WO2012160832A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2012160832A1
WO2012160832A1 PCT/JP2012/003430 JP2012003430W WO2012160832A1 WO 2012160832 A1 WO2012160832 A1 WO 2012160832A1 JP 2012003430 W JP2012003430 W JP 2012003430W WO 2012160832 A1 WO2012160832 A1 WO 2012160832A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
compression chamber
refrigerant
volume control
valve
Prior art date
Application number
PCT/JP2012/003430
Other languages
French (fr)
Japanese (ja)
Inventor
岡市 敦雄
修 小須田
拓也 奥村
嘉久和 孝
谷口 和宏
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013516222A priority Critical patent/JP5971633B2/en
Priority to EP12788873.3A priority patent/EP2716999A4/en
Priority to CN201280019703.8A priority patent/CN103492817B/en
Publication of WO2012160832A1 publication Critical patent/WO2012160832A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • the present invention particularly relates to a refrigeration cycle apparatus including a volume control compressor.
  • volume control compressor capable of changing the suction volume has been conventionally known.
  • Volumetric control technology for compressors was actively studied before inverters were widely used.
  • the importance of volumetric control technology was temporarily increased after high-performance inverters became available at low cost. It was falling.
  • compressor volume control technology has begun to attract attention again.
  • An example of the volume control technique will be introduced with reference to FIG.
  • FIG. 9 is a configuration diagram of the air conditioner described in Patent Document 1.
  • the air conditioner 600 includes a volume control compressor 622, a four-way valve 623, an outdoor heat exchanger 624, an expansion means 625, an indoor heat exchanger 641, an accumulator 621, a bypass pipe 688, a flow path switching valve 690, a suction pipe 628, and a discharge.
  • a pipe 630 is provided.
  • a bypass discharge valve (not shown) is provided at a connection portion between the volume control compressor 622 and the bypass pipe 688.
  • the bypass pipe 688 When the air conditioning load is small, the bypass pipe 688 is connected to the suction pipe 628 by the flow path switching valve 690. As a result, a part of the suction refrigerant is returned to the suction pipe 628 via the bypass pipe 688, and operation at a low volume becomes possible.
  • the bypass pipe 688 is connected to the discharge pipe 630 by the flow path switching valve 690. At this time, the bypass discharge valve is closed with the refrigerant having the discharge pressure.
  • the present invention solves such problems, and provides a refrigeration cycle apparatus that can reduce the amount of oil flowing out of a volume control compressor and exhibit high equipment efficiency (COP (coefficient of performance) of the refrigeration cycle).
  • COP coefficient of performance
  • a volume control compressor configured to be able to change a suction volume by being discharged from the compression chamber through an outlet;
  • a radiator for cooling the refrigerant compressed by the compressor;
  • An expansion mechanism for expanding the refrigerant cooled by the radiator;
  • An evaporator for heating the refrigerant expanded by the expansion mechanism;
  • a flow path switching unit that supplies either the discharge pressure of the compressor or the suction pressure of the compressor to the volume control path as a control pressure;
  • a high-pressure introduction path having one end connected to the flow path switching unit and the
  • the volume control path is A control device for controlling the flow path switching unit to be connected to the high-pressure introduction path;
  • a check valve provided in the high-pressure introduction path, allowing a refrigerant flow from the discharge path to the flow path switching unit, and prohibiting a reverse flow;
  • a refrigeration cycle apparatus is provided.
  • the check valve is provided in the high pressure introduction path. Therefore, even when a high internal pressure of the compression chamber acts on the bypass discharge port, the internal pressure of the compression chamber is blocked by the check valve. Since the volume control path is filled with the refrigerant having the internal pressure of the compression chamber, the bypass discharge valve is also closed. Thereby, excessive oil discharge to the refrigerant circuit can be prevented. As a result, the heat transfer in the heat exchanger is improved and the pressure loss when the refrigerant passes through the pipe is also reduced, so that the coefficient of performance (COP) of the refrigeration cycle is improved.
  • COP coefficient of performance
  • the first aspect of the present disclosure is: A compression chamber, a bypass discharge port that opens to the compression chamber, and a bypass discharge valve that opens and closes the bypass discharge port, and the refrigerant sucked into the compression chamber maintains the suction pressure while the bypass discharge port.
  • a volume control compressor configured to be able to change a suction volume by being discharged from the compression chamber through an outlet;
  • a radiator for cooling the refrigerant compressed by the compressor;
  • An expansion mechanism for expanding the refrigerant cooled by the radiator;
  • An evaporator for heating the refrigerant expanded by the expansion mechanism;
  • a suction path for leading the refrigerant to be compressed from the evaporator to the compression chamber;
  • a flow path switching unit that supplies either the discharge pressure of the compressor or the suction pressure of the compressor to the volume control path as a control pressure;
  • a high-pressure introduction path having one end connected to the flow path switching unit and the other end connected to the discharge path;
  • a low-pressure introduction path having one end connected to the flow path switching unit and the other end connected to the suction path;
  • the volume control path is A control device for controlling the flow path switching unit to be connected to the high-pressure introduction path;
  • a check valve provided in the high-pressure introduction path, allowing a refrigerant flow from the discharge path to the flow path switching unit, and prohibiting a reverse flow;
  • a refrigeration cycle apparatus is provided.
  • the second aspect provides a refrigeration cycle apparatus, in addition to the first aspect, in which the compressor may further include a suction port and a discharge port.
  • the compressor may further include a suction port and a discharge port.
  • the 3rd aspect provides the refrigerating-cycle apparatus which may be further provided with the relief valve circuit in addition to the 1st or 2nd aspect.
  • the high-pressure introduction path may include a first part between the check valve and the flow path switching unit and a second part between the check valve and the discharge path.
  • the relief valve circuit may have one end connected to the first part and the other end connected to the second part or the discharge path. According to the relief valve circuit, it is possible to prevent an excessive increase in pressure in the volume control path, the flow path switching unit, and the first portion of the high pressure introduction path by letting the pressure escape to the second part or the discharge path.
  • the compressor is compressed by the first compression chamber and the second compression chamber as the compression chamber, the refrigerant compressed in the first compression chamber, and the second compression chamber.
  • a closed container including an internal space capable of holding the refrigerant, an intermediate chamber that receives the refrigerant discharged from the first compression chamber through the bypass discharge port, and the intermediate chamber and the internal space of the closed container are communicated with each other.
  • a refrigeration cycle apparatus may be a hermetic multi-cylinder compressor further including a first discharge port that performs and a first discharge valve that opens and closes the first discharge port.
  • the volume control path may be connected to the bypass discharge port via the intermediate chamber.
  • the refrigerant sucked into the first compression chamber is discharged from the first compression chamber through the bypass discharge port while maintaining the suction pressure, and the intermediate chamber, the volume control path, and the It can be returned to the suction path through the low pressure introduction path.
  • the load is large, the refrigerant sucked into the first compression chamber is compressed to a pressure exceeding the discharge pressure in the first compression chamber, pushes open the bypass discharge valve and the first discharge valve, The air can be discharged from the first compression chamber to the internal space of the sealed container through the bypass discharge port, the intermediate chamber, and the first discharge port.
  • a so-called cylinder-less volume control compressor can be provided.
  • the control device is configured to connect the volume control path to the low pressure introduction path when the refrigeration cycle apparatus is activated.
  • a refrigeration cycle apparatus capable of controlling a switching unit and controlling the flow path switching unit to connect the volume control path to the high-pressure introduction path after an arbitrary time has elapsed.
  • control device is configured to connect the volume control path to the low-pressure introduction path when stopping the operation of the refrigeration cycle apparatus.
  • a refrigeration cycle apparatus capable of controlling a flow path switching unit is provided. In this way, abnormal pressure is generated due to the liquid refrigerant being confined in the volume control path, that is, the temperature of the liquid refrigerant rises after startup and the liquid refrigerant expands, thereby excessively increasing the pressure in the volume control path. Can be prevented.
  • the seventh aspect of the present disclosure is: A compression chamber, a bypass discharge port that opens to the compression chamber, and a bypass discharge valve that opens and closes the bypass discharge port, and the refrigerant sucked into the compression chamber maintains the suction pressure while the bypass discharge port.
  • a volume control compressor configured to be able to change a suction volume by being discharged from the compression chamber through an outlet;
  • a radiator for cooling the refrigerant compressed by the compressor;
  • An expansion mechanism for expanding the refrigerant cooled by the radiator;
  • An evaporator for heating the refrigerant expanded by the expansion mechanism;
  • a suction path for leading the refrigerant to be compressed from the evaporator to the compression chamber;
  • An on-off valve provided to connect the low-pressure introduction path and the volume control path;
  • the volume control path is connected to the low pressure introduction path via the on-off valve. Therefore, it can be avoided that the refrigerant containing a large amount of oil flows directly into the discharge path of the compressor through the bypass discharge port and the volume control path. Further, since the relief valve circuit is provided, even if the temperature of the liquid refrigerant temporarily accumulated in the volume control path rises and the liquid refrigerant expands to increase the pressure of the volume control path, the relief valve circuit Through the circuit, pressure can be released to the discharge path.
  • the eighth aspect of the present disclosure is: A first compression chamber; a second compression chamber; a sealed container including an internal space capable of holding the refrigerant compressed in the first compression chamber and the refrigerant compressed in the second compression chamber; and the first compression chamber A bypass discharge opening that opens to the opening, a bypass discharge valve that opens and closes the bypass discharge opening, an intermediate chamber that receives the refrigerant discharged from the first compression chamber through the bypass discharge opening, the intermediate chamber, and the sealed container
  • a volume control compressor having a first discharge port that communicates with the internal space, and a first discharge valve that opens and closes the first discharge port;
  • a radiator for cooling the refrigerant compressed by the compressor; An expansion mechanism for expanding the refrigerant cooled by the radiator; An evaporator for heating the refrigerant expanded by the expansion mechanism; A suction path for leading the refrigerant to be compressed from the evaporator to the first compression chamber and the second compression chamber; A discharge path for guiding the compressed refrigerant from the first compression chamber and the second
  • the volume control path is connected to the low pressure introduction path via the on-off valve. Therefore, it can be avoided that the refrigerant containing a large amount of oil flows directly into the discharge path of the compressor through the bypass discharge port and the volume control path. Furthermore, according to the eighth aspect, it is possible to avoid the formation of a closed space in the refrigerant circuit. Therefore, even if the volume control path is filled with the liquid refrigerant, and then the temperature of the liquid refrigerant rises and the liquid refrigerant expands, the pressure in the volume control path cannot increase excessively. This is because when the pressure in the volume control path increases, the first discharge valve opens and the pressure can be released to the internal space of the sealed container.
  • the control device controls the open / close valve so as to connect the volume control path to the low-pressure introduction path when the refrigeration cycle apparatus is started, and thereafter Provided is a refrigeration cycle apparatus that controls the on-off valve so that the volume control path is disconnected from the low-pressure introduction path when an arbitrary time has elapsed. According to the ninth aspect, the same effect as in the sixth aspect can be obtained.
  • control device is configured to connect the volume control path to the low-pressure introduction path when stopping the operation of the refrigeration cycle apparatus.
  • a refrigeration cycle apparatus for controlling an on-off valve is provided. In this way, abnormal pressure is generated due to the liquid refrigerant being confined in the volume control path, that is, the temperature of the liquid refrigerant rises after startup and the liquid refrigerant expands, thereby excessively increasing the pressure in the volume control path. Can be prevented.
  • the refrigeration cycle apparatus 100 of the present embodiment includes a volume control compressor 101, a first four-way valve 102, a first heat exchanger 103, an expansion mechanism 104, a second heat exchanger 105, and an accumulator 106. I have. These components are connected to each other by flow paths 10a to 10f so as to form a refrigerant circuit.
  • the flow paths 10a to 10f are each constituted by a refrigerant pipe.
  • the first heat exchanger 103 is a radiator that cools the refrigerant compressed by the compressor 101 or an evaporator that heats the refrigerant expanded by the expansion mechanism 104.
  • the second heat exchanger 105 is an evaporator when the first heat exchanger 103 is a radiator, and is a radiator when the first heat exchanger 103 is an evaporator.
  • the expansion mechanism 104 has a function of expanding the refrigerant cooled by the radiator, and is typically composed of an expansion valve.
  • the expansion mechanism 104 may be composed of a positive displacement expander that can recover the expansion energy of the refrigerant.
  • the compressor 101 is a hermetic compressor, and includes a hermetic container 1, a motor 2, and a compression mechanism 3.
  • the motor 2 and the compression mechanism 3 are disposed in the sealed container 1.
  • the sealed container 1 has an internal space 28 that can hold the refrigerant compressed by the compression mechanism 3. That is, the compressor 101 is a so-called high pressure shell type compressor.
  • the compression mechanism 3 is connected to the motor 2 by a shaft 4.
  • the compression mechanism 3 is a positive displacement fluid mechanism and is moved by the motor 2 so as to compress the refrigerant.
  • the compression mechanism 3 includes a suction port 27, a discharge port 29, a compression chamber 25, a bypass discharge port 16 that opens to the compression chamber 25, and a bypass discharge valve 35 that opens and closes the bypass discharge port 16. ing.
  • the compressor 101 When the compressor 101 is operated in the high volume mode, the entire amount of refrigerant sucked into the compression chamber 25 from the suction port 27 is compressed in the compression chamber 25 and discharged to the internal space 28 of the sealed container 1 through the discharge port 29.
  • the compressor 101 is operated in the low volume mode, a part of the refrigerant sucked into the compression chamber 25 from the suction port 27 pushes the bypass discharge valve 35 open and is discharged from the compression chamber 25 through the bypass discharge port 16. .
  • the suction volume of the compressor 101 is changed by switching between the high volume mode and the low volume mode.
  • a part of the refrigerant sucked into the compression chamber 25 from the suction port 27 maintains the suction pressure (without being substantially compressed) and bypasses. It is discharged from the compression chamber 25 through the discharge port 16.
  • the remaining portion of the refrigerant sucked into the compression chamber 25 from the suction port 27 is compressed in the compression chamber 25 and discharged from the compression chamber 25 through the discharge port 29.
  • the refrigerant discharged from the compression chamber 25 through the bypass discharge port 16 is returned to the flow path 10e as the suction path, as will be described later. Therefore, unnecessary compression work is not performed by the compressor 101.
  • the bypass discharge valve 35 is composed of a reed valve including a reed 36 and a valve stop 37.
  • the lead 36 and the valve stop 37 are fixed to the cylinder 5 by fixing parts 38 such as screws and bolts.
  • the bypass discharge valve 35 opens and closes due to a pressure difference between the front surface and the back surface of the lead 36. Any of the several discharge valves described herein may be a reed valve.
  • the compression mechanism 3 includes a cylinder 5, a piston 8, a vane 9, and a spring 10.
  • An upper bearing and a lower bearing are disposed at the upper and lower portions of the cylinder 5 so as to close the cylinder 5 (not shown).
  • a piston 8 fitted to the eccentric portion 4 a of the shaft 4 is disposed inside the cylinder 5 so that the compression chamber 25 is formed inside the cylinder 5.
  • a vane groove 24 is formed in the cylinder 5.
  • the vane groove 24 accommodates a vane 9 having a tip that contacts the outer peripheral surface of the piston 8.
  • the spring 10 is disposed in the vane groove 24 so as to push the vane 9 toward the piston 8.
  • the compression chamber 25 between the cylinder 5 and the piston 8 is partitioned by the vane 9, thereby forming a suction chamber 25a and a compression-discharge chamber 25b.
  • the refrigerant to be compressed is guided to the compression chamber 25 (suction chamber 25a) through the flow path 10f and the suction port 27.
  • the compressed refrigerant is guided from the compression chamber 25 (compression-discharge chamber 25b) to the internal space 28 of the sealed container 1 through the discharge port 29.
  • the discharge port 29 is provided with a discharge valve (not shown).
  • the vane 9 may be integrated with the piston 8. That is, the piston 8 and the vane 9 may be configured as a so-called swing piston.
  • the position of the bypass discharge port 16 is determined so that the suction volume in the low volume mode is 1 ⁇ 2 of the suction volume in the high volume mode.
  • the position of the bypass discharge port 16 is not limited, and is determined according to the suction volume required in the low volume mode. Two or more bypass discharge ports 16 may be provided. In this case, the compressor 101 can be operated with one suction volume selected from a plurality of suction volumes.
  • the compressor 101 is a rotary compressor, but the type of the compressor 101 is not particularly limited as long as the suction volume can be changed.
  • Other types of compressors such as a scroll compressor and a reciprocating compressor described in Patent Document 1 (Japanese Patent Laid-Open No. 2008-240699) can be used.
  • the flow path 10a forms a discharge path that guides the refrigerant compressed by the compressor 101 from the compression chamber 25 to the radiator (the first heat exchanger 103 or the second heat exchanger 105). Yes.
  • the flow path 10e, the accumulator 106, and the flow path 10f form a suction path that guides the refrigerant to be compressed from the evaporator (the first heat exchanger 103 or the second heat exchanger 105) to the compression chamber 25.
  • the refrigeration cycle apparatus 100 further includes a volume control path 111, a second four-way valve 112, a high pressure introduction path 114, a low pressure introduction path 116, a check valve 120, and a control device 117.
  • the volume control path 111 is connected to the bypass discharge port 16 of the compressor 101.
  • the second four-way valve 112 is a flow path switching unit that supplies either the discharge pressure of the compressor 101 or the suction pressure of the compressor 101 to the volume control path 111 as a control pressure.
  • the high-pressure introduction path 114 has one end connected to the second four-way valve 112 and the other end connected to the flow path 10a.
  • the low-pressure introduction path 116 has one end connected to the second four-way valve 112 and the other end connected to the flow path 10e.
  • the check valve 120 is provided in the high-pressure introduction path 114 so as to allow a refrigerant flow from the flow path 10a to the second four-way valve 112 and prohibit a reverse flow.
  • Each of the paths 111, 114, and 116 can be configured by a refrigerant pipe.
  • the second four-way valve 112 in which one connection port is blocked is used as the flow path switching unit.
  • the structure of the flow path switching unit is not limited as long as either the discharge pressure of the compressor 101 or the suction pressure of the compressor 101 can be supplied to the volume control path 111 as a control pressure.
  • the other end of the low-pressure introduction path 116 may be connected to the accumulator 106 or may be connected to the flow path 10f.
  • the control device 117 controls the second four-way valve 112 so that the suction volume of the compressor 101 increases or decreases according to the load of the refrigeration cycle apparatus 100. Specifically, the control device 117 controls the second four-way valve 112 so that the volume control path 111 is connected to the low pressure introduction path 116 when the load is small, and the volume control path when the load is large. The second four-way valve 112 is controlled so that 111 is connected to the high-pressure introduction path 114.
  • the control device 117 can be configured by a DSP (Digital Signal Processor) including an A / D conversion circuit, an input / output circuit, an arithmetic circuit, a storage device, and the like.
  • the control device 117 may include a drive circuit that controls the motor 2 of the compressor 101.
  • the compressor 101 sucks low-pressure gas refrigerant through the flow path 10f (suction path) and compresses it.
  • the high-pressure gas refrigerant is discharged into the internal space 28 of the sealed container 1, passes through the internal space 28 of the sealed container 1, the flow path 10 a, the first four-way valve 102, and the flow path 10 b, and then passes through the first heat exchanger 103 (heat radiator). ).
  • the refrigerant is cooled and condensed.
  • the high-pressure liquid refrigerant is guided from the first heat exchanger 103 to the expansion mechanism 104 and decompressed by the function of the expansion mechanism 104.
  • the gas-liquid two-phase refrigerant is led from the expansion mechanism 104 to the second heat exchanger 105 (evaporator), heated by the second heat exchanger 105, and evaporated.
  • the gas refrigerant is again sucked into the compressor 101 through the accumulator 106.
  • the compressor 101 is configured to change the suction volume using the discharge pressure and the suction pressure.
  • the second four-way valve 112 When the second four-way valve 112 is maintained in the state shown in FIG. 1, the discharge pressure of the compressor 101 is supplied to the volume control path 111. In this case, since the bypass discharge valve 35 is closed, the compressor 101 is operated with a relatively large suction volume (high volume mode).
  • the control device 117 switches the second four-way valve 112 from the state shown in FIG. 1 to the state shown in FIG. Then, the volume control path 111 is disconnected from the high pressure introduction path 114 and connected to the low pressure introduction path 116. As a result, the suction pressure of the compressor 101 is supplied to the volume control path 111. The suction pressure of the compressor 101 acts on the bypass discharge valve 35. In this case, when the volume of the compression chamber 25 is reduced, the bypass discharge valve 35 opens as the refrigerant in the compression chamber 25 is pushed away by the piston 8.
  • the compressor 101 is operated with a relatively small suction volume (low volume mode).
  • the refrigerant discharge amount from the compressor 101 in the low volume mode is smaller than the refrigerant discharge amount in the high volume mode. Therefore, by switching the operation mode between the high volume mode and the low volume mode, the range in which the ability can be followed, particularly the lower limit value, is expanded.
  • a check valve 120 is provided in the high pressure introduction path 114.
  • the check valve 120 does not allow the flow from the volume control path 111 to the flow path 10a, the check valve 120 closes the high pressure introduction path 114. Thereby, the refrigerant containing a large amount of oil is discharged from the compressor 101, and a large amount of oil can be prevented from circulating in the refrigerant circuit.
  • the heat transfer in the heat exchangers 103 and 105 is improved, and the pressure loss when the refrigerant passes through the flow paths 10a to 10f is reduced, so that the coefficient of performance (COP) of the refrigeration cycle is improved.
  • the volume control path 111, the second four-way valve 112, and a part of the high pressure introduction path 114 are filled with the highest pressure refrigerant among the refrigerant compressed in the compression chamber 25, the closed state of the bypass discharge valve 35 can also be maintained. .
  • control device 117 controls the second four-way valve 112 so that the volume control path 111 is connected to the low pressure introduction path 116 when the refrigeration cycle apparatus 100 is started up, and thereafter, for an arbitrary time (for example, 1 to 5 minutes). ), The second four-way valve 112 is controlled so that the volume control path 111 is connected to the high pressure introduction path 114. Specifically, after an arbitrary time has elapsed since the start of the motor 2, the operation in the low volume mode should be performed or the operation in the high volume mode should be performed depending on the capacity required for the refrigeration cycle apparatus 100. Determine what to do. When the operation in the high volume mode is to be performed, the volume control path 111 is connected to the high pressure introduction path 114. When the operation in the low volume mode is to be performed, the connection between the volume control path 111 and the low pressure introduction path 116 is maintained. That is, the preliminary operation in the low volume mode is performed at the time of startup.
  • liquid refrigerant may accumulate in the volume control path 111 in winter, for example. If the preliminary operation is performed, even if liquid refrigerant is accumulated in the volume control path 111, the liquid refrigerant can be quickly returned to the flow path 10e. As a result, the generation of abnormal pressure due to the liquid refrigerant being confined in the volume control path 111, that is, the temperature of the liquid refrigerant rises after startup and the liquid refrigerant expands, thereby increasing the pressure of the volume control path 111 excessively. Can be prevented. Further, from the viewpoint of preliminary operation, the low-pressure introduction path 116 is preferably connected to the flow path 10e or the accumulator 106. Thereby, it can prevent that a liquid refrigerant is supplied to the compressor 101 at the time of starting.
  • Preliminary operation is performed when the refrigeration cycle apparatus 100 is activated, but the “activation of the refrigeration cycle apparatus 100” may include restart after a temporary stop.
  • the preliminary operation can also be applied to other embodiments and modifications described in this specification.
  • the control device 117 may control the second four-way valve 112 so as to connect the volume control path 111 to the low pressure introduction path 116 when the operation of the refrigeration cycle apparatus 100 is stopped. Specifically, it is desirable to stop the operation of the refrigeration cycle apparatus 100 in a state where the volume control path 111 is connected to the low pressure introduction path 116. In this way, abnormal pressure is generated due to the liquid refrigerant being confined in the volume control path 111, that is, the pressure of the volume control path 111 is excessive due to the temperature of the liquid refrigerant rising and the liquid refrigerant expanding after startup. Can be prevented.
  • Modification 1 As shown in FIG. 4, the refrigeration cycle apparatus 200 according to Modification 1 is different from the refrigeration cycle apparatus 100 of Embodiment 1 in that it further includes a relief valve circuit 221.
  • the same reference numerals are assigned to components common to the previous embodiment or modification and the subsequent embodiment or modification, and description thereof is omitted.
  • the high pressure introduction path 114 includes a first portion 114a between the check valve 120 and the second four-way valve 112 (flow path switching unit), and a second portion between the check valve 120 and the flow path 10a (discharge path). Part 114b.
  • the relief valve circuit 221 has one end connected to the first portion 114a and the other end connected to the second portion 114b or the flow path 10a so as to bypass the check valve 120.
  • the relief valve circuit 221 causes the refrigerant to flow from the first portion 114a to the flow path 10a (or the second portion 114b), The pressure in the first portion 114a is lowered.
  • the same effect as the preliminary operation described in the first embodiment can be obtained. That is, the generation of abnormal pressure due to the liquid refrigerant being confined in the volume control path 111 or the like can be prevented.
  • liquid refrigerant may accumulate in the volume control path 111, the four-way valve 112, and the first portion 114a of the high-pressure introduction path 114.
  • the phenomenon that the liquid refrigerant is accumulated in the volume control path 111 or the like is predicted to occur when the path from the bypass discharge valve 35 to the check valve 120 is cooled. Further, liquid refrigerant may accumulate in the volume control path 111 and the like while the compressor 101 is stopped.
  • the refrigeration cycle apparatus 300 according to the second modification is different from the first embodiment in that it includes a compressor 301 having a structure different from that of the compressor 101 in the first embodiment.
  • the compressor 301 includes a sealed container 1, a motor 2, and a compression mechanism 30, and is configured as a multi-cylinder rotary compressor (two cylinders in this modification).
  • the refrigerant compressed by the compression mechanism 30 is guided to the flow path 10 a through the internal space 28 of the sealed container 1.
  • the compression mechanism 30 includes a first compression chamber 40, a second compression chamber 42, an intermediate chamber 69, a first discharge port 67, a first discharge valve 63, a second discharge port 71, a second discharge valve 73, a bypass discharge port 65, and A bypass discharge valve 61 is provided.
  • the flow path 10a forms a discharge path that guides the refrigerant compressed by the compressor 301 from the first compression chamber 40 and the second compression chamber 42 to the radiator (the first heat exchanger 103 or the second heat exchanger 105). ing.
  • the flow path 10e, the accumulator 106, and the flow path 10f are suction paths that guide the refrigerant to be compressed from the evaporator (the first heat exchanger 103 or the second heat exchanger 105) to the first compression chamber 40 and the second compression chamber 42. Is forming.
  • the bypass discharge port 65 is open to the first compression chamber 40.
  • a bypass discharge valve 61 is provided so as to open and close the bypass discharge port 65.
  • the intermediate chamber 69 is a space that receives the refrigerant discharged from the first compression chamber 40 through the bypass discharge port 65.
  • the first discharge port 67 allows the intermediate chamber 69 and the internal space 28 of the sealed container 1 to communicate with each other.
  • a first discharge valve 63 is provided to open and close the first discharge port 67.
  • the volume control path 111 is connected to the bypass discharge port 65 via the intermediate chamber 69.
  • the compressor 301 is provided with the two discharge valves 61 and 63 on the path from the first compression chamber 40 to the internal space 28 of the sealed container 1.
  • a volume control path 111 is connected to a space (intermediate chamber 69) between the discharge valve 61 and the discharge valve 63.
  • the compression mechanism 30 also includes a first cylinder 41, an intermediate plate 71, a second cylinder 43, a first piston 51, a second piston 53, an upper bearing 46, a lower bearing 48, a muffler 77, and a muffler 75.
  • the first piston 51 is fitted into the first eccentric portion 4 a of the shaft 4 inside the first cylinder 41.
  • a first compression chamber 40 is formed between the outer peripheral surface of the first piston 51 and the inner peripheral surface of the first cylinder 41.
  • the second cylinder 43 is disposed concentrically with the first cylinder 41.
  • the second piston 53 is fitted into the second eccentric portion 4 b of the shaft 4 inside the second cylinder 43.
  • a second compression chamber 42 is formed between the outer peripheral surface of the second piston 53 and the inner peripheral surface of the second cylinder 43.
  • the upper bearing 46 and the lower bearing 48 are arranged at the upper part of the first cylinder 41 and the lower part of the second cylinder 43, respectively.
  • the intermediate plate 71 is disposed between the first cylinder 41 and the second cylinder 43.
  • the first cylinder 41 is closed by the upper bearing 46 and the middle plate 71
  • the second cylinder 43 is closed by the middle plate 71 and the lower bearing 48.
  • a path that passes through the upper bearing 46 along the axial direction of the shaft 4 is formed by the bypass discharge port 65, the intermediate chamber 69, and the first discharge port 67.
  • a muffler 77 is disposed on the upper bearing 46.
  • the refrigerant compressed in the first compression chamber 40 is guided to the internal space 28 of the sealed container 1 through the internal space of the bypass discharge port 65, the intermediate chamber 69, the first discharge port 67 and the muffler 77.
  • the second discharge port 71 is formed in the lower bearing 48 such that a path that penetrates the lower bearing 48 along the axial direction of the shaft 4 is formed.
  • a muffler 75 is disposed below the lower bearing 48.
  • the internal space of the muffler 75 communicates with the internal space of the muffler 77 through a vertical path (not shown).
  • the refrigerant compressed in the second compression chamber 42 is guided to the internal space 28 of the sealed container 1 through the second discharge port 71, the internal space of the muffler 75, the vertical path, and the internal space of the muffler 77.
  • the first compression chamber 40 and the second compression chamber 42 function as mutually independent compression chambers.
  • the refrigerant is compressed in each of the first compression chamber 40 and the second compression chamber 42.
  • the low volume mode the refrigerant is compressed in the second compression chamber 42, but the refrigerant is not compressed in the first compression chamber 40.
  • the suction pressure is supplied to the intermediate chamber 69, so that the refrigerant sucked into the first compression chamber 40 pushes and opens the bypass discharge valve 61 without being compressed, thereby bypassing the bypass discharge port 65 and the intermediate chamber 69.
  • the compressor 301 is configured as a so-called cylinderless volume control compressor.
  • the compressor 301 sucks in and compresses the low-pressure gas refrigerant through the flow path 10f (suction path).
  • the high-pressure gas refrigerant is discharged into the internal space 28 of the sealed container 1.
  • the refrigerant compressed in the first compression chamber 40 is discharged into the internal space 28 of the sealed container 1 through the bypass discharge port 65, the intermediate chamber 69, the first discharge port 67 and the muffler 77.
  • the refrigerant compressed in the second compression chamber 42 is discharged into the internal space 28 of the sealed container 1 through the second discharge port 71 and the muffler 75.
  • the refrigerant compressed in the first compression chamber 40 merges with the refrigerant compressed in the second compression chamber 42.
  • the subsequent refrigerant flow is as described in the first embodiment.
  • the discharge pressure of the compressor 301 is supplied to the volume control path 111 and the intermediate chamber 69.
  • the refrigerant sucked into the first compression chamber 40 is compressed in the first compression chamber 40 to a pressure exceeding the discharge pressure, pushes open the bypass discharge valve 61 and the first discharge valve 63, bypasses the bypass discharge port 65, intermediate It is discharged from the first compression chamber 40 to the internal space 28 of the sealed container 1 through the chamber 69 and the first discharge port 67. Since the compression work of the refrigerant is performed in both the first compression chamber 40 and the second compression chamber 42, the compressor 301 is operated with a relatively large suction volume (high volume mode).
  • the control device 117 switches the second four-way valve 112 from the state shown in FIG. 5 to the state shown in FIG. As a result, the volume control path 111 is disconnected from the high pressure introduction path 114 and connected to the low pressure introduction path 116.
  • the suction pressure of the compressor 301 is supplied to the volume control path 111 and the intermediate chamber 69. In this case, the compressor 301 is operated with a relatively small suction volume (low volume mode).
  • the bypass discharge valve 61 is always open. Therefore, the refrigerant sucked into the first compression chamber 40 is discharged from the first compression chamber 40 to the intermediate chamber 69 through the bypass discharge port 65 while maintaining the suction pressure (without being substantially compressed). Since the high pressure of the internal space 28 of the sealed container 1 is applied to one side of the first discharge valve 63, the first discharge valve 63 does not open. As a result, the refrigerant discharged into the intermediate chamber 69 is returned to the flow path 10e (suction path) through the volume control path 111, the second four-way valve 112, and the low pressure introduction path 116.
  • the volume control path 111 is connected to the high pressure introduction path 114.
  • the pressure in the intermediate chamber 69 becomes equal to the discharge pressure.
  • the pressure in the flow path 10 a is slightly lower than the pressure in the internal space 28 of the sealed container 1 due to the effect of pressure loss that inevitably occurs.
  • the first discharge valve 63 is not opened. The refrigerant discharged into the intermediate chamber 69 fills a part of the volume control path 111, the second four-way valve 112, and the high-pressure introduction pipe 114 and is blocked by the check valve 120.
  • the check valve 120 does not allow the flow from the volume control path 111 to the flow path 10a, the pressure in the volume control path 111 and the intermediate chamber 69 gradually increases and exceeds the pressure in the internal space 28 of the sealed container 1. As a result, the first discharge valve 63 is opened. Thus, in the high volume mode, the compression work is performed not only in the second compression chamber 42 but also in the first compression chamber 40. In addition, a refrigerant containing a large amount of oil is discharged from the compressor 301, and a large amount of oil can be prevented from circulating in the refrigerant circuit.
  • a closed space is not formed in the refrigerant circuit. Therefore, even if a part of the volume control path 111, the second four-way valve 112, and the high pressure introduction path 114 is filled with the liquid refrigerant, and then the temperature of the liquid refrigerant rises and the liquid refrigerant expands, the volume control path 111 The pressure cannot rise excessively. When the pressure in the volume control path 111 rises, the first discharge valve 63 is opened, and the pressure can be released to the internal space 28 of the sealed container 1.
  • the first compression chamber 40 is located closer to the motor 2. Therefore, the bypass path from the first compression chamber 40 to the volume control path 111 is shortened, and the pressure loss in the low volume mode can be reduced.
  • the bypass discharge port 65 may be provided in the second compression chamber 42. That is, the compressor 301 may be configured such that the second compression chamber 42 is stopped instead of the first compression chamber 40.
  • the refrigeration cycle apparatus 400 of the present embodiment is different from the refrigeration cycle apparatus 100 of the first embodiment in that it includes an on-off valve 420 and a relief valve circuit 221 as means for switching the control pressure.
  • the function and effect of the relief valve circuit 221 are as described in the first modification.
  • the on-off valve 420 is provided so as to connect the low pressure introduction path 116 and the volume control path 111.
  • an electromagnetic valve can be used as the on-off valve 420.
  • the on-off valve 420 is closed in the high volume mode and opened in the low volume mode. That is, when the load of the refrigeration cycle apparatus 400 is small, the on-off valve 420 is controlled to connect the volume control path 111 to the low pressure introduction path 116, and when the load is large, the volume control path 111 is set to the low pressure introduction path.
  • On-off valve 420 is controlled so as to be disconnected from 116.
  • the volume control path 111 is connected to the low pressure introduction path 116 via the on-off valve 420. Therefore, it is possible to avoid the refrigerant containing a large amount of oil from directly flowing into the discharge path of the compressor 101 through the bypass discharge port 16 and the volume control path 111.
  • liquid refrigerant may be accumulated in the volume control path 111 also in the refrigeration cycle apparatus 400 of the present embodiment. However, even if the temperature of the liquid refrigerant rises and the liquid refrigerant expands to increase the pressure in the volume control path 111, the pressure can be released to the discharge path (flow path 10a) through the relief valve circuit 221.
  • the high-pressure refrigerant is blocked by the on-off valve 420. Since the volume control path 111 is filled with the highest pressure refrigerant among the refrigerant compressed in the compression chamber 25, the closed state of the bypass discharge valve 35 can be maintained. Thereby, the refrigerant containing a large amount of oil is discharged from the compressor 101, and a large amount of oil can be prevented from circulating in the refrigerant circuit.
  • the refrigeration cycle apparatus 500 of Modification 3 is different from the refrigeration cycle apparatus 300 of Modification 2 in that it includes an on-off valve 420 as means for switching the control pressure. That is, in the refrigeration cycle apparatus 500 of this modification, the compressor 101 of the second embodiment is replaced with the compressor 301 of the modification 2, and the relief valve circuit 221 is omitted.
  • the on-off valve 420 is closed in the high volume mode and opened in the low volume mode.
  • the function of the on-off valve 420 is as described in the second embodiment. According to the refrigeration cycle apparatus 500 of this modification, both of the advantages of Modification 2 and the advantages of Embodiment 2 can be obtained.
  • a preliminary operation similar to that in the first embodiment may be performed. That is, when starting the refrigeration cycle apparatus 400 (or 500), the on-off valve 420 is controlled so that the volume control path 111 is connected to the low pressure introduction path 116.
  • the on-off valve 420 may be controlled so as to be disconnected from the introduction path 116. That is, the opening / closing valve 420 is opened at the time of activation.
  • the on-off valve 420 may be controlled so as to connect the volume control path 111 to the low pressure introduction path 116. That is, the operation of the refrigeration cycle apparatus 400 (or 500) may be stopped in a state where the on-off valve 420 is opened and the volume control path 111 is connected to the low pressure introduction path 116.
  • the refrigeration cycle apparatus of the present invention is useful for air conditioners, refrigerators, heaters, water heaters, and the like.

Abstract

A refrigeration cycle device (100) is equipped with a volume control compressor (101), a volume control passage (111), a four-way valve (flow path switching unit) (112), a high-pressure introduction passage (114), a low-pressure introduction passage (116), and a check valve (120). When the load is small, the four-way valve (112) is controlled such that the volume control passage (111) is connected to the low-pressure introduction passage (116). When the load is large, the four-way valve (112) is controlled such that the volume control passage (111) is connected to the high-pressure introduction passage (114). The high-pressure introduction passage (114) is provided with the check valve (120), which allows the circulation of refrigerant from a flow path (10a) to the four-way valve (112) and prevents circulation in the opposite direction.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷凍サイクル装置に関する。本発明は、特に、容積制御圧縮機を備えた冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle apparatus. The present invention particularly relates to a refrigeration cycle apparatus including a volume control compressor.
 吸入容積(排除容積)を変更できる容積制御圧縮機は従来から知られている。圧縮機の容積制御技術は、インバータが広く普及する以前に活発に検討されていたが、高性能のインバータが安価に入手できるようになってからというもの、容積制御技術の重要性は一時的に低下していた。昨今、更なる省エネルギー化を推進するために、圧縮機の容積制御技術が再び脚光を浴び始めている。図9を参照して、容積制御技術の一例を紹介する。 A volume control compressor capable of changing the suction volume (exclusion volume) has been conventionally known. Volumetric control technology for compressors was actively studied before inverters were widely used. However, the importance of volumetric control technology was temporarily increased after high-performance inverters became available at low cost. It was falling. Recently, in order to promote further energy saving, compressor volume control technology has begun to attract attention again. An example of the volume control technique will be introduced with reference to FIG.
 図9は、特許文献1に記載された空気調和装置の構成図である。空気調和装置600は、容積制御圧縮機622、四方弁623、室外熱交換器624、膨張手段625、室内熱交換器641、アキュームレータ621、バイパス配管688、流路切替弁690、吸入配管628及び吐出配管630を備えている。容積制御圧縮機622とバイパス配管688との接続部には、バイパス吐出弁(図示省略)が設けられている。 FIG. 9 is a configuration diagram of the air conditioner described in Patent Document 1. The air conditioner 600 includes a volume control compressor 622, a four-way valve 623, an outdoor heat exchanger 624, an expansion means 625, an indoor heat exchanger 641, an accumulator 621, a bypass pipe 688, a flow path switching valve 690, a suction pipe 628, and a discharge. A pipe 630 is provided. A bypass discharge valve (not shown) is provided at a connection portion between the volume control compressor 622 and the bypass pipe 688.
 空調負荷が小さいとき、流路切替弁690によってバイパス配管688が吸入配管628に接続される。これにより、吸入冷媒の一部がバイパス配管688を経て吸入配管628に戻され、低容積での運転が可能となる。他方、空調負荷が大きいとき、流路切替弁690によってバイパス配管688が吐出配管630に接続される。このとき、バイパス吐出弁は、吐出圧力の冷媒で閉じられる。 When the air conditioning load is small, the bypass pipe 688 is connected to the suction pipe 628 by the flow path switching valve 690. As a result, a part of the suction refrigerant is returned to the suction pipe 628 via the bypass pipe 688, and operation at a low volume becomes possible. On the other hand, when the air conditioning load is large, the bypass pipe 688 is connected to the discharge pipe 630 by the flow path switching valve 690. At this time, the bypass discharge valve is closed with the refrigerant having the discharge pressure.
特開2008-240699号公報JP 2008-240699 A
 図9を参照して説明した容積制御を適用する場合、圧縮機から多量のオイルが流出するおそれがある。 When applying the volume control described with reference to FIG. 9, a large amount of oil may flow out from the compressor.
 本発明は、このような課題を解決するもので、容積制御圧縮機からのオイルの流出量を減らし、高い機器効率(冷凍サイクルのCOP(coefficient of performance))を発揮しうる冷凍サイクル装置を提供することを目的とする。 The present invention solves such problems, and provides a refrigeration cycle apparatus that can reduce the amount of oil flowing out of a volume control compressor and exhibit high equipment efficiency (COP (coefficient of performance) of the refrigeration cycle). The purpose is to do.
 すなわち、本開示は、
 圧縮室と、前記圧縮室に開口しているバイパス吐出口と、前記バイパス吐出口を開閉するバイパス吐出弁とを有し、前記圧縮室に吸入された冷媒が吸入圧力を維持しつつ前記バイパス吐出口を通じて前記圧縮室から吐出されることによって吸入容積を変更できるように構成された容積制御圧縮機と、
 前記圧縮機で圧縮された冷媒を冷却する放熱器と、
 前記放熱器で冷却された冷媒を膨張させる膨張機構と、
 前記膨張機構で膨張した冷媒を加熱する蒸発器と、
 圧縮するべき冷媒を前記蒸発器から前記圧縮室に導く吸入経路と、
 圧縮された冷媒を前記圧縮室から前記放熱器に導く吐出経路と、
 前記バイパス吐出口に接続された容積制御経路と、
 前記圧縮機の吐出圧力及び前記圧縮機の吸入圧力のいずれかを制御圧力として前記容積制御経路に供給する流路切替部と、
 前記流路切替部に接続された一端部と、前記吐出経路に接続された他端部とを有する高圧導入経路と、
 前記流路切替部に接続された一端部と、前記吸入経路に接続された他端部とを有する低圧導入経路と、
 当該冷凍サイクル装置の負荷が小さい場合には、前記容積制御経路が前記低圧導入経路に接続されるように前記流路切替部を制御し、前記負荷が大きい場合には、前記容積制御経路が前記高圧導入経路に接続されるように前記流路切替部を制御する制御装置と、
 前記高圧導入経路に設けられ、前記吐出経路から前記流路切替部への冷媒の流れを許容し、逆方向の流れを禁止する逆止弁と、
 を備えた、冷凍サイクル装置を提供する。
That is, this disclosure
A compression chamber, a bypass discharge port that opens to the compression chamber, and a bypass discharge valve that opens and closes the bypass discharge port, and the refrigerant sucked into the compression chamber maintains the suction pressure while the bypass discharge port. A volume control compressor configured to be able to change a suction volume by being discharged from the compression chamber through an outlet;
A radiator for cooling the refrigerant compressed by the compressor;
An expansion mechanism for expanding the refrigerant cooled by the radiator;
An evaporator for heating the refrigerant expanded by the expansion mechanism;
A suction path for leading the refrigerant to be compressed from the evaporator to the compression chamber;
A discharge path for guiding the compressed refrigerant from the compression chamber to the radiator;
A volume control path connected to the bypass discharge port;
A flow path switching unit that supplies either the discharge pressure of the compressor or the suction pressure of the compressor to the volume control path as a control pressure;
A high-pressure introduction path having one end connected to the flow path switching unit and the other end connected to the discharge path;
A low-pressure introduction path having one end connected to the flow path switching unit and the other end connected to the suction path;
When the load of the refrigeration cycle apparatus is small, the flow path switching unit is controlled so that the volume control path is connected to the low pressure introduction path. When the load is large, the volume control path is A control device for controlling the flow path switching unit to be connected to the high-pressure introduction path;
A check valve provided in the high-pressure introduction path, allowing a refrigerant flow from the discharge path to the flow path switching unit, and prohibiting a reverse flow;
A refrigeration cycle apparatus is provided.
 本開示の冷凍サイクル装置によれば、高圧導入経路に逆止弁が設けられている。そのため、バイパス吐出口に圧縮室の高い内部圧力が作用する場合でも、圧縮室の内部圧力は逆止弁で塞き止められる。圧縮室の内部圧力を有する冷媒で容積制御経路が満たされるので、バイパス吐出弁も閉じられる。これにより、冷媒回路への過剰なオイル吐出を防止できる。その結果、熱交換器での伝熱が改善し、冷媒が配管を通過する際の圧力損失も低減するため、冷凍サイクルの成績係数(COP)が向上する。 According to the refrigeration cycle apparatus of the present disclosure, the check valve is provided in the high pressure introduction path. Therefore, even when a high internal pressure of the compression chamber acts on the bypass discharge port, the internal pressure of the compression chamber is blocked by the check valve. Since the volume control path is filled with the refrigerant having the internal pressure of the compression chamber, the bypass discharge valve is also closed. Thereby, excessive oil discharge to the refrigerant circuit can be prevented. As a result, the heat transfer in the heat exchanger is improved and the pressure loss when the refrigerant passes through the pipe is also reduced, so that the coefficient of performance (COP) of the refrigeration cycle is improved.
本発明の実施形態1に係る冷凍サイクル装置の構成図The block diagram of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 図1に示す冷凍サイクル装置に使用された容積制御圧縮機の概略横断面図Schematic cross-sectional view of the volume control compressor used in the refrigeration cycle apparatus shown in FIG. 図1に示す冷凍サイクル装置の低容積モードでの運転を示す構成図The block diagram which shows the driving | operation in the low volume mode of the refrigeration cycle apparatus shown in FIG. 変形例1に係る冷凍サイクル装置の構成図Configuration diagram of refrigeration cycle apparatus according to Modification 1 変形例2に係る冷凍サイクル装置の構成図Configuration diagram of refrigeration cycle apparatus according to modification 2 図5に示す冷凍サイクル装置に使用された容積制御圧縮機の概略縦断面図Schematic longitudinal sectional view of the volume control compressor used in the refrigeration cycle apparatus shown in FIG. 本発明の実施形態2に係る冷凍サイクル装置の構成図The block diagram of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. 変形例3に係る冷凍サイクル装置の構成図Configuration diagram of refrigeration cycle apparatus according to modification 3 従来の空気調和装置の構成図Configuration diagram of conventional air conditioner
 従来の容積制御の問題を詳細に説明する。図9を参照して説明した容積制御を適用する場合、次のような問題が生ずることが予測される。例えば、バイパス吐出弁の位置が圧縮室の吐出口に近い場合、バイパス吐出弁に作用する圧力(圧縮室の内部圧力)が吐出圧力を超える可能性がある。なぜなら、圧縮室から吐出配管への経路で圧力損失が生じるからである。そのため、圧縮室の内部圧力は、圧力損失に相当する分だけ吐出圧力よりも高い。バイパス吐出弁に作用する圧縮室の内部圧力が吐出圧力を超えると、バイパス吐出弁は閉塞状態を維持できない。 The problem of conventional volume control will be explained in detail. When the volume control described with reference to FIG. 9 is applied, the following problems are expected to occur. For example, when the position of the bypass discharge valve is close to the discharge port of the compression chamber, the pressure acting on the bypass discharge valve (the internal pressure of the compression chamber) may exceed the discharge pressure. This is because pressure loss occurs in the path from the compression chamber to the discharge pipe. Therefore, the internal pressure of the compression chamber is higher than the discharge pressure by an amount corresponding to the pressure loss. When the internal pressure of the compression chamber acting on the bypass discharge valve exceeds the discharge pressure, the bypass discharge valve cannot maintain the closed state.
 バイパス吐出弁が閉塞状態を維持できない場合、バイパス配管を通じて吐出配管に多量のオイルが流れ込み、冷媒回路を循環するオイル量が増加する。圧縮機から流出した多量のオイルは、熱交換器での伝熱を阻害し、冷媒が配管を通過する際の圧力損失を増加させ、冷凍サイクルの効率の低下を招く。この問題点は、以下の開示によって解決されうる。 When the bypass discharge valve cannot be kept closed, a large amount of oil flows into the discharge pipe through the bypass pipe, and the amount of oil circulating in the refrigerant circuit increases. A large amount of oil that has flowed out of the compressor hinders heat transfer in the heat exchanger, increases the pressure loss when the refrigerant passes through the pipe, and decreases the efficiency of the refrigeration cycle. This problem can be solved by the following disclosure.
 本開示の第1態様は、
 圧縮室と、前記圧縮室に開口しているバイパス吐出口と、前記バイパス吐出口を開閉するバイパス吐出弁とを有し、前記圧縮室に吸入された冷媒が吸入圧力を維持しつつ前記バイパス吐出口を通じて前記圧縮室から吐出されることによって吸入容積を変更できるように構成された容積制御圧縮機と、
 前記圧縮機で圧縮された冷媒を冷却する放熱器と、
 前記放熱器で冷却された冷媒を膨張させる膨張機構と、
 前記膨張機構で膨張した冷媒を加熱する蒸発器と、
 圧縮するべき冷媒を前記蒸発器から前記圧縮室に導く吸入経路と、
 圧縮された冷媒を前記圧縮室から前記放熱器に導く吐出経路と、
 前記バイパス吐出口に接続された容積制御経路と、
 前記圧縮機の吐出圧力及び前記圧縮機の吸入圧力のいずれかを制御圧力として前記容積制御経路に供給する流路切替部と、
 前記流路切替部に接続された一端部と、前記吐出経路に接続された他端部とを有する高圧導入経路と、
 前記流路切替部に接続された一端部と、前記吸入経路に接続された他端部とを有する低圧導入経路と、
 当該冷凍サイクル装置の負荷が小さい場合には、前記容積制御経路が前記低圧導入経路に接続されるように前記流路切替部を制御し、前記負荷が大きい場合には、前記容積制御経路が前記高圧導入経路に接続されるように前記流路切替部を制御する制御装置と、
 前記高圧導入経路に設けられ、前記吐出経路から前記流路切替部への冷媒の流れを許容し、逆方向の流れを禁止する逆止弁と、
 を備えた、冷凍サイクル装置を提供する。
The first aspect of the present disclosure is:
A compression chamber, a bypass discharge port that opens to the compression chamber, and a bypass discharge valve that opens and closes the bypass discharge port, and the refrigerant sucked into the compression chamber maintains the suction pressure while the bypass discharge port. A volume control compressor configured to be able to change a suction volume by being discharged from the compression chamber through an outlet;
A radiator for cooling the refrigerant compressed by the compressor;
An expansion mechanism for expanding the refrigerant cooled by the radiator;
An evaporator for heating the refrigerant expanded by the expansion mechanism;
A suction path for leading the refrigerant to be compressed from the evaporator to the compression chamber;
A discharge path for guiding the compressed refrigerant from the compression chamber to the radiator;
A volume control path connected to the bypass discharge port;
A flow path switching unit that supplies either the discharge pressure of the compressor or the suction pressure of the compressor to the volume control path as a control pressure;
A high-pressure introduction path having one end connected to the flow path switching unit and the other end connected to the discharge path;
A low-pressure introduction path having one end connected to the flow path switching unit and the other end connected to the suction path;
When the load of the refrigeration cycle apparatus is small, the flow path switching unit is controlled so that the volume control path is connected to the low pressure introduction path. When the load is large, the volume control path is A control device for controlling the flow path switching unit to be connected to the high-pressure introduction path;
A check valve provided in the high-pressure introduction path, allowing a refrigerant flow from the discharge path to the flow path switching unit, and prohibiting a reverse flow;
A refrigeration cycle apparatus is provided.
 第2態様は、第1態様に加え、前記圧縮機が、吸入口及び吐出口をさらに有していてもよい、冷凍サイクル装置を提供する。前記負荷が小さい場合には、前記吸入口から前記圧縮室に吸入された冷媒の一部が前記吸入圧力を維持しつつ前記バイパス吐出口を通じて前記圧縮室から吐出され、前記吸入口から前記圧縮室に吸入された冷媒の残部が前記圧縮室で圧縮されて前記吐出口を通じて前記圧縮室から吐出されうる。バイパス吐出口を通じて圧縮室から吐出された冷媒は、吸入経路に戻される。従って、圧縮機によって不要な圧縮仕事が行われない。 The second aspect provides a refrigeration cycle apparatus, in addition to the first aspect, in which the compressor may further include a suction port and a discharge port. When the load is small, a part of the refrigerant sucked into the compression chamber from the suction port is discharged from the compression chamber through the bypass discharge port while maintaining the suction pressure, and from the suction port to the compression chamber The remaining portion of the refrigerant sucked in can be compressed in the compression chamber and discharged from the compression chamber through the discharge port. The refrigerant discharged from the compression chamber through the bypass discharge port is returned to the suction path. Therefore, unnecessary compression work is not performed by the compressor.
 第3態様は、第1又は第2態様に加え、リリーフ弁回路をさらに備えていてもよい、冷凍サイクル装置を提供する。前記高圧導入経路が、前記逆止弁と前記流路切替部との間の第1部分と、前記逆止弁と前記吐出経路との間の第2部分とを有していてもよい。前記リリーフ弁回路が、前記第1部分に接続された一端と、前記第2部分又は前記吐出経路に接続された他端とを有していてもよい。リリーフ弁回路によれば、圧力を第2部分又は吐出経路に逃がすことによって、容積制御経路、流路切替部及び高圧導入経路の第1部分の圧力の過上昇を防止できる。 3rd aspect provides the refrigerating-cycle apparatus which may be further provided with the relief valve circuit in addition to the 1st or 2nd aspect. The high-pressure introduction path may include a first part between the check valve and the flow path switching unit and a second part between the check valve and the discharge path. The relief valve circuit may have one end connected to the first part and the other end connected to the second part or the discharge path. According to the relief valve circuit, it is possible to prevent an excessive increase in pressure in the volume control path, the flow path switching unit, and the first portion of the high pressure introduction path by letting the pressure escape to the second part or the discharge path.
 第4態様は、第1態様に加え、前記圧縮機は、前記圧縮室としての第1圧縮室及び第2圧縮室と、前記第1圧縮室で圧縮された冷媒及び前記第2圧縮室で圧縮された冷媒を保持しうる内部空間を含む密閉容器と、前記バイパス吐出口を通じて前記第1圧縮室から吐出された冷媒を受け入れる中間室と、前記中間室と前記密閉容器の前記内部空間とを連通する第1吐出口と、前記第1吐出口を開閉する第1吐出弁と、をさらに有する密閉型多気筒圧縮機であってもよい、冷凍サイクル装置を提供する。前記中間室を介して、前記容積制御経路が前記バイパス吐出口に接続されうる。前記負荷が小さい場合には、前記第1圧縮室に吸入された冷媒が前記吸入圧力を維持しつつ前記バイパス吐出口を通じて前記第1圧縮室から吐出され、前記中間室、前記容積制御経路及び前記低圧導入経路を通じて前記吸入経路に戻されうる。前記負荷が大きい場合には、前記第1圧縮室に吸入された冷媒が前記第1圧縮室で前記吐出圧力を超える圧力まで圧縮され、前記バイパス吐出弁及び前記第1吐出弁を押し開き、前記バイパス吐出口、前記中間室及び前記第1吐出口を通じて、前記第1圧縮室から前記密閉容器の前記内部空間へと吐出されうる。第4態様によれば、いわゆる休筒型の容積制御圧縮機を提供できる。 In the fourth aspect, in addition to the first aspect, the compressor is compressed by the first compression chamber and the second compression chamber as the compression chamber, the refrigerant compressed in the first compression chamber, and the second compression chamber. A closed container including an internal space capable of holding the refrigerant, an intermediate chamber that receives the refrigerant discharged from the first compression chamber through the bypass discharge port, and the intermediate chamber and the internal space of the closed container are communicated with each other. There is provided a refrigeration cycle apparatus that may be a hermetic multi-cylinder compressor further including a first discharge port that performs and a first discharge valve that opens and closes the first discharge port. The volume control path may be connected to the bypass discharge port via the intermediate chamber. When the load is small, the refrigerant sucked into the first compression chamber is discharged from the first compression chamber through the bypass discharge port while maintaining the suction pressure, and the intermediate chamber, the volume control path, and the It can be returned to the suction path through the low pressure introduction path. When the load is large, the refrigerant sucked into the first compression chamber is compressed to a pressure exceeding the discharge pressure in the first compression chamber, pushes open the bypass discharge valve and the first discharge valve, The air can be discharged from the first compression chamber to the internal space of the sealed container through the bypass discharge port, the intermediate chamber, and the first discharge port. According to the fourth aspect, a so-called cylinder-less volume control compressor can be provided.
 第5態様は、第1~第4態様のいずれか1つに加え、前記制御装置は、当該冷凍サイクル装置の起動時において、前記容積制御経路を前記低圧導入経路に接続するように前記流路切替部を制御し、その後、任意の時間が経過したら前記容積制御経路を前記高圧導入経路に接続するように前記流路切替部を制御しうる、冷凍サイクル装置を提供する。このような制御を実行すれば、容積制御経路に液冷媒が蓄積されたとしても、液冷媒を速やかに吸入経路へと戻すことができる。その結果、容積制御経路に液冷媒が閉じ込められることによる異常圧力の発生、すなわち、起動後に液冷媒の温度が上昇して液冷媒が膨張することによって容積制御経路の圧力が過剰に上がることを防止できる。 In a fifth aspect, in addition to any one of the first to fourth aspects, the control device is configured to connect the volume control path to the low pressure introduction path when the refrigeration cycle apparatus is activated. Provided is a refrigeration cycle apparatus capable of controlling a switching unit and controlling the flow path switching unit to connect the volume control path to the high-pressure introduction path after an arbitrary time has elapsed. By executing such control, even if the liquid refrigerant is accumulated in the volume control path, the liquid refrigerant can be quickly returned to the suction path. As a result, abnormal pressure is generated due to liquid refrigerant confined in the volume control path, that is, the temperature of the liquid refrigerant rises after startup and the liquid refrigerant expands to prevent excessive pressure increase in the volume control path. it can.
 第6態様は、第1~第5態様のいずれか1つに加え、前記制御装置は、当該冷凍サイクル装置の運転を停止するとき、前記容積制御経路を前記低圧導入経路に接続するように前記流路切替部を制御しうる、冷凍サイクル装置を提供する。このようにすれば、容積制御経路に液冷媒が閉じ込められることによる異常圧力の発生、すなわち、起動後に液冷媒の温度が上昇して液冷媒が膨張することによって容積制御経路の圧力が過剰に上がることを防止できる。 In a sixth aspect, in addition to any one of the first to fifth aspects, the control device is configured to connect the volume control path to the low-pressure introduction path when stopping the operation of the refrigeration cycle apparatus. A refrigeration cycle apparatus capable of controlling a flow path switching unit is provided. In this way, abnormal pressure is generated due to the liquid refrigerant being confined in the volume control path, that is, the temperature of the liquid refrigerant rises after startup and the liquid refrigerant expands, thereby excessively increasing the pressure in the volume control path. Can be prevented.
 本開示の第7態様は、
 圧縮室と、前記圧縮室に開口しているバイパス吐出口と、前記バイパス吐出口を開閉するバイパス吐出弁とを有し、前記圧縮室に吸入された冷媒が吸入圧力を維持しつつ前記バイパス吐出口を通じて前記圧縮室から吐出されることによって吸入容積を変更できるように構成された容積制御圧縮機と、
 前記圧縮機で圧縮された冷媒を冷却する放熱器と、
 前記放熱器で冷却された冷媒を膨張させる膨張機構と、
 前記膨張機構で膨張した冷媒を加熱する蒸発器と、
 圧縮するべき冷媒を前記蒸発器から前記圧縮室に導く吸入経路と、
 圧縮された冷媒を前記圧縮室から前記放熱器に導く吐出経路と、
 前記バイパス吐出口に接続された容積制御経路と、
 前記吸入経路に接続された低圧導入経路と、
 前記低圧導入経路と前記容積制御経路とを接続するように設けられた開閉弁と、
 当該冷凍サイクル装置の負荷が小さい場合には、前記容積制御経路を前記低圧導入経路に接続するように前記開閉弁を制御し、前記負荷が大きい場合には、前記容積制御経路を前記低圧導入経路から切り離すように前記開閉弁を制御する制御装置と、
 前記容積制御経路に接続された一端と、前記吐出経路に接続された他端とを有するリリーフ弁回路と、
 を備えた、冷凍サイクル装置を提供する。
The seventh aspect of the present disclosure is:
A compression chamber, a bypass discharge port that opens to the compression chamber, and a bypass discharge valve that opens and closes the bypass discharge port, and the refrigerant sucked into the compression chamber maintains the suction pressure while the bypass discharge port. A volume control compressor configured to be able to change a suction volume by being discharged from the compression chamber through an outlet;
A radiator for cooling the refrigerant compressed by the compressor;
An expansion mechanism for expanding the refrigerant cooled by the radiator;
An evaporator for heating the refrigerant expanded by the expansion mechanism;
A suction path for leading the refrigerant to be compressed from the evaporator to the compression chamber;
A discharge path for guiding the compressed refrigerant from the compression chamber to the radiator;
A volume control path connected to the bypass discharge port;
A low-pressure introduction path connected to the suction path;
An on-off valve provided to connect the low-pressure introduction path and the volume control path;
When the load of the refrigeration cycle apparatus is small, the on-off valve is controlled to connect the volume control path to the low pressure introduction path, and when the load is large, the volume control path is changed to the low pressure introduction path. A control device for controlling the on-off valve so as to be separated from
A relief valve circuit having one end connected to the volume control path and the other end connected to the discharge path;
A refrigeration cycle apparatus is provided.
 第7態様によれば、容積制御経路は、開閉弁を介して低圧導入経路に接続されている。そのため、オイルを多量に含んだ冷媒がバイパス吐出口及び容積制御経路を通じて圧縮機の吐出経路に直接流入することを回避できる。さらに、リリーフ弁回路が設けられているので、容積制御経路に一時的に蓄積された液冷媒の温度が上昇して液冷媒が膨張することによって容積制御経路の圧力が上昇したとしても、リリーフ弁回路を通じて、圧力を吐出経路に逃がすことができる。 According to the seventh aspect, the volume control path is connected to the low pressure introduction path via the on-off valve. Therefore, it can be avoided that the refrigerant containing a large amount of oil flows directly into the discharge path of the compressor through the bypass discharge port and the volume control path. Further, since the relief valve circuit is provided, even if the temperature of the liquid refrigerant temporarily accumulated in the volume control path rises and the liquid refrigerant expands to increase the pressure of the volume control path, the relief valve circuit Through the circuit, pressure can be released to the discharge path.
 本開示の第8態様は、
 第1圧縮室と、第2圧縮室と、前記第1圧縮室で圧縮された冷媒及び前記第2圧縮室で圧縮された冷媒を保持しうる内部空間を含む密閉容器と、前記第1圧縮室に開口しているバイパス吐出口と、前記バイパス吐出口を開閉するバイパス吐出弁と、前記バイパス吐出口を通じて前記第1圧縮室から吐出された冷媒を受け入れる中間室と、前記中間室と前記密閉容器の前記内部空間とを連通する第1吐出口と、前記第1吐出口を開閉する第1吐出弁とを有する容積制御圧縮機と、
 前記圧縮機で圧縮された冷媒を冷却する放熱器と、
 前記放熱器で冷却された冷媒を膨張させる膨張機構と、
 前記膨張機構で膨張した冷媒を加熱する蒸発器と、
 圧縮するべき冷媒を前記蒸発器から前記第1圧縮室及び前記第2圧縮室に導く吸入経路と、
 圧縮された冷媒を前記第1圧縮室及び前記第2圧縮室から前記放熱器に導く吐出経路と、
 前記中間室を介して前記バイパス吐出口に接続された容積制御経路と、
 前記吸入経路に接続された低圧導入経路と、
 前記低圧導入経路と前記容積制御経路とを接続するように設けられた開閉弁と、
 (i)当該冷凍サイクル装置の負荷が小さい場合には、前記容積制御経路が前記低圧導入経路に接続されることによって、前記第1圧縮室に吸入された冷媒が吸入圧力を維持しつつ前記バイパス吐出口を通じて前記第1圧縮室から吐出され、前記中間室、前記容積制御経路及び前記低圧導入経路を通じて前記吸入経路に戻されるように前記開閉弁を制御し、(ii)前記負荷が大きい場合には、前記容積制御経路を前記低圧導入経路から切り離すことによって、前記第1圧縮室に吸入された冷媒が前記第1圧縮室で前記圧縮機の吐出圧力を超える圧力まで圧縮され、前記バイパス吐出弁及び前記第1吐出弁を押し開き、前記バイパス吐出口、前記中間室及び前記第1吐出口を通じて、前記第1圧縮室から前記密閉容器の前記内部空間へと吐出されるように前記開閉弁を制御する制御装置と、
 を備えた、冷凍サイクル装置を提供する。
The eighth aspect of the present disclosure is:
A first compression chamber; a second compression chamber; a sealed container including an internal space capable of holding the refrigerant compressed in the first compression chamber and the refrigerant compressed in the second compression chamber; and the first compression chamber A bypass discharge opening that opens to the opening, a bypass discharge valve that opens and closes the bypass discharge opening, an intermediate chamber that receives the refrigerant discharged from the first compression chamber through the bypass discharge opening, the intermediate chamber, and the sealed container A volume control compressor having a first discharge port that communicates with the internal space, and a first discharge valve that opens and closes the first discharge port;
A radiator for cooling the refrigerant compressed by the compressor;
An expansion mechanism for expanding the refrigerant cooled by the radiator;
An evaporator for heating the refrigerant expanded by the expansion mechanism;
A suction path for leading the refrigerant to be compressed from the evaporator to the first compression chamber and the second compression chamber;
A discharge path for guiding the compressed refrigerant from the first compression chamber and the second compression chamber to the radiator;
A volume control path connected to the bypass outlet through the intermediate chamber;
A low-pressure introduction path connected to the suction path;
An on-off valve provided to connect the low-pressure introduction path and the volume control path;
(I) When the load of the refrigeration cycle apparatus is small, the volume control path is connected to the low pressure introduction path, so that the refrigerant sucked into the first compression chamber maintains the suction pressure and the bypass Controlling the on-off valve so that it is discharged from the first compression chamber through a discharge port and returned to the suction passage through the intermediate chamber, the volume control path, and the low-pressure introduction path, and (ii) when the load is large By separating the volume control path from the low-pressure introduction path, the refrigerant sucked into the first compression chamber is compressed to a pressure exceeding the discharge pressure of the compressor in the first compression chamber, and the bypass discharge valve And the first discharge valve is pushed open and discharged from the first compression chamber to the internal space of the sealed container through the bypass discharge port, the intermediate chamber, and the first discharge port. A control device for controlling the opening and closing valve so,
A refrigeration cycle apparatus is provided.
 第8態様によれば、容積制御経路は、開閉弁を介して低圧導入経路に接続されている。そのため、オイルを多量に含んだ冷媒がバイパス吐出口及び容積制御経路を通じて圧縮機の吐出経路に直接流入することを回避できる。さらに、第8態様によれば、冷媒回路に閉じられた空間が形成されることを回避できる。そのため、容積制御経路が液冷媒で満たされ、その後、その液冷媒の温度が上昇して液冷媒が膨張したとしても、容積制御経路の圧力は過度に上昇し得ない。なぜなら、容積制御経路の圧力が上昇したら第1吐出弁が開き、密閉容器の内部空間に圧力を逃がすことができるからである。 According to the eighth aspect, the volume control path is connected to the low pressure introduction path via the on-off valve. Therefore, it can be avoided that the refrigerant containing a large amount of oil flows directly into the discharge path of the compressor through the bypass discharge port and the volume control path. Furthermore, according to the eighth aspect, it is possible to avoid the formation of a closed space in the refrigerant circuit. Therefore, even if the volume control path is filled with the liquid refrigerant, and then the temperature of the liquid refrigerant rises and the liquid refrigerant expands, the pressure in the volume control path cannot increase excessively. This is because when the pressure in the volume control path increases, the first discharge valve opens and the pressure can be released to the internal space of the sealed container.
 第9態様は、第7又は第8態様に加え、前記制御装置は、当該冷凍サイクル装置の起動時において、前記容積制御経路を前記低圧導入経路に接続するように前記開閉弁を制御し、その後、任意の時間が経過したら前記容積制御経路を前記低圧導入経路から切り離すように前記開閉弁を制御する、冷凍サイクル装置を提供する。第9態様によれば、第6態様と同じ効果が得られる。 In a ninth aspect, in addition to the seventh or eighth aspect, the control device controls the open / close valve so as to connect the volume control path to the low-pressure introduction path when the refrigeration cycle apparatus is started, and thereafter Provided is a refrigeration cycle apparatus that controls the on-off valve so that the volume control path is disconnected from the low-pressure introduction path when an arbitrary time has elapsed. According to the ninth aspect, the same effect as in the sixth aspect can be obtained.
 第10態様は、第7~第9態様のいずれか1つに加え、前記制御装置は、当該冷凍サイクル装置の運転を停止するとき、前記容積制御経路を前記低圧導入経路に接続するように前記開閉弁を制御する、冷凍サイクル装置を提供する。このようにすれば、容積制御経路に液冷媒が閉じ込められることによる異常圧力の発生、すなわち、起動後に液冷媒の温度が上昇して液冷媒が膨張することによって容積制御経路の圧力が過剰に上がることを防止できる。 In a tenth aspect, in addition to any one of the seventh to ninth aspects, the control device is configured to connect the volume control path to the low-pressure introduction path when stopping the operation of the refrigeration cycle apparatus. A refrigeration cycle apparatus for controlling an on-off valve is provided. In this way, abnormal pressure is generated due to the liquid refrigerant being confined in the volume control path, that is, the temperature of the liquid refrigerant rises after startup and the liquid refrigerant expands, thereby excessively increasing the pressure in the volume control path. Can be prevented.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の実施形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by the following embodiment.
(実施形態1)
 図1に示すように、本実施形態の冷凍サイクル装置100は、容積制御圧縮機101、第1四方弁102、第1熱交換器103、膨張機構104、第2熱交換器105及びアキュームレータ106を備えている。これらの構成要素は、冷媒回路を形成するように流路10a~10fによって互いに接続されている。流路10a~10fは、それぞれ、冷媒配管で構成されている。
(Embodiment 1)
As shown in FIG. 1, the refrigeration cycle apparatus 100 of the present embodiment includes a volume control compressor 101, a first four-way valve 102, a first heat exchanger 103, an expansion mechanism 104, a second heat exchanger 105, and an accumulator 106. I have. These components are connected to each other by flow paths 10a to 10f so as to form a refrigerant circuit. The flow paths 10a to 10f are each constituted by a refrigerant pipe.
 第1熱交換器103は、圧縮機101で圧縮された冷媒を冷却する放熱器又は膨張機構104で膨張した冷媒を加熱する蒸発器である。第2熱交換器105は、第1熱交換器103が放熱器のときに蒸発器であり、第1熱交換器103が蒸発器のときに放熱器である。膨張機構104は、放熱器で冷却された冷媒を膨張させる機能を有し、典型的には膨張弁で構成されている。膨張機構104は、冷媒の膨張エネルギーを回収できる容積式の膨張機で構成されていてもよい。 The first heat exchanger 103 is a radiator that cools the refrigerant compressed by the compressor 101 or an evaporator that heats the refrigerant expanded by the expansion mechanism 104. The second heat exchanger 105 is an evaporator when the first heat exchanger 103 is a radiator, and is a radiator when the first heat exchanger 103 is an evaporator. The expansion mechanism 104 has a function of expanding the refrigerant cooled by the radiator, and is typically composed of an expansion valve. The expansion mechanism 104 may be composed of a positive displacement expander that can recover the expansion energy of the refrigerant.
 圧縮機101は、密閉型圧縮機であり、密閉容器1、モータ2及び圧縮機構3を備えている。モータ2及び圧縮機構3は、密閉容器1の中に配置されている。密閉容器1は、圧縮機構3で圧縮された冷媒を保持しうる内部空間28を有する。すなわち、圧縮機101は、いわゆる高圧シェル型の圧縮機である。圧縮機構3は、シャフト4によってモータ2に接続されている。圧縮機構3は、容積式の流体機構であり、冷媒を圧縮するようにモータ2によって動かされる。 The compressor 101 is a hermetic compressor, and includes a hermetic container 1, a motor 2, and a compression mechanism 3. The motor 2 and the compression mechanism 3 are disposed in the sealed container 1. The sealed container 1 has an internal space 28 that can hold the refrigerant compressed by the compression mechanism 3. That is, the compressor 101 is a so-called high pressure shell type compressor. The compression mechanism 3 is connected to the motor 2 by a shaft 4. The compression mechanism 3 is a positive displacement fluid mechanism and is moved by the motor 2 so as to compress the refrigerant.
 図2に示すように、圧縮機構3は、吸入口27、吐出口29、圧縮室25、圧縮室25に開口しているバイパス吐出口16及びバイパス吐出口16を開閉するバイパス吐出弁35を備えている。高容積モードで圧縮機101を運転するとき、吸入口27から圧縮室25に吸入された冷媒の全量が圧縮室25で圧縮され、吐出口29を通じて密閉容器1の内部空間28に吐出される。他方、低容積モードで圧縮機101を運転するとき、吸入口27から圧縮室25に吸入された冷媒の一部がバイパス吐出弁35を押し開いてバイパス吐出口16を通じて圧縮室25から吐出される。高容積モードと低容積モードとを切り替えることによって、圧縮機101の吸入容積が変更される。 As shown in FIG. 2, the compression mechanism 3 includes a suction port 27, a discharge port 29, a compression chamber 25, a bypass discharge port 16 that opens to the compression chamber 25, and a bypass discharge valve 35 that opens and closes the bypass discharge port 16. ing. When the compressor 101 is operated in the high volume mode, the entire amount of refrigerant sucked into the compression chamber 25 from the suction port 27 is compressed in the compression chamber 25 and discharged to the internal space 28 of the sealed container 1 through the discharge port 29. On the other hand, when the compressor 101 is operated in the low volume mode, a part of the refrigerant sucked into the compression chamber 25 from the suction port 27 pushes the bypass discharge valve 35 open and is discharged from the compression chamber 25 through the bypass discharge port 16. . The suction volume of the compressor 101 is changed by switching between the high volume mode and the low volume mode.
 詳細には、低容積モードで圧縮機101を運転するとき、吸入口27から圧縮室25に吸入された冷媒の一部が吸入圧力を維持しつつ(実質的に圧縮されることなく)、バイパス吐出口16を通じて圧縮室25から吐出される。吸入口27から圧縮室25に吸入された冷媒の残部が圧縮室25で圧縮され、吐出口29を通じて圧縮室25から吐出される。バイパス吐出口16を通じて圧縮室25から吐出された冷媒は、後述するように、吸入経路としての流路10eに戻される。従って、圧縮機101によって不要な圧縮仕事が行われない。 Specifically, when the compressor 101 is operated in the low volume mode, a part of the refrigerant sucked into the compression chamber 25 from the suction port 27 maintains the suction pressure (without being substantially compressed) and bypasses. It is discharged from the compression chamber 25 through the discharge port 16. The remaining portion of the refrigerant sucked into the compression chamber 25 from the suction port 27 is compressed in the compression chamber 25 and discharged from the compression chamber 25 through the discharge port 29. The refrigerant discharged from the compression chamber 25 through the bypass discharge port 16 is returned to the flow path 10e as the suction path, as will be described later. Therefore, unnecessary compression work is not performed by the compressor 101.
 バイパス吐出弁35は、リード36及び弁止め37を含むリード弁で構成されている。リード36及び弁止め37は、ネジ、ボルト等の固定部品38によってシリンダ5に固定されている。バイパス吐出弁35は、リード36の表面と裏面との間の圧力差によって開閉する。本明細書で説明するいくつかの吐出弁は、いずれも、リード弁で構成されうる。 The bypass discharge valve 35 is composed of a reed valve including a reed 36 and a valve stop 37. The lead 36 and the valve stop 37 are fixed to the cylinder 5 by fixing parts 38 such as screws and bolts. The bypass discharge valve 35 opens and closes due to a pressure difference between the front surface and the back surface of the lead 36. Any of the several discharge valves described herein may be a reed valve.
 また、圧縮機構3は、シリンダ5、ピストン8、ベーン9及びバネ10を備えている。シリンダ5の上部及び下部には、それぞれ、シリンダ5を閉じるように上軸受及び下軸受が配置されている(図示省略)。シリンダ5の内部に圧縮室25が形成されるように、シャフト4の偏心部4aに嵌め合わされたピストン8がシリンダ5の内部に配置されている。シリンダ5には、ベーン溝24が形成されている。ベーン溝24には、ピストン8の外周面に接する先端を有するベーン9が収納されている。バネ10は、ベーン9をピストン8に向かって押すようにベーン溝24に配置されている。シリンダ5とピストン8との間の圧縮室25はベーン9によって仕切られ、これにより、吸入室25a及び圧縮-吐出室25bが形成されている。圧縮するべき冷媒は、流路10f及び吸入口27を通じて圧縮室25(吸入室25a)に導かれる。圧縮された冷媒は、吐出口29を通じて、圧縮室25(圧縮-吐出室25b)から密閉容器1の内部空間28に導かれる。吐出口29には、図示しない吐出弁が設けられている。なお、ベーン9は、ピストン8に一体化されていてもよい。すなわち、ピストン8及びベーン9がいわゆるスイングピストンで構成されていてもよい。 The compression mechanism 3 includes a cylinder 5, a piston 8, a vane 9, and a spring 10. An upper bearing and a lower bearing are disposed at the upper and lower portions of the cylinder 5 so as to close the cylinder 5 (not shown). A piston 8 fitted to the eccentric portion 4 a of the shaft 4 is disposed inside the cylinder 5 so that the compression chamber 25 is formed inside the cylinder 5. A vane groove 24 is formed in the cylinder 5. The vane groove 24 accommodates a vane 9 having a tip that contacts the outer peripheral surface of the piston 8. The spring 10 is disposed in the vane groove 24 so as to push the vane 9 toward the piston 8. The compression chamber 25 between the cylinder 5 and the piston 8 is partitioned by the vane 9, thereby forming a suction chamber 25a and a compression-discharge chamber 25b. The refrigerant to be compressed is guided to the compression chamber 25 (suction chamber 25a) through the flow path 10f and the suction port 27. The compressed refrigerant is guided from the compression chamber 25 (compression-discharge chamber 25b) to the internal space 28 of the sealed container 1 through the discharge port 29. The discharge port 29 is provided with a discharge valve (not shown). The vane 9 may be integrated with the piston 8. That is, the piston 8 and the vane 9 may be configured as a so-called swing piston.
 本実施形態では、低容積モードでの吸入容積が高容積モードでの吸入容積の1/2となるようにバイパス吐出口16の位置が定められている。ただし、バイパス吐出口16の位置は限定されず、低容積モードで必要とされる吸入容積に応じて定められる。また、2以上のバイパス吐出口16が設けられていてもよい。この場合、複数の吸入容積の中から選ばれる1つの吸入容積にて圧縮機101を運転できる。 In the present embodiment, the position of the bypass discharge port 16 is determined so that the suction volume in the low volume mode is ½ of the suction volume in the high volume mode. However, the position of the bypass discharge port 16 is not limited, and is determined according to the suction volume required in the low volume mode. Two or more bypass discharge ports 16 may be provided. In this case, the compressor 101 can be operated with one suction volume selected from a plurality of suction volumes.
 本実施形態では、圧縮機101がロータリ圧縮機であるが、吸入容積を変更できる限りにおいて圧縮機101の型式は特に限定されない。特許文献1(特開2008-240699号公報)に記載されたスクロール圧縮機、レシプロ圧縮機等の他の型式の圧縮機を使用できる。 In this embodiment, the compressor 101 is a rotary compressor, but the type of the compressor 101 is not particularly limited as long as the suction volume can be changed. Other types of compressors such as a scroll compressor and a reciprocating compressor described in Patent Document 1 (Japanese Patent Laid-Open No. 2008-240699) can be used.
 図1に示すように、流路10aは、圧縮機101で圧縮された冷媒を圧縮室25から放熱器(第1熱交換器103又は第2熱交換器105)に導く吐出経路を形成している。流路10e、アキュームレータ106及び流路10fは、圧縮するべき冷媒を蒸発器(第1熱交換器103又は第2熱交換器105)から圧縮室25に導く吸入経路を形成している。 As shown in FIG. 1, the flow path 10a forms a discharge path that guides the refrigerant compressed by the compressor 101 from the compression chamber 25 to the radiator (the first heat exchanger 103 or the second heat exchanger 105). Yes. The flow path 10e, the accumulator 106, and the flow path 10f form a suction path that guides the refrigerant to be compressed from the evaporator (the first heat exchanger 103 or the second heat exchanger 105) to the compression chamber 25.
 冷凍サイクル装置100は、さらに、容積制御経路111、第2四方弁112、高圧導入経路114、低圧導入経路116、逆止弁120及び制御装置117を備えている。 The refrigeration cycle apparatus 100 further includes a volume control path 111, a second four-way valve 112, a high pressure introduction path 114, a low pressure introduction path 116, a check valve 120, and a control device 117.
 容積制御経路111は、圧縮機101のバイパス吐出口16に接続されている。第2四方弁112は、圧縮機101の吐出圧力及び圧縮機101の吸入圧力のいずれかを制御圧力として容積制御経路111に供給する流路切替部である。高圧導入経路114は、第2四方弁112に接続された一端部と、流路10aに接続された他端部とを有する。低圧導入経路116は、第2四方弁112に接続された一端部と、流路10eに接続された他端部とを有する。逆止弁120は、流路10aから第2四方弁112への冷媒の流れを許容し、逆方向の流れを禁止するように、高圧導入経路114に設けられている。経路111,114及び116は、それぞれ、冷媒配管で構成されうる。 The volume control path 111 is connected to the bypass discharge port 16 of the compressor 101. The second four-way valve 112 is a flow path switching unit that supplies either the discharge pressure of the compressor 101 or the suction pressure of the compressor 101 to the volume control path 111 as a control pressure. The high-pressure introduction path 114 has one end connected to the second four-way valve 112 and the other end connected to the flow path 10a. The low-pressure introduction path 116 has one end connected to the second four-way valve 112 and the other end connected to the flow path 10e. The check valve 120 is provided in the high-pressure introduction path 114 so as to allow a refrigerant flow from the flow path 10a to the second four-way valve 112 and prohibit a reverse flow. Each of the paths 111, 114, and 116 can be configured by a refrigerant pipe.
 本実施形態では、1つの接続口が封鎖された第2四方弁112を流路切替部として使用している。しかし、圧縮機101の吐出圧力及び圧縮機101の吸入圧力のいずれかを制御圧力として容積制御経路111に供給できる限りにおいて、流路切替部の構造は限定されない。低圧導入経路116の他端部は、アキュームレータ106に接続されていてもよいし、流路10fに接続されていてもよい。 In the present embodiment, the second four-way valve 112 in which one connection port is blocked is used as the flow path switching unit. However, the structure of the flow path switching unit is not limited as long as either the discharge pressure of the compressor 101 or the suction pressure of the compressor 101 can be supplied to the volume control path 111 as a control pressure. The other end of the low-pressure introduction path 116 may be connected to the accumulator 106 or may be connected to the flow path 10f.
 制御装置117は、冷凍サイクル装置100の負荷に応じて圧縮機101の吸入容積が増加又は減少するように第2四方弁112を制御する。具体的に、制御装置117は、負荷が小さい場合には、容積制御経路111が低圧導入経路116に接続されるように第2四方弁112を制御し、負荷が大きい場合には、容積制御経路111が高圧導入経路114に接続されるように第2四方弁112を制御する。制御装置117は、A/D変換回路、入出力回路、演算回路、記憶装置等を含むDSP(Digital Signal Processor)で構成されうる。制御装置117は、圧縮機101のモータ2を制御する駆動回路を含んでいてもよい。 The control device 117 controls the second four-way valve 112 so that the suction volume of the compressor 101 increases or decreases according to the load of the refrigeration cycle apparatus 100. Specifically, the control device 117 controls the second four-way valve 112 so that the volume control path 111 is connected to the low pressure introduction path 116 when the load is small, and the volume control path when the load is large. The second four-way valve 112 is controlled so that 111 is connected to the high-pressure introduction path 114. The control device 117 can be configured by a DSP (Digital Signal Processor) including an A / D conversion circuit, an input / output circuit, an arithmetic circuit, a storage device, and the like. The control device 117 may include a drive circuit that controls the motor 2 of the compressor 101.
 次に、冷凍サイクル装置100の運転を説明する。 Next, the operation of the refrigeration cycle apparatus 100 will be described.
 圧縮機101のモータ2を始動すると、圧縮機101は、流路10f(吸入経路)を通じて低圧のガス冷媒を吸入し、圧縮する。高圧のガス冷媒は、密閉容器1の内部空間28に吐出され、密閉容器1の内部空間28、流路10a、第1四方弁102及び流路10bを経て、第1熱交換器103(放熱器)へと導かれる。第1熱交換器103において、冷媒は冷却され、凝縮する。高圧の液冷媒は、第1熱交換器103から膨張機構104に導かれ、膨張機構104の働きによって減圧される。気液二相の冷媒は、膨張機構104から第2熱交換器105(蒸発器)に導かれ、第2熱交換器105で加熱され、蒸発する。ガス冷媒は、アキュームレータ106を通じて、圧縮機101に再び吸入される。 When the motor 2 of the compressor 101 is started, the compressor 101 sucks low-pressure gas refrigerant through the flow path 10f (suction path) and compresses it. The high-pressure gas refrigerant is discharged into the internal space 28 of the sealed container 1, passes through the internal space 28 of the sealed container 1, the flow path 10 a, the first four-way valve 102, and the flow path 10 b, and then passes through the first heat exchanger 103 (heat radiator). ). In the first heat exchanger 103, the refrigerant is cooled and condensed. The high-pressure liquid refrigerant is guided from the first heat exchanger 103 to the expansion mechanism 104 and decompressed by the function of the expansion mechanism 104. The gas-liquid two-phase refrigerant is led from the expansion mechanism 104 to the second heat exchanger 105 (evaporator), heated by the second heat exchanger 105, and evaporated. The gas refrigerant is again sucked into the compressor 101 through the accumulator 106.
 圧縮機101は、吐出圧力及び吸入圧力を利用して吸入容積を変更するように構成されている。第2四方弁112が図1に示す状態に維持されているとき、容積制御経路111には圧縮機101の吐出圧力が供給される。この場合、バイパス吐出弁35は閉じられるので、圧縮機101は相対的に大きい吸入容積で運転される(高容積モード)。 The compressor 101 is configured to change the suction volume using the discharge pressure and the suction pressure. When the second four-way valve 112 is maintained in the state shown in FIG. 1, the discharge pressure of the compressor 101 is supplied to the volume control path 111. In this case, since the bypass discharge valve 35 is closed, the compressor 101 is operated with a relatively large suction volume (high volume mode).
 冷凍サイクル装置100の負荷が減少すると、インバータによって圧縮機101のモータ2の回転数が減らされる。これにより、冷凍サイクル装置100の能力が減少し、効率的な運転が行われる。しかし、負荷がさらに減少すると、モータ2の回転数が下限値に到達し、それ以上の能力追従が困難になる。 When the load of the refrigeration cycle apparatus 100 is reduced, the number of rotations of the motor 2 of the compressor 101 is reduced by the inverter. Thereby, the capacity | capacitance of the refrigerating-cycle apparatus 100 reduces, and an efficient driving | operation is performed. However, when the load further decreases, the rotational speed of the motor 2 reaches the lower limit value, and it becomes difficult to follow the capacity further.
 より低い能力での運転が必要な場合、制御装置117は、第2四方弁112を図1に示す状態から図3に示す状態へと切り替える。すると、容積制御経路111が高圧導入経路114から切り離され、低圧導入経路116に接続される。その結果、容積制御経路111には圧縮機101の吸入圧力が供給される。バイパス吐出弁35には、圧縮機101の吸入圧力が作用する。この場合、圧縮室25の容積減少時に圧縮室25内の冷媒がピストン8によって押しのけられることに伴い、バイパス吐出弁35が開く。バイパス吐出弁35が開いてバイパス吐出口16と圧縮室25とが連通している期間において、圧縮室25に吸入された冷媒は、容積制御経路111、第2四方弁112及び低圧導入経路116を通じて、流路10eに戻される。すなわち、圧縮機101は相対的に小さい吸入容積で運転される(低容積モード)。 When operation with a lower capacity is required, the control device 117 switches the second four-way valve 112 from the state shown in FIG. 1 to the state shown in FIG. Then, the volume control path 111 is disconnected from the high pressure introduction path 114 and connected to the low pressure introduction path 116. As a result, the suction pressure of the compressor 101 is supplied to the volume control path 111. The suction pressure of the compressor 101 acts on the bypass discharge valve 35. In this case, when the volume of the compression chamber 25 is reduced, the bypass discharge valve 35 opens as the refrigerant in the compression chamber 25 is pushed away by the piston 8. During the period in which the bypass discharge valve 35 is open and the bypass discharge port 16 and the compression chamber 25 communicate with each other, the refrigerant sucked into the compression chamber 25 passes through the volume control path 111, the second four-way valve 112, and the low pressure introduction path 116. , Returned to the flow path 10e. That is, the compressor 101 is operated with a relatively small suction volume (low volume mode).
 圧縮機101の回転数が一定であると仮定すると、低容積モードでの圧縮機101からの冷媒吐出量は、高容積モードでの冷媒吐出量よりも少ない。従って、運転モードを高容積モードと低容積モードとの間で切り替えることによって、能力追従可能な範囲、特に下限値が拡大する。 Assuming that the rotation speed of the compressor 101 is constant, the refrigerant discharge amount from the compressor 101 in the low volume mode is smaller than the refrigerant discharge amount in the high volume mode. Therefore, by switching the operation mode between the high volume mode and the low volume mode, the range in which the ability can be followed, particularly the lower limit value, is expanded.
 本実施形態では、高圧導入経路114に逆止弁120が設けられている。図1に示す高容積モードにおいて、圧縮室25の内部圧力が吐出圧力を超え、高圧の冷媒がバイパス吐出口16を通じて圧縮室25から吐出されたとしても、高圧の冷媒は逆止弁120で塞き止められる。逆止弁120は、容積制御経路111から流路10aへの流れを許容しないため、逆止弁120が高圧導入経路114を閉塞する。これにより、オイルを多量に含んだ冷媒が圧縮機101から吐出され、多量のオイルが冷媒回路を循環することを防止できる。その結果、熱交換器103及び105での伝熱が改善し、冷媒が流路10a~10fを通過する際の圧力損失も低減するため、冷凍サイクルの成績係数(COP)が向上する。容積制御経路111、第2四方弁112及び高圧導入経路114の一部は、圧縮室25で圧縮された冷媒のうち最高圧力の冷媒で満たされるので、バイパス吐出弁35の閉塞状態も維持されうる。 In this embodiment, a check valve 120 is provided in the high pressure introduction path 114. In the high volume mode shown in FIG. 1, even if the internal pressure of the compression chamber 25 exceeds the discharge pressure and high-pressure refrigerant is discharged from the compression chamber 25 through the bypass discharge port 16, the high-pressure refrigerant is blocked by the check valve 120. Can be stopped. Since the check valve 120 does not allow the flow from the volume control path 111 to the flow path 10a, the check valve 120 closes the high pressure introduction path 114. Thereby, the refrigerant containing a large amount of oil is discharged from the compressor 101, and a large amount of oil can be prevented from circulating in the refrigerant circuit. As a result, the heat transfer in the heat exchangers 103 and 105 is improved, and the pressure loss when the refrigerant passes through the flow paths 10a to 10f is reduced, so that the coefficient of performance (COP) of the refrigeration cycle is improved. Since the volume control path 111, the second four-way valve 112, and a part of the high pressure introduction path 114 are filled with the highest pressure refrigerant among the refrigerant compressed in the compression chamber 25, the closed state of the bypass discharge valve 35 can also be maintained. .
 また、制御装置117は、冷凍サイクル装置100の起動時において、容積制御経路111を低圧導入経路116に接続するように第2四方弁112を制御し、その後、任意の時間(例えば1~5分)が経過したら容積制御経路111を高圧導入経路114に接続するように第2四方弁112を制御する。詳細には、モータ2の始動から任意の時間の経過後、冷凍サイクル装置100に要求される能力の大きさに応じて、低容積モードでの運転を行うべきか、高容積モードでの運転を行うべきかを判断する。高容積モードでの運転を行うべき場合には、容積制御経路111を高圧導入経路114に接続する。低容積モードでの運転を行うべき場合には、容積制御経路111と低圧導入経路116との接続を維持する。すなわち、起動時には低容積モードでの予備運転を行う。 In addition, the control device 117 controls the second four-way valve 112 so that the volume control path 111 is connected to the low pressure introduction path 116 when the refrigeration cycle apparatus 100 is started up, and thereafter, for an arbitrary time (for example, 1 to 5 minutes). ), The second four-way valve 112 is controlled so that the volume control path 111 is connected to the high pressure introduction path 114. Specifically, after an arbitrary time has elapsed since the start of the motor 2, the operation in the low volume mode should be performed or the operation in the high volume mode should be performed depending on the capacity required for the refrigeration cycle apparatus 100. Determine what to do. When the operation in the high volume mode is to be performed, the volume control path 111 is connected to the high pressure introduction path 114. When the operation in the low volume mode is to be performed, the connection between the volume control path 111 and the low pressure introduction path 116 is maintained. That is, the preliminary operation in the low volume mode is performed at the time of startup.
 雰囲気温度が低い場合、例えば冬期において、容積制御経路111に液冷媒が蓄積される可能性がある。上記予備運転を行えば、容積制御経路111に液冷媒が蓄積されたとしても、液冷媒を速やかに流路10eへと戻すことができる。その結果、容積制御経路111に液冷媒が閉じ込められることによる異常圧力の発生、すなわち、起動後に液冷媒の温度が上昇して液冷媒が膨張することによって容積制御経路111の圧力が過剰に上がることを防止できる。また、予備運転の観点から、低圧導入経路116は、流路10e又はアキュームレータ106に接続されていることが好ましい。これにより、起動時に圧縮機101に液冷媒が供給されることを防止できる。 If the ambient temperature is low, liquid refrigerant may accumulate in the volume control path 111 in winter, for example. If the preliminary operation is performed, even if liquid refrigerant is accumulated in the volume control path 111, the liquid refrigerant can be quickly returned to the flow path 10e. As a result, the generation of abnormal pressure due to the liquid refrigerant being confined in the volume control path 111, that is, the temperature of the liquid refrigerant rises after startup and the liquid refrigerant expands, thereby increasing the pressure of the volume control path 111 excessively. Can be prevented. Further, from the viewpoint of preliminary operation, the low-pressure introduction path 116 is preferably connected to the flow path 10e or the accumulator 106. Thereby, it can prevent that a liquid refrigerant is supplied to the compressor 101 at the time of starting.
 予備運転は、冷凍サイクル装置100の起動時に行われるが、この「冷凍サイクル装置100の起動」には、一時停止後の再起動が含まれていてもよい。また、上記予備運転は、本明細書に記載された他の実施形態及び変形例にも適用されうる。 Preliminary operation is performed when the refrigeration cycle apparatus 100 is activated, but the “activation of the refrigeration cycle apparatus 100” may include restart after a temporary stop. The preliminary operation can also be applied to other embodiments and modifications described in this specification.
 また、制御装置117は、冷凍サイクル装置100の運転を停止するとき、容積制御経路111を低圧導入経路116に接続するように第2四方弁112を制御してもよい。詳細には、容積制御経路111が低圧導入経路116に接続された状態で冷凍サイクル装置100の運転を停止することが望ましい。このようにすれば、容積制御経路111に液冷媒が閉じ込められることによる異常圧力の発生、すなわち、起動後に液冷媒の温度が上昇して液冷媒が膨張することによって容積制御経路111の圧力が過剰に上がることを防止できる。 The control device 117 may control the second four-way valve 112 so as to connect the volume control path 111 to the low pressure introduction path 116 when the operation of the refrigeration cycle apparatus 100 is stopped. Specifically, it is desirable to stop the operation of the refrigeration cycle apparatus 100 in a state where the volume control path 111 is connected to the low pressure introduction path 116. In this way, abnormal pressure is generated due to the liquid refrigerant being confined in the volume control path 111, that is, the pressure of the volume control path 111 is excessive due to the temperature of the liquid refrigerant rising and the liquid refrigerant expanding after startup. Can be prevented.
(変形例1)
 図4に示すように、変形例1に係る冷凍サイクル装置200は、リリーフ弁回路221をさらに備えている点で実施形態1の冷凍サイクル装置100と相違する。以下、先の実施形態又は変形例と後の実施形態又は変形例とで共通する構成要素には同一の参照符号を付し、その説明を省略する。
(Modification 1)
As shown in FIG. 4, the refrigeration cycle apparatus 200 according to Modification 1 is different from the refrigeration cycle apparatus 100 of Embodiment 1 in that it further includes a relief valve circuit 221. In the following description, the same reference numerals are assigned to components common to the previous embodiment or modification and the subsequent embodiment or modification, and description thereof is omitted.
 高圧導入経路114は、逆止弁120と第2四方弁112(流路切替部)との間の第1部分114aと、逆止弁120と流路10a(吐出経路)との間の第2部分114bとを有する。リリーフ弁回路221は、第1部分114aに接続された一端と、逆止弁120をバイパスするように第2部分114b又は流路10aに接続された他端とを有する。第1部分114aの圧力と第2部分114bの圧力との差が一定値を超えると、リリーフ弁回路221は、第1部分114aから流路10a(又は第2部分114b)に冷媒を流出させ、第1部分114aの圧力を下げる。 The high pressure introduction path 114 includes a first portion 114a between the check valve 120 and the second four-way valve 112 (flow path switching unit), and a second portion between the check valve 120 and the flow path 10a (discharge path). Part 114b. The relief valve circuit 221 has one end connected to the first portion 114a and the other end connected to the second portion 114b or the flow path 10a so as to bypass the check valve 120. When the difference between the pressure of the first portion 114a and the pressure of the second portion 114b exceeds a certain value, the relief valve circuit 221 causes the refrigerant to flow from the first portion 114a to the flow path 10a (or the second portion 114b), The pressure in the first portion 114a is lowered.
 冷凍サイクル装置200によれば、実施形態1で説明した予備運転と同じ効果が得られる。すなわち、容積制御経路111等に液冷媒が閉じ込められることによる異常圧力の発生を防止できる。雰囲気温度が低い場合、例えば冬期において、容積制御経路111、四方弁112及び高圧導入経路114の第1部分114aに液冷媒が蓄積される可能性がある。容積制御経路111等に液冷媒が蓄積される現象は、バイパス吐出弁35から逆止弁120までの経路が冷却されたときに起こると予測される。また、圧縮機101の停止中に容積制御経路111等に液冷媒が蓄積する可能性もある。容積制御経路111等の閉じられた空間に液冷媒が蓄積されていると、その液冷媒の温度が上昇して液冷媒が膨張することによって、容積制御経路111等の閉じられた空間の圧力が過剰に上がる可能性がある。リリーフ弁回路221によれば、圧力を流路10aに逃がすことによって、容積制御経路111、四方弁112及び高圧導入経路114の第1部分114aの圧力の過上昇を防止できる。 According to the refrigeration cycle apparatus 200, the same effect as the preliminary operation described in the first embodiment can be obtained. That is, the generation of abnormal pressure due to the liquid refrigerant being confined in the volume control path 111 or the like can be prevented. When the ambient temperature is low, for example, in winter, liquid refrigerant may accumulate in the volume control path 111, the four-way valve 112, and the first portion 114a of the high-pressure introduction path 114. The phenomenon that the liquid refrigerant is accumulated in the volume control path 111 or the like is predicted to occur when the path from the bypass discharge valve 35 to the check valve 120 is cooled. Further, liquid refrigerant may accumulate in the volume control path 111 and the like while the compressor 101 is stopped. When liquid refrigerant is accumulated in a closed space such as the volume control path 111, the temperature of the liquid refrigerant rises and the liquid refrigerant expands, so that the pressure in the closed space such as the volume control path 111 is increased. May go up excessively. According to the relief valve circuit 221, it is possible to prevent an excessive increase in pressure in the volume control path 111, the four-way valve 112, and the first portion 114a of the high pressure introduction path 114 by letting the pressure escape to the flow path 10a.
(変形例2)
 図5に示すように、変形例2に係る冷凍サイクル装置300は、実施形態1における圧縮機101と異なる構造を有する圧縮機301を備えている点で実施形態1と相違する。
(Modification 2)
As shown in FIG. 5, the refrigeration cycle apparatus 300 according to the second modification is different from the first embodiment in that it includes a compressor 301 having a structure different from that of the compressor 101 in the first embodiment.
 図6に示すように、圧縮機301は、密閉容器1、モータ2及び圧縮機構30を備え、多気筒ロータリ圧縮機(本変形例では2気筒)として構成されている。圧縮機構30で圧縮された冷媒が密閉容器1の内部空間28を経て流路10aに導かれる。圧縮機構30は、第1圧縮室40、第2圧縮室42、中間室69、第1吐出口67、第1吐出弁63、第2吐出口71、第2吐出弁73、バイパス吐出口65及びバイパス吐出弁61を有する。 As shown in FIG. 6, the compressor 301 includes a sealed container 1, a motor 2, and a compression mechanism 30, and is configured as a multi-cylinder rotary compressor (two cylinders in this modification). The refrigerant compressed by the compression mechanism 30 is guided to the flow path 10 a through the internal space 28 of the sealed container 1. The compression mechanism 30 includes a first compression chamber 40, a second compression chamber 42, an intermediate chamber 69, a first discharge port 67, a first discharge valve 63, a second discharge port 71, a second discharge valve 73, a bypass discharge port 65, and A bypass discharge valve 61 is provided.
 流路10aは、圧縮機301で圧縮された冷媒を第1圧縮室40及び第2圧縮室42から放熱器(第1熱交換器103又は第2熱交換器105)に導く吐出経路を形成している。流路10e、アキュームレータ106及び流路10fは、圧縮するべき冷媒を蒸発器(第1熱交換器103又は第2熱交換器105)から第1圧縮室40及び第2圧縮室42に導く吸入経路を形成している。 The flow path 10a forms a discharge path that guides the refrigerant compressed by the compressor 301 from the first compression chamber 40 and the second compression chamber 42 to the radiator (the first heat exchanger 103 or the second heat exchanger 105). ing. The flow path 10e, the accumulator 106, and the flow path 10f are suction paths that guide the refrigerant to be compressed from the evaporator (the first heat exchanger 103 or the second heat exchanger 105) to the first compression chamber 40 and the second compression chamber 42. Is forming.
 バイパス吐出口65は、第1圧縮室40に開口している。バイパス吐出口65を開閉するようにバイパス吐出弁61が設けられている。中間室69は、バイパス吐出口65を通じて第1圧縮室40から吐出された冷媒を受け入れる空間である。第1吐出口67によって、中間室69と密閉容器1の内部空間28とが連通しうる。第1吐出口67を開閉するように第1吐出弁63が設けられている。容積制御経路111は、中間室69を介して、バイパス吐出口65に接続されている。このように、圧縮機301には、第1圧縮室40から密閉容器1の内部空間28への経路上に2つの吐出弁61及び63が設けられている。吐出弁61と吐出弁63との間の空間(中間室69)に容積制御経路111が接続されている。 The bypass discharge port 65 is open to the first compression chamber 40. A bypass discharge valve 61 is provided so as to open and close the bypass discharge port 65. The intermediate chamber 69 is a space that receives the refrigerant discharged from the first compression chamber 40 through the bypass discharge port 65. The first discharge port 67 allows the intermediate chamber 69 and the internal space 28 of the sealed container 1 to communicate with each other. A first discharge valve 63 is provided to open and close the first discharge port 67. The volume control path 111 is connected to the bypass discharge port 65 via the intermediate chamber 69. Thus, the compressor 301 is provided with the two discharge valves 61 and 63 on the path from the first compression chamber 40 to the internal space 28 of the sealed container 1. A volume control path 111 is connected to a space (intermediate chamber 69) between the discharge valve 61 and the discharge valve 63.
 圧縮機構30は、また、第1シリンダ41、中板71、第2シリンダ43、第1ピストン51、第2ピストン53、上軸受46、下軸受48、マフラー77及びマフラー75を有する。第1ピストン51は、第1シリンダ41の内部において、シャフト4の第1偏心部4aに嵌め合わされている。第1ピストン51の外周面と第1シリンダ41の内周面との間に第1圧縮室40が形成されている。第2シリンダ43は、第1シリンダ41に対して同心状に配置されている。第2ピストン53は、第2シリンダ43の内部において、シャフト4の第2偏心部4bに嵌め合わされている。第2ピストン53の外周面と第2シリンダ43の内周面との間に第2圧縮室42が形成されている。 The compression mechanism 30 also includes a first cylinder 41, an intermediate plate 71, a second cylinder 43, a first piston 51, a second piston 53, an upper bearing 46, a lower bearing 48, a muffler 77, and a muffler 75. The first piston 51 is fitted into the first eccentric portion 4 a of the shaft 4 inside the first cylinder 41. A first compression chamber 40 is formed between the outer peripheral surface of the first piston 51 and the inner peripheral surface of the first cylinder 41. The second cylinder 43 is disposed concentrically with the first cylinder 41. The second piston 53 is fitted into the second eccentric portion 4 b of the shaft 4 inside the second cylinder 43. A second compression chamber 42 is formed between the outer peripheral surface of the second piston 53 and the inner peripheral surface of the second cylinder 43.
 上軸受46及び下軸受48は、それぞれ、第1シリンダ41の上部及び第2シリンダ43の下部に配置されている。中板71は、第1シリンダ41と第2シリンダ43との間に配置されている。上軸受46及び中板71によって第1シリンダ41が閉じられ、中板71と下軸受48によって第2シリンダ43が閉じられている。バイパス吐出口65、中間室69及び第1吐出口67によって、シャフト4の軸方向に沿って上軸受46を貫通する経路が形成されている。上軸受46の上部にはマフラー77が配置されている。高容積モードでは、バイパス吐出口65、中間室69、第1吐出口67及びマフラー77の内部空間を通じて、第1圧縮室40で圧縮された冷媒が密閉容器1の内部空間28へと導かれる。第2吐出口71は、シャフト4の軸方向に沿って下軸受48を貫通する経路が形成されるように、下軸受48に形成されている。下軸受48の下部にはマフラー75が配置されている。マフラー75の内部空間は、図示しない垂直経路によって、マフラー77の内部空間に連通している。第2吐出口71、マフラー75の内部空間、垂直経路及びマフラー77の内部空間を通じて、第2圧縮室42で圧縮された冷媒が密閉容器1の内部空間28へと導かれる。 The upper bearing 46 and the lower bearing 48 are arranged at the upper part of the first cylinder 41 and the lower part of the second cylinder 43, respectively. The intermediate plate 71 is disposed between the first cylinder 41 and the second cylinder 43. The first cylinder 41 is closed by the upper bearing 46 and the middle plate 71, and the second cylinder 43 is closed by the middle plate 71 and the lower bearing 48. A path that passes through the upper bearing 46 along the axial direction of the shaft 4 is formed by the bypass discharge port 65, the intermediate chamber 69, and the first discharge port 67. A muffler 77 is disposed on the upper bearing 46. In the high volume mode, the refrigerant compressed in the first compression chamber 40 is guided to the internal space 28 of the sealed container 1 through the internal space of the bypass discharge port 65, the intermediate chamber 69, the first discharge port 67 and the muffler 77. The second discharge port 71 is formed in the lower bearing 48 such that a path that penetrates the lower bearing 48 along the axial direction of the shaft 4 is formed. A muffler 75 is disposed below the lower bearing 48. The internal space of the muffler 75 communicates with the internal space of the muffler 77 through a vertical path (not shown). The refrigerant compressed in the second compression chamber 42 is guided to the internal space 28 of the sealed container 1 through the second discharge port 71, the internal space of the muffler 75, the vertical path, and the internal space of the muffler 77.
 第1圧縮室40及び第2圧縮室42は、互いに独立した圧縮室として機能する。高容積モードでは、第1圧縮室40及び第2圧縮室42のそれぞれで冷媒が圧縮される。低容積モードでは、第2圧縮室42で冷媒が圧縮されるが、第1圧縮室40で冷媒は圧縮されない。低容積モードでは、中間室69に吸入圧力が供給されるので、第1圧縮室40に吸入された冷媒は、圧縮されること無くバイパス吐出弁61を押し開き、バイパス吐出口65及び中間室69を通じて容積制御経路111に導かれる。このように、圧縮機301は、いわゆる休筒型の容積制御圧縮機として構成されている。 The first compression chamber 40 and the second compression chamber 42 function as mutually independent compression chambers. In the high volume mode, the refrigerant is compressed in each of the first compression chamber 40 and the second compression chamber 42. In the low volume mode, the refrigerant is compressed in the second compression chamber 42, but the refrigerant is not compressed in the first compression chamber 40. In the low volume mode, the suction pressure is supplied to the intermediate chamber 69, so that the refrigerant sucked into the first compression chamber 40 pushes and opens the bypass discharge valve 61 without being compressed, thereby bypassing the bypass discharge port 65 and the intermediate chamber 69. To the volume control path 111. As described above, the compressor 301 is configured as a so-called cylinderless volume control compressor.
 次に、冷凍サイクル装置300の運転を説明する。 Next, the operation of the refrigeration cycle apparatus 300 will be described.
 モータ2を始動すると、圧縮機301は、流路10f(吸入経路)を通じて低圧のガス冷媒を吸入し、圧縮する。高圧のガス冷媒は、密閉容器1の内部空間28に吐出される。具体的に、第1圧縮室40で圧縮された冷媒は、バイパス吐出口65、中間室69、第1吐出口67及びマフラー77を通じて密閉容器1の内部空間28に吐出される。第2圧縮室42で圧縮された冷媒は、第2吐出口71及びマフラー75を通じて密閉容器1の内部空間28に吐出される。内部空間28において、第1圧縮室40で圧縮された冷媒が第2圧縮室42で圧縮された冷媒に合流する。その後の冷媒の流れは、実施形態1で説明した通りである。 When the motor 2 is started, the compressor 301 sucks in and compresses the low-pressure gas refrigerant through the flow path 10f (suction path). The high-pressure gas refrigerant is discharged into the internal space 28 of the sealed container 1. Specifically, the refrigerant compressed in the first compression chamber 40 is discharged into the internal space 28 of the sealed container 1 through the bypass discharge port 65, the intermediate chamber 69, the first discharge port 67 and the muffler 77. The refrigerant compressed in the second compression chamber 42 is discharged into the internal space 28 of the sealed container 1 through the second discharge port 71 and the muffler 75. In the internal space 28, the refrigerant compressed in the first compression chamber 40 merges with the refrigerant compressed in the second compression chamber 42. The subsequent refrigerant flow is as described in the first embodiment.
 第2四方弁112が図5に示す状態に維持されているとき、容積制御経路111及び中間室69には圧縮機301の吐出圧力が供給される。この場合、第1圧縮室40に吸入された冷媒は、吐出圧力を超える圧力まで第1圧縮室40で圧縮され、バイパス吐出弁61及び第1吐出弁63を押し開き、バイパス吐出口65、中間室69及び第1吐出口67を通じて、第1圧縮室40から密閉容器1の内部空間28へと吐出される。第1圧縮室40及び第2圧縮室42の両方で冷媒の圧縮仕事が行われるので、圧縮機301は相対的に大きい吸入容積で運転される(高容積モード)。 When the second four-way valve 112 is maintained in the state shown in FIG. 5, the discharge pressure of the compressor 301 is supplied to the volume control path 111 and the intermediate chamber 69. In this case, the refrigerant sucked into the first compression chamber 40 is compressed in the first compression chamber 40 to a pressure exceeding the discharge pressure, pushes open the bypass discharge valve 61 and the first discharge valve 63, bypasses the bypass discharge port 65, intermediate It is discharged from the first compression chamber 40 to the internal space 28 of the sealed container 1 through the chamber 69 and the first discharge port 67. Since the compression work of the refrigerant is performed in both the first compression chamber 40 and the second compression chamber 42, the compressor 301 is operated with a relatively large suction volume (high volume mode).
 冷凍サイクル装置300の負荷が減少すると、インバータによって圧縮機301のモータ2の回転数が減らされる。これにより、冷凍サイクル装置300の能力が減少し、効率的な運転が行われる。しかし、負荷がさらに減少すると、モータ2の回転数が下限値に到達し、それ以上の能力追従が困難になる。 When the load of the refrigeration cycle apparatus 300 decreases, the rotation speed of the motor 2 of the compressor 301 is reduced by the inverter. Thereby, the capacity | capacitance of the refrigerating-cycle apparatus 300 reduces, and an efficient driving | operation is performed. However, when the load further decreases, the rotational speed of the motor 2 reaches the lower limit value, and it becomes difficult to follow the capacity further.
 より低い能力での運転が必要な場合、制御装置117は、第2四方弁112を図5に示す状態から図3に示す状態へと切り替える。これにより、容積制御経路111が高圧導入経路114から切り離され、低圧導入経路116に接続される。容積制御経路111及び中間室69には圧縮機301の吸入圧力が供給される。この場合、圧縮機301は相対的に小さい吸入容積で運転される(低容積モード)。 When operation with a lower capacity is required, the control device 117 switches the second four-way valve 112 from the state shown in FIG. 5 to the state shown in FIG. As a result, the volume control path 111 is disconnected from the high pressure introduction path 114 and connected to the low pressure introduction path 116. The suction pressure of the compressor 301 is supplied to the volume control path 111 and the intermediate chamber 69. In this case, the compressor 301 is operated with a relatively small suction volume (low volume mode).
 低容積モードでは、中間室69の圧力が吸入圧力に等しいので、バイパス吐出弁61は常に開いている。そのため、第1圧縮室40に吸入された冷媒は、吸入圧力を維持しつつ(実質的に圧縮されることなく)、バイパス吐出口65を通じて第1圧縮室40から中間室69に吐出される。第1吐出弁63の片面には、密閉容器1の内部空間28の高圧が加えられているので、第1吐出弁63は開かない。その結果、中間室69に吐出された冷媒は、容積制御経路111、第2四方弁112及び低圧導入経路116を通じて、流路10e(吸入経路)に戻される。 In the low volume mode, since the pressure in the intermediate chamber 69 is equal to the suction pressure, the bypass discharge valve 61 is always open. Therefore, the refrigerant sucked into the first compression chamber 40 is discharged from the first compression chamber 40 to the intermediate chamber 69 through the bypass discharge port 65 while maintaining the suction pressure (without being substantially compressed). Since the high pressure of the internal space 28 of the sealed container 1 is applied to one side of the first discharge valve 63, the first discharge valve 63 does not open. As a result, the refrigerant discharged into the intermediate chamber 69 is returned to the flow path 10e (suction path) through the volume control path 111, the second four-way valve 112, and the low pressure introduction path 116.
 図5に示すように、高容積モードでは、容積制御経路111が高圧導入経路114に接続される。これにより、中間室69の圧力が吐出圧力に等しい圧力となる。しかし、不可避的に生ずる圧力損失の影響により、流路10aの圧力は、密閉容器1の内部空間28の圧力よりも僅かに低い。中間室69の圧力が密閉容器1の内部空間28の圧力よりも低い場合、第1吐出弁63は開かない。中間室69に吐出された冷媒は、容積制御経路111、第2四方弁112及び高圧導入配管114の一部を満たし、逆止弁120で塞き止められる。逆止弁120は、容積制御経路111から流路10aへの流れを許容しないため、容積制御経路111及び中間室69の圧力が次第に上昇し、密閉容器1の内部空間28の圧力を超える。その結果、第1吐出弁63が開く。このようにして、高容積モードにおいて、第2圧縮室42だけでなく、第1圧縮室40で圧縮仕事が行われることとなる。併せて、オイルを多量に含んだ冷媒が圧縮機301から吐出され、多量のオイルが冷媒回路を循環することを防止できる。 As shown in FIG. 5, in the high volume mode, the volume control path 111 is connected to the high pressure introduction path 114. As a result, the pressure in the intermediate chamber 69 becomes equal to the discharge pressure. However, the pressure in the flow path 10 a is slightly lower than the pressure in the internal space 28 of the sealed container 1 due to the effect of pressure loss that inevitably occurs. When the pressure in the intermediate chamber 69 is lower than the pressure in the internal space 28 of the sealed container 1, the first discharge valve 63 is not opened. The refrigerant discharged into the intermediate chamber 69 fills a part of the volume control path 111, the second four-way valve 112, and the high-pressure introduction pipe 114 and is blocked by the check valve 120. Since the check valve 120 does not allow the flow from the volume control path 111 to the flow path 10a, the pressure in the volume control path 111 and the intermediate chamber 69 gradually increases and exceeds the pressure in the internal space 28 of the sealed container 1. As a result, the first discharge valve 63 is opened. Thus, in the high volume mode, the compression work is performed not only in the second compression chamber 42 but also in the first compression chamber 40. In addition, a refrigerant containing a large amount of oil is discharged from the compressor 301, and a large amount of oil can be prevented from circulating in the refrigerant circuit.
 また、本変形例によれば、冷媒回路に閉じられた空間が形成されない。そのため、容積制御経路111、第2四方弁112及び高圧導入経路114の一部が液冷媒で満たされ、その後、液冷媒の温度が上昇して液冷媒が膨張したとしても、容積制御経路111の圧力は過度に上昇し得ない。容積制御経路111の圧力が上昇したら第1吐出弁63が開き、密閉容器1の内部空間28に圧力を逃がすことができる。 Further, according to this modification, a closed space is not formed in the refrigerant circuit. Therefore, even if a part of the volume control path 111, the second four-way valve 112, and the high pressure introduction path 114 is filled with the liquid refrigerant, and then the temperature of the liquid refrigerant rises and the liquid refrigerant expands, the volume control path 111 The pressure cannot rise excessively. When the pressure in the volume control path 111 rises, the first discharge valve 63 is opened, and the pressure can be released to the internal space 28 of the sealed container 1.
 本変形例によれば、第1圧縮室40がモータ2から近い側に位置している。そのため、第1圧縮室40から容積制御経路111までのバイパス経路が短くなり、低容積モードでの圧力損失を低減できる。ただし、バイパス吐出口65が第2圧縮室42に設けられていてもよい。すなわち、圧縮機301は、第1圧縮室40に代えて、第2圧縮室42が休止するように構成されていてもよい。 According to this modification, the first compression chamber 40 is located closer to the motor 2. Therefore, the bypass path from the first compression chamber 40 to the volume control path 111 is shortened, and the pressure loss in the low volume mode can be reduced. However, the bypass discharge port 65 may be provided in the second compression chamber 42. That is, the compressor 301 may be configured such that the second compression chamber 42 is stopped instead of the first compression chamber 40.
(実施形態2)
 図7に示すように、本実施形態の冷凍サイクル装置400は、制御圧力を切り替える手段としての開閉弁420及びリリーフ弁回路221を備えている点で実施形態1の冷凍サイクル装置100と相違する。リリーフ弁回路221の機能及び効果については、変形例1で説明した通りである。
(Embodiment 2)
As shown in FIG. 7, the refrigeration cycle apparatus 400 of the present embodiment is different from the refrigeration cycle apparatus 100 of the first embodiment in that it includes an on-off valve 420 and a relief valve circuit 221 as means for switching the control pressure. The function and effect of the relief valve circuit 221 are as described in the first modification.
 開閉弁420は、低圧導入経路116と容積制御経路111とを接続するように設けられている。開閉弁420としては、電磁弁を使用することができる。開閉弁420は、高容積モードで閉じられ、低容積モードで開かれる。すなわち、冷凍サイクル装置400の負荷が小さい場合には、容積制御経路111を低圧導入経路116に接続するように開閉弁420が制御され、負荷が大きい場合には、容積制御経路111を低圧導入経路116から切り離すように開閉弁420が制御される。 The on-off valve 420 is provided so as to connect the low pressure introduction path 116 and the volume control path 111. As the on-off valve 420, an electromagnetic valve can be used. The on-off valve 420 is closed in the high volume mode and opened in the low volume mode. That is, when the load of the refrigeration cycle apparatus 400 is small, the on-off valve 420 is controlled to connect the volume control path 111 to the low pressure introduction path 116, and when the load is large, the volume control path 111 is set to the low pressure introduction path. On-off valve 420 is controlled so as to be disconnected from 116.
 本実施形態によれば、容積制御経路111は、開閉弁420を介して低圧導入経路116に接続されている。そのため、オイルを多量に含んだ冷媒がバイパス吐出口16及び容積制御経路111を通じて圧縮機101の吐出経路に直接流入することを回避できる。 According to the present embodiment, the volume control path 111 is connected to the low pressure introduction path 116 via the on-off valve 420. Therefore, it is possible to avoid the refrigerant containing a large amount of oil from directly flowing into the discharge path of the compressor 101 through the bypass discharge port 16 and the volume control path 111.
 また、変形例2で説明した理由により、本実施形態の冷凍サイクル装置400においても、容積制御経路111に液冷媒が蓄積される可能性がある。しかし、液冷媒の温度が上昇して液冷媒が膨張することによって容積制御経路111の圧力が上昇したとしても、リリーフ弁回路221を通じて、圧力を吐出経路(流路10a)に逃がすことができる。 Also, for the reason described in the second modification, liquid refrigerant may be accumulated in the volume control path 111 also in the refrigeration cycle apparatus 400 of the present embodiment. However, even if the temperature of the liquid refrigerant rises and the liquid refrigerant expands to increase the pressure in the volume control path 111, the pressure can be released to the discharge path (flow path 10a) through the relief valve circuit 221.
 高容積モードにおいて、圧縮室25の内部圧力が吐出圧力を超え、高圧の冷媒がバイパス吐出口16を通じて圧縮室25から吐出されたとしても、高圧の冷媒は開閉弁420で塞き止められる。容積制御経路111は、圧縮室25で圧縮された冷媒のうち最高圧力の冷媒で満たされるので、バイパス吐出弁35の閉塞状態を維持できる。これにより、オイルを多量に含んだ冷媒が圧縮機101から吐出され、多量のオイルが冷媒回路を循環することを防止できる。 In the high volume mode, even if the internal pressure of the compression chamber 25 exceeds the discharge pressure and high-pressure refrigerant is discharged from the compression chamber 25 through the bypass discharge port 16, the high-pressure refrigerant is blocked by the on-off valve 420. Since the volume control path 111 is filled with the highest pressure refrigerant among the refrigerant compressed in the compression chamber 25, the closed state of the bypass discharge valve 35 can be maintained. Thereby, the refrigerant containing a large amount of oil is discharged from the compressor 101, and a large amount of oil can be prevented from circulating in the refrigerant circuit.
(変形例3)
 図8に示すように、変形例3の冷凍サイクル装置500は、制御圧力を切り替える手段としての開閉弁420を備えている点で変形例2の冷凍サイクル装置300と相違する。すなわち、本変形例の冷凍サイクル装置500は、実施形態2の圧縮機101を変形例2の圧縮機301に置き換え、リリーフ弁回路221を省略したものである。
(Modification 3)
As shown in FIG. 8, the refrigeration cycle apparatus 500 of Modification 3 is different from the refrigeration cycle apparatus 300 of Modification 2 in that it includes an on-off valve 420 as means for switching the control pressure. That is, in the refrigeration cycle apparatus 500 of this modification, the compressor 101 of the second embodiment is replaced with the compressor 301 of the modification 2, and the relief valve circuit 221 is omitted.
 開閉弁420は、高容積モードで閉じられ、低容積モードで開かれる。開閉弁420の機能は、実施形態2で説明した通りである。本変形例の冷凍サイクル装置500によれば、変形例2の利点と実施形態2の利点との両方を得ることができる。 The on-off valve 420 is closed in the high volume mode and opened in the low volume mode. The function of the on-off valve 420 is as described in the second embodiment. According to the refrigeration cycle apparatus 500 of this modification, both of the advantages of Modification 2 and the advantages of Embodiment 2 can be obtained.
 なお、実施形態2及び変形例3においても、実施形態1と同様の予備運転を行ってもよい。すなわち、冷凍サイクル装置400(又は500)の起動時において、容積制御経路111を低圧導入経路116に接続するように開閉弁420を制御し、その後、任意の時間が経過したら容積制御経路111を低圧導入経路116から切り離すように開閉弁420を制御してもよい。すなわち、起動時に開閉弁420を開く。また、冷凍サイクル装置400(又は500)の運転を停止するとき、容積制御経路111を低圧導入経路116に接続するように開閉弁420を制御してもよい。すなわち、開閉弁420を開き、容積制御経路111が低圧導入経路116に接続された状態で冷凍サイクル装置400(又は500)の運転を停止してもよい。 In the second embodiment and the third modification, a preliminary operation similar to that in the first embodiment may be performed. That is, when starting the refrigeration cycle apparatus 400 (or 500), the on-off valve 420 is controlled so that the volume control path 111 is connected to the low pressure introduction path 116. The on-off valve 420 may be controlled so as to be disconnected from the introduction path 116. That is, the opening / closing valve 420 is opened at the time of activation. Further, when the operation of the refrigeration cycle apparatus 400 (or 500) is stopped, the on-off valve 420 may be controlled so as to connect the volume control path 111 to the low pressure introduction path 116. That is, the operation of the refrigeration cycle apparatus 400 (or 500) may be stopped in a state where the on-off valve 420 is opened and the volume control path 111 is connected to the low pressure introduction path 116.
 本発明の冷凍サイクル装置は、空調機、冷凍機、暖房機、給湯機等に有用である。 The refrigeration cycle apparatus of the present invention is useful for air conditioners, refrigerators, heaters, water heaters, and the like.

Claims (10)

  1.  圧縮室と、前記圧縮室に開口しているバイパス吐出口と、前記バイパス吐出口を開閉するバイパス吐出弁とを有し、前記圧縮室に吸入された冷媒が吸入圧力を維持しつつ前記バイパス吐出口を通じて前記圧縮室から吐出されることによって吸入容積を変更できるように構成された容積制御圧縮機と、
     前記圧縮機で圧縮された冷媒を冷却する放熱器と、
     前記放熱器で冷却された冷媒を膨張させる膨張機構と、
     前記膨張機構で膨張した冷媒を加熱する蒸発器と、
     圧縮するべき冷媒を前記蒸発器から前記圧縮室に導く吸入経路と、
     圧縮された冷媒を前記圧縮室から前記放熱器に導く吐出経路と、
     前記バイパス吐出口に接続された容積制御経路と、
     前記圧縮機の吐出圧力及び前記圧縮機の吸入圧力のいずれかを制御圧力として前記容積制御経路に供給する流路切替部と、
     前記流路切替部に接続された一端部と、前記吐出経路に接続された他端部とを有する高圧導入経路と、
     前記流路切替部に接続された一端部と、前記吸入経路に接続された他端部とを有する低圧導入経路と、
     当該冷凍サイクル装置の負荷が小さい場合には、前記容積制御経路が前記低圧導入経路に接続されるように前記流路切替部を制御し、前記負荷が大きい場合には、前記容積制御経路が前記高圧導入経路に接続されるように前記流路切替部を制御する制御装置と、
     前記高圧導入経路に設けられ、前記吐出経路から前記流路切替部への冷媒の流れを許容し、逆方向の流れを禁止する逆止弁と、
     を備えた、冷凍サイクル装置。
    A compression chamber, a bypass discharge port that opens to the compression chamber, and a bypass discharge valve that opens and closes the bypass discharge port, and the refrigerant sucked into the compression chamber maintains the suction pressure while the bypass discharge port. A volume control compressor configured to be able to change a suction volume by being discharged from the compression chamber through an outlet;
    A radiator for cooling the refrigerant compressed by the compressor;
    An expansion mechanism for expanding the refrigerant cooled by the radiator;
    An evaporator for heating the refrigerant expanded by the expansion mechanism;
    A suction path for leading the refrigerant to be compressed from the evaporator to the compression chamber;
    A discharge path for guiding the compressed refrigerant from the compression chamber to the radiator;
    A volume control path connected to the bypass discharge port;
    A flow path switching unit that supplies either the discharge pressure of the compressor or the suction pressure of the compressor to the volume control path as a control pressure;
    A high-pressure introduction path having one end connected to the flow path switching unit and the other end connected to the discharge path;
    A low-pressure introduction path having one end connected to the flow path switching unit and the other end connected to the suction path;
    When the load of the refrigeration cycle apparatus is small, the flow path switching unit is controlled so that the volume control path is connected to the low pressure introduction path. When the load is large, the volume control path is A control device for controlling the flow path switching unit to be connected to the high-pressure introduction path;
    A check valve provided in the high-pressure introduction path, allowing a refrigerant flow from the discharge path to the flow path switching unit, and prohibiting a reverse flow;
    A refrigeration cycle apparatus comprising:
  2.  前記圧縮機が、吸入口及び吐出口をさらに有し、
     前記負荷が小さい場合には、前記吸入口から前記圧縮室に吸入された冷媒の一部が前記吸入圧力を維持しつつ前記バイパス吐出口を通じて前記圧縮室から吐出され、前記吸入口から前記圧縮室に吸入された冷媒の残部が前記圧縮室で圧縮されて前記吐出口を通じて前記圧縮室から吐出される、請求項1に記載の冷凍サイクル装置。
    The compressor further has a suction port and a discharge port;
    When the load is small, a part of the refrigerant sucked into the compression chamber from the suction port is discharged from the compression chamber through the bypass discharge port while maintaining the suction pressure, and from the suction port to the compression chamber The refrigeration cycle apparatus according to claim 1, wherein a remaining portion of the refrigerant sucked in is compressed in the compression chamber and discharged from the compression chamber through the discharge port.
  3.  リリーフ弁回路をさらに備え、
     前記高圧導入経路が、前記逆止弁と前記流路切替部との間の第1部分と、前記逆止弁と前記吐出経路との間の第2部分とを有し、
     前記リリーフ弁回路が、前記第1部分に接続された一端と、前記第2部分又は前記吐出経路に接続された他端とを有する、請求項1に記載の冷凍サイクル装置。
    A relief valve circuit,
    The high-pressure introduction path has a first part between the check valve and the flow path switching unit, and a second part between the check valve and the discharge path,
    The refrigeration cycle apparatus according to claim 1, wherein the relief valve circuit has one end connected to the first portion and the other end connected to the second portion or the discharge path.
  4.  前記圧縮機は、前記圧縮室としての第1圧縮室及び第2圧縮室と、前記第1圧縮室で圧縮された冷媒及び前記第2圧縮室で圧縮された冷媒を保持しうる内部空間を含む密閉容器と、前記バイパス吐出口を通じて前記第1圧縮室から吐出された冷媒を受け入れる中間室と、前記中間室と前記密閉容器の前記内部空間とを連通する第1吐出口と、前記第1吐出口を開閉する第1吐出弁と、をさらに有する密閉型多気筒圧縮機であり、
     前記中間室を介して、前記容積制御経路が前記バイパス吐出口に接続されており、
     前記負荷が小さい場合には、前記第1圧縮室に吸入された冷媒が前記吸入圧力を維持しつつ前記バイパス吐出口を通じて前記第1圧縮室から吐出され、前記中間室、前記容積制御経路及び前記低圧導入経路を通じて前記吸入経路に戻され、
     前記負荷が大きい場合には、前記第1圧縮室に吸入された冷媒が前記第1圧縮室で前記吐出圧力を超える圧力まで圧縮され、前記バイパス吐出弁及び前記第1吐出弁を押し開き、前記バイパス吐出口、前記中間室及び前記第1吐出口を通じて、前記第1圧縮室から前記密閉容器の前記内部空間へと吐出される、請求項1に記載の冷凍サイクル装置。
    The compressor includes a first compression chamber and a second compression chamber as the compression chamber, and an internal space that can hold the refrigerant compressed in the first compression chamber and the refrigerant compressed in the second compression chamber. A sealed container, an intermediate chamber that receives the refrigerant discharged from the first compression chamber through the bypass discharge port, a first discharge port that communicates the intermediate chamber and the internal space of the sealed container, and the first discharge port. A hermetic multi-cylinder compressor further having a first discharge valve that opens and closes the outlet;
    The volume control path is connected to the bypass discharge port via the intermediate chamber,
    When the load is small, the refrigerant sucked into the first compression chamber is discharged from the first compression chamber through the bypass discharge port while maintaining the suction pressure, and the intermediate chamber, the volume control path, and the Returned to the inhalation route through the low pressure introduction route,
    When the load is large, the refrigerant sucked into the first compression chamber is compressed to a pressure exceeding the discharge pressure in the first compression chamber, pushes open the bypass discharge valve and the first discharge valve, 2. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is discharged from the first compression chamber to the internal space of the sealed container through a bypass discharge port, the intermediate chamber, and the first discharge port.
  5.  前記制御装置は、当該冷凍サイクル装置の起動時において、前記容積制御経路を前記低圧導入経路に接続するように前記流路切替部を制御し、その後、任意の時間が経過したら前記容積制御経路を前記高圧導入経路に接続するように前記流路切替部を制御する、請求項1に記載の冷凍サイクル装置。 The control device controls the flow path switching unit so that the volume control path is connected to the low pressure introduction path at the time of starting the refrigeration cycle apparatus, and then the volume control path is switched after an arbitrary time has elapsed. The refrigeration cycle apparatus according to claim 1, wherein the flow path switching unit is controlled to be connected to the high-pressure introduction path.
  6.  前記制御装置は、当該冷凍サイクル装置の運転を停止するとき、前記容積制御経路を前記低圧導入経路に接続するように前記流路切替部を制御する、請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein when the operation of the refrigeration cycle apparatus is stopped, the control apparatus controls the flow path switching unit so as to connect the volume control path to the low pressure introduction path.
  7.  圧縮室と、前記圧縮室に開口しているバイパス吐出口と、前記バイパス吐出口を開閉するバイパス吐出弁とを有し、前記圧縮室に吸入された冷媒が吸入圧力を維持しつつ前記バイパス吐出口を通じて前記圧縮室から吐出されることによって吸入容積を変更できるように構成された容積制御圧縮機と、
     前記圧縮機で圧縮された冷媒を冷却する放熱器と、
     前記放熱器で冷却された冷媒を膨張させる膨張機構と、
     前記膨張機構で膨張した冷媒を加熱する蒸発器と、
     圧縮するべき冷媒を前記蒸発器から前記圧縮室に導く吸入経路と、
     圧縮された冷媒を前記圧縮室から前記放熱器に導く吐出経路と、
     前記バイパス吐出口に接続された容積制御経路と、
     前記吸入経路に接続された低圧導入経路と、
     前記低圧導入経路と前記容積制御経路とを接続するように設けられた開閉弁と、
     当該冷凍サイクル装置の負荷が小さい場合には、前記容積制御経路を前記低圧導入経路に接続するように前記開閉弁を制御し、前記負荷が大きい場合には、前記容積制御経路を前記低圧導入経路から切り離すように前記開閉弁を制御する制御装置と、
     前記容積制御経路に接続された一端と、前記吐出経路に接続された他端とを有するリリーフ弁回路と、
     を備えた、冷凍サイクル装置。
    A compression chamber, a bypass discharge port that opens to the compression chamber, and a bypass discharge valve that opens and closes the bypass discharge port, and the refrigerant sucked into the compression chamber maintains the suction pressure while the bypass discharge port. A volume control compressor configured to be able to change a suction volume by being discharged from the compression chamber through an outlet;
    A radiator for cooling the refrigerant compressed by the compressor;
    An expansion mechanism for expanding the refrigerant cooled by the radiator;
    An evaporator for heating the refrigerant expanded by the expansion mechanism;
    A suction path for leading the refrigerant to be compressed from the evaporator to the compression chamber;
    A discharge path for guiding the compressed refrigerant from the compression chamber to the radiator;
    A volume control path connected to the bypass discharge port;
    A low-pressure introduction path connected to the suction path;
    An on-off valve provided to connect the low-pressure introduction path and the volume control path;
    When the load of the refrigeration cycle apparatus is small, the on-off valve is controlled to connect the volume control path to the low pressure introduction path, and when the load is large, the volume control path is changed to the low pressure introduction path. A control device for controlling the on-off valve so as to be separated from
    A relief valve circuit having one end connected to the volume control path and the other end connected to the discharge path;
    A refrigeration cycle apparatus comprising:
  8.  第1圧縮室と、第2圧縮室と、前記第1圧縮室で圧縮された冷媒及び前記第2圧縮室で圧縮された冷媒を保持しうる内部空間を含む密閉容器と、前記第1圧縮室に開口しているバイパス吐出口と、前記バイパス吐出口を開閉するバイパス吐出弁と、前記バイパス吐出口を通じて前記第1圧縮室から吐出された冷媒を受け入れる中間室と、前記中間室と前記密閉容器の前記内部空間とを連通する第1吐出口と、前記第1吐出口を開閉する第1吐出弁とを有する容積制御圧縮機と、
     前記圧縮機で圧縮された冷媒を冷却する放熱器と、
     前記放熱器で冷却された冷媒を膨張させる膨張機構と、
     前記膨張機構で膨張した冷媒を加熱する蒸発器と、
     圧縮するべき冷媒を前記蒸発器から前記第1圧縮室及び前記第2圧縮室に導く吸入経路と、
     圧縮された冷媒を前記第1圧縮室及び前記第2圧縮室から前記放熱器に導く吐出経路と、
     前記中間室を介して前記バイパス吐出口に接続された容積制御経路と、
     前記吸入経路に接続された低圧導入経路と、
     前記低圧導入経路と前記容積制御経路とを接続するように設けられた開閉弁と、
     (i)当該冷凍サイクル装置の負荷が小さい場合には、前記容積制御経路が前記低圧導入経路に接続されることによって、前記第1圧縮室に吸入された冷媒が吸入圧力を維持しつつ前記バイパス吐出口を通じて前記第1圧縮室から吐出され、前記中間室、前記容積制御経路及び前記低圧導入経路を通じて前記吸入経路に戻されるように前記開閉弁を制御し、(ii)前記負荷が大きい場合には、前記容積制御経路を前記低圧導入経路から切り離すことによって、前記第1圧縮室に吸入された冷媒が前記第1圧縮室で前記圧縮機の吐出圧力を超える圧力まで圧縮され、前記バイパス吐出弁及び前記第1吐出弁を押し開き、前記バイパス吐出口、前記中間室及び前記第1吐出口を通じて、前記第1圧縮室から前記密閉容器の前記内部空間へと吐出されるように前記開閉弁を制御する制御装置と、
     を備えた、冷凍サイクル装置。
    A first compression chamber; a second compression chamber; a sealed container including an internal space capable of holding the refrigerant compressed in the first compression chamber and the refrigerant compressed in the second compression chamber; and the first compression chamber A bypass discharge opening that opens to the opening, a bypass discharge valve that opens and closes the bypass discharge opening, an intermediate chamber that receives the refrigerant discharged from the first compression chamber through the bypass discharge opening, the intermediate chamber, and the sealed container A volume control compressor having a first discharge port that communicates with the internal space, and a first discharge valve that opens and closes the first discharge port;
    A radiator for cooling the refrigerant compressed by the compressor;
    An expansion mechanism for expanding the refrigerant cooled by the radiator;
    An evaporator for heating the refrigerant expanded by the expansion mechanism;
    A suction path for leading the refrigerant to be compressed from the evaporator to the first compression chamber and the second compression chamber;
    A discharge path for guiding the compressed refrigerant from the first compression chamber and the second compression chamber to the radiator;
    A volume control path connected to the bypass outlet through the intermediate chamber;
    A low-pressure introduction path connected to the suction path;
    An on-off valve provided to connect the low-pressure introduction path and the volume control path;
    (I) When the load of the refrigeration cycle apparatus is small, the volume control path is connected to the low pressure introduction path, so that the refrigerant sucked into the first compression chamber maintains the suction pressure and the bypass Controlling the on-off valve so that it is discharged from the first compression chamber through the discharge port and returned to the suction passage through the intermediate chamber, the volume control path, and the low pressure introduction path; and (ii) when the load is large By separating the volume control path from the low-pressure introduction path, the refrigerant sucked into the first compression chamber is compressed to a pressure exceeding the discharge pressure of the compressor in the first compression chamber, and the bypass discharge valve And the first discharge valve is pushed open and discharged from the first compression chamber to the internal space of the sealed container through the bypass discharge port, the intermediate chamber, and the first discharge port. A control device for controlling the opening and closing valve so,
    A refrigeration cycle apparatus comprising:
  9.  前記制御装置は、当該冷凍サイクル装置の起動時において、前記容積制御経路を前記低圧導入経路に接続するように前記開閉弁を制御し、その後、任意の時間が経過したら前記容積制御経路を前記低圧導入経路から切り離すように前記開閉弁を制御する、請求項7に記載の冷凍サイクル装置。 The control device controls the on-off valve so that the volume control path is connected to the low pressure introduction path when the refrigeration cycle apparatus is started up. The refrigeration cycle apparatus according to claim 7, wherein the on-off valve is controlled so as to be separated from the introduction path.
  10.  前記制御装置は、当該冷凍サイクル装置の運転を停止するとき、前記容積制御経路を前記低圧導入経路に接続するように前記開閉弁を制御する、請求項7に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 7, wherein when the operation of the refrigeration cycle apparatus is stopped, the control apparatus controls the on-off valve so as to connect the volume control path to the low pressure introduction path.
PCT/JP2012/003430 2011-05-26 2012-05-25 Refrigeration cycle device WO2012160832A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013516222A JP5971633B2 (en) 2011-05-26 2012-05-25 Refrigeration cycle equipment
EP12788873.3A EP2716999A4 (en) 2011-05-26 2012-05-25 Refrigeration cycle device
CN201280019703.8A CN103492817B (en) 2011-05-26 2012-05-25 Refrigerating circulatory device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-117778 2011-05-26
JP2011117778 2011-05-26

Publications (1)

Publication Number Publication Date
WO2012160832A1 true WO2012160832A1 (en) 2012-11-29

Family

ID=47216922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003430 WO2012160832A1 (en) 2011-05-26 2012-05-25 Refrigeration cycle device

Country Status (4)

Country Link
EP (1) EP2716999A4 (en)
JP (1) JP5971633B2 (en)
CN (1) CN103492817B (en)
WO (1) WO2012160832A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3004754B1 (en) * 2013-05-31 2018-10-24 Siemens Aktiengesellschaft Heat pumps for use of environmentally safe refrigerants

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201901197T4 (en) 2015-06-17 2019-02-21 Jurop S P A Suction / compression device for waste material aspiration system.
CN107806415B (en) * 2017-11-24 2023-12-01 安徽美芝精密制造有限公司 Compressor assembly and refrigerating device with same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191882A (en) * 1989-01-20 1990-07-27 Hitachi Ltd Displacement control device for compressor and control method thereof
JPH03164579A (en) * 1989-11-21 1991-07-16 Matsushita Electric Ind Co Ltd Compressor
JPH03175230A (en) * 1989-09-20 1991-07-30 Daikin Ind Ltd Operation controller of air conditioner
JPH05164416A (en) * 1991-12-19 1993-06-29 Sanyo Electric Co Ltd Refrigerator
JP2008240699A (en) 2007-03-28 2008-10-09 Daikin Ind Ltd Compressor displacement control operation mechanism, and air conditioning device provided with same
JP2009024929A (en) * 2007-07-19 2009-02-05 Mitsubishi Electric Corp Compressor control device, refrigerating air conditioning device and rotary compressor
JP2010156244A (en) * 2008-12-26 2010-07-15 Daikin Ind Ltd Compressor and refrigeration device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6871511B2 (en) * 2001-02-21 2005-03-29 Matsushita Electric Industrial Co., Ltd. Refrigeration-cycle equipment
CN101094992A (en) * 2005-01-04 2007-12-26 东芝开利株式会社 Refrigerating cycle device and rotary hermetic compressor
EP1877709B1 (en) * 2005-05-04 2013-10-16 Carrier Corporation Refrigerant system with variable speed scroll compressor and economizer circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191882A (en) * 1989-01-20 1990-07-27 Hitachi Ltd Displacement control device for compressor and control method thereof
JPH03175230A (en) * 1989-09-20 1991-07-30 Daikin Ind Ltd Operation controller of air conditioner
JPH03164579A (en) * 1989-11-21 1991-07-16 Matsushita Electric Ind Co Ltd Compressor
JPH05164416A (en) * 1991-12-19 1993-06-29 Sanyo Electric Co Ltd Refrigerator
JP2008240699A (en) 2007-03-28 2008-10-09 Daikin Ind Ltd Compressor displacement control operation mechanism, and air conditioning device provided with same
JP2009024929A (en) * 2007-07-19 2009-02-05 Mitsubishi Electric Corp Compressor control device, refrigerating air conditioning device and rotary compressor
JP2010156244A (en) * 2008-12-26 2010-07-15 Daikin Ind Ltd Compressor and refrigeration device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2716999A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3004754B1 (en) * 2013-05-31 2018-10-24 Siemens Aktiengesellschaft Heat pumps for use of environmentally safe refrigerants
US11473819B2 (en) 2013-05-31 2022-10-18 Siemens Energy Global GmbH & Co. KG Heat pump for using environmentally compatible coolants

Also Published As

Publication number Publication date
CN103492817A (en) 2014-01-01
EP2716999A4 (en) 2015-12-09
JPWO2012160832A1 (en) 2014-07-31
JP5971633B2 (en) 2016-08-17
CN103492817B (en) 2015-10-21
EP2716999A1 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
US8985984B2 (en) Rotary compressor and refrigeration cycle apparatus
JP5306478B2 (en) Heat pump device, two-stage compressor, and operation method of heat pump device
EP2090746B1 (en) Freezing apparatus, and expander
US20110232325A1 (en) Refrigerating apparatus
JP6678332B2 (en) Outdoor unit and control method for air conditioner
JP2009127902A (en) Refrigerating device and compressor
WO2009147826A1 (en) Refrigeration cycle device
US6698221B1 (en) Refrigerating system
EP3115611B1 (en) Two-stage rotary compressor and refrigerating circulation device having same
KR101185307B1 (en) Refrigeration device
CN103620224A (en) Rotary compressor
JP2008133820A (en) Rotary compressor, control method thereof, and air conditioner using the same
JP5239897B2 (en) refrigerator
JPH05149634A (en) Air-conditioning device
JP5971633B2 (en) Refrigeration cycle equipment
JP2011133210A (en) Refrigerating apparatus
WO2012042894A1 (en) Positive displacement compressor
JP5515289B2 (en) Refrigeration equipment
JP2004340410A (en) Screw freezer device
WO2011104879A1 (en) Scroll compressor
JP2013096602A (en) Refrigeration cycle device
JP2012247097A (en) Refrigerating cycle apparatus
WO2015122170A1 (en) Air conditioner
JP5176897B2 (en) Refrigeration equipment
WO2020054052A1 (en) Heat source device and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12788873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516222

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012788873

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE