JPH03175230A - Operation controller of air conditioner - Google Patents

Operation controller of air conditioner

Info

Publication number
JPH03175230A
JPH03175230A JP1323592A JP32359289A JPH03175230A JP H03175230 A JPH03175230 A JP H03175230A JP 1323592 A JP1323592 A JP 1323592A JP 32359289 A JP32359289 A JP 32359289A JP H03175230 A JPH03175230 A JP H03175230A
Authority
JP
Japan
Prior art keywords
temperature
capacity
compressor
indoor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1323592A
Other languages
Japanese (ja)
Other versions
JP2508860B2 (en
Inventor
Masaki Yamamoto
山本 政樹
Shinichi Nakaishi
中石 伸一
Naoki Ueno
直樹 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1323592A priority Critical patent/JP2508860B2/en
Publication of JPH03175230A publication Critical patent/JPH03175230A/en
Application granted granted Critical
Publication of JP2508860B2 publication Critical patent/JP2508860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To smoothly start a cooling operation even in a low outside air temperature by setting the initial openings of utilizing side expansion valves larger than an overheating degree control opening, reducing the air capacity of the fan of a heat source side heat exchanger and, on the other hand, opening all the utilizing side expansion valves only in starting. CONSTITUTION:A refrigerant discharged from a compressor 1 is condensed in an outdoor heat exchanger 4 and shunted to indoor units A and B wherein the pressure of the refrigerant is reduced by indoor motor-operated expansion valves 7 and 7. After evaporated by indoor heat exchangers 8 and 8, the shunted refrigerants join together again and return to the compressor 1. In a cooling operation described above, capacity control means 51 open and close a valve 18 based on an indoor temperature detected by a room temperature thermometer Th3 and the capacity of the compressor 1 is controlled to a full load or an unloading. The openings of the indoor motor- operated expansion valves 7 are overheat-degree-controlled by opening control means 53 based on the detected temperatures of an indoor liquid pipe sensor Th4 and an indoor gas pipe sensor Th5 and, on the other hand, the air capacity of an outdoor fan 12 is controlled to a low air capacity L or to a high air capacity by air capacity control means 54 based on the outdoor air temperature detected by an outdoor air temperature sensor Th1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、開度調節自在な利用側膨張弁を備えた空気調
和装置の運転制御装置に関し、特に、冷房低外気時にお
ける起動対策に係るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an operation control device for an air conditioner equipped with a use-side expansion valve whose opening degree can be freely adjusted, and in particular relates to a start-up countermeasure for cooling when the outside air temperature is low. It is something.

(従来の技術) 従来より、空気調和装置には、例えば実開昭54−16
7541号公報に開示されているように、アンローダ機
構によりフルロードとアンロードとの2段階に運転容量
が調節可能な圧縮機と、室外ファンを付設した室外熱交
換器と、室外膨張弁と、室内膨張弁と、室内熱交換器と
が順に接続されて構成されているものがある。そして、
冷房運転時において、室内温度と設定温度との温度差に
基づいて3ステツプに区分し、室内の空調状態に応じて
圧縮機の運転容量を調節し、冷房負荷に対する能力調節
を行って、所定の冷房効果を発揮するようにしている。
(Prior art) Conventionally, air conditioners have been equipped with, for example,
As disclosed in Publication No. 7541, a compressor whose operating capacity can be adjusted in two stages of full load and unload by an unloader mechanism, an outdoor heat exchanger equipped with an outdoor fan, and an outdoor expansion valve; Some devices have an indoor expansion valve and an indoor heat exchanger connected in sequence. and,
During cooling operation, the compressor is divided into three steps based on the temperature difference between the indoor temperature and the set temperature, and the operating capacity of the compressor is adjusted according to the indoor air conditioning condition, and the capacity is adjusted for the cooling load to achieve the specified level. It is designed to have a cooling effect.

(発明が解決しようとする課題) 上述した空気調和装置において、電算機室の空調の如く
年間を通して冷房を行う場合があり、冬場などの低外気
時においても冷房運転を行う場合がある。この低外気時
において、冷房運転の起動時には、圧縮機の運転容量が
アンロード状態に設定されるものの、室内電動弁が過熱
度制御されるように設定されているため、起動時の初期
開度が絞りかつてになり、低圧(圧縮機の吸込側圧力)
が低下するという問題があった。特に、室外ファンが稼
動するので、高圧(凝縮圧力)が低下して高低圧力差が
小さくなり、冷媒の彼環量が低下して低圧が下がり、低
圧カットが生じ、冷房運転が停止するという問題があっ
た。
(Problems to be Solved by the Invention) The above-mentioned air conditioner may perform cooling throughout the year, such as air conditioning in a computer room, and may perform cooling operation even when the outside air temperature is low, such as in winter. In this low outside air condition, when starting cooling operation, the operating capacity of the compressor is set to the unload state, but since the indoor electric valve is set to control the degree of superheat, the initial opening at startup is Once throttled, the pressure becomes low (pressure on the suction side of the compressor)
There was a problem that the In particular, when the outdoor fan operates, the high pressure (condensing pressure) decreases, the difference between high and low pressures becomes small, the amount of refrigerant circulating decreases, the low pressure decreases, a low pressure cut occurs, and the cooling operation stops. was there.

本発明は、斯かる点に鑑みてなされたもので、低外気時
においても冷房運転の起動が円滑に行われるようにする
ことを目的とするものである。
The present invention has been made in view of the above, and an object of the present invention is to smoothly start the cooling operation even when the outside air temperature is low.

(課題を解決するための手段) 上記目的を達成するために、本発明が講じた手段は、利
用側膨張弁の初期開度を過熱度制御開度より大きく設定
し、これに加えて、熱源側熱交換器のファン風量を低下
させる一方、起動時のみ全ての利用側膨張弁を開けるよ
うにしたものである。
(Means for Solving the Problems) In order to achieve the above object, the means taken by the present invention is to set the initial opening degree of the utilization side expansion valve to be larger than the superheat degree control opening degree, and in addition to this, to While reducing the fan air volume of the side heat exchanger, all the usage-side expansion valves are opened only at startup.

具体的に、第1図(a)に示すように、請求項(1)に
係る発明が講じた手段は、先ず、容量の可変な圧縮機(
1)と、熱源側熱交換器(4)と、開度の調節自在な利
用側膨張弁(7)と、利用側熱交換器(8)とが順に接
続されて成る空気調和装置を前提としている。
Specifically, as shown in FIG. 1(a), the measures taken by the invention according to claim (1) first include a variable capacity compressor (
1), a heat source side heat exchanger (4), a user side expansion valve (7) whose opening degree can be freely adjusted, and a user side heat exchanger (8) are connected in this order. There is.

そして、上記圧縮機(1)の容量を空調負荷に応じて調
節する容量制御手段(51)と、上記利用側膨張弁(7
)の開度を過熱度に応じて該過熱度が一定となるように
制御する開度制御手段(53)と、外気温度を検出して
温度信号を出力する温度検出手段(Th1)とが設けら
れている。更に、冷房運転の起動時に該温度検出手段(
Th1)の温度信号を受けて外気温度が予め設定された
所定温度以下に低下していると、起動時より所定時間内
において容量制御手段(51)の制御に代えて上記圧縮
機(1)を強制的に低容量で駆動させるように容量信号
を出力する起動容量手段(55)が設けられている。加
えて、冷房運転の起動時に上記温度検出手段(Th1)
の温度信号を受けて外気温度が予め設定された所定温度
以下に低下していると、起動時より所定時間内において
開度制御手段(53)の制御に代えて上記利用側膨張弁
(7)を強制的に過熱度制御開度より所定開度大きい起
動開度に設定されるように開度信号を出力する起動開度
手段(56)が設けられた構成としている。
The capacity control means (51) adjusts the capacity of the compressor (1) according to the air conditioning load, and the utilization side expansion valve (7).
) is provided with an opening degree control means (53) for controlling the opening degree of the opening according to the degree of superheating so that the degree of superheating is constant, and a temperature detection means (Th1) for detecting the outside air temperature and outputting a temperature signal. It is being Furthermore, the temperature detection means (
When the outside air temperature drops below a preset temperature in response to the temperature signal Th1), the compressor (1) is operated instead of controlling the capacity control means (51) within a predetermined time from the time of startup. A starting capacitance means (55) is provided that outputs a capacitance signal to forcibly drive with a low capacitance. In addition, the temperature detection means (Th1)
If the outside air temperature drops below a preset temperature in response to a temperature signal from The configuration includes a starting opening means (56) that outputs an opening signal so that the starting opening is forcibly set to a starting opening that is a predetermined opening larger than the superheat degree control opening.

また、請求項(2)に係る発明が講じた手段は、上記請
求項(1)の発明において、ファン(12)の風量を調
節する風量制御手段(54)が設けられる一方、冷房運
転の起動時に温度検出手段(Th1)の温度信号を受け
て外気温度が予め設定された所定温度以下に低下してい
ると、起動時より所定時間内において風量制御手段(5
4)の制御に代えて上記ファン(12)を強制的に停止
又は低風量で駆動させるように風量信号を出力する起動
風量手段(57)が設けられた構成としている。
Furthermore, the means taken by the invention according to claim (2) is that, in the invention according to claim (1), an air volume control means (54) for adjusting the air volume of the fan (12) is provided, while starting the cooling operation. If the outside air temperature drops below a preset temperature in response to a temperature signal from the temperature detection means (Th1), the air volume control means (Th1) is activated within a predetermined time from the time of startup.
In place of the control in step 4), a starting air volume means (57) is provided for outputting an air volume signal to forcibly stop or drive the fan (12) at a low air volume.

また、第1図(b)に示すように、請求項(3)に係る
発明が講じた手段は、圧縮機(1)と、熱源側熱交換器
(4)と、開度の調節自在な複数の利用側膨張弁(7)
、  (7)、・・・と、複数の利用側熱交換器(8)
、(8)、・・・とが接続されて成る空気調和装置を前
提とし、上記各利用側膨張弁(7)、  (7)、・・
・を各利用側熱交換器(8)。
Moreover, as shown in FIG. 1(b), the means taken by the invention according to claim (3) is that the compressor (1), the heat source side heat exchanger (4), and the Multiple user-side expansion valves (7)
, (7), ... and multiple user-side heat exchangers (8)
, (8),... are assumed to be connected to each other, and each of the user-side expansion valves (7), (7),...
・Each user side heat exchanger (8).

(8)、・・・の熱交換動作の停止時に全閉に制御する
一方、各利用側熱交換器(8)、  (8)、・・・の
熱交換動作時に上記各利用側膨張弁(7)、  (7)
・・・の開度を過熱度に応じて該過熱度が一定となるよ
うに制御する開度制御手段(53)と、外気温度又は蒸
発圧力相当飽和温度を検出して温度信号を出力する温度
検出手段(Thl、PL)とが設けられている。そして
、少なくとも1台の上記利用側熱交換器(8)による冷
房運転の起動時に上記温度検出手段(Thl、PI)の
温度信号を受けて外気温度又は蒸発圧力相当飽和温度が
予め設定された所定温度以下に低下していると、起動時
より所定時間内において開度制御手段(53)の制御に
代えて全ての利用側膨張弁(7)、  (7)・・・を
所定の起動開度に設定するように開度信号を出力する起
動開度手段(58)が設けられた構成としている。
When the heat exchange operations of (8), . . . 7), (7)
an opening control means (53) for controlling the opening degree of . . . so that the degree of superheating is constant according to the degree of superheating; A detection means (Thl, PL) is provided. Then, upon starting the cooling operation by at least one of the user-side heat exchangers (8), an outside air temperature or a saturation temperature equivalent to evaporation pressure is set in advance in response to a temperature signal from the temperature detection means (Thl, PI). If the temperature has dropped below the temperature, the opening control means (53) will control all the user-side expansion valves (7), (7), etc. within a predetermined time from startup to the predetermined startup opening. The configuration includes a starting opening degree means (58) that outputs an opening degree signal to set the opening degree.

(作用) 上記構成により請求項(1)に係る発明では、冷房運転
時において、容量制御手段(51)が冷房負荷に応じて
圧縮機(1)の容量を調節する一方、開度制御手段(5
3)が利用側膨張弁(7)を過熟度制御し、冷房運転を
制御している。
(Function) With the above configuration, in the invention according to claim (1), during cooling operation, the capacity control means (51) adjusts the capacity of the compressor (1) according to the cooling load, while the opening control means ( 5
3) controls the supermaturity of the user-side expansion valve (7) and controls the cooling operation.

この冷房運転の起動時において、温度検出手段(Th1
)が検出する外気温度が予め設定された所定温度より低
い場合には、起動容量手段(55)が容量信号を、また
、起動開度手段(56)が開度をそれぞれ出力する。そ
して、上記圧縮機(1)を低容量に設定すると共に、上
記利用側膨張弁(7)を過熱度制御開度より大きい開度
に設定し、冷房運転を開始する。これにより、起動時の
外気温度が低い場合であっても所定の冷媒循環量が確保
され、低圧(圧縮機(1)の吸込側圧力)が所定値以上
に保たれることになり、冷房運転がスムーズに行われる
At the time of starting this cooling operation, the temperature detection means (Th1
) detects an outside temperature lower than a preset temperature, the starting capacity means (55) outputs a capacity signal, and the starting opening degree means (56) outputs an opening degree. Then, the compressor (1) is set to a low capacity, and the user-side expansion valve (7) is set to an opening larger than the superheat degree control opening, and cooling operation is started. As a result, even if the outside air temperature is low at startup, a predetermined amount of refrigerant circulation is ensured, and the low pressure (pressure on the suction side of the compressor (1)) is maintained above a predetermined value, allowing cooling operation. is carried out smoothly.

また、請求項(2)に係る発明では、風量制御手段(5
4)が熱源側のファン(12)を制御しており、冷房運
転の起動時に外気温度が所定温度より低い場合には起動
風量手段(57)が風量信号を出力する。そして、圧縮
機(1)及び利用側膨張弁(7)の起動制御に加えて、
上記ファン(12)の風量を低下させ、例えば、停止又
は低風量に制御する。これによって、熱源側熱交換器(
4)の熱交換量が低下して高圧(凝縮圧力)が所定値に
保たれ、低圧がより確実に所定値に保たれる。
Further, in the invention according to claim (2), the air volume control means (5
4) controls the fan (12) on the heat source side, and when the outside air temperature is lower than a predetermined temperature at the time of starting the cooling operation, the starting air volume means (57) outputs an air volume signal. In addition to starting control of the compressor (1) and the usage-side expansion valve (7),
The air volume of the fan (12) is reduced, for example, stopped or controlled to a low air volume. This allows the heat source side heat exchanger (
4) The amount of heat exchange is reduced, the high pressure (condensation pressure) is maintained at a predetermined value, and the low pressure is more reliably maintained at a predetermined value.

また、請求項(3)に係る発明では、冷房運転の停止時
より複数の利用側熱交換器(8)、  (8)。
Further, in the invention according to claim (3), the plurality of user-side heat exchangers (8), (8) are used from the time of stopping the cooling operation.

のうち少なくとも1台の利用側熱交換器(8)の冷房運
転、つまり、熱交換動作を開始すると、低外気温度時に
おいては全ての利用側膨張弁(7)。
When the cooling operation, that is, the heat exchange operation, of at least one of the utilization-side heat exchangers (8) is started, all the utilization-side expansion valves (7) are activated when the outside air temperature is low.

(7)、・・・を所定開度に開き、例えば、全閉にして
所定の冷媒循環量を確保し、低圧を所定値に保つ。
(7), .

(発明の効果) 従って、請求項(1)に係る発明によれば、冷房運転の
起動時に外気温度が低温であると、圧縮機(1)を低容
量にすると共に、利用側膨張弁(7)の開度を大きくす
るようにしたために、所定の冷媒循環量を確保すること
ができるので、低圧の低下を防止することができる。こ
の結果、外気温度が低温であっても低圧カットが生じる
ことがなく、冷房運転をスムーズに開始させることがで
きるので、快適な冷房を確実に行うことができる。
(Effects of the Invention) Therefore, according to the invention according to claim (1), when the outside air temperature is low at the time of starting the cooling operation, the capacity of the compressor (1) is reduced and the usage side expansion valve (7 ) by increasing the opening degree, a predetermined amount of refrigerant circulation can be ensured, and a drop in low pressure can be prevented. As a result, even if the outside air temperature is low, low pressure cut does not occur, and cooling operation can be started smoothly, so that comfortable cooling can be reliably performed.

また、請求項(2に係る発明によれば、外気温度が低温
であると、ファン(12)を停止又は低風量とするよう
にしたために、高圧の低下を防止することでき、この高
圧低下に伴う低圧低下を防止することができることから
、より確実に冷房運転を開始させることができ、より快
適性を向上させることができる。
Further, according to the invention according to claim 2, when the outside air temperature is low, the fan (12) is stopped or the air volume is reduced, so that a drop in high pressure can be prevented. Since the accompanying low pressure drop can be prevented, cooling operation can be started more reliably, and comfort can be further improved.

また、請求項(3)に係る発明によれば、複数の利用側
膨張弁(7)、  (7)、・・・を低外気温度の起動
時に全て開けるようにしたために、冷媒循環量を所定値
により確実に保つことができるので、低圧の低下を確実
に防止することができる。特に、配管長が長い場合や容
量の小さい利用側熱交換器(8)のみを運転する場合に
おいても所定の冷媒循環量を確実に確保することができ
ることから、低圧カットを防止することができ、スムー
ズな冷房運転の開始を確実に行うことができる。
Further, according to the invention according to claim (3), since the plurality of user-side expansion valves (7), (7), etc. are all opened at the time of startup at low outside air temperature, the refrigerant circulation amount is controlled to a predetermined level. Since the value can be maintained reliably, a drop in low pressure can be reliably prevented. In particular, even when the piping length is long or only the user-side heat exchanger (8) with a small capacity is operated, a predetermined amount of refrigerant circulation can be reliably ensured, making it possible to prevent low pressure cuts. A smooth start of cooling operation can be ensured.

(実施例) 以下、本発明の実施例について、第2図〜第6図に基づ
き説明する。
(Example) Examples of the present invention will be described below with reference to FIGS. 2 to 6.

第2図は本発明の実施例に係る空気調和装置の冷媒配管
系統を示し、1台の室外ユニット(X)に対して2台の
室内ユニット(A)・、 (B)が並列に接続されたマ
ルチタイプのものである。
FIG. 2 shows a refrigerant piping system of an air conditioner according to an embodiment of the present invention, in which two indoor units (A) and (B) are connected in parallel to one outdoor unit (X). It is a multi-type product.

上記室外ユニット(X)において、(1)は圧縮機、(
2)は吐出冷媒中の油を回収するデミスタ、(3)は冷
房運転時には図中実線のごとく切換わり、暖房運転時に
は図中破線のごとく切換わる四路切換弁、(4)は室外
ファン(12)を付設し、冷房運転時には凝縮器として
、暖房運転時には蒸発器として機能する熱源側熱交換器
である室外熱交換器、(4a)は該室外熱交換器(4)
の袖助熱交換器、(5)は冷房運転時には冷媒流量を調
節し、暖房運転時には冷媒を減圧する室外電動膨張弁、
(6)は液冷媒を貯溜するためのレシーバ、(9)は吸
入冷媒中の液冷媒を除去するためのアキュムレータであ
る。
In the above outdoor unit (X), (1) is a compressor, (
2) is a demister that collects oil in the discharged refrigerant, (3) is a four-way switching valve that switches as shown in the solid line in the figure during cooling operation, and as shown in the broken line in the figure during heating operation, and (4) is an outdoor fan ( 12), an outdoor heat exchanger which is a heat source side heat exchanger that functions as a condenser during cooling operation and as an evaporator during heating operation; (4a) is the outdoor heat exchanger (4);
(5) is an outdoor electric expansion valve that adjusts the refrigerant flow rate during cooling operation and reduces the pressure of the refrigerant during heating operation;
(6) is a receiver for storing liquid refrigerant, and (9) is an accumulator for removing liquid refrigerant from the suction refrigerant.

また、上記室内ユニット(A)、  (B)は同一の構
成を有しており、いずれも、冷房運転時には冷媒を減圧
し、暖房運転時には冷媒流量を調節する利用側電動膨張
弁としての室内電動膨張弁(7)と、室内ファン(13
)を付設]2、冷房運転時には蒸発器として、暖房運転
時には凝縮器として機能する利用側熱交換器である室内
熱交換器(8)とをそれぞれ主要機器として備えている
In addition, the above-mentioned indoor units (A) and (B) have the same configuration, and both have an indoor electric expansion valve as a user-side electric expansion valve that reduces the pressure of the refrigerant during cooling operation and adjusts the refrigerant flow rate during heating operation. Expansion valve (7) and indoor fan (13)
) 2. The indoor heat exchanger (8), which is a user-side heat exchanger, functions as an evaporator during cooling operation and as a condenser during heating operation, as main equipment.

そして、上記各機器(1)〜(9)は冷媒配管(10)
により冷媒の流通可能に接続されていて、室外空気との
熱交換により得た熱(又は冷熱)を移動させて室内空気
に付与するようにした主冷媒回路(11)が構成されて
いる。そして、上記室外ユニット(X)における室外フ
ァン(12)は風量を高風ff1Hと低風量りとに切換
え可能に構成されている。
Each of the above devices (1) to (9) is connected to a refrigerant pipe (10).
A main refrigerant circuit (11) is configured, which is connected to allow the flow of refrigerant and transfers heat (or cold heat) obtained through heat exchange with outdoor air and imparts it to indoor air. The outdoor fan (12) in the outdoor unit (X) is configured to be able to switch the air volume between high air volume ff1H and low air volume.

また、図示しないが、圧縮機(1)は、相対向する2つ
のスクロールの相対的な公転により吸入した冷媒を高圧
にして吐出するようにしたスクロール機構と、該スクロ
ール機構の固定スクロールの途中に吐出冷媒の一部をバ
イパスするバイパス孔を臨ませたアンローダ機構どを内
蔵している。
Although not shown, the compressor (1) includes a scroll mechanism that discharges the sucked refrigerant at high pressure by the relative revolution of two opposing scrolls, and a fixed scroll in the middle of the scroll mechanism. It has a built-in unloader mechanism with a bypass hole that bypasses a portion of the discharged refrigerant.

そして、吐出管(1,Oa)から上記アンローダ機構の
アンローダピストンの背圧側にキャピラリチューブ06
)を介して高圧を供給する高圧供給通路(15)と、該
高圧供給通路(15)の途中と吸入管(10b)とを開
閉弁(18)を介して接続するアンローダ通路(17)
とが設けられていて、開閉弁(18)が閉じているとき
にはアンローダ機構に高圧を供給して圧縮機(1)の運
転容量を100%のフルロードとする一方、開閉弁(1
8)が開いたときにはアンローダ機構に低圧を供給して
圧縮機(1)の運転容量を上記フルロードの50%であ
るアンロードにするようになされている。
A capillary tube 06 is connected from the discharge pipe (1, Oa) to the back pressure side of the unloader piston of the unloader mechanism.
), and an unloader passage (17) that connects the middle of the high pressure supply passage (15) and the suction pipe (10b) via an on-off valve (18).
When the on-off valve (18) is closed, high pressure is supplied to the unloader mechanism to bring the operating capacity of the compressor (1) to 100% full load.
8) is opened, low pressure is supplied to the unloader mechanism so that the operating capacity of the compressor (1) becomes unloaded, which is 50% of the full load.

さらに、本空気調和装置には多くのセンサ類が配置され
ていて、(Thd)は吐出管(10a)に配置され、吐
出管温度を検出する吐出管センサ、(Th1)は室外熱
交換器(4)の空気吸込口に配置され、外気温度として
の吸込空気温度TOを検出する温度検出手段である外気
温センサ、(Th2)は室外熱交換器(4)の液管側に
配置され、室外熱交換器(4)の液管温度を検出する室
外液管センサ、(Th3)は室内熱交換器(8)の空気
吸込口に配置され、室内空気温度とl、ての吸込空気温
度Taを検出する室温サーモ、(Th4)は室内熱交換
器(8)の液管に配置され、室内熱交換器(8)の液管
温度Teを検出する室内液管センサ、(Th5)は室内
熱交換器(8)のガス管に配置され、室内熱交換器(8
)のガス管温度を検出する室内ガス管センサ、(Hps
)は吐出管(10a)に配置され、高圧が過上昇時に圧
縮機(1)を停!ヒさせるための高圧圧力開閉器、(L
1)S)は吸入管(10b)に配置され、低圧が過低下
したときに圧縮機(1)を停止させるための低圧圧力開
閉器、(P1)は吸入管(10b)に配管され、冷房運
転時には冷媒圧力の低圧(蒸発圧力相当飽和温度Te)
を、暖房運転時には高圧(凝縮圧力相当飽和温度Tc)
を検出する圧力センサ、(Ps)は吐出管(10a)に
配置され、吐出圧力が上記高圧圧力開閉器(Hps)が
作動する過上昇値に達する前に、上記開閉弁(18)を
開いて圧縮機(1)をアンロード状態に維持し、室外フ
ァン(12)を暖房運転時には高風量Hから低風量りに
、冷房運転時には低風ff1Lから高風量Hに切換える
ための圧力開閉器であって、上記各センサ類は、コント
ローラ(50)に接続されており、各センサの信号に応
じて空気調和装置の運転が制御されるようになされてい
る。
Furthermore, many sensors are arranged in this air conditioner, (Thd) is a discharge pipe sensor arranged in the discharge pipe (10a) and detects the discharge pipe temperature, and (Th1) is the outdoor heat exchanger (10a). The outside temperature sensor (Th2) is placed at the air suction port of 4) and is a temperature detection means for detecting the intake air temperature TO as the outside air temperature, and is placed on the liquid pipe side of the outdoor heat exchanger (4). The outdoor liquid pipe sensor (Th3) that detects the liquid pipe temperature of the heat exchanger (4) is placed at the air suction port of the indoor heat exchanger (8), and detects the indoor air temperature and the suction air temperature Ta. The room temperature thermometer to detect, (Th4) is placed in the liquid pipe of the indoor heat exchanger (8), and the indoor liquid pipe sensor that detects the liquid pipe temperature Te of the indoor heat exchanger (8), (Th5) is the indoor heat exchanger The indoor heat exchanger (8) is placed in the gas pipe of the
) Indoor gas pipe sensor that detects the gas pipe temperature of (Hps
) is placed in the discharge pipe (10a) and stops the compressor (1) when the high pressure rises too much! High-pressure pressure switch, (L
1) S) is placed in the suction pipe (10b) and is a low pressure switch to stop the compressor (1) when the low pressure drops excessively; During operation, the refrigerant pressure is low (evaporation pressure equivalent saturation temperature Te)
During heating operation, high pressure (condensing pressure equivalent saturation temperature Tc)
A pressure sensor (Ps) is disposed in the discharge pipe (10a) and opens the on-off valve (18) before the discharge pressure reaches an excessively high value at which the high pressure switch (Hps) operates. This is a pressure switch for maintaining the compressor (1) in an unloaded state and switching the outdoor fan (12) from high air volume H to low air volume during heating operation, and from low air volume ff1L to high air volume H during cooling operation. Each of the above-mentioned sensors is connected to a controller (50), and the operation of the air conditioner is controlled according to the signals from each sensor.

なお、図中、(19)は上記デミスタ(2)と圧縮機(
1)の吸入管(10b)との間をキャピラリ(20)を
介して接続し、油を戻すための油戻し配管、(21)は
室外ユニット(A)と室中側との間の連絡配管中に介設
された閉鎖弁である。
In the figure, (19) indicates the demister (2) and the compressor (
1) is connected to the suction pipe (10b) via a capillary (20) to return oil, and (21) is a connecting pipe between the outdoor unit (A) and the indoor side. It is a closing valve installed inside.

上記コントローラ(50)には、圧縮機(1)の容量制
御手段(51)と、室外電動膨張弁(5)の第1開度r
#U御手段(52)と、室内電動膨張弁(7)の第2開
度制御手段(53) 占、室外ファン(12)の風量制
御手段(54)とが構成されている。そして、上記容量
制御手段(51)は室温サーモ(Th3)が検出する室
内温度などに空凋負荷に基づき開閉弁(18)を開閉動
して圧縮機(1)の容量をフルロードとアンロードとに
制御するように構成されている。上記第1開度制御手段
(52)は暖房運転時に室外液管センサ(Th2)と圧
力センサ(P1)とに基づく検出温度により室外電動膨
張弁(5)を過熱度制御している。一方、第2開度制御
手段は冷房運転時、つまり、室内熱交換器(8)、  
(8)の熱交換動作時に室内液管センサ(Th4)と室
内ガス管センサ(Th5)との検出温度により各室内ユ
ニット(A)、  (、B)毎に室内電動膨張弁(7)
を過熱度に応じて該過熱度が一定となるように制御する
と共に、各室内ユニット(A)、  (B)の運転停2
止及びサーモオフ時、つまり室内熱交換器(8)。
The controller (50) includes a capacity control means (51) of the compressor (1) and a first opening r of the outdoor electric expansion valve (5).
#U control means (52), second opening degree control means (53) for the indoor electric expansion valve (7), and air volume control means (54) for the outdoor fan (12) are configured. The capacity control means (51) opens and closes the on-off valve (18) based on the room temperature detected by the room temperature thermometer (Th3) and the empty load to fully load and unload the capacity of the compressor (1). and is configured to control. The first opening degree control means (52) controls the degree of superheating of the outdoor electric expansion valve (5) based on the temperature detected based on the outdoor liquid pipe sensor (Th2) and the pressure sensor (P1) during heating operation. On the other hand, the second opening control means is used during cooling operation, that is, when the indoor heat exchanger (8)
(8) During the heat exchange operation, the indoor electric expansion valve (7) is activated for each indoor unit (A), (, B) depending on the temperature detected by the indoor liquid pipe sensor (Th4) and the indoor gas pipe sensor (Th5).
is controlled so that the degree of superheat is constant according to the degree of superheat, and the operation of each indoor unit (A) and (B) is stopped2.
When the thermostat is turned off and the thermostat is turned off, that is, the indoor heat exchanger (8).

(8)の熱交換動作の停止時に該室内ユニット(A)、
  (B)の室内電動膨張弁(7)、  (7)を全閉
に制御している。上記風量制御手段(54)は外気温セ
ンサ(Th1)の検知温度により室外ファン(12)の
風量を制御するように構成されている。
(8) When the heat exchange operation is stopped, the indoor unit (A),
The indoor electric expansion valves (7) and (7) in (B) are controlled to be fully closed. The air volume control means (54) is configured to control the air volume of the outdoor fan (12) based on the temperature detected by the outside temperature sensor (Th1).

また、上記コントローラ(50)には、起動容量手段(
55)と起動開度手段(56)と起動風量手段(57)
とが構成され、それぞれ冷房運転時に外気温度が低い場
合において圧縮機(1)。
The controller (50) also includes a starting capacity means (
55), starting opening means (56), and starting air volume means (57)
and a compressor (1) when the outside air temperature is low during cooling operation.

室内電動膨張弁(7)及び室外ファン(12)を制御す
るように成っている。該起動容量手段(55)は外気温
度が24°C以下のときに容量信号を出力してアンロー
ド(低容量)で強制的に圧縮機(1)が起動時より30
秒間駆動するように構成されている。上記起動開度手段
(56)は過熱度制御開度より大きい開度になるように
開度信号を出力しており、外気温度が18℃以下のとき
に第1起動開度を、18℃より高い場合には第2起動明
度を強制的に起動時より3081間保持するように構成
されている。また、上記起動風量手段(57)は、風量
信号を出力し、外気温度が6℃以下で室外ファン(12
)が停止し、13℃以下で低風fikLに、13℃より
高くなると高風fiHに強制的になるように構成されて
いる。
It is configured to control an indoor electric expansion valve (7) and an outdoor fan (12). The starting capacity means (55) outputs a capacity signal when the outside air temperature is below 24°C, and by unloading (low capacity) the compressor (1) is forcibly increased to 30°C from the time of starting.
It is configured to run for seconds. The starting opening degree means (56) outputs an opening signal so that the opening degree is greater than the superheat degree control opening degree, and when the outside air temperature is below 18°C, the first starting opening degree is set to be higher than 18°C. When the brightness is high, the second activation brightness is forcibly maintained for 3081 hours from the time of activation. Further, the startup air volume means (57) outputs an air volume signal, and when the outside air temperature is 6°C or less, the outdoor fan (12) outputs an air volume signal.
) is stopped, and the wind is forced to low wind fikL when it is below 13°C, and to high wind fiH when it is higher than 13°C.

次に、上記空気調和装置の冷房運転動作について説明す
る。
Next, the cooling operation of the air conditioner will be explained.

先ず、圧縮機(1)から吐出した冷媒は室外熱交換器(
4)で凝縮し、各室内ユニッ)(A)。
First, the refrigerant discharged from the compressor (1) is passed through the outdoor heat exchanger (
4) and condense in each indoor unit) (A).

(B)に分流して室内電動膨張弁(7)、  (7)で
減圧し、各室内熱交換器(8)、  (8)で蒸発した
後、合流して圧縮機(1)に戻ることになる。
(B), is depressurized by indoor electric expansion valves (7), (7), is evaporated in each indoor heat exchanger (8), (8), and then merges and returns to compressor (1). become.

この冷房運転時において、圧縮機(1)の容量は室温サ
ーモ(Th3)が検出する室内温度に基づいて容量制御
手段(51)が開閉弁(18)を開閉動し、フルロード
又はアンロードに制御されている。また、上記室内電動
膨張弁(7)の開度は室内肢管センサ(Th4)及び室
内ガス管センサ(Th5)の検出温度に基づいて開度制
御手段(53)により過熱度制御(過熱度5℃)される
一方、室外ファン(12)の風量は外気温センサ(Th
1)が検出する外気温度に基づいて風量制御手段(54
)により低風量り又は高風量に制御されている。
During this cooling operation, the capacity control means (51) opens and closes the on-off valve (18) based on the indoor temperature detected by the room temperature thermometer (Th3), and the capacity of the compressor (1) is set to full load or unload. controlled. Further, the opening degree of the indoor electric expansion valve (7) is controlled by the degree of superheating (degree of superheating 5 ℃), while the air volume of the outdoor fan (12) is determined by the outside temperature sensor (Th
1) based on the outside air temperature detected by the air volume control means (54).
), the air volume is controlled to low or high.

次に、上記冷房運転時の起動制御について、第3図の制
御状態図並びに第4図〜第6図の制御フロー図に基づい
て説明する。
Next, the startup control during the cooling operation will be explained based on the control state diagram in FIG. 3 and the control flow diagrams in FIGS. 4 to 6.

尚、上記主冷媒回路(11)における室外電動膨張弁(
5)は全閉状態(特に、低外気時)に設定されている。
In addition, the outdoor electric expansion valve (
5) is set to a fully closed state (especially when the outside air is low).

そこで、先ず、圧縮機(1)においてはスタートしてス
テップSTIで冷房運転か否かが判定され、暖房運転に
セットされているとステップST2に移り、通常の暖房
運転制御が行われてリターンする一方、冷房運転にセッ
トされているとステップSTIからステップST3に移
り、運転中か否かが判定される。そして、運転中でない
場合、つまり、運転スイッチが投入されていない場合に
はステップST4に移り、通常の停止状態としてリター
ンする一方、運転スイッチが投入された運転中にある場
合には、ステップST3からステップST5に移り、タ
イマTMIがカウント中か否かが判定される。
Therefore, first, the compressor (1) starts, and in step STI it is determined whether or not it is in cooling operation. If it is set to heating operation, the process moves to step ST2, normal heating operation control is performed, and the process returns. On the other hand, if the cooling operation is set, the process moves from step STI to step ST3, and it is determined whether or not the air conditioner is in operation. If the operation is not in progress, that is, if the operation switch has not been turned on, the process moves to step ST4 and returns to the normal stop state, whereas if the operation switch is turned on and the operation is in progress, the process proceeds from step ST3. Proceeding to step ST5, it is determined whether or not the timer TMI is counting.

このステップST5において、タイマTMIがカウント
を伴出している場合にはステップST6に移り、起動か
否かを判定し、運転スイッチの投入時にあっては起動と
判定してステップST7に移り、タイマ、TMl (3
0秒タイマ)をセットしてステップST8に移り、外気
温度Toが20°C以上か否かが判定される。そして、
この外気温度Toが20℃より低い場合にはステップS
T8からステップST9に移り、圧縮機(1)をアンロ
ードの低容量で起動させる一方、上記外気温度TOが2
0℃より高い場合にはステップST8からステップ5T
IOに移り、圧縮機(1)を室内負荷、例えば、室内温
度に対応した容量に設定し、アンロード又はフルロード
で起動させる。つまり、外気温度Toが20℃以下の場
合(第3図PI参照)、起動容量手段(55)が容量信
号を出力し、開閉弁(18)を開き、圧縮機(1)を強
制的にアンロードの低容量で起動してリターンする一方
、室外温度Toが20℃より高いと、室内サーモ(Th
3)の検知温度に基づいて開閉弁(18)を開閉し、圧
縮機(1)をアンロード又はフルロードで起動してリタ
ーンする。
In this step ST5, if the timer TMI is counting, the process moves to step ST6, and it is determined whether or not it is started. If the operation switch is turned on, it is determined that the timer TMI is started, and the process moves to step ST7, and the timer TMI, TMl (3
A 0 second timer) is set and the process moves to step ST8, where it is determined whether the outside air temperature To is 20°C or higher. and,
If this outside air temperature To is lower than 20°C, step S
Moving from T8 to step ST9, the compressor (1) is started at a low capacity for unloading, while the outside air temperature TO is 2.
If the temperature is higher than 0°C, step ST8 to step 5T.
Moving to IO, the compressor (1) is set to a capacity corresponding to the indoor load, for example, the indoor temperature, and is started with unload or full load. In other words, when the outside air temperature To is below 20°C (see PI in Figure 3), the starting capacity means (55) outputs a capacity signal, opens the on-off valve (18), and forcibly unenergizes the compressor (1). While it starts and returns with a low load capacity, if the outdoor temperature To is higher than 20℃, the indoor thermostat (Th
The on-off valve (18) is opened and closed based on the detected temperature in step 3), the compressor (1) is started with unload or full load, and the process returns.

その後、ステップSTIからの動作を繰り返し、ステッ
プST5において、タイマTMIがカウントを開始して
いるので(ステップST7参照)、ステップST6及び
Sr1を飛してステップST8に移り、上述の動作を繰
り返すことになる。つまり、外気温度Toが20℃以下
の場合、圧縮機(1)を室内負荷に拘らずアンロードで
起動し、30秒間はこのアンロードで圧縮機(1)を駆
動する。
Thereafter, the operations from step STI are repeated, and in step ST5, since the timer TMI has started counting (see step ST7), steps ST6 and Sr1 are skipped, the process moves to step ST8, and the above-mentioned operations are repeated. Become. That is, when the outside air temperature To is 20° C. or lower, the compressor (1) is started with unloading regardless of the indoor load, and the compressor (1) is driven with this unloading for 30 seconds.

その後、上、記ステップST7でセットしたタイマTM
Iがタイムアツプすると、上記ステップST5よりステ
ップST6に移り、現在駆動中であるので、ステップS
T6よりステップ5T11に移り、通常の冷房運転が行
われ、圧縮機(1)を室内負荷等によって容量制御する
After that, the timer TM set in step ST7 above
When I times up, the process moves from step ST5 to step ST6, and since it is currently being driven, step S
The process moves from T6 to step 5T11, where normal cooling operation is performed and the capacity of the compressor (1) is controlled based on the indoor load and the like.

また、第3図の21点及び22点に示すように、起動前
の運転停止時の外気温度Toを考慮して起動時の圧縮機
(1)容量を設定するようにしてもよい。つまり、運転
停止時の外気温度Toが20℃以下の場合には、起動時
に外気温度TOが24℃以下であると、圧縮機(1)を
強制的にアンロードで起動し、運転停止時の外気温度T
oが20℃より高い場合には、上述のフローの如く起動
時の外気温度Toによって圧縮機(1)の容量を設定す
る。
Further, as shown at points 21 and 22 in FIG. 3, the capacity of the compressor (1) at startup may be set in consideration of the outside air temperature To at the time of shutdown before startup. In other words, if the outside air temperature To at the time of shutdown is 20°C or less, if the outside air temperature TO is 24°C or less at startup, the compressor (1) will be started with forced unloading, and Outside temperature T
If o is higher than 20° C., the capacity of the compressor (1) is set according to the outside air temperature To at the time of startup as in the flow described above.

次に、室内電動膨張弁(7)の制御について第5図に基
づいて説明すると、ステップ5T21〜5T27におい
ては圧縮機(1)のフローにおけるステップSTI〜S
T7と同様であって、暖房運転に設定されると、ステッ
プ5T21からステップ5T22に移り、通常の暖房j
jtj御が行われ、冷房運転の停止時にはステップ5T
23からステップ5T24に移り、全閉状態に制御され
る。そして、冷房運転が開始すると、ステップ5T25
の判定は現在タイマTMIがセットされていないのでN
oとなり、ステップ5T26の判定は現在起動した時点
であるのでYESとなり、ステップ5T27でタイマT
MIがセットされる。
Next, the control of the indoor electric expansion valve (7) will be explained based on FIG. 5. In steps 5T21 to 5T27, steps STI to S in the flow of the compressor (1)
Similar to T7, when heating operation is set, the process moves from step 5T21 to step 5T22, and normal heating operation is started.
jtj control is performed and the cooling operation is stopped at step 5T.
The process moves from step 23 to step 5T24, and is controlled to a fully closed state. Then, when the cooling operation starts, step 5T25
The judgment is N because timer TMI is not currently set.
o, and the determination in step 5T26 is YES since it is currently activated, and in step 5T27 the timer T is
MI is set.

その後、ステップ5T28に移り、外気温度TOが15
℃以上か否かが判定され、外気温度T。
After that, the process moves to step 5T28, and the outside air temperature TO is 15
It is determined whether or not the temperature is above ℃, and the outside air temperature T is determined.

が15℃より低い場合にはステップ5T28からステッ
プ5T29に移り、初期開度ATを次式に示す第1起動
開度に設定してリターンする。
If it is lower than 15° C., the process moves from step 5T28 to step 5T29, sets the initial opening AT to the first starting opening shown in the following equation, and returns.

AT−40X (Ta+30)   +++■Ta:室
内温度(室内サーモ(T h 3)の検出温度) 一方、外気温度Toが15℃より高い場合にはステップ
5T28からステップ5T30に移り、初期開度ATを
次式に示す第2起動開度に設定してリターンする。
AT-40X (Ta+30) +++ ■Ta: Indoor temperature (temperature detected by indoor thermometer (T h 3)) On the other hand, if the outside temperature To is higher than 15°C, the process moves from step 5T28 to step 5T30, and the initial opening AT is changed. Set the second starting opening degree shown in the following formula and return.

AT−40XTa   −−−■ つまり、外気温度Toが15℃より低い場合(第3図E
1参照)、起動開度手段(56)が開度信号を出力し、
室内電動膨張弁(7)を過熱度制御開度より大きい第■
式の初期開度ATに設定する一方、外気温度Toが15
℃以上の場合には室内電動膨張弁(7)を第■式の初期
開度ATに設定し、冷媒流通量を多くする。
AT-40XTa ---■ In other words, when the outside temperature To is lower than 15℃ (Fig. 3E
1), the starting opening degree means (56) outputs an opening degree signal,
Set the indoor electric expansion valve (7) to a position larger than the superheat degree control opening.
While setting the initial opening AT of the equation, the outside temperature To is 15
If the temperature is above ℃, the indoor electric expansion valve (7) is set to the initial opening AT of formula (2) to increase the refrigerant flow rate.

その後、ステップ5T21からの動作を行い、以後、ス
テップ5T26及び5T27を飛して上述の動作を行い
、室内電動膨張弁(7)は起動時より30flJ+経過
するまで強制的に所定の初期間度ATに設定される。
After that, the operation from step 5T21 is performed, and thereafter steps 5T26 and 5T27 are skipped and the above-mentioned operation is performed, and the indoor electric expansion valve (7) is forced to maintain the predetermined initial interval AT until 30flJ+ has elapsed from the time of startup. is set to

そして、上記30秒が経過してタイマTMIがタイムア
ツプすると、ステップ5T26からステップ5T31に
移り、室内電動膨張弁(7)を通常の過熱度制御(SH
−5℃)してリターンすることになる。
When the timer TMI times up after the above 30 seconds have elapsed, the process moves from step 5T26 to step 5T31, and the indoor electric expansion valve (7) is controlled by normal superheat degree control (SH
-5℃) and return.

また、第3図の61点及びE2点に示すように、圧縮機
(1)の制御と同様に運転停止時の外気温度Toを考慮
し、停止時の外気温度Toが15℃以下の場合には起動
性の外気温度Toが18℃以下であると、室内電動膨張
弁(7)を第0式の初期開度ATに設定し、停止時の外
気温度Toが15°Cより高いと、上述のフローの如く
室内電動膨張弁(7)を制御するようにしてもよい。
In addition, as shown at point 61 and point E2 in Figure 3, in the same way as the control of the compressor (1), the outside air temperature To at the time of shutdown is considered, and when the outside air temperature To at the time of shutdown is 15 degrees Celsius or less, When the outside air temperature To at startup is 18°C or less, the indoor electric expansion valve (7) is set to the initial opening AT of the 0th formula, and when the outside air temperature To at the time of stop is higher than 15°C, the above-mentioned The indoor electric expansion valve (7) may be controlled as shown in the flow below.

次に、室外ファン(12)の制御について第6図に基づ
いて説明すると、ステップ5T41〜5T47において
は圧縮am (1)のフローにおけるステップSTI〜
ST7と同様であって、暖房運転に設定されると、ステ
ップ5T41からステップ5T42に移り、通常の暖房
運転制御が行われ、冷房運転の停止時にはステップ5T
43からステップ5T44に移り、室外ファン(12)
を停止制御する。そして、冷房運転が開始すると、ステ
ップ5T45の判定は現在タイマTMIがセットされて
いないのでNoとなり、ステップ5T46の判定は現在
起動した時点であるのでYESとなり、ステップ5T4
7でタイマTMIがセットされる。
Next, the control of the outdoor fan (12) will be explained based on FIG. 6. In steps 5T41 to 5T47, steps STI to
Similar to ST7, when heating operation is set, the process moves from step 5T41 to step 5T42, where normal heating operation control is performed, and when cooling operation is stopped, step 5T
43 to step 5T44, outdoor fan (12)
Control the stop. Then, when the cooling operation starts, the determination in step 5T45 is NO because the timer TMI is not currently set, and the determination in step 5T46 is YES since it is currently started, and the determination in step 5T4 is YES.
At 7, timer TMI is set.

その後、ステップ5T48に移り、外気温度TOが11
℃より低いか否かを判定しく第3図F1参照)、11℃
より低い場合にはステップ5T49に移り、外気温度T
oが4℃より低いか否かを判定する(第3図F2参照)
。そして、外気温度Toが4℃より低い場合にはステッ
プ5T49よリステップ5T50に移り、室外ファン(
12)を停止してリターンする一方、外気温度Toが4
℃より高い場合にはステップ5T49よりステップ5T
51に移り、室外ファン(12)を低風量りに設定して
リターンする。更に、外気温度T。
After that, the process moves to step 5T48, and the outside air temperature TO is 11.
(See Figure 3 F1) to determine whether it is lower than 11°C.
If it is lower, the process moves to step 5T49 and the outside air temperature T
Determine whether o is lower than 4°C (see Figure 3 F2)
. Then, if the outside air temperature To is lower than 4°C, the process moves from step 5T49 to restep 5T50, and the outdoor fan (
12) is stopped and returned, while the outside temperature To is 4.
If the temperature is higher than ℃, step 5T is performed from step 5T49.
51, the outdoor fan (12) is set to a low air volume, and the process returns. Furthermore, the outside temperature T.

が11℃より高い場合にはステップ5T48よりステッ
プ5T52に移り、室外ファン(12)を高風ff1H
に設定してリターンすることになる。
If the temperature is higher than 11°C, the process moves from step 5T48 to step 5T52, and the outdoor fan (12) is set to high airflow ff1H.
will be set and returned.

つまり、起動時の外気温度TOによって起動風量手段(
57)が風量信号を出力し、室外ファン(12)を制御
して、外気温度TOが4℃より低いと停止させ、4℃〜
11℃の間では低風量りとし、11℃より高いと高風m
Hとし、熱交換量を制御する。
In other words, the startup air volume means (
57) outputs an air volume signal, controls the outdoor fan (12), and stops the outdoor fan (12) when the outside air temperature TO is lower than 4°C.
Low air flow is used between 11℃ and high airflow is used when it is higher than 11℃.
H and control the amount of heat exchange.

その後、ステップ5T41からの動作を繰り返し、以後
、ステップ5T46及び5T47を飛して上述の動作を
行い、室外ファン(12)は起動時より30秒経過する
まで所定の風量に設定される。
Thereafter, the operation from step 5T41 is repeated, and thereafter, steps 5T46 and 5T47 are skipped to carry out the above-described operation, and the outdoor fan (12) is set at a predetermined air volume until 30 seconds have elapsed from the time of activation.

そして、上記30秒が経過してタイマTMIがタイムア
ツプすると、ステップ5T46からステップ5T53に
移り、室外ファン(12)を通常の冷房制御してリター
ンすることになる。
When the timer TMI times up after the 30 seconds have elapsed, the process moves from step 5T46 to step 5T53, where the outdoor fan (12) is subjected to normal cooling control and then returned.

また、第3図のF1〜F4に示すように、圧縮t! (
1)の制御と同様に運転停止時の外気温度TOを考慮し
、外気温度Toが停止時に4℃〜11℃の間で且つ起動
時に4℃〜13℃の間(第3図F2〜F3参照)である
と低風iLとし、停止時に4℃以下で且つ起動時に6℃
以下(第3図F4参照)であると停止させ、停止時に1
1℃以上のときは上述のフローの如く高風ff1Hとす
るようにしてもよい。
Moreover, as shown in F1 to F4 in FIG. 3, compression t! (
Similarly to the control in 1), the outside air temperature TO at the time of shutdown is considered, and the outside air temperature TO is between 4°C and 11°C at the time of shutdown and between 4°C and 13°C at the time of startup (see Fig. 3 F2 to F3). ), it is considered a low wind iL, and the temperature is 4℃ or less when stopped and 6℃ when started.
or less (see Figure 3 F4), it will be stopped, and when stopped
When the temperature is 1° C. or higher, the high wind ff1H may be set as in the flow described above.

以上のように、冷房運転の起動時において、外気温度T
oが所定温度より低い場合には、圧縮機(1)の容量を
アンロードにし、室外電動膨張弁(5)を全閉にし、室
内電動膨張弁(7)を通常の過熱度制御開度よりも大き
く開き、更に、室外ファン(12)の風量を零又は低く
することとし、所定の冷媒循環量を確保し、低圧を所定
値に保っている。
As described above, at the start of cooling operation, the outside air temperature T
If o is lower than the predetermined temperature, the capacity of the compressor (1) is unloaded, the outdoor electric expansion valve (5) is fully closed, and the indoor electric expansion valve (7) is opened to a lower degree than the normal superheat degree control opening. In addition, the air volume of the outdoor fan (12) is set to zero or low to ensure a predetermined amount of refrigerant circulation and to maintain the low pressure at a predetermined value.

一方、暖房運転時にあっては四路切換弁(3)を第2図
破線に切換え、冷媒を圧縮機(1)より室内熱交換器(
8)、室外熱交換器(4)を順に循環させる。そして、
圧縮機(1)等を暖房運転制御(ステップST2等参照
)する。
On the other hand, during heating operation, the four-way selector valve (3) is switched to the broken line in Figure 2, and the refrigerant is transferred from the compressor (1) to the indoor heat exchanger (
8), circulate the outdoor heat exchanger (4) in order. and,
The heating operation of the compressor (1) etc. is controlled (see step ST2 etc.).

従って、冷房運転の起動時に外気温度が低温であると、
圧縮機(1)を低容量にすると共に、室内電動膨張弁(
7)の開度を大きくするようにしたために、所定の冷媒
循環量を確保することができるので、低圧の低下を防止
することができる。
Therefore, if the outside temperature is low when starting cooling operation,
In addition to reducing the capacity of the compressor (1), an indoor electric expansion valve (
Since the opening degree of 7) is increased, a predetermined amount of refrigerant circulation can be ensured, and a drop in low pressure can be prevented.

この結果、外気温度が低温であっても低圧カットが生じ
ることがなく、冷房運転をスムーズに開始させることが
できるので、快適な冷房を確実に行うことができる。
As a result, even if the outside air temperature is low, low pressure cut does not occur, and cooling operation can be started smoothly, so that comfortable cooling can be reliably performed.

更に、外気温度が低温であると、室外ファン(12)を
停止又は低風量とするようにしたために、高圧の低下を
防止することができ、この高圧低下に伴う低圧低下を防
止することができることから、より確実に冷房運転を開
始させることができ、より快適性を向上させることがで
きる。
Furthermore, when the outside air temperature is low, the outdoor fan (12) is stopped or the air volume is reduced, so that a drop in high pressure can be prevented, and a drop in low pressure accompanying this high pressure drop can be prevented. Therefore, cooling operation can be started more reliably, and comfort can be further improved.

尚、本実施例はマルチ型空気調和装置について説明した
が、これに限られるものではなく、且つ、冷房専用機で
あってもよい。
Although this embodiment has been described with reference to a multi-type air conditioner, the present invention is not limited to this, and may also be a cooling-only device.

また、圧縮機の容量段数は2段に限られず、3段以上に
制御するようにしてもよく、室外ファン(12)の制御
段数も実施例に限られず、中風量等を設けてもよく、室
内電動膨張弁(7)の初期開度ATにあっても実施例に
限られず、過熱度制御開度より大きい開度であればよい
In addition, the number of capacity stages of the compressor is not limited to two stages, but may be controlled to three or more stages, and the number of control stages of the outdoor fan (12) is not limited to the embodiment, and a medium air volume or the like may be provided. The initial opening AT of the indoor electric expansion valve (7) is not limited to the embodiment, and may be any opening greater than the superheat degree control opening.

第7図は冷房運転時の起動制御について他の実施例を示
す制御フローであって、本実施例は複数の室内ユニット
、例えば、第2図に示すように2台の室内ユニット(A
)、  (B)を備えた空気調和装置を対象としている
。そして、前実施例における起動容量手段(55)及び
起動開度手段(56)に代えて、一方の室内ユニット(
A)又は(B)が冷房運転を開始して室内熱交換器(8
)が熱交換を行う起動時において、他方の室内ユニット
(B)又は(A)が冷房運転を停止或いはサーモオフし
ていても全室内電動膨張弁(8)。
FIG. 7 is a control flow showing another embodiment of startup control during cooling operation, and this embodiment is a control flow for a plurality of indoor units, for example, two indoor units (A
), (B). Then, in place of the starting capacity means (55) and starting opening degree means (56) in the previous embodiment, one indoor unit (
A) or (B) starts cooling operation and the indoor heat exchanger (8
) performs heat exchange even if the other indoor unit (B) or (A) has stopped its cooling operation or turned off its thermostat (8).

(8)を起動時より所定時間全閉に制御する起動開度手
段(58)がコントローラ(50)i:構成されている
The controller (50)i is configured with a starting opening means (58) for controlling the opening (8) to be fully closed for a predetermined period of time from the time of starting.

そこで、上記起動制御動作について第7図に基づいて説
明する。
The above startup control operation will be explained based on FIG. 7.

先ず、制御動作を開始すると、ステップ5T61におい
て、外気温センサ(Th1)が検出した室外温度が5℃
より低いか否かが判定され、室外温度が5℃以上の場合
はステップ5T62に移り、各室内ユニット(A)、 
 (B)が室温サーモ(Th3)の検出温度に基づいて
サーモオンしているか否かを判定する。そして、室外温
度が高い冷房運転時に各室内ユニット(A)、  (B
)がサーモオンすると、ステップ5T62からステップ
5T63に移り、第2開度手段(53)が室内電動膨張
弁(7)、  (7)を過熱度制御してリターンする一
方、サーモオフすると、ステップ5T62からステップ
5T64に移り、第2開度手段(53)が室内電動膨張
弁(7)、  (7)を全閉に制御してリターンする。
First, when the control operation is started, in step 5T61, the outdoor temperature detected by the outdoor temperature sensor (Th1) is 5°C.
If the outdoor temperature is 5°C or higher, the process moves to step 5T62, and each indoor unit (A),
(B) determines whether the thermostat is on based on the temperature detected by the room thermostat (Th3). During cooling operation when the outdoor temperature is high, each indoor unit (A), (B
) when the thermostat is turned on, the process moves from step 5T62 to step 5T63, where the second opening degree means (53) controls the degree of superheating of the indoor electric expansion valves (7), and returns. Moving to 5T64, the second opening degree means (53) controls the indoor electric expansion valves (7), (7) to fully close, and returns.

この動作を通常冷房運転時に行い、冷房運転を停止する
と、第2開度手段(53)が各室内ユニット(A)、(
B)毎に各室内電動膨張弁(7)、  (7)を全閉に
制御する。
This operation is performed during normal cooling operation, and when the cooling operation is stopped, the second opening means (53) opens each indoor unit (A), (
B), each indoor electric expansion valve (7), (7) is controlled to be fully closed.

一方、上記ステップ5T61において、外気温度が5℃
より低い場合には判定がYESとなり、ステップ5T6
5に移り、圧縮機(1)が駆動しているか否かが判定さ
れ、駆動していると、ステップ5T65に移り、現在、
圧縮機(1)が停止状態より起動したか否かが判定され
、起動直後の場合、ステップ5T67に移り、タイマを
セットする。つまり、上記両室内ユニット(A)、  
(B)の一方又は双方を低外気温度状態で冷房運転する
と、圧縮機(1)が起動してタイマがスタートする。
On the other hand, in step 5T61, the outside temperature is 5°C.
If it is lower, the determination is YES and step 5T6
5, it is determined whether or not the compressor (1) is driving, and if it is, the process moves to step 5T65, where the current
It is determined whether or not the compressor (1) has been started from a stopped state. If the compressor (1) has just been started, the process moves to step 5T67 and a timer is set. In other words, both indoor units (A),
When one or both of (B) is operated for cooling in a low outside temperature state, the compressor (1) is activated and the timer is started.

その後、ステップ5T67よりステップ5T68に移り
、タイマがタイムアツプしたか否かが判定され、タイム
アツプするまでステップ5T69に移り、全ての室内電
動膨張弁(7)、(7)を全閉に制御してリターンする
。そして、上述したステップ5T61およびステップ5
T65〜5T69の動作を繰り返すことになり、その際
、ステップ5T66の判定は起動直後でないのでNoと
なり、ステップ5T67を飛してステップ5T68に移
り、上記タイマがタイムアツプするまで全ての室内電動
膨張弁(7)、  (7)を全閉にする。
After that, the process moves from step 5T67 to step 5T68, where it is determined whether or not the timer has timed up.The process moves to step 5T69 until the timer has timed up, controls all the indoor electric expansion valves (7), (7) to be fully closed, and returns. do. Then, step 5T61 and step 5 described above
The operations from T65 to 5T69 will be repeated, and at this time, the determination in step 5T66 will be No since it is not immediately after startup, and the process will skip step 5T67 and proceed to step 5T68, where all the indoor electric expansion valves ( 7), Fully close (7).

つまり、上記室内ユニット(A)、  (B)の一方が
冷房運転を停止している場合やサーモオフ状態の場合、
つまり該室内ユニット(A)又は(B)の室内熱交換器
(8)が熱交換を行わない場合において、該熱交換を行
わない室内ユニッh (A)又は(B)の室内電動膨張
弁(7)は通常全閉に制御されるが、低外気温度の起動
時には運転を開始する室内ユニット(A)又は(B)の
室内電動膨張弁(7)を始め、全ての室内電動弁(7)
In other words, when one of the indoor units (A) and (B) has stopped cooling operation or is in the thermo-off state,
In other words, when the indoor heat exchanger (8) of the indoor unit (A) or (B) does not perform heat exchange, the indoor motorized expansion valve ( 7) is normally controlled to be fully closed, but all indoor motorized valves (7), including the indoor motorized expansion valve (7) of the indoor unit (A) or (B), which starts operating when the outside temperature is low.
.

(7)を−旦全閉状態にする。(7) is fully closed - once.

その後、上記タイマがタイムアツプすると、ステップ5
T68よりステップ5T70に移り、各室内ユニッ)(
A)、(B)がサーモオン状態か否かが判定され、サー
モオンの室内ユニット(A)又は(B)にあってはステ
ップ5T71に移り、室内電動弁(7)を通常に制御(
過熱度制御)してリターンする一方、サーモオフの室内
ユニット(A)又は(B)にあってはステップ5T70
よリステップ5T64に移り、室内電動弁(7)を全閉
に制御する。また、冷房運転を停止している室内ユニッ
ト(A)又は(B)においても室内電動膨張弁(7)を
全閉から全閉に戻す。
After that, when the above timer times up, step 5
Moving from T68 to step 5T70, each indoor unit) (
It is determined whether or not A) and (B) are in the thermo-on state, and if the indoor unit (A) or (B) is thermo-on, the process moves to step 5T71 and the indoor electric valve (7) is normally controlled (
If the indoor unit (A) or (B) is thermo-off, step 5T70
Then, the process moves to restep 5T64, and the indoor electric valve (7) is controlled to be fully closed. Further, even in the indoor unit (A) or (B) whose cooling operation is stopped, the indoor electric expansion valve (7) is returned from fully closed to fully closed.

また、上記ステップ5T65において、圧縮機(1)が
停止している場合には判定がNoとなり、ステップ5T
64に移り、室内電動膨張弁(7)。
Further, in step 5T65, if the compressor (1) is stopped, the determination becomes No, and step 5T
Moving on to 64, the indoor electric expansion valve (7).

(7)を全閉に制御する。(7) is controlled to be fully closed.

その他の構成並びに作用については前実施例と同じであ
る。
Other configurations and operations are the same as in the previous embodiment.

従って、低外気温度の起動時においては両室内電動膨張
弁(7)、(7)を全て開けるようにしたために、冷媒
循環量を所定値により確実に保つことができるので、低
圧の低下を確実に防止することができる。特に、配管長
が長い場合、例えば、室外ユニット(X)と室内ユニッ
ト(A)、(B)と距離が100mの場合や容量の小さ
い室内ユニット(A)又はCB)のみを運転する場合に
おいても所定の冷媒循環量を確実に確保することができ
ることから、低圧カットを防止することができ、スムー
ズな冷房運転の開始を確実に行うことができる。
Therefore, by opening all of the electric expansion valves (7) and (7) in both chambers during start-up when the outside temperature is low, the amount of refrigerant circulation can be reliably maintained at a predetermined value, thereby ensuring that the low pressure does not drop. can be prevented. Especially when the piping length is long, for example, when the distance between the outdoor unit (X) and the indoor units (A), (B) is 100 m, or when only the small capacity indoor unit (A) or CB) is operated. Since a predetermined amount of refrigerant circulation can be reliably secured, low pressure cut can be prevented, and a smooth start of cooling operation can be reliably performed.

尚、第7図の実施例においては、前実施例の如く起動時
において圧縮機(1)を容量制御する必要はない。また
、室外ファン(12)にあっては前実施例と同様に起動
制御してもよい。
In the embodiment shown in FIG. 7, it is not necessary to control the capacity of the compressor (1) at startup as in the previous embodiment. Furthermore, the outdoor fan (12) may be controlled to start up in the same manner as in the previous embodiment.

また尚、室内電動膨張弁(7)の開度は全閉(第7図ス
テップ5T69参照)に限られず、所定の冷媒循環量を
確保できるものであればよい。
Furthermore, the opening degree of the indoor electric expansion valve (7) is not limited to fully closed (see step 5T69 in FIG. 7), but may be any degree as long as it can ensure a predetermined amount of refrigerant circulation.

更にまた、温度検出手段は外気温センサに代えて圧ツノ
センサ(P1)を用いてもよく、該圧力センサ(P1)
による蒸発圧力相当飽和温度Teが所定温度以下になる
と、起動時が低外気温度であるとして室内電動膨張弁(
7)を全閉等に制御してもよい。
Furthermore, the temperature detection means may use a pressure horn sensor (P1) instead of the outside temperature sensor, and the pressure sensor (P1)
When the evaporation pressure equivalent saturation temperature Te becomes below a predetermined temperature, the indoor electric expansion valve (
7) may be controlled to be fully closed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の構成を示すブロック図
である。第2図〜第7図は本発明の実施例を示しており
、第2図は冷媒系統図、第3図は室外温度に対する圧縮
機、室内電動膨張弁及び室外ファンの状態特性図、第4
図は圧縮機の制御フロー図、第5図は室内電動膨張弁の
制御フロー図、第6図は室外ファンの制御フロー図であ
る。第7図は他の実施例を示す室内電動膨張弁の制御フ
ロー図である。 (1)・・・圧縮機 (4)・・・室外熱交換器 (7)・・・室内電動膨張弁 (8)・・・室内熱交換器 (12)・・・室外ファン (Th1)・・・外気温センサ (P1)・・・圧力センナ (50)・・・コントローラ (51)・・・容量制御手段 (53)・・・第2開度制御手段 (54)・・・風量制御手段 (55)・・・起動容量手段 (56)、(58)・・・起動開度手段(57)・・・
起動風量手段 ほか2名 ] (b) 第]図
FIGS. 1(a) and 1(b) are block diagrams showing the configuration of the present invention. Figures 2 to 7 show examples of the present invention, where Figure 2 is a refrigerant system diagram, Figure 3 is a state characteristic diagram of the compressor, indoor electric expansion valve, and outdoor fan relative to outdoor temperature, and Figure 4 is a diagram of the state characteristics of the compressor, indoor electric expansion valve, and outdoor fan.
5 is a control flow diagram of the compressor, FIG. 5 is a control flow diagram of the indoor electric expansion valve, and FIG. 6 is a control flow diagram of the outdoor fan. FIG. 7 is a control flow diagram of an indoor electric expansion valve showing another embodiment. (1) Compressor (4) Outdoor heat exchanger (7) Indoor electric expansion valve (8) Indoor heat exchanger (12) Outdoor fan (Th1) ... Outside temperature sensor (P1) ... Pressure sensor (50) ... Controller (51) ... Capacity control means (53) ... Second opening degree control means (54) ... Air volume control means (55)... Starting capacity means (56), (58)... Starting opening degree means (57)...
Starting air volume means and 2 other people] (b) Fig.

Claims (3)

【特許請求の範囲】[Claims] (1)容量の可変な圧縮機(1)と、熱源側熱交換器(
4)と、開度の調節自在な利用側膨張弁(7)と、利用
側熱交換器(8)とが順に接続されて成る空気調和装置
において、 上記圧縮機(1)の容量を空調負荷に応じて調節する容
量制御手段(51)と、 上記利用側膨張弁(7)の開度を過熱度に応じて該過熱
度が一定となるように制御する開度制御手段(53)と
、 外気温度を検出して温度信号を出力する温度検出手段(
Th1)と、 冷房運転の起動時に該温度検出手段(Th1)の温度信
号を受けて外気温度が予め設定された所定温度以下に低
下していると、起動時より所定時間内において容量制御
手段(53)の制御に代えて上記圧縮機(1)を強制的
に低容量で駆動させるように容量信号を出力する起動容
量手段(55)と、 冷房運転の起動時に上記温度検出手段(Th1)の温度
信号を受けて外気温度が予め設定された所定温度以下に
低下していると、起動時より所定時間内において開度制
御手段(53)の制御に代えて上記利用側膨張弁(7)
を強制的に過熱度制御開度より所定開度大きい起動開度
に設定するように開度信号を出力する起動開度手段(5
6)とを備えていることを特徴とする空気調和装置の運
転制御装置。
(1) A variable capacity compressor (1) and a heat source side heat exchanger (
4), a user-side expansion valve (7) whose opening degree can be freely adjusted, and a user-side heat exchanger (8) are connected in this order. a capacity control means (51) that adjusts the opening degree of the usage side expansion valve (7) according to the degree of superheating so that the degree of superheating is constant; Temperature detection means (
Th1), and if the outside air temperature drops below a predetermined temperature upon receiving a temperature signal from the temperature detection means (Th1) at the time of startup of the cooling operation, the capacity control means (Th1) is activated within a predetermined time from the time of startup. a starting capacity means (55) for outputting a capacity signal so as to forcibly drive the compressor (1) at a low capacity instead of the control of 53); and a starting capacity means (55) for outputting a capacity signal to forcibly drive the compressor (1) at a low capacity; If the outside air temperature has fallen below a preset temperature in response to a temperature signal, the usage-side expansion valve (7) will be activated within a predetermined period of time from the time of startup, instead of controlling the opening control means (53).
starting opening means (5
6) An operation control device for an air conditioner, comprising:
(2)容量の可変な圧縮機(1)と、風量の可変なファ
ン(12)を備えた熱源側熱交換器(4)と、開度の調
節自在な利用側膨張弁(7)と、利用側熱交換器(8)
とが順に接続されて成る空気調和装置において、 上記圧縮機(1)の容量を空調負荷に応じて調節する容
量制御手段(51)と、 上記利用側膨張弁(7)の開度を過熱度に応じて該過熱
度が一定となるように制御する開度制御手段(53)と
、 上記ファン(12)の風量を調節する風量制御手段(5
4)と、 外気温度を検出して温度信号を出力する温度検出手段(
Th1)と、 冷房運転の起動時に該温度検出手段(Th1)の温度信
号を受けて外気温度が予め設定された所定温度以下に低
下していると、起動時より所定時間内において容量制御
手段(51)の制御に代えて上記圧縮機(1)を強制的
に低容量で駆動させるように容量信号を出力する起動容
量手段(56)と、 冷房運転の起動時に上記温度検出手段(Th1)の温度
信号を受けて外気温度が予め設定された所定温度以下に
低下していると、起動時より所定時間内において開度制
御手段(53)の制御に代えて上記利用側膨張弁(7)
を強制的に過熱度制御開度より所定開度大きい起動開度
に設定するように開度信号を出力する起動開度手段(5
6)と、 冷房運転の起動時に上記温度検出手段(Th1)の温度
信号を受けて外気温度が予め設定された所定温度以下に
低下していると、起動時より所定時間内において風量制
御手段(54)の制御に代えて上記ファン(12)を強
制的に停止又は低風量で駆動させるように風量信号を出
力する起動風量手段(57)とを備えていることを特徴
とする空気調和装置の運転制御装置。
(2) a heat source side heat exchanger (4) equipped with a variable capacity compressor (1), a variable air volume fan (12), and a user side expansion valve (7) whose opening degree can be freely adjusted; User side heat exchanger (8)
and a capacity control means (51) for adjusting the capacity of the compressor (1) according to the air conditioning load; and a capacity control means (51) for adjusting the capacity of the compressor (1) according to the air conditioning load; an opening control means (53) for controlling the degree of superheat to be constant according to
4) and temperature detection means (which detects the outside air temperature and outputs a temperature signal)
Th1), and if the outside air temperature drops below a predetermined temperature upon receiving a temperature signal from the temperature detection means (Th1) at the time of startup of the cooling operation, the capacity control means (Th1) is activated within a predetermined time from the time of startup. a starting capacity means (56) for outputting a capacity signal so as to forcibly drive the compressor (1) at a low capacity instead of the control of 51); and a starting capacity means (56) for outputting a capacity signal to forcibly drive the compressor (1) at a low capacity; If the outside air temperature has fallen below a preset temperature in response to a temperature signal, the usage-side expansion valve (7) will be activated within a predetermined period of time from the time of startup, instead of controlling the opening control means (53).
starting opening means (5
6) When the temperature signal from the temperature detection means (Th1) is received at the time of startup of the cooling operation, and the outside temperature has decreased to a predetermined temperature or less, the air volume control means (Th1) is activated within a predetermined time from the time of startup. 54) A starting air volume means (57) for outputting an air volume signal to forcibly stop or drive the fan (12) at a low air volume. Operation control device.
(3)圧縮機(1)と、熱源側熱交換器(4)と、開度
の調節自在な複数の利用側膨張弁(7)、(7)、・・
・と、複数の利用側熱交換器(8)、(8)、・・・と
が接続されて成る空気調和装置において、 上記各利用側膨張弁(7)、(7)、・・・を各利用側
熱交換器(8)、(8)、・・・の熱交換動作の停止時
に全閉に制御する一方、各利用側熱交換器(8)、(8
)、・・・の熱交換動作時に上記各利用側膨張弁(7)
、(7)、・・・の開度を過熱度に応じて該過熱度が一
定となるように制御する開度制御手段(53)と、 外気温度又は蒸発圧力相当飽和温度を検出して温度信号
を出力する温度検出手段(Th1、P1)と、 少なくとも1台の上記利用側熱交換器(8)による冷房
運転の起動時に上記温度検出手段(Th1、P1)の温
度信号を受けて外気温度又は蒸発圧力相当飽和温度が予
め設定された所定温度以下に低下していると、起動時よ
り所定時間内において開度制御手段(53)の制御に代
えて全ての利用側膨張弁(7)、(7)、・・・を所定
の起動開度に設定するように開度信号を出力する起動開
度手段(58)とを備えていることを特徴とする空気調
和装置の運転制御装置。
(3) A compressor (1), a heat source side heat exchanger (4), and a plurality of user side expansion valves (7), (7), whose opening degree can be freely adjusted.
・In an air conditioner in which a plurality of user-side heat exchangers (8), (8), ... are connected, each of the above-mentioned user-side expansion valves (7), (7), ... When the heat exchange operation of each user-side heat exchanger (8), (8), ... is stopped, it is controlled to be fully closed, while each user-side heat exchanger (8), (8)
),... during the heat exchange operation, each of the above-mentioned user-side expansion valves (7)
, (7), etc. according to the degree of superheating so that the degree of superheating is constant; A temperature detection means (Th1, P1) outputs a signal, and at least one of the user-side heat exchanger (8) detects the outside air temperature upon receiving the temperature signal from the temperature detection means (Th1, P1) at the time of starting the cooling operation. Or, if the saturation temperature equivalent to evaporation pressure has fallen below a preset temperature, all utilization-side expansion valves (7), instead of controlling the opening degree control means (53), within a predetermined time from startup. (7) An operation control device for an air conditioner, comprising: a starting opening degree means (58) that outputs an opening degree signal so as to set the starting opening degree to a predetermined starting opening degree.
JP1323592A 1989-09-20 1989-12-13 Operation control device for air conditioner Expired - Fee Related JP2508860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1323592A JP2508860B2 (en) 1989-09-20 1989-12-13 Operation control device for air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24602989 1989-09-20
JP1-246029 1989-09-20
JP1323592A JP2508860B2 (en) 1989-09-20 1989-12-13 Operation control device for air conditioner

Publications (2)

Publication Number Publication Date
JPH03175230A true JPH03175230A (en) 1991-07-30
JP2508860B2 JP2508860B2 (en) 1996-06-19

Family

ID=26537530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1323592A Expired - Fee Related JP2508860B2 (en) 1989-09-20 1989-12-13 Operation control device for air conditioner

Country Status (1)

Country Link
JP (1) JP2508860B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312380A (en) * 1992-05-11 1993-11-22 Sanyo Electric Co Ltd Controller for air conditioner
KR20040012348A (en) * 2002-08-02 2004-02-11 엘지전자 주식회사 A driving control method of inverter air- conditioner
JP2007278665A (en) * 2006-04-11 2007-10-25 Mitsubishi Heavy Ind Ltd Air conditioner
JP2009036506A (en) * 2007-07-09 2009-02-19 Ntt Facilities Inc Air-conditioning system and its operating method
JP2009168343A (en) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd Air conditioner
WO2011077720A1 (en) * 2009-12-22 2011-06-30 ダイキン工業株式会社 Refrigeration device
JP2012017944A (en) * 2010-07-09 2012-01-26 Denso Corp Refrigeration cycle device and method for controlling the same
CN102486327A (en) * 2010-12-02 2012-06-06 乐金电子(天津)电器有限公司 Cold treatment method for temperature of air-conditioner pipe
WO2012160832A1 (en) * 2011-05-26 2012-11-29 パナソニック株式会社 Refrigeration cycle device
JP2013200063A (en) * 2012-03-23 2013-10-03 Denso Corp Refrigeration cycle device
JP2015081747A (en) * 2013-10-24 2015-04-27 ダイキン工業株式会社 Air conditioner
CN111121242A (en) * 2019-12-26 2020-05-08 宁波奥克斯电气股份有限公司 Adjusting method and device for operating parameters of air conditioning system and air conditioning system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137460A (en) * 1989-10-24 1991-06-12 Matsushita Seiko Co Ltd Electronic expansion valve control device for air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137460A (en) * 1989-10-24 1991-06-12 Matsushita Seiko Co Ltd Electronic expansion valve control device for air conditioner

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312380A (en) * 1992-05-11 1993-11-22 Sanyo Electric Co Ltd Controller for air conditioner
KR20040012348A (en) * 2002-08-02 2004-02-11 엘지전자 주식회사 A driving control method of inverter air- conditioner
JP2007278665A (en) * 2006-04-11 2007-10-25 Mitsubishi Heavy Ind Ltd Air conditioner
JP2009036506A (en) * 2007-07-09 2009-02-19 Ntt Facilities Inc Air-conditioning system and its operating method
JP2009168343A (en) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd Air conditioner
CN102667368A (en) * 2009-12-22 2012-09-12 大金工业株式会社 Refrigeration device
WO2011077720A1 (en) * 2009-12-22 2011-06-30 ダイキン工業株式会社 Refrigeration device
JP5516602B2 (en) * 2009-12-22 2014-06-11 ダイキン工業株式会社 Refrigeration equipment
JP2012017944A (en) * 2010-07-09 2012-01-26 Denso Corp Refrigeration cycle device and method for controlling the same
CN102486327A (en) * 2010-12-02 2012-06-06 乐金电子(天津)电器有限公司 Cold treatment method for temperature of air-conditioner pipe
WO2012160832A1 (en) * 2011-05-26 2012-11-29 パナソニック株式会社 Refrigeration cycle device
JP5971633B2 (en) * 2011-05-26 2016-08-17 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
JP2013200063A (en) * 2012-03-23 2013-10-03 Denso Corp Refrigeration cycle device
JP2015081747A (en) * 2013-10-24 2015-04-27 ダイキン工業株式会社 Air conditioner
CN111121242A (en) * 2019-12-26 2020-05-08 宁波奥克斯电气股份有限公司 Adjusting method and device for operating parameters of air conditioning system and air conditioning system
CN111121242B (en) * 2019-12-26 2022-06-14 宁波奥克斯电气股份有限公司 Adjusting method and device for operating parameters of air conditioning system and air conditioning system

Also Published As

Publication number Publication date
JP2508860B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
JP4001171B2 (en) Refrigeration equipment
EP3546850B1 (en) Refrigeration device
JP4475655B2 (en) Air conditioner
JPH03175230A (en) Operation controller of air conditioner
JP3341404B2 (en) Operation control device for air conditioner
US20220221200A1 (en) Refrigeration apparatus
JPH06341720A (en) Refrigerator
JPH043865A (en) Freezing cycle device
JP2003106615A (en) Air conditioner
JP4023387B2 (en) Refrigeration equipment
JP2009264612A (en) Refrigerating device
KR102288427B1 (en) Method for Defrosting of Air Conditioner for Both Cooling and Heating
JPH0217358A (en) Degree of overheat control device for freezing device
JP2003314909A (en) Refrigerating machine
JPH04208370A (en) Operation controller for air conditioner
KR100217131B1 (en) Heating operating control method of inverter multi-airconditioner
JPH0395343A (en) Operating controller for air conditioner
JPH03186169A (en) Defrosting operation controller of air conditioner
JPH06100395B2 (en) Refrigeration system operation controller
US11573039B2 (en) Heat source unit and refrigeration apparatus
KR101513305B1 (en) Injection type heat pump air-conditioner and the converting method for injection mode thereof
JPH08100944A (en) Operation controller for air conditioner
JPH03186156A (en) Pressure equalizer of air conditioner
JPH06341695A (en) Operation control device for air conditioner
JPH07117272B2 (en) Operation control device for air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees