JPH07117272B2 - Operation control device for air conditioner - Google Patents

Operation control device for air conditioner

Info

Publication number
JPH07117272B2
JPH07117272B2 JP1234318A JP23431889A JPH07117272B2 JP H07117272 B2 JPH07117272 B2 JP H07117272B2 JP 1234318 A JP1234318 A JP 1234318A JP 23431889 A JP23431889 A JP 23431889A JP H07117272 B2 JPH07117272 B2 JP H07117272B2
Authority
JP
Japan
Prior art keywords
air volume
temperature
compressor
liquid pipe
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1234318A
Other languages
Japanese (ja)
Other versions
JPH0395339A (en
Inventor
政樹 山本
誠治 酒井
伸一 中石
直樹 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1234318A priority Critical patent/JPH07117272B2/en
Publication of JPH0395339A publication Critical patent/JPH0395339A/en
Publication of JPH07117272B2 publication Critical patent/JPH07117272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷房運転中液管温度の値に基づき液管の結露
を防止するようにした空気調和装置の運転制御装置に係
り、特に結露防止運転から通常冷房運転に復帰する際の
低圧の過低下防止対策に関する。
Description: TECHNICAL FIELD The present invention relates to an operation control device for an air conditioner, which prevents dew condensation of a liquid pipe based on a value of a liquid pipe temperature during cooling operation, and particularly to dew condensation. The present invention relates to measures for preventing an excessive decrease in low pressure when returning from the prevention operation to the normal cooling operation.

(従来の技術) 従来より、例えば実開昭54−167541号公報に開示される
如く、アンローダ機構によりフルロードとアンロードの
2段階に運転容量が調節可能な圧縮機と、室外ファンを
付設した室外熱交換器とを有する室外ユニットに対し
て、各々室内電動膨張弁と室内熱交換器を有する2台の
室内ユニットを並列に接続してなる空気調和装置におい
て、冷房運転時、室温サーモで検出される室温と室内の
設定値との差温に応じ、室内の空調状態を複数のステッ
プに分け、各室内の空調状態がどのステップにあるかに
応じて、圧縮機の運転容量の調節を行うことにより、冷
房負荷に対する能力調節を行って、所定の冷房効果を発
揮しようとするものは公知の技術である。
(Prior Art) Conventionally, as disclosed in, for example, Japanese Utility Model Application Laid-Open No. 54-167541, a compressor whose operating capacity can be adjusted to two stages of full load and unload by an unloader mechanism and an outdoor fan are attached. In an air conditioner in which two indoor units each having an indoor electric expansion valve and an indoor heat exchanger are connected in parallel to an outdoor unit having an outdoor heat exchanger, detection is performed by a room temperature thermostat during cooling operation. Depending on the temperature difference between the room temperature and the set value in the room, the air conditioning state in the room is divided into multiple steps, and the operating capacity of the compressor is adjusted according to which step the air conditioning state in each room is. Therefore, it is a well-known technique to adjust the capacity with respect to the cooling load to exert a predetermined cooling effect.

(発明が解決しようとする課題) しかしながら、上記のような空気調和装置の運転制御を
行う場合、以下のような問題が生じる。
(Problems to be Solved by the Invention) However, when the operation control of the air conditioner as described above is performed, the following problems occur.

すなわち、室内側が一台でも高い能力を要求していると
きには圧縮機をフルロードにするので、結局、ほとんど
の場合、フルロードで運転してしまうことになる。した
がって、外気温度が低い領域では液管温度の低下を招き
易く、液管に結露を生じ易い状況にあるため、液管に防
壁をしていない場合、液管に結露を生じ天井で水が洩れ
る等の不快感を利用者に与える虞れがある。
That is, when even a single indoor side demands high capacity, the compressor is loaded at full load, and in the end, in most cases, it will be operated at full load. Therefore, in a region where the outside air temperature is low, the temperature of the liquid pipe is likely to be lowered, and dew condensation is likely to occur on the liquid pipe. Therefore, if the liquid pipe is not protected, water will leak on the ceiling due to dew condensation on the liquid pipe. There is a risk that the user may feel uncomfortable.

そこで、冷房運転中に液管温度が結露を生じる温度に達
すると、圧縮機の運転容量及び室外ファンの風量を低減
することにより、冷媒循環量の減少と高圧の上昇効果と
で液管温度を上昇させるように運転条件を制御する結露
防止運転を行うことが考えられる。
Therefore, when the liquid pipe temperature reaches a temperature at which dew condensation occurs during the cooling operation, the liquid pipe temperature is reduced by reducing the refrigerant circulation amount and increasing the high pressure by reducing the operating capacity of the compressor and the air volume of the outdoor fan. It is conceivable to perform dew condensation prevention operation that controls the operating conditions so as to raise the temperature.

しかしながら、かかる結露防止運転から通常冷房運転に
復帰する際、次のような問題がある。
However, when returning from the dew condensation prevention operation to the normal cooling operation, there are the following problems.

すなわち、第8図に示すように、時刻t0で結露防止運転
から通常冷房運転への復帰指令が出力され(同図(a)
参照)、低減させていた圧縮機の運転容量(同図(b)
参照)と室外ファンの風量(同図(c)参照)とを同時
に高い側に復帰させる(図中、F/Lは圧縮機のフルロー
ド、U/Lはアンロードを示す)と、高圧が急激に低下す
る(同図(d)参照)ので、それに応じて低圧も急激に
低下し(同図(e)の破線丸部分参照)、低圧が負圧と
なって圧縮機の焼付きを生じる虞れがある。その場合、
通常かかる事故を防止すべく低圧圧力開閉器が作動する
ので、いわゆる低圧カットにより圧縮機が異常停止して
しまう。
That is, as shown in FIG. 8, a return command from the condensation prevention operation to the normal cooling operation is output at time t 0 ((a) in the same figure).
), The operating capacity of the compressor that had been reduced ((b) in the same figure)
(Refer to ()) and the air volume of the outdoor fan (see (c) in the figure) are simultaneously returned to the higher side (in the figure, F / L indicates full load of the compressor, U / L indicates unload), and high pressure Since the pressure drops sharply (see (d) in the same figure), the low pressure also drops sharply (see the circled part in the broken line in (e) in the same figure), and the low pressure becomes a negative pressure, causing seizure of the compressor. There is fear. In that case,
Since the low-pressure pressure switch normally operates to prevent such an accident, the so-called low-pressure cut causes the compressor to stop abnormally.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、結露防止運転から通常冷房運転に復帰する際、低
圧の急激な低下を抑制する手段を講ずることにより、低
圧カットによる圧縮機の異常停止を回避することにあ
る。
The present invention has been made in view of such a point, and an object thereof is to provide a compressor by a low pressure cut by providing a means for suppressing a rapid decrease in low pressure when returning from a dew condensation prevention operation to a normal cooling operation. It is to avoid the abnormal stop of.

(課題を解決するための手段) 上記目的を達成するため本発明の解決手段は、結露防止
運転から通常冷房運転に復帰する際、圧縮機の運転容量
と室外ファンの風量とを所定の時間差をもって回復させ
ることにある。
(Means for Solving the Problem) In order to achieve the above object, the solution means of the present invention, when returning from the dew condensation prevention operation to the normal cooling operation, the operating capacity of the compressor and the air volume of the outdoor fan with a predetermined time difference. To recover.

具体的には、第1の解決手段は、第1図に示すように、
容量可変形圧縮機(1)、風量可変な室外ファン(12)
を付設した熱源側熱交換器(4)、室内電動膨張弁
(7)、及び利用側熱交換器(8)を接続してなる冷媒
回路(11)を備えた空気調和装置を前提とする。
Specifically, the first solving means is as shown in FIG.
Variable capacity compressor (1), variable air volume outdoor fan (12)
It is premised on an air conditioner equipped with a refrigerant circuit (11) formed by connecting a heat source-side heat exchanger (4), an indoor electric expansion valve (7), and a utilization-side heat exchanger (8).

そして、空気調和装置の運転制御装置として、上記利用
側熱交換器(8)の液管の温度を検出する液管温度検出
手段(Th4)と、該液管温度検出手段(Th4)の出力を受
け、通常冷房運転時、液管温度が所定の結露判定温度よ
りも低くなると、上記圧縮機(1)の運転容量及び室外
ファン(12)の風量を強制的に低減して結露防止運転を
するよう制御する結露防止制御手段(51)とを設けるも
のとする。
Then, as an operation control device of the air conditioner, a liquid pipe temperature detecting means (Th4) for detecting the temperature of the liquid pipe of the utilization side heat exchanger (8) and an output of the liquid pipe temperature detecting means (Th4) are provided. In the normal cooling operation, when the liquid pipe temperature becomes lower than the predetermined dew condensation judgment temperature, the operation capacity of the compressor (1) and the air volume of the outdoor fan (12) are forcibly reduced to prevent dew condensation. And a dew condensation prevention control means (51) for controlling the above.

さらに、上記液管温度検出手段(Th4)の出力を受け、
上記結露防止制御手段(51)による結露防止運転中に、
液管温度が上記結露判定温度以上の所定温度まで回復す
ると、上記圧縮機(1)の運転容量を高容量側に復帰さ
せるよう制御する容量復帰手段(52)と、該容量復帰手
段(52)による圧縮機(1)の運転容量の復帰後所定時
間経過した時に上記室外ファン(12)の風量を高風量側
に復帰させるよう制御する風量復帰手段(53)とを設け
る構成としたものである。
Furthermore, receiving the output of the liquid pipe temperature detection means (Th4),
During the condensation prevention operation by the condensation prevention control means (51),
When the liquid pipe temperature recovers to a predetermined temperature equal to or higher than the condensation determination temperature, a capacity restoring means (52) for controlling the operating capacity of the compressor (1) to return to a high capacity side, and the capacity restoring means (52). When a predetermined time elapses after the operating capacity of the compressor (1) is restored by means of the above, an air flow rate returning means (53) for controlling the air flow rate of the outdoor fan (12) to be returned to a high air flow rate side is provided. .

第2の解決手段は、上記第1の解決手段と同様の空気調
和装置を前提とし、同様の液管温度検出手段(Th4)及
び結露防止制御手段(51)を設けるものとする。
The second solving means is premised on the air conditioner similar to the first solving means, and is provided with the same liquid pipe temperature detecting means (Th4) and dew condensation preventing control means (51).

さらに、上記液管温度検出手段(Th4)の出力を受け、
上記結露防止制御手段(51)による結露防止運転中に、
液管温度が上記結露判定温度以上の所定温度まで回復す
ると上記室外ファン(12)の風量を高風量側に復帰させ
るよう制御する風量復帰手段(53)と、該風量復帰手段
(53)による室外ファン(12)の風量の復帰後所定時間
経過した時に上記圧縮機(1)の運転容量を高容量側に
復帰させるよう制御する容量復帰手段(52)とを設ける
構成としたものである。
Furthermore, receiving the output of the liquid pipe temperature detection means (Th4),
During the condensation prevention operation by the condensation prevention control means (51),
When the liquid pipe temperature recovers to a predetermined temperature equal to or higher than the condensation determination temperature, an air volume returning means (53) for controlling the air volume of the outdoor fan (12) to return to a high air volume side, and the outdoor by the air volume returning means (53) A capacity restoring means (52) is provided for controlling the operation capacity of the compressor (1) to return to a high capacity side when a predetermined time has elapsed after the air volume of the fan (12) has been restored.

第3の解決手段は、上記第1又は第2の解決手段におけ
る風量復帰手段(53)を、室外ファン(12)の風量を段
階的に復帰させるもので構成したものである。
The third solving means is configured by the air volume restoring means (53) in the first or second solving means for gradually returning the air volume of the outdoor fan (12).

第4の解決手段は、上記第1,第2又は第3の解決手段に
おける容量復帰手段(52)を、圧縮機(1)の運転容量
を段階的に復帰させるもので構成したものである。
A fourth solving means is configured by the capacity restoring means (52) in the first, second or third solving means for gradually returning the operating capacity of the compressor (1).

(作用) 以上の構成により、請求項(1)の発明では、冷房運転
中に液管温度が所定の結露判定温度よりも低くなると、
結露防止制御手段(51)により圧縮機(1)の運転容量
及び室外ファン(12)の風量が低減するよう制御され、
液管温度が上昇するように運転条件の修正が行われる。
そして、液管温度が結露判定温度以上の所定温度まで回
復すると、まず容量復帰手段(52)により圧縮機(1)
の運転容量が高容量側に復帰するよう制御され、その後
所定時間経過したときに、風量復帰手段(53)により、
室外ファン(12)の風量が高風量側に復帰するように制
御される。
(Operation) With the above configuration, in the invention of claim (1), when the liquid pipe temperature becomes lower than the predetermined dew condensation determination temperature during the cooling operation,
The dew condensation prevention control means (51) controls so that the operating capacity of the compressor (1) and the air volume of the outdoor fan (12) are reduced.
The operating conditions are corrected so that the liquid pipe temperature rises.
Then, when the liquid pipe temperature recovers to a predetermined temperature equal to or higher than the dew condensation determination temperature, first, the compressor (1) is operated by the capacity restoring means (52).
The operating capacity of is controlled so as to return to the high capacity side, and when a predetermined time has elapsed thereafter, the air volume restoring means (53)
The air volume of the outdoor fan (12) is controlled so as to return to the high air volume side.

その場合、当初室外ファン(12)の風量はそのままで圧
縮機(1)の運転容量だけが増大するので、圧縮機
(1)の運転容量と室外ファン(12)の風量とを同時に
通常冷房運転時の値に復帰させることによる高圧の急激
な低下が抑制され、瞬間的な低圧の過低下が抑制され
る。そして、低圧がある程度安定してから、風量復帰手
段(53)により室外ファン(12)の風量が高風量に復帰
するよう制御されるので、低圧の急激な低下に起因する
圧縮機(1)の異常停止を招くことなく、結露防止運転
から通常冷房運転に復帰することになる。
In that case, since the air volume of the outdoor fan (12) initially remains unchanged, only the operating capacity of the compressor (1) increases, so the operating capacity of the compressor (1) and the air volume of the outdoor fan (12) are simultaneously subjected to normal cooling operation. A rapid decrease in high pressure due to the return to the hour value is suppressed, and an instantaneous excessive decrease in low pressure is suppressed. Then, after the low pressure is stabilized to some extent, the air volume returning means (53) controls the air volume of the outdoor fan (12) to return to a high air volume, so that the compressor (1) caused by the sudden low pressure drop is reduced. The dew condensation prevention operation returns to the normal cooling operation without causing an abnormal stop.

請求項(2)の発明では、液管温度の回復時、まず風量
復帰手段(53)により室外ファン(12)の風量が高風量
側に復帰するよう制御されるので、室外ファン(12)の
風量増大による高圧の瞬間的な低下があるが、高圧があ
る程度安定してから圧縮機(1)の運転容量が増大する
ことになり、圧縮機(1)の運転容量と室外ファン(1
2)の風量とを同時に復帰させるときのような低圧の急
激な低下が生じることがなく、よって、低圧カットによ
る圧縮機(1)の異常停止を招くことなく、通常冷房運
転に復帰する。
In the invention of claim (2), when the temperature of the liquid pipe is recovered, first, the air volume of the outdoor fan (12) is controlled to be returned to the high air volume side by the air volume restoring means (53). Although there is an instantaneous drop in high pressure due to an increase in air flow, the operating capacity of the compressor (1) increases after the high pressure stabilizes to some extent, and the operating capacity of the compressor (1) and the outdoor fan (1
There is no sudden drop in low pressure as in the case where the air volume of 2) is restored at the same time, and therefore normal cooling operation is restored without causing abnormal shutdown of the compressor (1) due to low pressure cut.

請求項(3)の発明では、上記請求項(1)又は(2)
の発明において、室外ファン(12)の風量が段階的に切
換えられるので、低圧の急激な低下を招くことなく、よ
り迅速に通常冷房運転の運転条件に復帰することにな
る。
In the invention of claim (3), the above claim (1) or (2)
In the invention, since the air volume of the outdoor fan (12) is switched stepwise, the operating condition of the normal cooling operation can be restored more quickly without causing a sudden drop in low pressure.

請求項(4)の発明では、上記請求項(1),(2)又
は(3)の発明において、結露防止運転から通常冷房運
転への復帰時、容量復帰手段(52)により、圧縮機
(1)の運転容量が段階的に増大するように制御される
ので、低圧の急激な低下を防止しながら、通常冷房運転
へ迅速に復帰することになる。
According to the invention of claim (4), in the invention of claim (1), (2) or (3), the compressor () is restored by the capacity restoring means (52) at the time of returning from the dew condensation preventing operation to the normal cooling operation. Since the operating capacity of 1) is controlled so as to increase stepwise, it is possible to quickly return to the normal cooling operation while preventing a sudden drop in low pressure.

(実施例) 以下、本発明の実施例について、第2図〜第7図に基づ
き説明する。
(Examples) Examples of the present invention will be described below with reference to FIGS. 2 to 7.

第2図は第1実施例に係る空気調和装置の冷媒配管系統
を示し、1台の室外ユニット(X)に対して2台の室内
ユニット(A),(B)が並列に接続されたマルチタイ
プのものである。
FIG. 2 shows a refrigerant piping system of the air conditioner according to the first embodiment, and a multi-unit in which two indoor units (A) and (B) are connected in parallel to one outdoor unit (X). It is of the type.

上記室外ユニット(X)において、(1)は圧縮機、
(2)は吐出冷媒中の油を回収するデミスタ、(3)は
冷房運転時には図中実線のごとく切換わり、暖房運転時
には図中破線のごとく切換わる四路切換弁、(4)は室
外ファン(12)を付設し、冷房運転時には凝縮器とし
て、暖房運転時には蒸発器として機能する熱源側熱交換
器である室外熱交換器、(4a)は該室外熱交換器(4)
の補助熱交換器、(5)は冷房運転時には冷媒流量を調
節し、暖房運転時には冷媒を減圧する室外電動膨張弁、
(6)は液冷媒を貯溜するためのレシーバ、(9)は吸
入冷媒中の液冷媒を除去するためのアキュムレータであ
る。
In the outdoor unit (X), (1) is a compressor,
(2) is a demister that collects oil in the discharged refrigerant, (3) is a four-way selector valve that switches as shown by the solid line in the drawing during cooling operation, and switches as shown by the broken line in the drawing during heating operation, and (4) shows an outdoor fan An outdoor heat exchanger that is a heat source side heat exchanger that is provided with (12) and functions as a condenser during cooling operation and as an evaporator during heating operation, and (4a) is the outdoor heat exchanger (4).
An auxiliary heat exchanger (5) is an outdoor electric expansion valve that adjusts the refrigerant flow rate during cooling operation and depressurizes the refrigerant during heating operation,
(6) is a receiver for storing the liquid refrigerant, and (9) is an accumulator for removing the liquid refrigerant in the sucked refrigerant.

また、上記室内ユニット(A),(B)は同一の構成を
有しており、いずれも、冷房運転時には冷媒を減圧し、
暖房運転時には冷媒流量を調節する室内電動膨張弁
(7)と、室内ファン(13)を付設し、冷房運転時には
蒸発器として、暖房運転時には凝縮器として機能する利
用側熱交換器である室内熱交換器(8)とをそれぞれ主
要機器として備えている。
Further, the indoor units (A) and (B) have the same configuration, and both depressurize the refrigerant during cooling operation,
An indoor electric expansion valve (7) that adjusts the refrigerant flow rate during heating operation, and an indoor fan (13) are attached, and the indoor heat is a usage-side heat exchanger that functions as an evaporator during cooling operation and as a condenser during heating operation. The exchanger (8) is provided as each main device.

そして、上記各機器(1)〜(9)は冷媒配管(10)に
より冷媒の流通可能に接続されていて、室外空気との熱
交換により得た熱(又は冷熱)を移動させて室内空気を
付与するようにした主冷媒回路(11)が構成されてい
る。
Each of the devices (1) to (9) is connected to the refrigerant pipe (10) so that the refrigerant can flow, and heat (or cold heat) obtained by heat exchange with the outdoor air is moved to remove the indoor air. The main refrigerant circuit (11) is provided so as to be provided.

ここで、室外ユニット(X)において、上記室外ファン
(12)は2台の第1室外ファン(12a)及び第2室外フ
ァン(12b)で構成されていて、第1室外ファン(12a)
は風量を高風量と低風量とに切換え可能になされる一
方、第2室外ファン(12b)はオン・オフ制御されるも
のである。すなわち、第1室外ファン(12a)が高風量
で第2室外ファン(12b)がオンのときには室外ファン
(12)全体の風量が高風量H(3速)となり、第1室外
ファン(12a)が高風量で第2室外ファン(12b)がオフ
のときには室外ファン(12)全体が中風量M(2速)
に、第1室外ファン(12a)が低風量で第2室外ファン
(12b)がオフのときには室外ファン(12)全体が低風
量L(1速)になるようになされている。
Here, in the outdoor unit (X), the outdoor fan (12) is composed of two first outdoor fans (12a) and second outdoor fans (12b), and the first outdoor fan (12a).
While the air volume can be switched between a high air volume and a low air volume, the second outdoor fan (12b) is on / off controlled. That is, when the first outdoor fan (12a) has a high air volume and the second outdoor fan (12b) is on, the overall air volume of the outdoor fan (12) becomes a high air volume H (3rd speed), and the first outdoor fan (12a) is When the second outdoor fan (12b) is off at high air volume, the entire outdoor fan (12) has medium air volume M (2nd speed).
In addition, when the first outdoor fan (12a) has a low air volume and the second outdoor fan (12b) is off, the entire outdoor fan (12) has a low air volume L (first speed).

また、図示しないが、圧縮機(1)は、相対向する2つ
のスクロールの相対的な公転により吸入した冷媒を高圧
にして吐出するようにしたスクロール機構と、該スクロ
ール機構の固定スクロールの途中に吐出冷媒の一部をバ
イパスするバイパス孔を臨ませたアンローダ機構とを内
蔵している。そして、吐出管(10a)から上記アンロー
ダ機構のアンローダピストンの背圧側にキャピラリチュ
ーブ(16)を介して高圧を供給する高圧供給通路(15)
と、該高圧供給通路(15)の途中と吸入管(10b)とを
開閉弁(18)を介して接続するアンローダ通路(17)と
が設けられていて、開閉弁(18)が閉じているときには
アンローダ機構に高圧を供給して圧縮機(1)の運転容
量を100%のフルロードとする一方、開閉弁(18)が開
いたときにはアンローダ機構に低圧を供給して圧縮機
(1)の運転容量を上記フルロードの50%であるアンロ
ードにするようになされている。
Further, although not shown, the compressor (1) has a scroll mechanism configured to discharge the refrigerant sucked into the high pressure by the relative revolution of two scrolls facing each other, and a scroll mechanism in the middle of a fixed scroll of the scroll mechanism. It incorporates an unloader mechanism that faces a bypass hole that bypasses a part of the discharged refrigerant. Then, a high pressure supply passage (15) for supplying a high pressure from the discharge pipe (10a) to the back pressure side of the unloader piston of the unloader mechanism via the capillary tube (16).
And an unloader passage (17) that connects the middle of the high-pressure supply passage (15) and the suction pipe (10b) via the on-off valve (18), and the on-off valve (18) is closed. Sometimes, high pressure is supplied to the unloader mechanism to make the operating capacity of the compressor (1) 100% full load, while low pressure is supplied to the unloader mechanism to open the compressor (1) when the opening / closing valve (18) is opened. It is designed to unload the operating capacity, which is 50% of the full load.

さらに、装置には多くのセンサ類が配置されていて、
(Thd)は吐出管(10a)に配置され、吐出管温度を検出
する吐出管センサ、(Ths)は吸入管(10b)に配置さ
れ、吸入管温度を検出する吸入管センサ、(Th1)は室
外熱交換器(4)の空気吸込口に配置され、外気温度と
しての吸込空気温度T1を検出する外気温センサ、(Th
2)は室外熱交換器(4)の液管側に配置され、室外熱
交換器(4)の液管温度を検出する室外液管センサ、
(Th3)は室内熱交換器(8)の空気吸込口に配置さ
れ、室内空気温度としての吸込空気温度Taを検出する室
温サーモ、(Th4)を室内熱交換器(8)の液管に配置
され、室内熱交換器(8)の液管温度Teを検出する液管
温度検出手段である室内液管センサ、(Th5)は室内熱
交換器(8)のガス管に配置され、室内熱交換器(8)
のガス管温度を検出する室内ガス管センサ、(Hps)は
吐出管(10a)に配置され、高圧が過上昇時に圧縮機
(1)を停止させるための高圧圧力開閉器、(Lps)は
吸入管(10b)に配置され、低圧が過低下したときに圧
縮機(1)を停止させるための低圧圧力開閉器、(Ps)
は吐出管(10a)に配置され、吐出圧力が上記高圧圧力
開閉器(Hps)が作動する過上昇値に達する前に、上記
開閉弁(18)を開いて圧縮機(1)をアンロード状態に
維持し、室外ファン(12)を暖房運転時には高風量から
低風量に、冷房運転時には低風量から高風量に切換える
ための圧力開閉器であって、上記各センサ類は、図示し
ないが装置の運転を制御するコントローラに信号接続さ
れており、各センサの信号に応じて空気調和装置の運転
が制御されるようになされている。
In addition, the device has many sensors,
(Thd) is arranged in the discharge pipe (10a), a discharge pipe sensor for detecting the discharge pipe temperature, (Ths) is arranged in the suction pipe (10b), a suction pipe sensor for detecting the suction pipe temperature, (Th1) is An outside air temperature sensor, which is arranged at the air intake port of the outdoor heat exchanger (4) and detects the intake air temperature T1 as the outside air temperature, (Th
2) is an outdoor liquid pipe sensor which is arranged on the liquid pipe side of the outdoor heat exchanger (4) and detects the liquid pipe temperature of the outdoor heat exchanger (4),
(Th3) is arranged at the air intake port of the indoor heat exchanger (8), and a room temperature thermometer (Th4) for detecting the intake air temperature Ta as the indoor air temperature is arranged in the liquid pipe of the indoor heat exchanger (8). The indoor liquid pipe sensor which is a liquid pipe temperature detecting means for detecting the liquid pipe temperature Te of the indoor heat exchanger (8), (Th5) is arranged in the gas pipe of the indoor heat exchanger (8), and the indoor heat exchange is performed. Bowl (8)
Indoor gas pipe sensor to detect the temperature of the gas pipe, (Hps) is located in the discharge pipe (10a) and is a high pressure switch for stopping the compressor (1) when the high pressure rises excessively, (Lps) is suction A low-pressure pressure switch arranged in the pipe (10b) for stopping the compressor (1) when the low pressure becomes excessively low, (Ps)
Is placed in the discharge pipe (10a), and before the discharge pressure reaches the excessive rise value at which the high pressure switch (Hps) operates, the open / close valve (18) is opened to unload the compressor (1). A pressure switch for switching the outdoor fan (12) from high air volume to low air volume during heating operation and from low air volume to high air volume during cooling operation. The operation of the air conditioner is controlled by being signal-connected to a controller that controls the operation of the air conditioner.

なお、図中、(19)は上記デミスタ(2)と圧縮機
(1)の吸入管(10b)との間をキャピラリ(20)を介
して接続し、油を戻すための油戻し配管、(21)は液管
(10c)と吸入管(10b)との間を液冷媒のバイパス可能
に接続するインジェクションバイパス路であって、該イ
ンジェクションバイパス路(21)には、インジェクショ
ン開閉弁(22)とキャピラリチューブ(23)とが液管
(10c)側から順に介設されており、低外気温度条件下
における冷房運転の起動時、低圧の過低下時には該イン
ジェクションバイパス路(21)を開いて液冷媒を吸入管
(10b)にバイパスすることにより、低圧圧力開閉器(L
ps)が作動するのを防止するようになされている。ま
た、(24),(24)は室外ユニット(A)と室中側との
間の連絡配管中に介設された閉鎖弁である。
In the figure, (19) connects the demister (2) and the suction pipe (10b) of the compressor (1) through a capillary (20), and an oil return pipe for returning oil, ( Reference numeral 21) is an injection bypass passage connecting the liquid pipe (10c) and the suction pipe (10b) so that the liquid refrigerant can be bypassed, and the injection bypass passage (21) includes an injection opening / closing valve (22). A capillary tube (23) is provided in order from the liquid pipe (10c) side, and when the cooling operation is started under a low outside air temperature condition or when the low pressure falls excessively, the injection bypass passage (21) is opened to open the liquid refrigerant. By bypassing the suction pipe (10b) to the low pressure switch (L
It is designed to prevent ps) from operating. Further, (24) and (24) are closing valves provided in a communication pipe between the outdoor unit (A) and the room inside.

空気調和装置の冷房運転時、圧縮機(1)から吐出され
た冷媒は室外熱交換器(4)で凝縮され、各室内ユニッ
ト(A),(B)に分流して室内電動膨張弁(7),
(7)で減圧され各室内熱交換器(8),(8)で蒸発
した後、合流して圧縮機(1)に戻るように循環する。
その場合、第3図に示すように、室温サーモ(Th3)で
検出される室温Taと室内の設定温度Tsとの差温ΔTに応
じ、差温の所定のディファレンシャル2ΔT0に基づい
て、室内の空調状態が室温TaがΔT0よりも高い第2ステ
ップ、ΔT0以下で−ΔT0よりも高い第1ステップ及び−
ΔT以下のサーモオフ(室温の上昇時にはディファレン
シャル2ΔT0をもって上側のステップに回復する)から
なる3つのゾーンに分割され、各室内ユニット(A),
(B)の空調ゾーンに応じて圧縮機(1)の運転容量が
調節される。
During the cooling operation of the air conditioner, the refrigerant discharged from the compressor (1) is condensed in the outdoor heat exchanger (4) and is divided into the indoor units (A) and (B) to be distributed to the indoor electric expansion valve (7). ),
After being decompressed in (7) and evaporated in each of the indoor heat exchangers (8), (8), they are combined and circulated so as to return to the compressor (1).
In that case, as shown in FIG. 3, in accordance with the temperature difference ΔT between the room temperature Ta detected by the room temperature thermostat (Th3) and the set temperature Ts in the room, based on the predetermined differential 2ΔT 0 of the room temperature, the second step air conditioning state is room temperature Ta higher than the [Delta] T 0, the first step and higher than -.DELTA.T 0 in [Delta] T 0 or less -
Each indoor unit (A) is divided into three zones consisting of a thermo-off below ΔT (recovering to the upper step with differential 2ΔT 0 when the room temperature rises).
The operating capacity of the compressor (1) is adjusted according to the air conditioning zone of (B).

さらに、第4図に示すように、上記外気温センサ(Th
1)で検出される外気温度T1の値が所定の第1〜第4設
定温度a,b,c,d(a<b<c<d)に対してどの範囲に
あるかに応じて、室外ファン(12)の風量が3段階に調
節される。すなわち、外気温度T1が高い方から第3設定
温度cに達するまでは3速の高風量Hで運転を行い、第
3設定温度c以下になった後第1設定温度aに達するま
では2速の中風量Mで運転を行い、第1設定温度a以下
になると1速の低風量Lで運転を行う一方、外気温度T1
が上昇して、第2設定温度bを越えると中風量Mに、そ
の後第4設定温度dを越えると高風量Hにそれぞれ風量
を回復させるようにしている。すなわち、上記圧縮機
(1)の容量制御及び室外ファン(12)の風量制御によ
り、各室内の要求能力に応じて冷媒循環量を確保し室外
熱交換器(4)の能力を調節するようになされている。
Further, as shown in FIG. 4, the outside air temperature sensor (Th
Depending on the range of the value of the outside air temperature T1 detected in 1) with respect to the predetermined first to fourth set temperatures a, b, c, d (a <b <c <d), the outdoor The air volume of the fan (12) is adjusted in three stages. That is, from the higher outside air temperature T1 to the third set temperature c, operation is performed at a high air volume H of the third speed, and after reaching the third set temperature c or less, the second speed is reached until the first set temperature a is reached. The operation is performed at a medium air volume M, and when the temperature becomes equal to or lower than the first set temperature a, the operation is performed at a low air volume L of the first speed while the outside air temperature T1
When the temperature rises and exceeds the second set temperature b, the air volume is restored to medium air volume M, and when the fourth set temperature d is exceeded, the air volume is restored to high air volume H. That is, by controlling the capacity of the compressor (1) and controlling the air volume of the outdoor fan (12), the refrigerant circulation amount is secured and the capacity of the outdoor heat exchanger (4) is adjusted according to the required capacity in each room. Has been done.

そして、上記各室内液管センサ(Th4)で検出される液
管温度T4が室内熱交換器(8)の凍結を開始する凍結判
定温度である第1基準値l(例えば−4℃)程度の温度
値)よりも低くなると、各室内ユニット(A),(B)
において、各室内電動膨張弁(7),(7)を全閉にし
て室内ファン(13)のみ運転するようにつまりサーモオ
フ状態になるように制御することにより、室内熱交換器
(8),(8)における蒸発温度を上昇させ、解凍する
ようになされている。
The liquid pipe temperature T4 detected by each of the indoor liquid pipe sensors (Th4) is about the first reference value 1 (for example, -4 ° C) which is the freezing determination temperature at which the freezing of the indoor heat exchanger (8) is started. Temperature value), the indoor units (A), (B)
In, the indoor electric expansion valves (7), (7) are fully closed to control only the indoor fan (13) so that the indoor fan (13) is in a thermo-off state. The evaporation temperature in 8) is raised to thaw.

ここで、本発明の特徴である結露防止運転と通常冷房運
転への復帰運転について、第5図及び第6図に基づき説
明する。第5図は各室内ユニット(A),(B)におけ
る制御状態の変化を示す遷移図であって、制御状態
で、液管温度T4に対応する蒸発温度Teを上昇させるべき
運転状態にあることを示す指標であるTeアップフラグTU
Fを「0」としながら、上記室内液管センサ(Th4)で検
出される室内熱交換器(8)の液管温度T4が、液管に結
露を生じる結露判定温度たる第2基準温度n(例えば−
2℃程度の温度値)よりも低くなると、制御状態に移
行し、TUF=0のままで所定の設定時間t0(例えば5分
程度の時間)を有するタイマのカウントを行って、その
間に液管温度T4が第2基準温度n以上に回復すると上記
制御状態に戻る一方、設定時間t0が経過しても液管温
度T4が第2基準温度n以上に回復しないときには、TUF
=1つまりTeアップ指令を出力する状態である制御状態
に移行する。
Here, the dew condensation prevention operation and the return operation to the normal cooling operation, which are the features of the present invention, will be described with reference to FIGS. 5 and 6. FIG. 5 is a transition diagram showing changes in the control state in each indoor unit (A), (B), and in the control state, it is in an operating state in which the evaporation temperature Te corresponding to the liquid pipe temperature T4 should be raised. Te up flag TU which is an index indicating
While F is set to “0”, the liquid pipe temperature T4 of the indoor heat exchanger (8) detected by the indoor liquid pipe sensor (Th4) is the second reference temperature n ( For example −
Temperature value of about 2 ° C.), the control state is entered, a timer having a predetermined set time t 0 (for example, about 5 minutes) is counted while TUF = 0, and liquid When the tube temperature T4 recovers to the second reference temperature n or higher, the above control state is restored, but when the liquid tube temperature T4 does not recover to the second reference temperature n or higher even after the set time t 0 elapses, the TUF
= 1, that is, the state shifts to the control state in which the Te up command is output.

その後、液管温度T4が上記第2基準温度nよりも高い所
定値である復帰温度m(例えば6℃程度の温度値)より
も高くなると、制御状態に移行して、TUF=1のまま
でタイマのカウントを開始し、タイムアップしたときに
は、ステップS1で室外ファン(12)(請求項(2)の発
明では圧縮機(1))の制御信号のみを遅延させるため
のタイマをセットして、上記制御状態に復帰する。な
お、タイマの設定時間t0が経過しない間に液管温度T4が
復帰温度m以下になったときには制御状態に戻るよう
になされている。
After that, when the liquid pipe temperature T4 becomes higher than a return temperature m (for example, a temperature value of about 6 ° C.) which is a predetermined value higher than the second reference temperature n, the control state is entered, and TUF = 1 is maintained. When the timer starts counting and the time is up, a timer for delaying only the control signal of the outdoor fan (12) (the compressor (1) in the invention of claim (2)) is set in step S 1. , The control state is restored. It should be noted that when the liquid pipe temperature T4 becomes equal to or lower than the return temperature m before the set time t 0 of the timer elapses, the control state is restored.

ここで、結露防止運転及び通常冷房運転への復帰運転の
制御内容について、第6図のフローチャートに基づき説
明するに、ステップS1でTeアップフラグTUFが「1」か
否かを判別し、TUF=1であれば、ステップS2で、圧縮
機(1)をアンロードに、室外ファン(12)を低風量
「L」にするよう制御する。そして、ステップS1におけ
る判別がTUF=1になると、ステップS3に進んでタイマ
がカウント中か否かを判別して、タイマがカウント中で
あればステップS4で圧縮機(1)をアンロードからフル
ロードに復帰させる一方、タイマがカウントアップする
と、ステップS5で室外ファン(12)を低風量Lから高風
量Hに復帰させるようにしている。
Here, the control contents of the dew condensation prevention operation and the return operation to the normal cooling operation will be described based on the flowchart of FIG. 6. In step S 1 , it is determined whether or not the Te up flag TUF is “1”, and the TUF is determined. If = 1, in step S 2 , the compressor (1) is unloaded, and the outdoor fan (12) is controlled to a low air flow rate “L”. When the determination in step S 1 becomes TUF = 1, the process proceeds to step S 3 and it is determined whether or not the timer is counting. If the timer is counting, the compressor (1) is turned off in step S 4. When the timer counts up while the load is returned to the full load, the outdoor fan (12) is returned from the low air volume L to the high air volume H in step S 5 .

上記フローにおいて、請求項(1)の発明では、ステッ
プS2により、液管温度T4が結露判定温度nよりも低くな
ると、圧縮機(1)の運転容量及び室外ファン(12)の
風量を低減するよう制御する結露防止制御手段(51)が
構成され、ステップS4により、液管温度T4が結露判定温
度n以上の所定温度(復帰温度)mに回復したときに、
圧縮機(1)の運転容量を高容量側に復帰させるよう制
御する容量復帰手段(52)が構成されている。また、ス
テップS5により、上記容量復帰手段(52)による圧縮機
(1)の運転容量の復帰後所定時間経過した時に上記室
外ファン(12)の風量を高風量側に復帰させるよう制御
する風量復帰手段(53)が構成されている。
In the above flow, the invention of claim (1), the step S 2, the liquid pipe temperature T4 is lower than the dew determination temperature n, reduces the air volume of the operating capacity and the outdoor fan of the compressor (1) (12) are condensation prevention control means for controlling (51) is arranged to, in step S 4, when the liquid pipe temperature T4 has recovered condensation determination temperature n or more predetermined temperature (return temperature) m,
A capacity restoring means (52) for controlling the operating capacity of the compressor (1) to be returned to the high capacity side is configured. Further, in step S 5, the air volume controls to return the air volume of the outdoor fan (12) when the elapsed the capacitive return means (52) returns after a predetermined time of the operating capacity of the compressor (1) according to the high air volume side Return means (53) is configured.

したがって、請求項(1)の発明では、空気調和装置の
冷房運転中に液管温度T4が所定の結露判定温度nよりも
低くなると、結露防止制御手段(51)により圧縮機
(1)の運転容量及び室外ファン(12)の風量を低減す
るよう制御され、液管温度T4が上昇するように運転条件
の修正が行われる。その後、結露防止運転により液管温
度T4が結露判定温度n以上の所定温度(復帰温度)mま
で回復すると、まず容量復帰手段(52)により圧縮機
(1)の運転容量が高容量側(フルロード)に復帰する
よう制御され、その後所定時間経過してから風量復帰手
段(53)により室外ファン(12)の風量が高風量側
「H」に復帰するように制御される。
Therefore, in the invention of claim (1), when the liquid pipe temperature T4 becomes lower than the predetermined dew condensation determination temperature n during the cooling operation of the air conditioner, the dew condensation prevention control means (51) operates the compressor (1). The capacity and the air volume of the outdoor fan (12) are controlled to be reduced, and the operating conditions are corrected so that the liquid pipe temperature T4 rises. After that, when the liquid pipe temperature T4 recovers to a predetermined temperature (reset temperature) m which is equal to or higher than the dew condensation determination temperature n by the dew condensation prevention operation, first, the operating capacity of the compressor (1) is set to the high capacity side (full capacity) by the capacity restoring means (52). The air volume of the outdoor fan (12) is controlled to return to the high air volume side "H" by the air volume recovery means (53) after a lapse of a predetermined time.

ここで、圧縮機(1)の運転容量と室外ファン(12)の
風量とを同時に通常冷房運転時の値に復帰させると、高
圧が急激に低下し、それにより低圧が急激に低下する。
そして、上記低圧圧力開閉器(LPS)が作動して圧縮機
(1)の低圧カットが生じる虞れがあるが、本発明で
は、室外ファン(12)の風量はそのままで圧縮機(1)
の運転容量だけが増大するので、瞬間的な低圧の過低下
が抑制される。そして、低圧一定制御により低圧がある
程度安定してから、風量復帰手段(53)により室外ファ
ン(12)の風量が高風量「H」に復帰するよう制御され
るので、低圧の過低下による圧縮機(1)の異常停止を
防止しながら、結露防止運転から通常冷房運転に復帰す
ることができるのである。
Here, when the operating capacity of the compressor (1) and the air volume of the outdoor fan (12) are simultaneously returned to the values in the normal cooling operation, the high pressure sharply drops, and thereby the low pressure sharply drops.
Then, the low pressure switch (LPS) may operate to cause a low pressure cut of the compressor (1), but in the present invention, the air volume of the outdoor fan (12) remains the same as the compressor (1).
Since only the operating capacity of is increased, the instantaneous excessive decrease in low pressure is suppressed. Then, after the low pressure is stabilized to a certain extent by the low pressure constant control, the air volume of the outdoor fan (12) is controlled to return to the high air volume "H" by the air volume restoring means (53). It is possible to return from the dew condensation prevention operation to the normal cooling operation while preventing the abnormal stop of (1).

次に、請求項(2)の発明では、上記ステップS4とS5
が入れ代わったステップにより、それぞれ容量復帰手段
(52)と風量復帰手段(53)とが構成されている。
Next, in the invention of claim (2), the capacity restoring means (52) and the air volume restoring means (53) are constituted by the steps in which the steps S 4 and S 5 are replaced with each other.

したがって、請求項(2)の発明では、液管温度T4の回
復時、まず風量復帰手段(53)により室外ファン(12)
の風量が高風量側「H」に復帰するよう制御されるの
で、室外ファン(12)の風量増大による高圧の瞬間的な
低下があるが、高圧が程度安定してから圧縮機(1)の
運転容量が増大することになり、圧縮機(1)の運転容
量と室外ファン(12)の風量とを同時に復帰させる きのような低圧の急激な低下が生じることがなく、よっ
て、低圧カットによる圧縮機(1)の異常停止を防止す
ることができる。
Therefore, in the invention of claim (2), when the liquid pipe temperature T4 is recovered, the outdoor fan (12) is first operated by the air volume restoring means (53).
Since the air volume of the compressor is controlled to return to the high air volume side "H", there is a momentary decrease of the high pressure due to the increase of the air volume of the outdoor fan (12). The operating capacity will increase, and there will be no sudden drop in low pressure, such as when the operating capacity of the compressor (1) and the air volume of the outdoor fan (12) are restored at the same time. It is possible to prevent abnormal stoppage of the compressor (1).

次に請求項(3)の発明について説明する。第7図のタ
イムチャートは請求項(3)の発明に係る第2実施例の
制御を示し、時刻t1でTeアップフラグTUFが「1」にな
ると(同図(a)参照)、圧縮機(1)をアンロードに
(同図(b)参照)、室外ファン(12)の風量を「L」
に低減する(同図(c)参照)一方、時刻t2で液管温度
T4が復帰温度m以上に回復してTUF=0になると(同図
(a)参照)、まず、圧縮機(1)をアンロードからフ
ルロードに復帰させる(同図(b)参照)と同時に、室
外ファン(12)の風量を低風量Lから中風量Mに増大さ
せる(同図(c)参照)。そして、所定時間TMが経過し
たときに、室外ファン(12)の風量をさらに「H」にま
で復帰させるようにしている。
Next, the invention of claim (3) will be described. The time chart of FIG. 7 shows the control of the second embodiment according to the invention of claim (3), and when the Te up flag TUF becomes “1” at time t 1 (see FIG. 7A), the compressor (1) is unloaded (see (b) in the figure), and the air volume of the outdoor fan (12) is "L".
On the other hand, the liquid pipe temperature at time t 2
When T4 recovers above the return temperature m and becomes TUF = 0 (see (a) in the figure), first, the compressor (1) is returned from unload to full load (see (b) in the figure). The air volume of the outdoor fan (12) is increased from the low air volume L to the medium air volume M (see (c) of the same figure). Then, when the predetermined time T M has elapsed, the air volume of the outdoor fan (12) is further returned to “H”.

したがって、請求項(3)の発明では、上記実施例のご
とく通常冷房運転への復帰と同時に室外ファン(12)の
風量が中風量Mに切換えられた後所定時間経過後に高風
量Hに切換えられるように、室外ファン(12)の風量が
段階的に切換えられるので、上記請求項(1)又は
(2)の発明と同様に低圧の急激な低下を防止しなが
ら、より迅速に通常冷房運転の運転条件に復帰させるこ
とができる利点がある。
Therefore, in the invention of claim (3), the air volume of the outdoor fan (12) is switched to the medium air volume M at the same time as the return to the normal cooling operation as in the above embodiment, and then the high air volume H is switched to after a lapse of a predetermined time. As described above, since the air volume of the outdoor fan (12) is switched in a stepwise manner, a rapid decrease in low pressure is prevented as in the invention according to claim (1) or (2), while the normal cooling operation is performed more quickly. There is an advantage that the operating conditions can be restored.

次に、実施例は省略するが、請求項(4)の発明では、
圧縮機(1)の運転容量を3段以上の多段に調節するも
のとし、結露防止運転から通常冷房運転に復帰するとき
には、圧縮機(1)の運転容量を例えば最低アンロード
状態から1段上のアンロード状態にいったん増大させた
後所定時間経過したときにフルロードに復帰させるもの
である。したがって、上記請求項(3)の発明と同様
に、低圧の過低下による圧縮機(1)の異常停止を招く
ことなく、通常冷房運転への迅速な復帰を図ることがで
きる。
Next, although the embodiment is omitted, in the invention of claim (4),
The operating capacity of the compressor (1) shall be adjusted to three or more stages, and when returning from the dew condensation prevention operation to the normal cooling operation, the operating capacity of the compressor (1) is increased by one step from the lowest unload state. After being once increased to the unload state, it is returned to full load when a predetermined time has elapsed. Therefore, similarly to the invention of the above-mentioned claim (3), it is possible to promptly return to the normal cooling operation without causing the abnormal stop of the compressor (1) due to the excessive decrease of the low pressure.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、冷
房運転中に液管温度が結露判定温度以下になると、圧縮
機の運転容量及び室外ファンの風量を低減させて経路防
止運転を行う一方、液管温度が結露判定温度以上の所定
温度まで回復したときには、圧縮機の運転容量を増大さ
せた後、所定時間経過した時に室外ファンの風量を増大
させて通常冷房運転に復帰させるようにしたので、通常
冷房運転への復帰に伴なう急激な低圧の低下による圧縮
機の異常停止を防止することができる。
(Effect of the invention) As described above, according to the invention of claim (1), when the liquid pipe temperature becomes equal to or lower than the dew condensation determination temperature during the cooling operation, the operating capacity of the compressor and the air volume of the outdoor fan are reduced. When the liquid pipe temperature recovers to the predetermined temperature above the dew condensation judgment temperature, the operating capacity of the compressor is increased, and after a lapse of a predetermined time, the air volume of the outdoor fan is increased and normal cooling is performed. Since the operation is returned to the normal operation, it is possible to prevent the abnormal stop of the compressor due to the rapid decrease in the low pressure accompanying the return to the normal cooling operation.

請求項(2)の発明によれば、結露防止運転から通常冷
房運転への復帰時、室外ファンの風量を増大させた後所
定時間経過した時に圧縮機の運転容量を増大させるよう
にしたので、上記請求項(1)の発明と同様に、低圧の
急激な低下による圧縮機の異常停止を防止することがで
きる。
According to the invention of claim (2), at the time of returning from the dew condensation preventing operation to the normal cooling operation, the operating capacity of the compressor is increased when a predetermined time has elapsed after increasing the air volume of the outdoor fan. Similar to the invention of the above-mentioned claim (1), it is possible to prevent an abnormal stop of the compressor due to a sudden drop in the low pressure.

請求項(3)の発明によれば、上記請求項(1)又は
(2)の発明において、結露防止運転から通常冷房運転
への復帰時、室外ファンの風量を段階的に増大させるよ
うにしたので、低圧の急激な低下を防止しながら、通常
冷房運転への迅速な復帰を図ることができる。
According to the invention of claim (3), in the invention of claim (1) or (2), when returning from the dew condensation preventing operation to the normal cooling operation, the air volume of the outdoor fan is increased stepwise. Therefore, it is possible to quickly return to the normal cooling operation while preventing a rapid decrease in low pressure.

請求項(4)の発明によれば、上記請求項(1),
(2)又は(3)の発明において、結露防止運転から通
常冷房運転への復帰時、圧縮機の運転容量を段階的に増
大させるようにしたので、上記請求項(4)の発明と同
様の効果を得ることができる。
According to the invention of claim (4), the above-mentioned claim (1),
In the invention of (2) or (3), since the operation capacity of the compressor is increased stepwise when returning from the dew condensation prevention operation to the normal cooling operation, the same as the invention of claim (4) above. The effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成を示すブロック図である。第2図
〜第6図は本発明の第1実施例を示し、第2図は空気調
和装置の全体構成を示す冷媒配管系統図、第3図は室温
サーモの切換特性を示す特性図、第4図は室外ファン風
量の外気温度に対する切換特性を示す特性図、第5図は
通常制御と結露防止制御との間の遷移関係を示す制御状
態遷移図、第6図は制御内容を示すフローチャート図、
第7図(a)〜(c)は第2実施例を示し、それぞれ順
に、Teアップフラグ、圧縮機の運転容量及び室外ファン
の風量の時間に対する変化を示すタイムチャート図であ
る。第8図(a)〜(e)は、圧縮機の運転容量と室外
ファンの風量とを同時に変化させた場合における、Teア
ップフラグ、圧縮機の運転容量、室外ファンの風量、高
圧及び低圧の時間に対する変化をそれぞれ順に示すタィ
ムチャート図である。 1……圧縮機 4……室外熱交換器(熱源側熱交換器) 7……室内電動膨張弁 8……室内熱交換器(利用側熱交換器) 11……主冷媒回路 12……室外ファン 51……結露防止制御手段 52……容量復帰手段 53……風量復帰手段 Th4……液管センサ(液管温度検出手段)
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 6 show the first embodiment of the present invention, FIG. 2 is a refrigerant piping system diagram showing the overall configuration of the air conditioner, and FIG. 3 is a characteristic diagram showing the switching characteristics of the room temperature thermostat. FIG. 4 is a characteristic diagram showing a switching characteristic of the outdoor fan air volume with respect to the outside air temperature, FIG. 5 is a control state transition diagram showing a transition relationship between normal control and dew condensation prevention control, and FIG. 6 is a flow chart diagram showing control contents. ,
FIGS. 7 (a) to 7 (c) show the second embodiment and are, respectively, time charts showing changes with time in the Te up flag, the operating capacity of the compressor, and the air volume of the outdoor fan. FIGS. 8 (a) to 8 (e) show the Te up flag, the compressor operating capacity, the outdoor fan air volume, and the high and low pressures when the operating capacity of the compressor and the air volume of the outdoor fan are changed at the same time. It is a time chart figure which shows the change with respect to time respectively. 1 …… Compressor 4 …… Outdoor heat exchanger (heat source side heat exchanger) 7 …… Indoor electric expansion valve 8 …… Indoor heat exchanger (use side heat exchanger) 11 …… Main refrigerant circuit 12 …… Outdoor Fan 51 …… Dew condensation prevention control means 52 …… Capacity recovery means 53 …… Air flow rate recovery means Th4 …… Liquid pipe sensor (liquid pipe temperature detection means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 直樹 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (56)参考文献 特開 平2−133742(JP,A) 実開 平1−136841(JP,U) 実開 昭51−108250(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoki Ueno 1304 Kanaoka-machi, Sakai City, Osaka Daikin Industry Co., Ltd., Kanaoka Plant, Sakai Manufacturing Co., Ltd. (56) Reference JP-A-2-133742 (JP, A) 1-136841 (JP, U) Actually opened 51-108250 (JP, U)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】容量可変形圧縮機(1)、風量可変な室外
ファン(12)を付設した熱源側熱交換器(4)、室内電
動膨張弁(7)、及び利用側熱交換器(8)を接続して
なる冷媒回路(11)を備えた空気調和装置において、 上記利用側熱交換器(8)の液管の温度を検出する液管
温度検出手段(Th4)と、該液管温度検出手段(Th4)の
出力を受け、通常冷房運転時、液管温度が所定の結露判
定温度よりも低くなると、上記圧縮機(1)の運転容量
及び室外ファン(12)の風量を強制的に低減して結露防
止運転をするよう制御する結露防止制御手段(51)とを
備えるとともに、 上記液管温度検出手段(Th4)の出力を受け、上記結露
防止制御手段(51)による結露防止運転中に、液管温度
が上記結露判定温度以上の所定温度まで回復すると、上
記圧縮機(1)の運転容量を高容量側に復帰させるよう
制御する容量復帰手段(52)と、該容量復帰手段(52)
による圧縮機(1)の運転容量の復帰後所定時間経過し
た時に上記室外ファン(12)の風量を高風量側に復帰さ
せるよう制御する風量復帰手段(53)とを備えたことを
特徴とする空気調和装置の運転制御装置。
1. A variable capacity compressor (1), a heat source side heat exchanger (4) provided with an outdoor fan (12) having a variable air volume, an indoor electric expansion valve (7), and a use side heat exchanger (8). And a liquid pipe temperature detection means (Th4) for detecting the temperature of the liquid pipe of the utilization side heat exchanger (8), and the liquid pipe temperature. When the liquid pipe temperature becomes lower than the predetermined dew condensation judgment temperature during the normal cooling operation by receiving the output of the detection means (Th4), the operating capacity of the compressor (1) and the air volume of the outdoor fan (12) are forced. Condensation prevention control means (51) for controlling to reduce dew condensation prevention operation is provided, and while receiving the output of the liquid pipe temperature detection means (Th4), the condensation prevention operation is being performed by the condensation prevention control means (51). In addition, when the liquid pipe temperature recovers to a predetermined temperature above the condensation judgment temperature, the compressor The operating capacity of 1) the capacity recovery means for controlling so as to return to the high-capacity side (52), the capacitive return means (52)
And an air volume restoring means (53) for controlling the air volume of the outdoor fan (12) to return to a high air volume side when a predetermined time has elapsed after the operating capacity of the compressor (1) was restored by Operation control device for air conditioner.
【請求項2】容量可変形圧縮機(1)、風量可変な室外
ファン(12)を付設した熱源側熱交換器(4)、室内電
動膨張弁(7)、及び利用側熱交換器(8)を接続して
なる冷媒回路(11)を備えた空気調和装置において、 上記利用側熱交換器(8)の液管の温度を検出する液管
温度検出手段(Th4)と、該液管温度検出手段(Th4)の
出力を受け、通常冷房運転時、液管温度が所定の結露判
定温度よりも低くなると、上記圧縮機(1)の運転容量
及び室外ファン(12)の風量を強制的に低減して結露防
止運転をするよう制御する結露防止制御手段(51)とを
備えるとともに、 上記液管温度検出手段(Th4)の出力を受け、上記結露
防止制御手段(51)による結露防止運転中に、液管温度
が上記結露判定温度以上の所定温度まで回復すると上記
室外ファン(12)の風量を高風量側に復帰させるよう制
御する風量復帰手段(53)と、該風量復帰手段(53)に
よる室外ファン(12)の風量の復帰後所定時間経過した
時に上記圧縮機(1)の運転容量を高容量側に復帰させ
るよう制御する容量復帰手段(52)とを備えたことを特
徴とする空気調和装置の運転制御装置。
2. A variable capacity compressor (1), a heat source side heat exchanger (4) provided with an outdoor fan (12) having a variable air volume, an indoor electric expansion valve (7), and a use side heat exchanger (8). And a liquid pipe temperature detection means (Th4) for detecting the temperature of the liquid pipe of the utilization side heat exchanger (8), and the liquid pipe temperature. When the liquid pipe temperature becomes lower than the predetermined dew condensation judgment temperature during the normal cooling operation by receiving the output of the detection means (Th4), the operating capacity of the compressor (1) and the air volume of the outdoor fan (12) are forced. Condensation prevention control means (51) for controlling to reduce dew condensation prevention operation is provided, and while receiving the output of the liquid pipe temperature detection means (Th4), the condensation prevention operation is being performed by the condensation prevention control means (51). In addition, when the temperature of the liquid pipe recovers to a predetermined temperature above the condensation judgment temperature, the outdoor fan (12) An air volume returning means (53) for controlling the air volume to return to the high air volume side, and the compressor (when a predetermined time has elapsed after the air volume of the outdoor fan (12) has been returned by the air volume returning means (53). An operation control device for an air conditioner, comprising: a capacity return means (52) for controlling the operation capacity of 1) to return to a high capacity side.
【請求項3】風量復帰手段(53)は、室外ファン(12)
の風量を段階的に復帰させるものであることを特徴とす
る請求項(1)又は(2)記載の空気調和装置の運転制
御装置。
3. The air flow returning means (53) is an outdoor fan (12).
The operation control device for an air conditioner according to claim 1, wherein the air flow rate of the air conditioner is gradually returned.
【請求項4】容量復帰手段(52)は、圧縮機(1)の運
転容量を段階的に復帰させるものであることを特徴とす
る請求項(1),(2)又は(3)記載の空気調和装置
の運転制御装置。
4. The capacity restoring means (52) restores the operating capacity of the compressor (1) stepwise, as set forth in claim (1), (2) or (3). Operation control device for air conditioner.
JP1234318A 1989-09-07 1989-09-07 Operation control device for air conditioner Expired - Fee Related JPH07117272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1234318A JPH07117272B2 (en) 1989-09-07 1989-09-07 Operation control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1234318A JPH07117272B2 (en) 1989-09-07 1989-09-07 Operation control device for air conditioner

Publications (2)

Publication Number Publication Date
JPH0395339A JPH0395339A (en) 1991-04-19
JPH07117272B2 true JPH07117272B2 (en) 1995-12-18

Family

ID=16969132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1234318A Expired - Fee Related JPH07117272B2 (en) 1989-09-07 1989-09-07 Operation control device for air conditioner

Country Status (1)

Country Link
JP (1) JPH07117272B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2330359A4 (en) * 2008-09-16 2012-10-03 Panasonic Corp Air conditioner
JP6072559B2 (en) * 2013-02-13 2017-02-01 三菱電機株式会社 Refrigeration equipment
JP6138186B2 (en) * 2015-03-27 2017-05-31 三菱電機株式会社 Refrigeration equipment

Also Published As

Publication number Publication date
JPH0395339A (en) 1991-04-19

Similar Documents

Publication Publication Date Title
JP2500519B2 (en) Operation control device for air conditioner
JPH03175230A (en) Operation controller of air conditioner
JP2551238B2 (en) Operation control device for air conditioner
JPH07117272B2 (en) Operation control device for air conditioner
JP2504337B2 (en) Operation control device for air conditioner
JPH07243711A (en) Two-stage cooler
JPH05264113A (en) Operation control device of air conditioner
JP2842020B2 (en) Operation control device for air conditioner
JPH0727453A (en) Air conditioner
JPH0395343A (en) Operating controller for air conditioner
JP2500520B2 (en) Refrigerator protection device
JP2701627B2 (en) Operation control device for air conditioner
JP2546069B2 (en) Refrigeration system operation controller
JP3481274B2 (en) Separate type air conditioner
KR20100064836A (en) Air conditioner
JP2536354B2 (en) Refrigerator protection device
JP2822764B2 (en) Operation control device for outdoor fan of air conditioner
JP3232755B2 (en) Air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
JP2522116B2 (en) Operation control device for air conditioner
JP2555779B2 (en) Operation control device for air conditioner
JPH02157568A (en) Refrigerant residence suppressing device for air conditioning device
JPS62119366A (en) Refrigerator
JPH01225852A (en) High pressure controller for air conditioner
JPH06272971A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees