなるか吐出管温度が上記所定温度値以下
の一定温度値よりも高くなると、一定時間の間、サイク
ル切換機構(5)を逆サイクル側に切換え、電動膨張弁
(13又は8)の開度を開き側にして逆サイクル運転を
するよう制御する副逆サイクル運転制御手段(52)を
備えたことを特徴とする空気調和装置の運転制御装置。
(2) In the operation control device for an air conditioner according to claim (1), during heating operation, receiving the outputs of the low pressure detection means (P1) and the discharge pipe detection means (TH4),
Until a predetermined period of time elapses after the end of the reverse cycle operation according to 1A), the low pressure side pressure becomes lower than the constant pressure value above the above predetermined pressure value, or the discharge pipe temperature becomes lower than the constant temperature value below the above predetermined temperature value. When the temperature increases, the cycle switching mechanism (5) is switched to the reverse cycle side for a certain period of time, and the opening degree of the electric expansion valve (13 or 8) is controlled to the open side to perform the reverse cycle operation. An operation control device for an air conditioner, comprising a control means (52).
(3)圧縮機(1)、室外熱交換器(6)及び該室外熱
交換器(6)用の減圧弁(8)が配置された室外ユニッ
ト(A)に対して、流量制御弁(13)及び室内熱交換
器(12)が配置された複数の室内ユニット(B),(
C)・・・を互いに並列に配置し、かつ上記各機器を冷
媒配管で順次接続してなる冷媒回路(14)を備えた空
気調和装置において、 暖房運転時、上記各室内熱交換器(13)・・・の要求
能力を個別に検出する複数の要求能力検出手段(TH1
)・・・と、暖房運転時、上記要求能力検出手段(TH
1)で検出される要求能力に基づき、上記各室内電動膨
張弁(13)・・・の開度を制御する通常運転制御手段
(50)とを備えるとともに、 冷媒の低圧側圧力を検出する低圧検出手段 (P2)と、吐出管温度を検出する吐出管温度検出手段
(TH4)と、暖房運転時、上記低圧検出手段(P2)
及び吐出管温度検出手段(TH4)の出力を受け、低圧
側圧力が設定圧力値よりも低い低圧異常時又は吐出管温
度が設定温度値よりも高い吐出管異常時に、上記各室内
ユニット(B),(F)・・・のうち停止中の室内ユニ
ットの流量制御弁(13)の開度を中開度に開き、かつ
運転中の室内ユニットの流量制御弁(13)の開度を制
御目標開度よりも増大させるよう制御する開度増大手段
(53)とを備えたことを特徴とする空気調和装置の運
転制御装置。
(3) For the outdoor unit (A) in which the compressor (1), the outdoor heat exchanger (6), and the pressure reducing valve (8) for the outdoor heat exchanger (6) are arranged, ) and a plurality of indoor units (B) in which indoor heat exchangers (12) are arranged, (
In an air conditioner equipped with a refrigerant circuit (14) in which C)... are arranged in parallel with each other and each of the above devices is sequentially connected by refrigerant piping, during heating operation, each of the indoor heat exchangers (13) )... A plurality of required capability detection means (TH1
)..., and during heating operation, the required capacity detection means (TH
A normal operation control means (50) that controls the opening degree of each of the indoor electric expansion valves (13) based on the required capacity detected in step 1), and a low pressure control means (50) that detects the low pressure side pressure of the refrigerant. a detection means (P2), a discharge pipe temperature detection means (TH4) for detecting the discharge pipe temperature, and the above-mentioned low pressure detection means (P2) during heating operation.
and the output of the discharge pipe temperature detection means (TH4), and when the low pressure side pressure is lower than the set pressure value or the discharge pipe abnormality is higher than the set temperature value, each indoor unit (B) , (F)..., the opening degree of the flow control valve (13) of the indoor unit that is stopped is opened to a medium opening degree, and the opening degree of the flow rate control valve (13) of the indoor unit that is in operation is set as a control target. 1. An operation control device for an air conditioner, comprising an opening increasing means (53) for controlling the opening to be increased more than the opening.
(4)請求項(3)記載の空気調和装置の運転制御装置
において、 サイクルを切換えるサイクル切換機構(5)と、暖房運
転時、低圧検出手段(P2)及び吐出管温度検出手段(
TH4)の出力を受け、上記開度増大制御手段(53)
による制御の終了後に、低圧側圧力か設定圧力値以下の
所定圧力値よりも低くなるか吐出管温度が設定温度値以
上の所定温度値よりも高くなると、一定時間の間、上記
通常運転制御手段(50)の制御を強制的に停止させて
、上記サイクル切換機構(5)を逆サイクル側に切換え
、上記電動膨張弁(13)の開度を開き側にするよう制
御する逆サイクル運転制御手段(51B)とを備えたこ
とを特徴とする空気調和装置の運転制御装置。
(4) The operation control device for an air conditioner according to claim (3), further comprising a cycle switching mechanism (5) for switching cycles, and during heating operation, a low pressure detection means (P2) and a discharge pipe temperature detection means (
TH4), the opening increase control means (53)
After the control is completed, if the low pressure side pressure becomes lower than a predetermined pressure value below the set pressure value, or if the discharge pipe temperature becomes higher than a predetermined temperature value above the set temperature value, the normal operation control means is activated for a certain period of time. Reverse cycle operation control means for forcibly stopping the control of (50), switching the cycle switching mechanism (5) to the reverse cycle side, and controlling the opening degree of the electric expansion valve (13) to the open side. (51B) An operation control device for an air conditioner.
JP2340052A 1990-11-30 1990-11-30 Operation control device for air conditioner Expired - Fee Related JP2684845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2340052A JP2684845B2 (en) 1990-11-30 1990-11-30 Operation control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2340052A JP2684845B2 (en) 1990-11-30 1990-11-30 Operation control device for air conditioner

Publications (2)

Publication Number Publication Date
JPH04208370A true JPH04208370A (en) 1992-07-30
JP2684845B2 JP2684845B2 (en) 1997-12-03

Family

ID=18333265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2340052A Expired - Fee Related JP2684845B2 (en) 1990-11-30 1990-11-30 Operation control device for air conditioner

Country Status (1)

Country Link
JP (1) JP2684845B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526649A (en) * 1993-02-26 1996-06-18 Daikin Industries, Ltd. Refrigeration apparatus
US6230747B1 (en) 1994-09-22 2001-05-15 Daikin Industries, Ltd. Pipe connecting method and piping structure
JP2009024965A (en) * 2007-07-23 2009-02-05 Fujitsu General Ltd Air conditioner
JP2010223493A (en) * 2009-03-23 2010-10-07 Toshiba Carrier Corp Air conditioner
JP2013224754A (en) * 2012-04-20 2013-10-31 Daikin Industries Ltd Air conditioner
CN111023418A (en) * 2019-12-26 2020-04-17 宁波奥克斯电气股份有限公司 Pressure sensor abnormity control method and device and air conditioner
JP2020512519A (en) * 2017-03-31 2020-04-23 シーメンス アクティエンゲゼルシャフト Heat pump and method of operating heat pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101177U (en) * 1982-12-24 1984-07-07 東邦鉄工株式会社 Pressure switch with alarm display contact
JPS63290352A (en) * 1987-05-21 1988-11-28 松下冷機株式会社 Heat pump type air conditioner
JPH01203854A (en) * 1988-02-09 1989-08-16 Toshiba Corp Air conditioner
JPH01217164A (en) * 1988-02-26 1989-08-30 Hitachi Ltd Multi-chamber type airconditioner
JPH02118364A (en) * 1988-10-27 1990-05-02 Toshiba Corp Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101177U (en) * 1982-12-24 1984-07-07 東邦鉄工株式会社 Pressure switch with alarm display contact
JPS63290352A (en) * 1987-05-21 1988-11-28 松下冷機株式会社 Heat pump type air conditioner
JPH01203854A (en) * 1988-02-09 1989-08-16 Toshiba Corp Air conditioner
JPH01217164A (en) * 1988-02-26 1989-08-30 Hitachi Ltd Multi-chamber type airconditioner
JPH02118364A (en) * 1988-10-27 1990-05-02 Toshiba Corp Air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526649A (en) * 1993-02-26 1996-06-18 Daikin Industries, Ltd. Refrigeration apparatus
US5548968A (en) * 1993-02-26 1996-08-27 Daikin Industries, Ltd. Refrigeraton apparatus
US6230747B1 (en) 1994-09-22 2001-05-15 Daikin Industries, Ltd. Pipe connecting method and piping structure
JP2009024965A (en) * 2007-07-23 2009-02-05 Fujitsu General Ltd Air conditioner
JP2010223493A (en) * 2009-03-23 2010-10-07 Toshiba Carrier Corp Air conditioner
JP2013224754A (en) * 2012-04-20 2013-10-31 Daikin Industries Ltd Air conditioner
JP2020512519A (en) * 2017-03-31 2020-04-23 シーメンス アクティエンゲゼルシャフト Heat pump and method of operating heat pump
CN111023418A (en) * 2019-12-26 2020-04-17 宁波奥克斯电气股份有限公司 Pressure sensor abnormity control method and device and air conditioner
CN111023418B (en) * 2019-12-26 2021-05-14 宁波奥克斯电气股份有限公司 Pressure sensor abnormity control method and device and air conditioner

Also Published As

Publication number Publication date
JP2684845B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
US10527322B2 (en) Air conditioner
EP2090849A1 (en) Refrigeration device
EP3273188B1 (en) Control device, air conditioner, and controlling method
EP2420765A1 (en) Heat source unit
JP2007057220A (en) Refrigeration device
JP7390471B2 (en) refrigerant system
EP3236168B1 (en) Air conditioning device
JP3208923B2 (en) Operation control device for air conditioner
KR101414860B1 (en) Air conditioner and method of controlling the same
JP3291753B2 (en) Refrigerant charging amount detection device for refrigeration equipment
JPH04208370A (en) Operation controller for air conditioner
JPH03175230A (en) Operation controller of air conditioner
JP3829340B2 (en) Air conditioner
KR100748982B1 (en) Air conditioner and Control method of the same
JP3149625B2 (en) Operation control device for air conditioner
JPH04344085A (en) Defrosting operation control device for refrigerating apparatus
JP3097468B2 (en) Control device for air conditioner
JP3232755B2 (en) Air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
JPH03122460A (en) Operating controller for refrigerating machine
JP2503699B2 (en) Compressor discharge pipe temperature control device
JP2541173B2 (en) Air conditioner
JPH06341695A (en) Operation control device for air conditioner
JP2976905B2 (en) Air conditioner
JPH04222351A (en) Operation controller for air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees