JP2536354B2 - Refrigerator protection device - Google Patents

Refrigerator protection device

Info

Publication number
JP2536354B2
JP2536354B2 JP3263684A JP26368491A JP2536354B2 JP 2536354 B2 JP2536354 B2 JP 2536354B2 JP 3263684 A JP3263684 A JP 3263684A JP 26368491 A JP26368491 A JP 26368491A JP 2536354 B2 JP2536354 B2 JP 2536354B2
Authority
JP
Japan
Prior art keywords
temperature
discharge pipe
compressor
pipe temperature
optimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3263684A
Other languages
Japanese (ja)
Other versions
JPH0599543A (en
Inventor
伸夫 道明
洋登 中嶋
正美 堀内
武夫 植野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3263684A priority Critical patent/JP2536354B2/en
Publication of JPH0599543A publication Critical patent/JPH0599543A/en
Application granted granted Critical
Publication of JP2536354B2 publication Critical patent/JP2536354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吐出管温度制御を行う
ようにした冷凍装置の保護装置に係り、特に吐出管温度
センサの取外しに起因する圧縮機の焼損防止対策に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a protection device for a refrigerating device which controls a discharge pipe temperature, and more particularly to a burnout prevention measure for a compressor caused by removal of a discharge pipe temperature sensor.

【0002】[0002]

【従来の技術】従来より、例えば特公昭59―1294
2号公報に開示される如く、圧縮機、凝縮器、電動膨張
弁及び蒸発器を順次接続してなる冷媒回路を備えた冷凍
装置の運転制御装置として、冷媒回路の蒸発温度及び凝
縮温度に基づき最大の冷凍効果を与える圧縮機の吐出管
温度の最適温度を算出し、この最適温度を吐出管温度の
制御目標値として電動膨張弁の開度を制御することによ
り、定容量形圧縮機を使用しながら、良好な冷凍能力及
び冷凍装置の運転効率の維持を図るようにしたものは公
知の技術である。
2. Description of the Related Art Conventionally, for example, Japanese Patent Publication No. 59-1294
As disclosed in Japanese Unexamined Patent Publication No. 2 (1998), as an operation control device for a refrigeration system including a refrigerant circuit in which a compressor, a condenser, an electric expansion valve, and an evaporator are sequentially connected, based on the evaporation temperature and the condensation temperature of the refrigerant circuit. A constant capacity compressor is used by calculating the optimum temperature of the discharge pipe temperature of the compressor that gives the maximum refrigeration effect and controlling the opening of the electric expansion valve with this optimum temperature as the control target value of the discharge pipe temperature. However, it is a known technique to maintain good refrigerating capacity and operating efficiency of the refrigerating apparatus.

【0003】[0003]

【発明が解決しようとする課題】ところで、冷凍装置に
おいて、圧縮機の吐出管に取付けられた吐出管温度セン
サは、通常保護装置を作動させるために使用されること
が多く、冷媒の不足等で圧縮機の内部温度が過上昇する
と、吐出管温度センサの信号により保護装置を作動さ
せ、冷凍装置の運転を停止させるようにしている。
In the refrigeration system, the discharge pipe temperature sensor attached to the discharge pipe of the compressor is usually used to operate the protective device, and is often used due to lack of refrigerant. When the internal temperature of the compressor rises excessively, the protection device is activated by the signal of the discharge pipe temperature sensor to stop the operation of the refrigeration system.

【0004】しかるに、冷凍装置の据付時における取付
ミス等や運転中の事故で吐出管温度センサが吐出管から
外れてしまうことがあり、かかる場合、圧縮機の内部温
度が過上昇しても吐出管温度センサの検出値はほとんど
変化しないので、保護装置が作動せず、その結果圧縮機
が焼損する等の事故に至る虞れがある。
However, the discharge pipe temperature sensor may come off from the discharge pipe due to an installation error or the like during installation of the refrigeration system or an accident during operation. In such a case, the discharge pipe temperature sensor discharges even if the internal temperature of the compressor rises excessively. Since the detected value of the pipe temperature sensor hardly changes, the protective device does not operate, and as a result, there is a risk of accidents such as burnout of the compressor.

【0005】特に、上記公報のもののように、電動膨張
弁の開度で圧縮機の吐出管温度を目標値制御するもので
は、吐出管温度センサの検出値が低いと電動膨張弁の開
度を絞る方向に制御することになるので、そのまま運転
が継続されると、圧縮機の冷媒がどんどん減少して行
き、たちまち圧縮機の焼損に至る危険性が非常に高くな
るという問題があった。
In particular, as in the above-mentioned publication, in the case where the discharge pipe temperature of the compressor is controlled to the target value by the opening of the electric expansion valve, the opening of the electric expansion valve is changed when the value detected by the discharge pipe temperature sensor is low. Since the control is performed in the direction of squeezing, if the operation is continued as it is, there is a problem that the refrigerant of the compressor is gradually reduced, and the risk of burning the compressor immediately becomes extremely high.

【0006】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、吐出管温度センサが吐出管から外れ
たことを確実に検知する手段を講ずることにより、圧縮
機の焼損を未然に防止することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to prevent burnout of a compressor by providing a means for surely detecting that the discharge pipe temperature sensor is disengaged from the discharge pipe. To prevent it.

【0007】[0007]

【課題を解決するための手段】以上の目的を達成するた
め、請求項1の発明の講じた手段は、図1に示すように
(点線部分は含まず)、圧縮機(1)、熱源側熱交換器
(3)、電動膨張弁(5)及び利用側熱交換器(6)を
順次接続してなる冷媒回路(9)を備えた冷凍装置を前
提とする。
In order to achieve the above object, the means taken by the invention of claim 1 is, as shown in FIG. 1 (not including a dotted line portion), a compressor (1), a heat source side. A refrigeration system provided with a refrigerant circuit (9) in which a heat exchanger (3), an electric expansion valve (5), and a use side heat exchanger (6) are sequentially connected is assumed.

【0008】そして、冷凍装置の保護装置として、上記
圧縮機(1)の吐出管(8d)に取り付けられ、吐出管
温度を検出する吐出管温度センサ(Th2)と、該吐出管
温度センサ(Th2)の出力を受け、吐出管温度が所定温
度以上に達すると、作動して冷凍装置の運転を停止させ
る保護手段(11)とを設け、さらに、外気温度を検出
する外気温度検出手段(Tha)と、圧縮機(1)の起動
後の経過時間を計測する計時手段(12)と、該計時手
段(12)の出力を受け、圧縮機(1)の起動後所定時
間が経過したときにおける上記吐出管温度センサ(Th
2)の検出値が上記外気温度検出手段(Tha)で検出さ
れる外気温度に一定値を加算した温度よりも低いとき、
冷凍装置を異常停止させる異常処理手段(53)とを設
ける構成としたものである。
A discharge pipe temperature sensor (Th2), which is attached to the discharge pipe (8d) of the compressor (1) and detects the discharge pipe temperature, serves as a protection device for the refrigeration system, and the discharge pipe temperature sensor (Th2). ), And when the temperature of the discharge pipe reaches or exceeds a predetermined temperature, a protection means (11) is provided which operates to stop the operation of the refrigeration system, and further, an outside air temperature detecting means (Tha) for detecting the outside air temperature. And a time-measuring means (12) for measuring an elapsed time after the compressor (1) is activated, and an output of the time-measuring means (12), when the predetermined time has elapsed after the activation of the compressor (1), Discharge pipe temperature sensor (Th
When the detected value of 2) is lower than the temperature obtained by adding a constant value to the outside air temperature detected by the outside air temperature detecting means (Tha),
An abnormality processing means (53) for abnormally stopping the refrigeration system is provided.

【0009】請求項2の発明の講じた手段は、上記請求
項1の発明において、図1の破線部分に示すように、冷
媒回路(9)の凝縮温度,蒸発温度等に応じて、最適の
冷凍効果を与える吐出冷媒温度の最適温度を演算する最
適温度演算手段(51)と、上記吐出管温度センサ(T
h2)の出力を受け、吐出管温度が上記最適温度演算手段
(51)で演算される最適温度に収束するよう上記電動
膨張弁(5)の開度を制御する開度制御手段(52)と
を設ける構成としたものである。
According to the invention of claim 2, in the invention of claim 1, as shown by the broken line portion in FIG. 1, the optimum means is selected according to the condensation temperature, the evaporation temperature, etc. of the refrigerant circuit (9). The optimum temperature calculating means (51) for calculating the optimum temperature of the discharge refrigerant temperature which gives a refrigerating effect, and the discharge pipe temperature sensor (T
an opening control means (52) for controlling the opening of the electric expansion valve (5) so that the discharge pipe temperature converges to the optimum temperature calculated by the optimum temperature calculation means (51) by receiving the output of h2). Is provided.

【0010】[0010]

【作用】以上の構成により、請求項1の発明では、冷凍
装置の運転中、吐出管温度センサ(Th2)で検出される
吐出管温度が所定温度以上になると、保護手段(11)
により、冷凍装置が異常停止され、圧縮機(1)が保護
されるが、吐出管温度センサ(Th2)が吐出管(8d)
から脱落していると、吐出管温度センサ(Th2)の検出
値が実際の吐出温度とは違った値になる。特に、電動膨
張弁(5)の開度は運転状態によって変化し、絞り気味
となって冷媒の循環量が減少していることがあり、その
ような状態で圧縮機(1)が過熱して吐出管温度が過上
昇していても保護装置(11)が作動せず、圧縮機
(1)の焼損等の事故に至る虞れがある。
With the above structure, in the invention of claim 1, when the discharge pipe temperature detected by the discharge pipe temperature sensor (Th2) becomes a predetermined temperature or more during the operation of the refrigeration system, the protection means (11) is provided.
As a result, the refrigeration system is abnormally stopped and the compressor (1) is protected, but the discharge pipe temperature sensor (Th2) is changed to the discharge pipe (8d).
If it has fallen off, the detected value of the discharge pipe temperature sensor (Th2) becomes a value different from the actual discharge temperature. In particular, the opening degree of the electric expansion valve (5) may change depending on the operating state, and the amount of refrigerant circulation may decrease due to throttling. In such a state, the compressor (1) is overheated. Even if the temperature of the discharge pipe is excessively increased, the protection device (11) does not operate, which may lead to an accident such as burnout of the compressor (1).

【0011】ここで、吐出管温度センサ(Th2)が吐出
管(8d)から脱落している場合には、該吐出管温度セ
ンサ(Th2)が検出する温度が限りなく外気温度に近付
くことから、起動後所定時間が経過した時に、吐出管温
度センサ(Th2)の検出値が外気温度よりも一定値以上
上昇していないときには、吐出管温度センサ(Th2)が
脱落している可能性が極めて高い。したがって、異常処
理手段(53)により空気調和装置が異常停止されるこ
とで、圧縮機(1)の焼損が未然に防止されることにな
る。
When the discharge pipe temperature sensor (Th2) is dropped from the discharge pipe (8d), the temperature detected by the discharge pipe temperature sensor (Th2) approaches the outside air temperature without limit. If the value detected by the discharge pipe temperature sensor (Th2) has not risen above the outside air temperature by a certain value after the lapse of a predetermined time after startup, it is highly possible that the discharge pipe temperature sensor (Th2) has fallen off. . Therefore, the air conditioner is abnormally stopped by the abnormality processing means (53), so that the burnout of the compressor (1) is prevented in advance.

【0012】請求項2の発明では、上記請求項1の発明
において、最適温度演算手段(51)により、蒸発温
度,凝縮温度等に基づき最適な冷凍効果を与える吐出管
温度の最適温度を算出して、開度制御手段(52)によ
り、吐出管温度がこの最適温度に収束するよう電動膨張
弁(5)の開度を制御するようにした場合、吐出管温度
センサ(Th2)が脱落してその検出値が実際の吐出管温
度よりも低いと、見掛上の吐出管温度が制御目標値より
も小さくなるので、電動膨張弁(5)の開度が閉じられ
る。したがって、そのまま運転が継続すると、冷媒の急
激な減少が生じ、圧縮機(1)が短時間のうちに過熱し
て焼損に至る危険性が高いが、そのようなときにも、上
記請求項1記載の発明の作用により、圧縮機(1)の焼
損等の事故が未然に防止されることになる。
According to a second aspect of the present invention, in the first aspect of the present invention, the optimum temperature calculating means (51) calculates the optimum temperature of the discharge pipe temperature which gives the optimum refrigerating effect based on the evaporation temperature, the condensation temperature and the like. When the opening control means (52) controls the opening of the electric expansion valve (5) so that the discharge pipe temperature converges to this optimum temperature, the discharge pipe temperature sensor (Th2) falls off. If the detected value is lower than the actual discharge pipe temperature, the apparent discharge pipe temperature becomes smaller than the control target value, so the opening degree of the electric expansion valve (5) is closed. Therefore, if the operation is continued as it is, there is a high possibility that the compressor (1) will be overheated and burned out in a short time, and the compressor (1) may be burnt out. Due to the action of the described invention, accidents such as burnout of the compressor (1) can be prevented in advance.

【0013】[0013]

【実施例】以下、本発明の実施例について、図面に基づ
き説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図2は本発明を適用した空気調和装置の冷
媒配管系統を示し、一台の室外ユニット(A)に対して
一台の室内ユニット(B)が接続されたいわゆるセパレ
ートタイプのものである。上記室外ユニット(A)に
は、圧縮機(1)と、冷房運転時には図中実線のごと
く、暖房運転時には図中破線のごとく切換わる四路切換
弁(2)と、冷房運転時には凝縮器として、暖房運転時
には蒸発器として機能する熱源側熱交換器である室外熱
交換器(3)と、冷媒を減圧するための減圧部(20)
と、圧縮機(1)の吸入管に介設され、吸入冷媒中の液
冷媒を除去するためのアキュムレ―タ(7)とが主要機
器として配置されている。また、室内ユニット(B)に
は、冷房運転時には蒸発器として、暖房運転時には凝縮
器として機能する利用側熱交換器である室内熱交換器
(6)が配置されている。上記各機器は冷媒配管(8)
により順次接続され、冷媒の循環により熱移動を生ぜし
めるようにした冷媒回路(9)が構成されている。
FIG. 2 shows a refrigerant piping system of an air conditioner to which the present invention is applied, which is a so-called separate type in which one indoor unit (B) is connected to one outdoor unit (A). is there. The outdoor unit (A) includes a compressor (1), a four-way switching valve (2) that switches as shown by a solid line in the figure during a cooling operation and a broken line in the figure as a heating operation, and as a condenser during a cooling operation. The outdoor heat exchanger (3), which is a heat source side heat exchanger that functions as an evaporator during heating operation, and a decompression unit (20) for decompressing the refrigerant.
And an accumulator (7) for removing the liquid refrigerant in the suction refrigerant, which is interposed in the suction pipe of the compressor (1) and is arranged as a main device. Further, the indoor unit (B) is provided with an indoor heat exchanger (6) which is a utilization side heat exchanger that functions as an evaporator during cooling operation and as a condenser during heating operation. Each of the above equipment is a refrigerant pipe (8)
A refrigerant circuit (9) is constructed in which the refrigerant circuits (9) are sequentially connected to each other to generate heat transfer by circulating the refrigerant.

【0015】ここで、上記減圧部(20)には、液冷媒
を貯溜するためのレシ―バ(4)と、液冷媒の減圧機能
と流量調節機能とを有する電動膨張弁(5)とが配設さ
れ、上記レシ―バ(4)と電動膨張弁(5)とは、電動
膨張弁(5)がレシ―バ(4)の下部つまり液部に連通
するよう、室外熱交換器(3)の補助熱交換器(3a)
を介して共通路(8a)に直列に配置されている。そし
て、共通路(8a)のレシ―バ(4)上流側の端部
(P)と室外熱交換器(3)との間は、室外熱交換器
(3)からレシ―バ(4)への冷媒の流通のみを許容す
る第1逆止弁(D1)を介して第1流入路(8b1)によ
り、上記共通路(8a)の点(P)と室内熱交換器
(6)との間は室内熱交換器(6)からレシ―バ(4)
への冷媒の流通のみを許容する第2逆止弁(D2)を介
して第2流入路(8b2)により、それぞれ接続されてい
る一方、共通路(8a)の上記電動膨張弁(5)下流側
の端部(Q)と上記第2逆止弁(D2)−室内熱交換器
(6)間の点(R)との間は電動膨張弁(5)から室内
熱交換器(6)への冷媒の流通のみを許容する第3逆止
弁(D3)を介して第1流出路(8c1)により、共通路
(8a)の上記点(Q)と上記第1逆止弁(D1)−室
外熱交換器(3)間の点(S)との間は電動膨張弁
(5)から室外熱交換器(3)への冷媒の流通のみを許
容する第4逆止弁(D4)を介して第2流出路(8c2)
により、それぞれ接続されている。
The pressure reducing section (20) is provided with a receiver (4) for storing the liquid refrigerant and an electric expansion valve (5) having a pressure reducing function and a flow rate adjusting function for the liquid refrigerant. The receiver (4) and the electric expansion valve (5) are arranged so that the electric expansion valve (5) communicates with the lower portion of the receiver (4), that is, the liquid portion. ) Auxiliary heat exchanger (3a)
Are arranged in series on the common path (8a). Then, between the outdoor end (P) of the receiver (4) upstream of the common path (8a) and the outdoor heat exchanger (3), the outdoor heat exchanger (3) goes to the receiver (4). Between the point (P) of the common path (8a) and the indoor heat exchanger (6) by the first inflow path (8b1) via the first check valve (D1) that allows only the circulation of the refrigerant. Is from the indoor heat exchanger (6) to the receiver (4)
To the electric expansion valve (5) on the common path (8a) while being connected to each other by the second inflow path (8b2) through the second check valve (D2) that allows only the circulation of the refrigerant to the From the electric expansion valve (5) to the indoor heat exchanger (6) between the side end (Q) and the point (R) between the second check valve (D2) and the indoor heat exchanger (6). Through the third check valve (D3) allowing only the circulation of the refrigerant, the first outlet path (8c1) allows the point (Q) of the common path (8a) and the first check valve (D1)- A fourth check valve (D4) which allows only the flow of the refrigerant from the electric expansion valve (5) to the outdoor heat exchanger (3) is provided between the outdoor heat exchanger (3) and the point (S). 2nd outflow channel (8c2)
Are respectively connected by.

【0016】また、上記レシ―バ(4)の上流側の点
(P)と流出側の点(Q)との間には、キャピラリチュ
―ブ(C)を介設してなる液封防止バイパス路(8f)
が設けられていて、該液封防止バイパス路(8f)によ
り、圧縮機(1)の停止時における液封を防止するとと
もに、ガス冷媒がレシ―バ(4)上部から第1流出路
(8c1)側に移動しうるようになされている。なお、上
記キャピラリチュ―ブ(C)の減圧度は電動膨張弁
(5)よりも十分大きくなるように設定されていて、通
常運転時における電動膨張弁(5)による冷媒流量調節
機能を良好に維持しうるようになされている。
Further, a capillary tube (C) is provided between the upstream point (P) and the outflow point (Q) of the receiver (4) to prevent liquid sealing. Bypass (8f)
Is provided, the liquid sealing prevention bypass passage (8f) prevents liquid sealing when the compressor (1) is stopped, and the gas refrigerant flows from the upper portion of the receiver (4) to the first outflow passage (8c1). ) It is designed to be able to move to the side. The degree of decompression of the capillary tube (C) is set to be sufficiently larger than that of the electric expansion valve (5), and the function of adjusting the refrigerant flow rate by the electric expansion valve (5) during normal operation is improved. It is designed to be maintainable.

【0017】なお、(F1)〜(F4)は冷媒中の塵埃
を除去するためのフィルタ、(ER)は圧縮機(1)の
運転音を低減させるための消音器である。
Incidentally, (F1) to (F4) are filters for removing dust in the refrigerant, and (ER) is a silencer for reducing the operation noise of the compressor (1).

【0018】さらに、空気調和装置にはセンサ類が設け
られていて、(Th2)は吐出管に配置され、吐出管温度
T2を検出する吐出管温度センサ、(Tha)は室外ユニ
ット(A)の空気吸込口に配置され、外気温度である吸
込空気温度Taを検出する室外吸込センサ、(Thc)は
室外熱交換器(3)に配置され、冷房運転時には凝縮温
度となり暖房運転時には蒸発温度となる外熱交温度Tc
を検出する外熱交センサ、(Thr)は室内ユニット
(B)の空気吸込口に配置され、室内温度である吸込空
気温度Trを検出する室内吸込センサ、(The)は室内
熱交換器(6)に配置され、冷房運転時には蒸発温度と
なり暖房運転時には凝縮温度となる内熱交温度Teを検
出する内熱交センサ、(HPS)は高圧側圧力の過上昇に
よりオンとなって後述の保護装置(11)を作動させる
高圧圧力スイッチ、(LPS)は低圧側圧力の過低下によ
りオンとなって保護装置(11)を作動させる低圧圧力
スイッチである。上記各センサ類は空気調和装置の運転
を制御するコントローラ(10)に入力可能に接続され
ており、該コントローラ(10)により、上記各センサ
類の信号に応じて、空気調和装置の運転を制御するよう
になされている。
Further, the air conditioner is provided with sensors, (Th2) is arranged in the discharge pipe, a discharge pipe temperature sensor for detecting the discharge pipe temperature T2, and (Tha) of the outdoor unit (A). An outdoor intake sensor (Thc), which is arranged at the air intake port and detects the intake air temperature Ta that is the outside air temperature, is arranged in the outdoor heat exchanger (3) and becomes the condensation temperature during the cooling operation and the evaporation temperature during the heating operation. Outside heat exchange temperature Tc
(Thr) is an indoor heat exchanger (6) that is located at the air intake port of the indoor unit (B) and that detects the intake air temperature Tr that is the indoor temperature. ), The internal heat exchange sensor Te detects the internal heat exchange temperature Te which becomes the evaporation temperature during the cooling operation and becomes the condensation temperature during the heating operation, and (HPS) is turned on by the excessive increase of the high-pressure side pressure, and the protection device described later. A high pressure switch for activating (11), and (LPS) is a low pressure switch for activating the protection device (11) which is turned on due to an excessive decrease in pressure on the low pressure side. Each of the sensors is connected to a controller (10) that controls the operation of the air conditioner, and the controller (10) controls the operation of the air conditioner according to the signals of the sensors. It is designed to do.

【0019】また、上記コントローラ(10)内には、
空気調和装置の運転中、何らかの異常が生じた時に作動
して、空気調和装置を異常停止させる保護手段としての
保護装置(11)と、時間を計測する計時手段としての
タイマ(12)とが内蔵されている。そして、上記保護
装置(11)には、図示しないが、上記各圧力スイッチ
(HPS),(LPS)の他、吐出管温度センサ(Th2)の
信号も入力されており、吐出管温度T2が所定温度以上
になると、保護装置(11)が作動して空気調和装置を
異常停止させ、圧縮機(1)の焼損等の事故を防止する
ようになされている。
Further, in the controller (10),
A protective device (11) as a protection means that operates when an abnormality occurs during operation of the air conditioner to abnormally stop the air conditioner, and a timer (12) as a time measuring means for measuring time are built-in. Has been done. Although not shown, the protection device (11) also receives signals from the discharge pipe temperature sensor (Th2) in addition to the pressure switches (HPS) and (LPS), and the discharge pipe temperature T2 is predetermined. When the temperature exceeds the temperature, the protection device (11) is activated to abnormally stop the air conditioner and prevent accidents such as burnout of the compressor (1).

【0020】図3は、上記吐出管温度センサ(Th2)の
吐出管への取付状態を示し、吐出管温度センサ(Th2)
は、吐出管(8d)にろう付けされた感温筒取付管(2
1)の中に挿入され、さらにその外方から吐出管断熱材
(22)を取付けて、吐出管温度センサ(Th2)を固定
するようになされている。なお、(23)はセンサ取付
け用バネ部材である。
FIG. 3 shows a state in which the discharge pipe temperature sensor (Th2) is attached to the discharge pipe. The discharge pipe temperature sensor (Th2) is shown in FIG.
Is a temperature-sensitive tube mounting pipe (2) brazed to the discharge pipe (8d).
1), the discharge pipe heat insulating material (22) is attached from the outside, and the discharge pipe temperature sensor (Th2) is fixed. Note that (23) is a sensor mounting spring member.

【0021】上記冷媒回路(9)において、冷房運転時
には、室外熱交換器(3)で凝縮液化された液冷媒が第
1流入路(8b1)から流入し、第1逆止弁(D1)を経
てレシ―バ(4)に貯溜され、電動膨張弁(5)で減圧
された後、第1流出路(8c1)を経て室内熱交換器
(6)で蒸発して圧縮機(1)に戻る循環となる一方、
暖房運転時には、室内熱交換器(6)で凝縮液化された
液冷媒が第2流入路(8b2)から流入し、第2逆止弁
(D2)を経てレシ―バ(4)に貯溜され、電動膨張弁
(5)で減圧された後、第2流出路(8c2)を経て室外
熱交換器(3)で蒸発して圧縮機(1)に戻る循環とな
る。
In the refrigerant circuit (9), during the cooling operation, the liquid refrigerant condensed and liquefied in the outdoor heat exchanger (3) flows in from the first inflow path (8b1) and passes through the first check valve (D1). After being stored in the receiver (4) and decompressed by the electric expansion valve (5), it is evaporated in the indoor heat exchanger (6) through the first outflow passage (8c1) and returns to the compressor (1). While circulating,
During the heating operation, the liquid refrigerant condensed and liquefied in the indoor heat exchanger (6) flows in from the second inflow passage (8b2), is stored in the receiver (4) via the second check valve (D2), After the pressure is reduced by the electric expansion valve (5), it is circulated through the second outflow passage (8c2) to evaporate in the outdoor heat exchanger (3) and return to the compressor (1).

【0022】ここで、上記コントローラ(10)の制御
内容について説明する。図4は、上記コントローラ(1
0)の冷房運転時における制御内容を示し、ステップS
T1で、上記内熱交センサ(The)で検出される蒸発温
度Te、外熱交センサ(Thc)で検出される凝縮温度T
c及び吐出管温度センサ(Th2)で検出される吐出管温
度T2をそれぞれ入力し、ステップST2で、下記(1)
式Tk =4−1.13Te +1.72Tc
(1)に基づき、最適な冷凍効果EERを
与える吐出管温度である最適温度Tkを算出する。
Here, the control contents of the controller (10) will be described. FIG. 4 shows the controller (1
0) shows the control contents during the cooling operation in step S).
At T1, the evaporation temperature Te detected by the internal heat exchange sensor (The) and the condensation temperature T detected by the external heat exchange sensor (Thc)
c and the discharge pipe temperature T2 detected by the discharge pipe temperature sensor (Th2) are input respectively, and in step ST2, the following (1)
Formula Tk = 4-1.13Te + 1.72Tc
Based on (1), the optimum temperature Tk, which is the discharge pipe temperature that gives the optimum refrigeration effect EER, is calculated.

【0023】そして、ステップST3で、式 ΔT2=
T2−Tkに基づき吐出管温度T2と最適温度Tkとの
温度差ΔT2を算出した後、ステップST4で、|ΔT
2|≦5か否か、つまり吐出管温度T2が最適温度Tk
の上下一定範囲内に収束したか否かを判別し、収束する
までは、ステップST5に進んで、ΔT2が正か否か、
つまり吐出管温度T2が最適温度Tkよりも高いか否か
を判別し、吐出管温度T2の方が高ければ、ステップS
T6で、電動膨張弁(5)を中程度に開くよう制御する
一方、吐出管温度T2の方が低ければ、ステップST7
で、電動膨張弁(5)の開度を中程度に閉じるように制
御する。
Then, in step ST3, the expression ΔT2 =
After calculating the temperature difference ΔT2 between the discharge pipe temperature T2 and the optimum temperature Tk based on T2-Tk, in step ST4, | ΔT
2 | ≦ 5, that is, the discharge pipe temperature T2 is the optimum temperature Tk
It is determined whether or not it has converged within a certain range above and below, and until it converges, the process proceeds to step ST5 and whether or not ΔT2 is positive,
That is, it is determined whether or not the discharge pipe temperature T2 is higher than the optimum temperature Tk.
At T6, the electric expansion valve (5) is controlled to open to the middle level, while if the discharge pipe temperature T2 is lower, step ST7.
Then, the opening degree of the electric expansion valve (5) is controlled so as to be closed to an intermediate level.

【0024】一方、上記ステップST4の判別で、|Δ
T2|≦5となり、吐出管温度T2が最適温度Tkの上
下一定範囲内に収束すると、ステップST8に移行し
て、詳細は省略するが、電動膨張弁(5)の開度を微細
に調節するファジ―制御を実行する。
On the other hand, in the determination in step ST4, | Δ
When T2 | ≦ 5 and the discharge pipe temperature T2 converges within a certain range above and below the optimum temperature Tk, the process proceeds to step ST8, and although not described in detail, the opening degree of the electric expansion valve (5) is finely adjusted. Perform fuzzy control.

【0025】上記フロ―において、ステップST2の制
御により、請求項2の発明にいう最適温度演算手段(5
1)が構成され、ステップST4〜ST8の制御によ
り、請求項2の発明にいう開度制御手段(52)が構成
されている。
In the above flow, the optimum temperature calculating means (5) according to the invention of claim 2 is controlled by the control of step ST2.
1) is configured, and the opening degree control means (52) according to the invention of Claim 2 is configured by the control of steps ST4 to ST8.

【0026】次に、吐出管温度センサ(Th2)の脱落検
知制御の内容について、図5のフロ―チャ―トに基づき
説明する。まず、ステップSS1で、空気調和装置の起
動後5分間が経過したか否かを判別し、5分間が経過す
るまではステップSS10に移行して通常運転を行う。
そして、起動後5分間が経過すると、ステップSS2〜
SS5で、デフロスト運転中でないか否か、T2−To2
≦5(℃)(ただし、T2は起動後5分が経過したとき
の吐出管温度、To2は起動時の吐出管温度である)か否
か、T2<55(℃)か否か、T2<Ta+10か否か
をそれぞれ判断し、各判別結果のうち一つでもNOであ
れば、上記ステップSS10に移行して通常運転を行う
一方、各ステップSS2〜SS5における判別結果がい
ずれもYESの時にはステップSS6に進んで、カウン
タ(図示せず)によりカウントされる検知回数Fgを積
算する。そして、ステップSS7で、Fg≧6か否かを
判別して、Fg≧6になるまでは、ステップSS8に進
んで、一定時間の間サーモオフ運転を行った後、上記脱
落検知の制御を繰り返し、Fg≧6になると、つまり6
回のリトライを行った後なおも上記各ステップSS2〜
SS5の条件が成立するときに、初めて吐出管温度セン
サ(Th2)が吐出管(8d)から脱落していると判断
し、ステップSS9に移行して、空気調和装置を異常停
止させる異常処理を行う。
Next, the content of the dropout detection control of the discharge pipe temperature sensor (Th2) will be described based on the flowchart of FIG. First, in step SS1, it is determined whether or not 5 minutes have passed since the start of the air conditioner, and until 5 minutes have elapsed, the process proceeds to step SS10 to perform normal operation.
Then, when 5 minutes have elapsed after the start-up, steps SS2 to
At SS5, check if the defrost operation is not in progress, T2-To2
≤5 (° C) (where T2 is the discharge pipe temperature when 5 minutes have passed after startup, To2 is the discharge pipe temperature at startup), whether T2 <55 (° C), T2 < Whether or not Ta + 10 is determined, and if at least one of the determination results is NO, the process proceeds to step SS10 and normal operation is performed, while if the determination results in each of steps SS2-SS5 are YES, step Proceeding to SS6, the number of detections Fg counted by a counter (not shown) is integrated. Then, in step SS7, it is determined whether or not Fg ≧ 6, and until Fg ≧ 6, the process proceeds to step SS8, the thermo-off operation is performed for a certain period of time, and the above-described drop detection control is repeated. When Fg ≧ 6, that is, 6
After each retry, the above steps SS2-
When the condition of SS5 is satisfied, it is determined that the discharge pipe temperature sensor (Th2) has fallen out of the discharge pipe (8d) for the first time, and the process proceeds to step SS9 to perform an abnormal process of abnormally stopping the air conditioner. .

【0027】上記フローにおいて、ステップSS5から
SS9に向かう制御により、請求項1の発明にいう異常
処理手段(53)が構成されている。
In the above flow, the abnormality processing means (53) according to the invention of claim 1 is constituted by the control from step SS5 to step SS9.

【0028】したがって、上記実施例では、空気調和装
置の運転中、吐出管温度センサ(Th2)で検出される吐
出管温度T2が所定温度以上になると、コントローラ
(10)に内蔵される保護装置(11)が作動して、空
気調和装置が異常停止され、圧縮機(1)が保護され
る。しかるに、吐出管温度センサ(Th2)が吐出管(8
d)から脱落していると、吐出管温度センサ(Th2)の
検出値T2が実際の吐出温度とは違った値(外気温度に
相当する値)になるので、圧縮機(1)が過熱して吐出
管温度が過上昇していても検出値T2は低い値となって
いる。そのため、保護装置(11)が作動せず、圧縮機
(1)の焼損等の事故に至る虞れがあるが、上記実施例
では、各ステップSS2〜SS5の判別により、吐出管
温度センサ(Th2)の脱落が検出されると、異常処理手
段(53)により、空気調和装置が異常停止されるの
で、圧縮機(1)の焼損が未然に防止されることにな
る。
Therefore, in the above embodiment, when the discharge pipe temperature T2 detected by the discharge pipe temperature sensor (Th2) becomes a predetermined temperature or higher during the operation of the air conditioner, the protective device () provided in the controller (10) ( 11) operates, the air conditioner is abnormally stopped, and the compressor (1) is protected. However, the discharge pipe temperature sensor (Th2) is
If it is dropped from d), the detected value T2 of the discharge pipe temperature sensor (Th2) becomes a value different from the actual discharge temperature (a value corresponding to the outside air temperature), so the compressor (1) overheats. Even if the discharge pipe temperature rises excessively, the detected value T2 is low. Therefore, the protective device (11) does not operate and may cause an accident such as burnout of the compressor (1). However, in the above-described embodiment, the discharge pipe temperature sensor (Th2 is determined by the determination in steps SS2 to SS5). ) Is detected, the air conditioner is abnormally stopped by the abnormality processing means (53), so that the burnout of the compressor (1) is prevented in advance.

【0029】ここで、ステップSS2の制御で、デフロ
スト運転中でないか否かを判別したのは、デフロスト運
転中には冷媒循環量が非常に多くなるため吐出管温度T
2が非常に低い状態が生じうるので、後のステップにお
ける判別で、吐出管温度センサ(Th2)が正常に取付け
られているのに脱落していると判断する誤検知を防止す
るためである。
Here, in the control of step SS2, it is determined whether or not the defrosting operation is being performed, because the refrigerant circulation amount becomes extremely large during the defrosting operation, so that the discharge pipe temperature T
This is to prevent erroneous detection in which it is determined that the discharge pipe temperature sensor (Th2) is normally attached but is dropped in the determination in a later step, because a state where 2 is extremely low may occur.

【0030】また、ステップSS3の制御で、T2−T
o2≦5(℃)か否かを判断したのは、起動後5分を経過
すると、通常の条件下では起動時の吐出管温度To2から
10℃程度の吐出管温度T2の上昇があるはずだからで
あり、T2−To2≦5(℃)であれば、吐出管温度セン
サ(Th2)が脱落している可能性が極めて高いからであ
る。
Further, in the control of step SS3, T2-T
Whether or not o2 ≦ 5 (° C.) is determined is that, after 5 minutes have passed since the start-up, the discharge pipe temperature T2 at the time of start-up should increase from the discharge pipe temperature To2 of about 10 ° C. under normal conditions. If T2−To2 ≦ 5 (° C.), it is extremely likely that the discharge pipe temperature sensor (Th2) has fallen off.

【0031】また、ステップSS4の制御で、T2<5
5(℃)か否かを判別するようにしたのは、通常圧縮機
(1)の起動後に吐出管温度T2が55℃よりも低いこ
とはまずないので、T2<55(℃)の時には吐出管温
度センサ(Th2)が脱落している可能性が極めて高いか
らである。
In the control of step SS4, T2 <5
Whether or not the temperature is 5 (° C) is determined because it is unlikely that the discharge pipe temperature T2 is usually lower than 55 ° C after the compressor (1) is started. Therefore, when T2 <55 (° C), the discharge is performed. This is because it is very likely that the tube temperature sensor (Th2) has fallen off.

【0032】さらに、ステップSS5の制御は、請求項
1の発明に対応するものであって、T2<Ta+10か
否かを判別することにより、吐出管温度センサ(Th2)
が吐出管(8d)から脱落した場合、その検出温度は限
りなく外気温度Taに近付くことになり、5分間程度が
経過した時に、外気温度よりも10℃以上上昇していな
いときには、吐出管温度センサ(Th2)が脱落している
可能性が極めて高いことを検知するための制御である。
Further, the control of step SS5 corresponds to the invention of claim 1, and the discharge pipe temperature sensor (Th2) is determined by determining whether T2 <Ta + 10.
If the temperature drops from the discharge pipe (8d), the detected temperature approaches the outside air temperature Ta infinitely, and if the temperature is not higher than the outside air temperature by 10 ° C or more after about 5 minutes, the discharge pipe temperature is This is a control for detecting that the possibility that the sensor (Th2) is missing is extremely high.

【0033】特に、上記実施例のように、最適温度演算
手段(51)により、蒸発温度Te,凝縮温度Tc等に
基づき、最適な冷凍効果を与える吐出管温度T2の最適
温度Tkを算出して、開度制御手段(52)により、吐
出管温度T2がこの最適温度Tkに収束するよう電動膨
張弁(5)の開度を制御するようにした場合、吐出管温
度センサ(Th2)が脱落してその検出値T2が実際の吐
出管温度よりも低いと、上記図4の制御フローにおい
て、ΔT2が実際よりも小さくなり、その結果、ステッ
プST7の制御で、電動膨張弁(5)の開度が閉じられ
ることになる。したがって、そのまま運転が継続する
と、冷媒の急激な減少が生じ、圧縮機(1)が短時間の
うちに過熱して焼損に至る危険性が高い。よって、この
ような吐出管温度制御を行うシステムに吐出管温度セン
サ(Th2)の脱落検知の制御を適用することにより、著
効を発揮することができる。
In particular, as in the above embodiment, the optimum temperature calculating means (51) calculates the optimum temperature Tk of the discharge pipe temperature T2 which gives the optimum refrigerating effect based on the evaporation temperature Te, the condensation temperature Tc and the like. When the opening control means (52) controls the opening of the electric expansion valve (5) so that the discharge pipe temperature T2 converges to the optimum temperature Tk, the discharge pipe temperature sensor (Th2) falls off. When the detected value T2 is lower than the actual discharge pipe temperature, ΔT2 becomes smaller than the actual value in the control flow of FIG. 4, and as a result, the opening of the electric expansion valve (5) is controlled by the control of step ST7. Will be closed. Therefore, if the operation is continued as it is, the refrigerant is rapidly reduced, and there is a high risk that the compressor (1) will be overheated and burned in a short time. Therefore, by applying the control for detecting the drop of the discharge pipe temperature sensor (Th2) to the system for performing such discharge pipe temperature control, a remarkable effect can be exhibited.

【0034】なお、最適温度Tkの算出方法は上記実施
例に限定されるものではなく、外気温度Taで補正する
等の演算を行うことも可能である。
The method of calculating the optimum temperature Tk is not limited to the above embodiment, and it is also possible to perform a calculation such as correction with the outside air temperature Ta.

【0035】また、上記実施例では、図5の制御フロー
において、各ステップSS3〜SS5の判別結果がすべ
てYESである場合に限って、ステップSS9の異常処
理を行うようにしたが、本発明はかかる実施例に限定さ
れるものではなく、各ステップSS3〜SS5のいずれ
か一つの判別だけを行い、その判別結果がYESの時に
ステップSS9に移行するようにしてもよい。
Further, in the above embodiment, in the control flow of FIG. 5, the abnormality process of step SS9 is performed only when the determination results of steps SS3 to SS5 are all YES, but the present invention is not limited to this. The present invention is not limited to this embodiment, but only one of the steps SS3 to SS5 may be determined, and if the result of the determination is YES, the process may proceed to step SS9.

【0036】[0036]

【発明の効果】以上説明したように、請求項1の発明に
よれば、圧縮機、熱源側熱交換器、電動膨張弁及び利用
側熱交換器を順次接続してなる冷媒回路を備えた冷凍装
置の運転制御装置として、冷凍装置の運転中、吐出管温
度センサで検出される吐出管温度が所定温度以上になる
と、冷凍装置を異常停止させる保護手段を設ける一方、
圧縮機の起動後所定時間経過後に吐出管温度センサの検
出値が外気温度に一定値を加算した温度よりも低いとき
には、冷凍装置の運転を異常停止させるようにしたの
で、吐出管温度センサの脱落状態を確実に検知して、圧
縮機の内部温度の過上昇による焼損等の事故を未然に防
止することができる。
As described above, according to the invention of claim 1, the refrigeration provided with the refrigerant circuit in which the compressor, the heat source side heat exchanger, the electric expansion valve and the utilization side heat exchanger are sequentially connected. As an operation control device of the device, while the refrigeration system is in operation, when the discharge pipe temperature detected by the discharge pipe temperature sensor becomes equal to or higher than a predetermined temperature, a protection means for abnormally stopping the refrigeration system is provided,
When the value detected by the discharge pipe temperature sensor is lower than the temperature obtained by adding a constant value to the outside air temperature after the elapse of a predetermined time after the compressor is started, the operation of the refrigeration system is abnormally stopped. By reliably detecting the state, it is possible to prevent accidents such as burning due to an excessive rise in the internal temperature of the compressor.

【0037】請求項2の発明によれば、上記請求項1の
発明を、吐出管温度がその最適温度に収束するよう電動
膨張弁の開度を制御するシステムを有するものに適用し
たので、見掛上の吐出管温度が制御目標値よりも小さく
なることで電動膨張弁の開度が閉じられ、冷媒の急激な
減少により、圧縮機が短時間のうちに過熱して焼損に至
る危険性が高いときにも、圧縮機の焼損等の事故を未然
に防止することができ、よって、上記請求項1記載の発
明の著効を発揮することができる。
According to the invention of claim 2, the invention of claim 1 is applied to a system having a system for controlling the opening of the electric expansion valve so that the discharge pipe temperature converges to its optimum temperature. There is a risk that the opening of the electric expansion valve will be closed when the temperature of the discharge pipe above the control becomes lower than the control target value, and the compressor will overheat and burn out in a short time due to the rapid decrease of the refrigerant. Even when the pressure is high, accidents such as burnout of the compressor can be prevented in advance, and therefore, the remarkable effect of the invention according to claim 1 can be exerted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】実施例に係る空気調和装置の冷媒配管系統図で
ある。
FIG. 2 is a refrigerant piping system diagram of the air conditioning apparatus according to the embodiment.

【図3】吐出管温度センサの吐出管への取付状態を示す
分解斜視図である。
FIG. 3 is an exploded perspective view showing how the discharge pipe temperature sensor is attached to the discharge pipe.

【図4】吐出管温度制御の内容を示すフロ―チャ―ト図
である。
FIG. 4 is a flowchart showing the contents of discharge pipe temperature control.

【図5】吐出管温度センサの脱落検知制御の内容を示す
フロ―チャ―ト図である。
FIG. 5 is a flowchart showing the details of dropout detection control of the discharge pipe temperature sensor.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 室外熱交換器(熱源側熱交換器) 5 電動膨張弁 6 室内熱交換器(利用側熱交換器) 9 冷媒回路 11 保護装置(保護手段) 12 タイマ(計時手段) 51 最適温度演算手段 52 開度制御手段 53 異常処理手段 Th2 吐出管温度センサ Tha 室外吸込センサ(外気温度検出手段) 1 Compressor 3 Outdoor Heat Exchanger (Heat Source Side Heat Exchanger) 5 Electric Expansion Valve 6 Indoor Heat Exchanger (Use Side Heat Exchanger) 9 Refrigerant Circuit 11 Protection Device (Protection Means) 12 Timer (Timekeeping Means) 51 Optimum Temperature Calculation means 52 Opening degree control means 53 Abnormality processing means Th2 Discharge pipe temperature sensor Tha Outdoor suction sensor (outside air temperature detection means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植野 武夫 大阪府堺市金岡町1304番地 ダイキン工 業株式会社 堺製作所 金岡工場内 (56)参考文献 特開 平3−1061(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeo Ueno 1304 Kanaoka-machi, Sakai City, Osaka Prefecture Daikin Industrial Co., Ltd., Kanaoka Plant, Sakai Manufacturing Co., Ltd. (56) Reference JP-A-3-1061 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機(1)、熱源側熱交換器(3)、
電動膨張弁(5)及び利用側熱交換器(6)を順次接続
してなる冷媒回路(9)を備えた冷凍装置において、 上記圧縮機(1)の吐出管(8d)に取り付けられ、吐
出管温度を検出する吐出管温度センサ(Th2)と、該吐
出管温度センサ(Th2)の出力を受け、吐出管温度が所
定温度以上に達すると、作動して冷凍装置の運転を停止
させる保護手段(11)とを備えるとともに、 外気温度を検出する外気温度検出手段(Tha)と、圧縮
機(1)の起動後の経過時間を計測する計時手段(1
2)と、該計時手段(12)の出力を受け、圧縮機
(1)の起動後所定時間が経過したときにおける上記吐
出管温度センサ(Th2)の検出値が上記外気温度検出手
段(Tha)で検出される外気温度に一定値を加算した温
度よりも低いとき、冷凍装置を異常停止させる異常処理
手段(53)とを備えたことを特徴とする冷凍装置の保
護装置。
1. A compressor (1), a heat source side heat exchanger (3),
A refrigerating apparatus comprising a refrigerant circuit (9) in which an electric expansion valve (5) and a use side heat exchanger (6) are sequentially connected to each other, the refrigeration apparatus being attached to a discharge pipe (8d) of the compressor (1), A discharge pipe temperature sensor (Th2) for detecting the pipe temperature, and a protection means for receiving the output of the discharge pipe temperature sensor (Th2) and operating when the discharge pipe temperature reaches or exceeds a predetermined temperature to stop the operation of the refrigeration system. (11), the outside air temperature detecting means (Tha) for detecting the outside air temperature, and the time counting means (1) for measuring the elapsed time after the start of the compressor (1).
2) and the output of the time measuring means (12), the detected value of the discharge pipe temperature sensor (Th2) when a predetermined time has elapsed after the compressor (1) is started is the outside air temperature detecting means (Tha). A protection device for a refrigerating device, comprising: an abnormality processing means (53) for abnormally stopping the refrigerating device when the temperature is lower than a temperature obtained by adding a constant value to the outside air temperature detected in.
【請求項2】 請求項1記載の冷凍装置の保護装置にお
いて、 冷媒回路(9)の凝縮温度,蒸発温度等に応じて、最適
の冷凍効果を与える吐出冷媒温度の最適温度を演算する
最適温度演算手段(51)と、上記吐出管温度センサ
(Th2)の出力を受け、吐出管温度が上記最適温度演算
手段(51)で演算される最適温度に収束するよう上記
電動膨張弁(5)の開度を制御する開度制御手段(5
2)とを備えたことを特徴とする冷凍装置の保護装置。
In the protection apparatus of claim 2 according to claim 1 Symbol placement of the refrigeration apparatus, the optimum condensation temperature of the refrigerant circuit (9), depending on the evaporation temperature or the like, calculates the optimum temperature of the discharged refrigerant temperature giving refrigeration effect optimum The electric expansion valve (5) receives the outputs of the temperature calculating means (51) and the discharge pipe temperature sensor (Th2) so that the discharge pipe temperature converges to the optimum temperature calculated by the optimum temperature calculating means (51). Opening control means (5
2) A protection device for a refrigerating device, which is provided with.
JP3263684A 1991-10-11 1991-10-11 Refrigerator protection device Expired - Lifetime JP2536354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3263684A JP2536354B2 (en) 1991-10-11 1991-10-11 Refrigerator protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3263684A JP2536354B2 (en) 1991-10-11 1991-10-11 Refrigerator protection device

Publications (2)

Publication Number Publication Date
JPH0599543A JPH0599543A (en) 1993-04-20
JP2536354B2 true JP2536354B2 (en) 1996-09-18

Family

ID=17392905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3263684A Expired - Lifetime JP2536354B2 (en) 1991-10-11 1991-10-11 Refrigerator protection device

Country Status (1)

Country Link
JP (1) JP2536354B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4169623B2 (en) * 2003-03-31 2008-10-22 横浜ゴム株式会社 Tire sensor system
JP2022177977A (en) 2021-05-19 2022-12-02 東芝キヤリア株式会社 Heat medium circulation type heating heat pump device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508268B2 (en) * 1989-05-25 1996-06-19 三菱電機株式会社 Control device for air conditioner

Also Published As

Publication number Publication date
JPH0599543A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
JP2500519B2 (en) Operation control device for air conditioner
JP2536354B2 (en) Refrigerator protection device
JP2500517B2 (en) Refrigeration system operation controller
JP3097323B2 (en) Operation control device for air conditioner
JP2964705B2 (en) Air conditioner
JP3290251B2 (en) Air conditioner
JP2842020B2 (en) Operation control device for air conditioner
JP2504337B2 (en) Operation control device for air conditioner
JP2870289B2 (en) Operation control device for refrigeration equipment
JP2822764B2 (en) Operation control device for outdoor fan of air conditioner
JP2500520B2 (en) Refrigerator protection device
JP2861603B2 (en) Operation control device for air conditioner
JPH09159293A (en) Compressor protection controller for air conditioner
JPH05264113A (en) Operation control device of air conditioner
JP2909941B2 (en) Defrosting operation control device for refrigeration equipment
JP2546069B2 (en) Refrigeration system operation controller
JP2522116B2 (en) Operation control device for air conditioner
JPH07117272B2 (en) Operation control device for air conditioner
JP2555779B2 (en) Operation control device for air conditioner
JP3363623B2 (en) refrigerator
JP2687727B2 (en) Compressor protection device for refrigeration equipment
JPH09236299A (en) Running control device for air conditioning apparatus
JP2503784B2 (en) Operation control device for air conditioner
JP2504338B2 (en) Operation control device for air conditioner
JP2768148B2 (en) Operation control device for air conditioner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 16