JP2008133820A - Rotary compressor, control method thereof, and air conditioner using the same - Google Patents

Rotary compressor, control method thereof, and air conditioner using the same Download PDF

Info

Publication number
JP2008133820A
JP2008133820A JP2007149454A JP2007149454A JP2008133820A JP 2008133820 A JP2008133820 A JP 2008133820A JP 2007149454 A JP2007149454 A JP 2007149454A JP 2007149454 A JP2007149454 A JP 2007149454A JP 2008133820 A JP2008133820 A JP 2008133820A
Authority
JP
Japan
Prior art keywords
compression chamber
vane
load operation
rotary compressor
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007149454A
Other languages
Japanese (ja)
Inventor
Teibai Ri
禎培 李
Kyung-Jun Han
敬俊 韓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2008133820A publication Critical patent/JP2008133820A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/19Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary compressor and a control method thereof capable of inhibiting temperature rise of a cylinder due to partial load operation and improving partial load efficiency of the compressor, and an air conditioner using the same. <P>SOLUTION: A rotary compressor includes a cylinder to form a first compressing chamber and a second compressing chamber partitioned from each other and including a first vane slot and a second vane slot which are formed in the first compressing chamber and the second compressing chamber, respectively, and a first roller and a second roller to respectively rotate in the first compressing chamber and the second compressing chamber to compress compressing media, the rotary compressor operating in a full load running mode in which a load running is concurrently performed in the first compressing chamber and the second compressing chamber, and in a partial load running mode in which a load running is performed in only the second compressing chamber, and the rotary compressor further includes a first vane which is accommodated movably in and out of the first vane slot, a vane driving part to enable the first vane to contact and be distanced apart from an outer surface of the first roller to perform a load running and a no-load running in the first compressing chamber, and a controller to control the vane driving part to intermittently perform the load running in the first compressing chamber in the partial load running mode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ロータリ圧縮機及びその制御方法、並びにこれを利用した空気調和機に関し、より詳しくは、部分負荷運転の際に間欠的に負荷運転を行って圧縮機の効率を向上させるロータリ圧縮機及びその制御方法、並びにこれを利用した空気調和機に関する。   The present invention relates to a rotary compressor, a control method thereof, and an air conditioner using the rotary compressor, and more specifically, a rotary compressor that improves the efficiency of a compressor by intermittently performing a load operation during partial load operation. And a control method thereof, and an air conditioner using the same.

一般に、空気調和機に適用される冷却装置は、冷却能力を可変させることによって要求条件に応じた最適な冷却を行うと同時に、エネルギー節減を目的として冷媒の圧縮能力を可変させるように構成された容量可変型ロータリ圧縮機を採用している。   Generally, a cooling device applied to an air conditioner is configured to change the refrigerant compression capacity for the purpose of energy saving while at the same time performing optimum cooling according to the required conditions by changing the cooling capacity. A variable displacement rotary compressor is used.

従来の容量可変型ロータリ圧縮機は、特許文献1に開示されている。   A conventional variable displacement rotary compressor is disclosed in Patent Document 1.

従来の容量可変型ロータリ圧縮機は、被圧縮媒体を圧縮する第1圧縮空間及び第2圧縮空間を形成し、内壁面に第1ベーンスロット及び第2ベーンスロットがそれぞれ形成された第1シリンダ及び第2シリンダと、各シリンダの圧縮空間で回転軸に偏心した状態で結合され旋回運動する第1ローリングピストン及び第2ローリングピストンと、各ベーンスロットに設けられローリングピストンに圧接して、ローリングピストンと共に冷媒を吸入圧縮する第1ベーン及び第2ベーンとを有する。   A conventional variable displacement rotary compressor includes a first cylinder in which a first compression space and a second compression space for compressing a medium to be compressed are formed, and a first vane slot and a second vane slot are respectively formed on an inner wall surface; A second cylinder, a first rolling piston and a second rolling piston which are coupled and pivoted in a state of being eccentric to the rotation axis in the compression space of each cylinder, and are in pressure contact with the rolling piston provided in each vane slot, together with the rolling piston A first vane and a second vane for sucking and compressing the refrigerant;

一方、従来の容量可変型ロータリ圧縮機は、第1圧縮空間及び第2圧縮空間で同時に被圧縮媒体を圧縮させる全負荷運転と、第2圧縮空間を無負荷運転するように第2圧縮空間で第2圧縮空間に作用する圧力より相対的に低い吸入圧力を第2ベーンに印加して、第1圧縮空間でのみ被圧縮媒体が圧縮される部分負荷運転とを行なっていた。   On the other hand, the conventional variable displacement rotary compressor has a full-load operation in which the medium to be compressed is simultaneously compressed in the first compression space and the second compression space, and a second compression space in which the second compression space is unloaded. The suction pressure relatively lower than the pressure acting on the second compression space is applied to the second vane to perform the partial load operation in which the medium to be compressed is compressed only in the first compression space.

そして、ロータリ圧縮機が稼動される際に、密閉されたケーシングの内部は吐出口を通じて排出される圧縮ガスによって高圧に保持され、ケーシング内部の圧縮ガスはケーシングの上部に設けられたガス吐出管を通じて外部に案内される。   When the rotary compressor is operated, the inside of the sealed casing is held at a high pressure by the compressed gas discharged through the discharge port, and the compressed gas inside the casing passes through the gas discharge pipe provided at the upper part of the casing. Guided outside.

ところが、このような従来のロータリ圧縮機においては、圧縮機の運転の際にケーシングの内部が高圧に保持されるので、圧縮機の部分負荷運転の持続される場合、ケーシング内部の高圧ガスが回転軸と第2ローリングピストンとの間から相対的に低圧を保持している第2圧縮空間に漏洩されて第2シリンダの第2吸入口を通じて逆流するので、アキュムレータの温度が上昇し、結果的に圧縮機の効率が低下するだけでなく、部分負荷運転中にシリンダの温度が上昇するという問題点がある。
韓国特許第10−0620044号明細書
However, in such a conventional rotary compressor, since the inside of the casing is maintained at a high pressure during the operation of the compressor, the high-pressure gas inside the casing rotates when the partial load operation of the compressor is continued. Since it leaks into the 2nd compression space holding relatively low pressure from between a shaft and the 2nd rolling piston, it flows back through the 2nd inlet of the 2nd cylinder, and the temperature of an accumulator rises as a result. Not only does the efficiency of the compressor decrease, but the temperature of the cylinder rises during partial load operation.
Korean Patent No. 10-06620044 Specification

そこで、本発明の目的は、部分負荷運転を改善することにより、部分負荷運転によるシリンダの温度上昇を抑制し、圧縮機の部分負荷効率が上げられるロータリ圧縮機及びその制御方法、並びにこれを利用した空気調和機を提供することにある。   Therefore, an object of the present invention is to improve the partial load operation, thereby suppressing the temperature rise of the cylinder due to the partial load operation and increasing the partial load efficiency of the compressor, a control method thereof, and the use thereof Is to provide an air conditioner.

上記目的を達成するために、本発明は、相互に区画された第1圧縮室及び第2圧縮室を形成し、第1圧縮室及び第2圧縮室に形成された第1ベーンスロット及び第2ベーンスロットを有するシリンダと、第1圧縮室及び第2圧縮室内でそれぞれ回転し、被圧縮媒体を圧縮する第1ローラ及び第2ローラとを有し;第1圧縮室と第2圧縮室が同時に負荷運転される全負荷運転モードと、第2圧縮室だけが負荷運転される部分負荷運転モードで運転可能なロータリ圧縮機において、第1ベーンスロット内に出入り可能に収容される第1ベーンと;第1ベーンを第1ローラの外表面に接触又は離隔させ、第1圧縮室を負荷又は無負荷運転するベーン駆動部と;部分負荷運転モードで第1圧縮室を間欠的に負荷運転するようにベーン駆動部の駆動を制御する制御部とを含むことを特徴とするロータリ圧縮機を提供する。   To achieve the above object, the present invention forms a first compression chamber and a second compression chamber that are partitioned from each other, and a first vane slot and a second compression chamber that are formed in the first compression chamber and the second compression chamber. A cylinder having a vane slot, and a first roller and a second roller that rotate in the first compression chamber and the second compression chamber, respectively, and compress the medium to be compressed; the first compression chamber and the second compression chamber simultaneously A first vane accommodated in a first vane slot in a full-load operation mode in which the load operation is performed and a rotary compressor operable in a partial load operation mode in which only the second compression chamber is loaded; A vane drive unit that contacts or separates the first vane from the outer surface of the first roller, and loads or unloads the first compression chamber; intermittently loads the first compression chamber in the partial load operation mode. Controls drive of vane drive Providing rotary compressor which comprises a control unit for.

この一実施形態の制御部は、第1ベーンが一定の周期に従って第1ローラの外表面に接触又は離隔するようにベーン駆動部の駆動を制御可能とされる。   The controller of this embodiment can control the driving of the vane driving unit so that the first vane contacts or separates from the outer surface of the first roller according to a certain period.

また、他の実施形態として、シリンダから吐出される被圧縮媒体の温度を測定する温度感知部をさらに含み、制御部は温度感知部の信号に基づいてベーン駆動部の駆動を制御することができる。   Further, as another embodiment, it further includes a temperature sensing unit that measures the temperature of the compressed medium discharged from the cylinder, and the control unit can control the driving of the vane driving unit based on the signal of the temperature sensing unit. .

一方、ベーン駆動部は、第1ベーンスロットと連通する連結管と、連結管と連通してシリンダから吐出される被圧縮媒体の一部が流動する高圧管と、連結管と連通して各圧縮室に流入する被圧縮媒体の一部が流動する低圧管と、連結管に設けられ高圧管と低圧管を連結管に選択的に連通させる流路転換バルブとを含むことが好ましい。   On the other hand, the vane drive unit communicates with the first vane slot, a high-pressure pipe that communicates with the connection pipe and flows a part of the medium to be compressed discharged from the cylinder, and a compression pipe that communicates with the connection pipe. It is preferable to include a low-pressure pipe through which a part of the medium to be compressed flowing into the chamber flows, and a flow path switching valve provided in the connection pipe to selectively communicate the high-pressure pipe and the low-pressure pipe with the connection pipe.

そして、制御部は、第1圧縮室の負荷運転で高圧管と連結管とが連通するように流路転換バルブを制御し、第1圧縮室の無負荷運転で低圧管と連結管とが連通するように流路転換バルブを制御することが好ましい。   The control unit controls the flow path switching valve so that the high pressure pipe and the connection pipe communicate with each other in the load operation of the first compression chamber, and the low pressure pipe and the connection pipe communicate with each other in the no load operation of the first compression chamber. It is preferable to control the flow path switching valve.

本発明の目的は、上記の如く構成されたロータリ圧縮機と;ロータリ圧縮機から圧縮された被圧縮媒体を室外空気と熱交換する凝縮器と;凝縮器から凝縮された被圧縮媒体を減圧させる膨脹部と;膨脹部から膨脹された被圧縮媒体を室内空気と熱交換する蒸発器と;蒸発器から蒸発された被圧縮媒体の気液を分離し、気体状態の被圧縮媒体をロータリ圧縮機に提供するアキュムレータとを含むことを特徴とする空気調和機によっても達成される。   An object of the present invention is to provide a rotary compressor configured as described above; a condenser that exchanges heat between the compressed medium compressed from the rotary compressor and outdoor air; and a reduced pressure of the compressed medium condensed from the condenser. An expansion unit; an evaporator that exchanges heat between the compressed medium expanded from the expanded part and room air; and a gas-liquid of the compressed medium evaporated from the evaporator is separated, and the compressed medium in a gaseous state is rotary compressor It is also achieved by an air conditioner characterized in that it includes an accumulator provided.

また、上記目的は、本発明の他の分野によれば、相互に区画された第1圧縮室及び第2圧縮室を形成するシリンダを有し、第1圧縮室及び第2圧縮室が同時に負荷運転される全負荷運転モードと、第2圧縮室のみが負荷運転される部分負荷運転モードとで運転可能なロータリ圧縮機の制御方法において、第2圧縮室を負荷運転する段階と;部分負荷運転モードで第1圧縮室を間欠的に負荷運転する段階とを含むことを特徴とするロータリ圧縮機の制御方法によっても達成される。   According to another aspect of the present invention, the above object has a cylinder forming a first compression chamber and a second compression chamber that are partitioned from each other, and the first compression chamber and the second compression chamber are loaded simultaneously. In the rotary compressor control method that can be operated in the full-load operation mode to be operated and the partial load operation mode in which only the second compression chamber is loaded, a stage in which the second compression chamber is loaded and operated; It is also achieved by a method for controlling a rotary compressor, comprising the step of intermittently loading the first compression chamber in a mode.

この一実施形態では、部分負荷運転モードで第1圧縮室は一定の周期に従って負荷運転可能とされる。   In this one embodiment, in the partial load operation mode, the first compression chamber can be operated in a load according to a certain period.

また、他の実施形態として、部分負荷運転モードでシリンダから吐出される被圧縮冷媒の温度を測定する段階をさらに含み、被圧縮冷媒の温度が所定の温度以上であれば、第1圧縮室を間欠的に負荷運転可能とされる。   In another embodiment, the method further includes a step of measuring the temperature of the refrigerant to be compressed discharged from the cylinder in the partial load operation mode, and if the temperature of the refrigerant to be compressed is equal to or higher than a predetermined temperature, the first compression chamber is provided. Intermittent load operation is possible.

本発明によれば、部分負荷運転を改善することによって、部分負荷運転によるシリンダの温度上昇を抑制し、圧縮機の部分負荷効率を高めるロータリ圧縮機及びその制御方法、並びにこれを利用した空気調和機が提供される。   According to the present invention, by improving the partial load operation, the rotary compressor that suppresses the temperature rise of the cylinder due to the partial load operation and increases the partial load efficiency of the compressor, the control method thereof, and the air conditioning using the rotary compressor A machine is provided.

以下、添付図面を参照しながら本発明の好ましい実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

種々の実施形態において、同一の構成を有する構成要素に対しては同一の符号を付けて代表的に一実施形態で説明し、それ以外の実施形態では一実施形態と異なる構成についてのみ説明する。   In various embodiments, components having the same configuration are denoted by the same reference numerals and will be described in a typical embodiment, and in other embodiments, only configurations different from those of the embodiment will be described.

本発明の一実施形態によるロータリ圧縮機は、図1に示すように、密閉されたケーシング9の内側上部に設置された電動要素10と、ケーシング9の内側下部に設置され、電動要素10の回転軸11と連結された圧縮要素20とを備える。   As shown in FIG. 1, the rotary compressor according to one embodiment of the present invention is installed at the inner upper portion of the sealed casing 9 and the inner lower portion of the casing 9 to rotate the electric element 10. A compression element 20 connected to the shaft 11;

電動要素10は、回転軸11と、ケーシング9の内面に固定された円筒形固定子12と、固定子12の内部に回転可能に設置され、中心部が回転軸11に結合された回転子13とを含む。電動要素10は、電力を供給され、回転子13が回転することによって回転軸11により連結された圧縮要素20を駆動させる。   The electric element 10 includes a rotating shaft 11, a cylindrical stator 12 fixed to the inner surface of the casing 9, and a rotor 13 that is rotatably installed inside the stator 12 and has a central portion coupled to the rotating shaft 11. Including. The electric element 10 is supplied with electric power, and drives the compression element 20 connected by the rotating shaft 11 when the rotor 13 rotates.

圧縮要素20は、相互に区画された上部の第1圧縮室31及び下部の第2圧縮室32を備えたシリンダ30と、第1圧縮室31及び第2圧縮室32内にそれぞれ設けられ、回転軸11によって動作する第1圧縮ユニット40及び第2圧縮ユニット50とを含む。   The compression element 20 is provided in a cylinder 30 having an upper first compression chamber 31 and a lower second compression chamber 32 that are partitioned from each other, and in the first compression chamber 31 and the second compression chamber 32, respectively. A first compression unit 40 and a second compression unit 50 operated by the shaft 11 are included.

シリンダ30は、第1圧縮室31が形成された上部の第1ボディー33と、第2圧縮室32が形成されて第1ボディー33の下部に設置された第2ボディー34と、第1圧縮室31及び第2圧縮室32の区画のために第1ボディー33と第2ボディー34との間に設置された中間板35と、第1圧縮室31の上側開口と第2圧縮室32の下側開口とを閉鎖すると同時に、回転軸11を支持するように第1ボディー33の上部及び第2ボディー34の下部にそれぞれ装着された第1フランジ36及び第2フランジ37とを含む。回転軸11は、第1圧縮室31及び第2圧縮室32の中心を貫通し、第1圧縮室31及び第2圧縮室32内部の圧縮ユニット40、50に連結される。   The cylinder 30 includes an upper first body 33 in which a first compression chamber 31 is formed, a second body 34 in which a second compression chamber 32 is formed and installed below the first body 33, and a first compression chamber. An intermediate plate 35 disposed between the first body 33 and the second body 34 for partitioning the first compression chamber 32 and the second compression chamber 32; an upper opening of the first compression chamber 31; and a lower side of the second compression chamber 32 A first flange 36 and a second flange 37 mounted on the upper portion of the first body 33 and the lower portion of the second body 34 so as to support the rotating shaft 11 at the same time as closing the opening are included. The rotary shaft 11 passes through the centers of the first compression chamber 31 and the second compression chamber 32 and is connected to the compression units 40 and 50 inside the first compression chamber 31 and the second compression chamber 32.

第1圧縮ユニット40及び第2圧縮ユニット50は、第1圧縮室31及び第2圧縮室32の回転軸11にそれぞれ設けられた第1偏心部41及び第2偏心部51と、第1圧縮室31及び第2圧縮室32の内壁面と接した状態で回転するように、第1偏心部41及び第2偏心部51の外面にそれぞれ回転可能に結合された第1ローラ42及び第2ローラ52とを含む。第1偏心部41及び第2偏心部51は、バランスを保持するように偏心方向が互いに反対方向に配置される。ここで、第1ローラ42及び第2ローラ52は、第1圧縮室31及び第2圧縮室32内部で偏心回転し、被圧縮媒体を圧縮する。   The first compression unit 40 and the second compression unit 50 include a first eccentric portion 41 and a second eccentric portion 51 provided on the rotation shaft 11 of the first compression chamber 31 and the second compression chamber 32, respectively, and a first compression chamber. The first roller 42 and the second roller 52 that are rotatably coupled to the outer surfaces of the first eccentric portion 41 and the second eccentric portion 51 so as to rotate in contact with the inner wall surfaces of the first compression chamber 32 and the second compression chamber 32, respectively. Including. The first eccentric portion 41 and the second eccentric portion 51 are arranged in directions opposite to each other so as to maintain a balance. Here, the first roller 42 and the second roller 52 are eccentrically rotated inside the first compression chamber 31 and the second compression chamber 32 to compress the medium to be compressed.

また、第1圧縮ユニット40及び第2圧縮ユニット50は、第1ローラ42及び第2ローラ52の回転によって各圧縮室31、32の径方向で進退する状態で各圧縮室31、32を区切る第1ベーン43及び第2ベーン53を含む。第1ベーン43及び第2ベーン53は、図1及び図2に示すように、各圧縮室31、32の内壁面に径方向で凹状となるように形成された第1ベーンスロット44及び第2ベーンスロット54に収容されることによって、第1ベーン43及び第2ベーン53の進退が案内される。第1ベーン43及び第2ベーン53は、第1ローラ42及び第2ローラ52の外表面にそれぞれ接触し、第1圧縮室31及び第2圧縮室32を区切る。   Further, the first compression unit 40 and the second compression unit 50 divide the compression chambers 31 and 32 in a state where the compression chambers 31 and 32 advance and retreat in the radial direction by the rotation of the first roller 42 and the second roller 52. 1 vane 43 and 2nd vane 53 are included. As shown in FIGS. 1 and 2, the first vane 43 and the second vane 53 are formed on the inner wall surfaces of the compression chambers 31 and 32 so as to be concave in the radial direction. By being accommodated in the vane slot 54, the advance and retreat of the first vane 43 and the second vane 53 is guided. The first vane 43 and the second vane 53 are in contact with the outer surfaces of the first roller 42 and the second roller 52, respectively, and divide the first compression chamber 31 and the second compression chamber 32.

一方、第1ボディー33及び第2ボディー34には、第1ベーン43及び第2ベーン53を収容し、且つ、第1ベーン43及び第2ベーン53が出入り可能に案内する第1ベーンスロット44及び第2ベーンスロット54が形成されている。   Meanwhile, the first body 33 and the second body 34 accommodate the first vane 43 and the second vane 53, and guide the first vane 43 and the second vane 53 so that they can enter and exit, and A second vane slot 54 is formed.

第1ベーンスロット44は、第1圧縮室31の内壁面で第1ベーン43の厚さと略同一の厚さを有し、径方向且つ外側に向かって凹状に形成される。また、第1ベーン43の後端と接する第1ベーンスロット44の径方向且つ外側には、第1ベーン43が完全に後退する際に第1ベーン43を付着させて固定することによって、第1ベーン43の揺れを防止する磁石47が設けられている。ここで、第1ベーン43の後端を曲面の断面形状に形成することが好ましく、これによって第1ベーン43が後退する際に第1ベーン43の後端が磁石47に容易に密着できるようになる。   The first vane slot 44 has a thickness substantially the same as the thickness of the first vane 43 on the inner wall surface of the first compression chamber 31 and is formed in a concave shape in the radial direction and outward. In addition, the first vane 43 is attached and fixed to the first vane slot 44 in contact with the rear end of the first vane 43 in the radial direction and outside when the first vane 43 is completely retracted. A magnet 47 that prevents the vane 43 from shaking is provided. Here, it is preferable to form the rear end of the first vane 43 into a curved cross-sectional shape, so that the rear end of the first vane 43 can be easily attached to the magnet 47 when the first vane 43 is retracted. Become.

一方、本発明は、第1ベーン43の後方に吸入圧力を印加することによって第1ベーン43を後退させた状態で拘束するか、または第1ベーン43の後方に吐出圧力を印加することによって第1ベーン43の進退が行われるようにするベーン駆動部60を含む。ベーン駆動部60は、このような方式で第1ベーン43を拘束するか、拘束を解除することによって、第1圧縮室31で圧縮または空回転が行われるようにして、つまり、第1圧縮室31で負荷運転または無負荷運転が行われるようにして、圧縮容量を可変にする。このようなベーン駆動部60の具体的な構成及び動作については後述する。   On the other hand, in the present invention, the first vane 43 is restrained in the retracted state by applying the suction pressure behind the first vane 43, or the discharge pressure is applied behind the first vane 43. The vane drive part 60 which makes 1 vane 43 advance and retreat is included. The vane drive unit 60 restrains the first vane 43 in such a manner or releases the restraint so that compression or idling is performed in the first compression chamber 31, that is, the first compression chamber. The load capacity or the no-load operation is performed at 31, and the compression capacity is made variable. A specific configuration and operation of the vane driving unit 60 will be described later.

第2ベーンスロット54は、第2圧縮室32の内壁面で外側に向かって陥没形成されて第2ベーン53を案内する第2ベーンガイド56と、第2ベーン53が第2圧縮室32を区切るように第2ベーン53を第2ローラ52に加圧するベーンスプリング55が設けられるベーンスプリング収容部57とで形成される。   The second vane slot 54 is recessed toward the outside on the inner wall surface of the second compression chamber 32 to guide the second vane 53, and the second vane 53 separates the second compression chamber 32. In this manner, the second vane 53 is formed by a vane spring accommodating portion 57 provided with a vane spring 55 that pressurizes the second roller 52 against the second roller 52.

一方、第1ボディー33及び第2ボディー34には、第1圧縮室31及び第2圧縮室32の内部に低圧の被圧縮媒体が流入できるように吸入管71、72と連結される吸入口73と、各圧縮室31、32の内部で圧縮された高圧の被圧縮媒体がケーシング9の内部に吐出される吐出口75、76とが形成される。これにより、ロータリ圧縮機8が駆動される際にケーシング9の内部は吐出口75、76を通じて排出される被圧縮媒体によって高圧に保持され、ケーシング9の内部の被圧縮媒体はケーシング9の上部に備えられた吐出配管77を通じて外部に案内される。   On the other hand, the first body 33 and the second body 34 have a suction port 73 connected to suction pipes 71 and 72 so that a low-pressure compressed medium can flow into the first compression chamber 31 and the second compression chamber 32. In addition, discharge ports 75 and 76 are formed through which the high-pressure compressed medium compressed in the compression chambers 31 and 32 is discharged into the casing 9. As a result, when the rotary compressor 8 is driven, the inside of the casing 9 is held at a high pressure by the medium to be compressed discharged through the discharge ports 75 and 76, and the medium to be compressed inside the casing 9 is placed on the upper part of the casing 9. It is guided to the outside through the discharge pipe 77 provided.

吸入される被圧縮媒体はアキュムレータ78を経た後、吸入管71、72を通じて各圧縮室31、32の吸入口73に案内される。   The compressed medium to be sucked passes through an accumulator 78 and is guided to suction ports 73 of the compression chambers 31 and 32 through suction pipes 71 and 72.

ベーン駆動部60は、図1に示すように、第1ベーンスロット44と連通する連結管61と、連結管61と連通してケーシング9から吐出される被圧縮媒体の一部が流動する高圧管62と、連結管61及び吸入配管70と連通し、各圧縮室31、32に流入する被圧縮媒体の一部が流動する低圧管63と、連結管61と連通し、高圧管62又は低圧管63を連結管61に選択的に連通させる流路転換バルブ64とを有する。   As shown in FIG. 1, the vane driving unit 60 includes a connecting pipe 61 that communicates with the first vane slot 44, and a high-pressure pipe that communicates with the connecting pipe 61 and flows a part of the medium to be compressed discharged from the casing 9. 62, the connecting pipe 61 and the suction pipe 70, the low pressure pipe 63 through which a part of the medium to be compressed flowing into the compression chambers 31 and 32 flows, and the connecting pipe 61, the high pressure pipe 62 or the low pressure pipe. And a flow path switching valve 64 for selectively communicating 63 with the connecting pipe 61.

流路転換バルブ64は、連結管61、高圧管62、及び低圧管63が連結される地点に設置される電動式3方バルブである。連結管61の出口は第1フランジ36に連結され、第1フランジ36には連結管61と第1ベーンスロット44とを連通させる連通油路36aが形成されている。   The flow path switching valve 64 is an electric three-way valve installed at a point where the connecting pipe 61, the high pressure pipe 62, and the low pressure pipe 63 are connected. The outlet of the connecting pipe 61 is connected to the first flange 36, and a communication oil passage 36 a that connects the connecting pipe 61 and the first vane slot 44 is formed in the first flange 36.

一方、本発明によるロータリ圧縮機8は、部分負荷運転モードで第1圧縮室31を周期的に負荷運転するようにベーン駆動部60の駆動を制御する制御部80を有する。図5に示すように、制御部80は、第1ベーン43が一定の周期に従って第1ローラ42の外表面に接触又は離隔するようにベーン駆動部60の駆動を制御する。制御部80は、部分負荷運転中に高圧管62と連結管61とが連通するように、流路転換バルブ64を一定の周期Tbに従って所定の時間Taの間に開放させて第1ベーン43の後方に被圧縮媒体の吐出圧力を印加し、第1圧縮室31及び第2圧縮室32で100%の圧縮作用が発生する全負荷運転を行う。つまり、本発明によるロータリ圧縮機8の制御部80は、部分負荷運転中にベーン駆動部60から第1ベーン43の後方に被圧縮媒体の吐出圧力と吸入圧力を交互的に印加し、第1ベーン43を第1ローラ42の外表面に接触又は離隔させることによって、第1圧縮室31を周期的に負荷運転又は無負荷運転させる。   On the other hand, the rotary compressor 8 according to the present invention includes a control unit 80 that controls driving of the vane driving unit 60 so as to periodically load-load the first compression chamber 31 in the partial load operation mode. As shown in FIG. 5, the control unit 80 controls the driving of the vane driving unit 60 so that the first vane 43 contacts or is separated from the outer surface of the first roller 42 according to a certain period. The control unit 80 opens the flow path switching valve 64 during a predetermined time Ta according to a predetermined period Tb so that the high-pressure pipe 62 and the connection pipe 61 communicate with each other during the partial load operation. A discharge pressure of the medium to be compressed is applied to the rear, and a full load operation is performed in which a 100% compression action is generated in the first compression chamber 31 and the second compression chamber 32. That is, the control unit 80 of the rotary compressor 8 according to the present invention alternately applies the discharge pressure and the suction pressure of the medium to be compressed to the rear of the first vane 43 from the vane driving unit 60 during the partial load operation. By causing the vane 43 to contact or separate from the outer surface of the first roller 42, the first compression chamber 31 is periodically loaded or unloaded.

そして、本発明によるロータリ圧縮機8は、空気調和機の回路を構成している。すなわち、空気調和機は、本発明によるロータリ圧縮機8と、圧縮機8から吐出された被圧縮媒体を室外側の空気と熱交換する凝縮器3と、凝縮された被圧縮媒体を減圧させる膨張部5と、膨脹された被圧縮媒体と室内空気を熱交換する蒸発器7と、蒸発された被圧縮媒体の気液を分離して気体状態の被圧縮媒体を圧縮機8に供給するアキュムレータ78とによって形成される。   And the rotary compressor 8 by this invention comprises the circuit of an air conditioner. That is, the air conditioner includes a rotary compressor 8 according to the present invention, a condenser 3 that exchanges heat between the compressed medium discharged from the compressor 8 and outdoor air, and an expansion that depressurizes the condensed compressed medium. Part 5, an evaporator 7 for exchanging heat between the expanded compressed medium and room air, and an accumulator 78 for separating the vapor-liquid of the evaporated compressed medium and supplying the compressed medium in a gaseous state to the compressor 8 And formed by.

以下、本発明によるロータリ圧縮機8の作動過程について、図面を参照して説明する。   Hereinafter, the operation process of the rotary compressor 8 according to the present invention will be described with reference to the drawings.

図1及び図2に示すように、高圧管62が連結管61と連通するように流路転換バルブ64を開放する際には、第1ベーン43の後方に吐出圧力が加えられる。このとき、第1ベーン43が吐出圧力によって第1圧縮室31の方に押されるので、第1ベーン43が第1ローラ42の外表面に接触し、第1ローラ42が偏心回転することによって、第1ベーン43は進退する。一方、図3及び図4に示すように、低圧管63が連結管61と連通するように流路転換バルブ64が開放される際には、第1ベーン43の後方に吸入圧力が加えられる。このとき、第1ベーン43が後退した状態で止められるので、第1圧縮室31で空回転が行われる。第1ベーン43が後退して停止(拘束)される際には、第1ベーン43の後端が磁石47に付着されるので、第1ベーン43の揺れが防止される。つまり、第1圧縮室31の内で空回転をする第1ローラ42の動作によって第1圧縮室31で圧力の変化が生じる場合にも、第1ベーン43の流動が生じず静かな動作が成り立つ。   As shown in FIGS. 1 and 2, when the flow path switching valve 64 is opened so that the high pressure pipe 62 communicates with the connecting pipe 61, the discharge pressure is applied behind the first vane 43. At this time, since the first vane 43 is pushed toward the first compression chamber 31 by the discharge pressure, the first vane 43 contacts the outer surface of the first roller 42, and the first roller 42 rotates eccentrically, The first vane 43 advances and retreats. On the other hand, as shown in FIGS. 3 and 4, when the flow path switching valve 64 is opened so that the low-pressure pipe 63 communicates with the connecting pipe 61, suction pressure is applied behind the first vane 43. At this time, since the first vane 43 is stopped in the retracted state, idling is performed in the first compression chamber 31. When the first vane 43 moves backward and is stopped (restrained), the rear end of the first vane 43 is attached to the magnet 47, so that the swing of the first vane 43 is prevented. That is, even when a pressure change occurs in the first compression chamber 31 due to the operation of the first roller 42 that rotates idly in the first compression chamber 31, the flow of the first vane 43 does not occur and a quiet operation is established. .

本発明は、上記の如く、ベーン駆動部60を通じて第1ベーン43の拘束を制御することによって第1圧縮室31の方で圧縮または空回転が行われて、これを通じて圧縮容量を変化させることができる。すなわち、第1ベーン43の後方に吐出圧力を印加し、第1ベーン43を第1ローラ42の外表面に接触させて、第1ベーン43の進退が行なわれると、第1圧縮室31及び第2圧縮室32の両方で圧縮動作が行われるので、大容量の圧縮が行われて、本発明による圧縮機8は全負荷運転モードで運転される。一方、第1ベーン43の後方に吸入圧力を印加することによって第1ベーン43が拘束されると、すなわち第1ベーン43を第1ローラ42の外表面から離隔させると、第1圧縮室31で空回転が行われ、これによって第2圧縮室32においてのみ圧縮動作が行われるので圧縮容量は減少し、本発明による圧縮機8は部分負荷運転モードで運転される。   In the present invention, as described above, the compression or idling is performed in the first compression chamber 31 by controlling the restraint of the first vane 43 through the vane driving unit 60, and the compression capacity can be changed through this. it can. That is, when the discharge pressure is applied to the rear of the first vane 43 and the first vane 43 is brought into contact with the outer surface of the first roller 42 and the first vane 43 is advanced and retracted, the first compression chamber 31 and the first vane 43 are moved. Since the compression operation is performed in both the two compression chambers 32, a large volume of compression is performed, and the compressor 8 according to the present invention is operated in the full load operation mode. On the other hand, when the first vane 43 is restrained by applying suction pressure behind the first vane 43, that is, when the first vane 43 is separated from the outer surface of the first roller 42, the first compression chamber 31 Since the idling is performed and the compression operation is performed only in the second compression chamber 32, the compression capacity is reduced, and the compressor 8 according to the present invention is operated in the partial load operation mode.

特に圧縮機8の部分負荷運転の際には、制御部80は第1ベーン43の後方に吐出圧力及び吸入圧力を一定の周期で交互に印加し、第1ベーン43を第1ローラ42の外表面に接触又は離隔させることによって、第1圧縮室31は周期的に負荷又は無負荷運転される。   In particular, during partial load operation of the compressor 8, the control unit 80 alternately applies the discharge pressure and the suction pressure to the rear of the first vane 43 at a constant cycle, so that the first vane 43 is removed from the first roller 42. The first compression chamber 31 is periodically loaded or unloaded by contacting or separating the surface.

これによって、圧縮機8の部分負荷運転の際に回転軸11と第1ローラ42との間から第1圧縮室31に漏洩された被圧縮媒体は、吸入口73を通じて逆流せず、第1ローラ42及び第1ベーン43の作動によって圧縮され、吐出口75を通じて周期的に吐出される。これによって、本発明の一実施形態によるロータリ圧縮機8は、図6に示すように、圧縮機8の部分負荷運転の際に部分負荷運転の時間が経過することによって従来のようにシリンダ30の温度が上昇することなく、一定周期に従ってシリンダ30の温度が下降し、これによってアキュムレータ78の温度上昇を抑制し、圧縮機8の効率を上げるだけではなく、部分負荷運転の効率も向上させることができる。   As a result, the medium to be compressed leaked into the first compression chamber 31 from between the rotating shaft 11 and the first roller 42 during the partial load operation of the compressor 8 does not flow back through the suction port 73, and the first roller Compressed by the operation of the first vane 43 and the first vane 43, and discharged periodically through the discharge port 75. As a result, the rotary compressor 8 according to the embodiment of the present invention, as shown in FIG. 6, the time of the partial load operation elapses during the partial load operation of the compressor 8. Without increasing the temperature, the temperature of the cylinder 30 decreases according to a certain period, thereby suppressing the temperature increase of the accumulator 78 and improving the efficiency of the compressor 8 as well as improving the efficiency of the partial load operation. it can.

一方、図7には本発明の他の実施形態によるロータリ圧縮機が示されている。本発明の他の実施形態によるロータリ圧縮機8’は、前述の実施形態とは異なり、ケーシング9から吐出される被圧縮冷媒の温度を測定する温度感知部83をさらに含み、制御部80は温度感知部83の信号に基づいてベーン駆動部60の駆動を制御する。   FIG. 7 shows a rotary compressor according to another embodiment of the present invention. Unlike the above-described embodiment, the rotary compressor 8 ′ according to another embodiment of the present invention further includes a temperature sensing unit 83 that measures the temperature of the refrigerant to be compressed discharged from the casing 9, and the control unit 80 has a temperature. The driving of the vane driving unit 60 is controlled based on the signal from the sensing unit 83.

本発明の他の実施形態によるロータリ圧縮機8’の制御部80は、部分負荷運転中にケーシング9から吐出される被圧縮媒体の温度によって、ベーン駆動部60から第1ベーン43の後方に被圧縮媒体の吐出圧力及び吸入圧力を交互に印加し、第1ベーン43を第1ローラ42の外表面に接触又は離隔させることによって、第1圧縮室31を負荷又は無負荷運転させる。   The control unit 80 of the rotary compressor 8 ′ according to another embodiment of the present invention is configured so that the temperature of the medium to be compressed discharged from the casing 9 during the partial load operation is shifted from the vane driving unit 60 to the rear of the first vane 43. By alternately applying the discharge pressure and the suction pressure of the compression medium and causing the first vane 43 to contact or separate from the outer surface of the first roller 42, the first compression chamber 31 is operated with or without load.

すなわち、ケーシング9から吐出配管77を通じて吐出される被圧縮冷媒の温度が所定の温度以上であれば、制御部80は部分負荷運転中に高圧管62と連結管61とが連通するように流路転換バルブ64を所定の時間の間に開放させ、第1ベーン43の後方に被圧縮媒体の吐出圧力を印加し、第1圧縮室31及び第2圧縮室32で100%の圧縮作用が発生する全負荷運転を行う。   That is, if the temperature of the refrigerant to be compressed discharged from the casing 9 through the discharge pipe 77 is equal to or higher than a predetermined temperature, the control unit 80 allows the high-pressure pipe 62 and the connection pipe 61 to communicate with each other during the partial load operation. The conversion valve 64 is opened for a predetermined time, the discharge pressure of the medium to be compressed is applied behind the first vane 43, and 100% compression action occurs in the first compression chamber 31 and the second compression chamber 32. Perform full load operation.

これによって、部分負荷運転中に圧縮機8’の温度が上昇せずアキュムレータ78の温度が下降するので、圧縮機8’の効率が上がるだけでなく負荷運転の効率も上がる。   As a result, the temperature of the compressor 8 ′ does not increase during the partial load operation and the temperature of the accumulator 78 decreases, so that not only the efficiency of the compressor 8 ′ increases but also the efficiency of the load operation increases.

このように、圧縮機の部分負荷運転中に間欠的に負荷運転を行うことによって、部分負荷運転によるシリンダの温度上昇を抑制し、圧縮機の部分負荷効率が上げられる。   Thus, by intermittently performing the load operation during the partial load operation of the compressor, the temperature rise of the cylinder due to the partial load operation is suppressed, and the partial load efficiency of the compressor is increased.

一方、前述の一実施形態においては、圧縮機が部分負荷運転中に一定の周期に従って第1圧縮室が負荷運転又は無負荷運転されることを説明しているが、第1圧縮室を非周期的に負荷運転又は無負荷運転することもできる。   On the other hand, in the above-described embodiment, it is described that the first compression chamber is loaded or unloaded according to a certain cycle during the partial load operation of the compressor. It is also possible to perform a load operation or no load operation.

また、前述の実施形態においては、圧縮機が部分負荷運転中に一定の周期に従って第1圧縮室が負荷運転又は無負荷運転されるか、または圧縮機から吐出される被圧縮媒体の温度によって第1圧縮室が負荷運転又は無負荷運転されることと説明している。しかしながら、第1圧縮室を部分負荷運転中に周期的に負荷運転又は無負荷運転するか、又は圧縮機から吐出される被圧縮媒体の温度によって負荷運転又は無負荷運転することもできる。   Further, in the above-described embodiment, the first compression chamber is loaded or unloaded according to a certain period during the partial load operation, or the first compression chamber is changed depending on the temperature of the medium to be compressed discharged from the compressor. It is described that one compression chamber is loaded or unloaded. However, the first compression chamber can be periodically loaded or unloaded during partial load operation, or can be loaded or unloaded depending on the temperature of the medium to be compressed discharged from the compressor.

本発明の一実施形態によるロータリ圧縮機の第1圧縮室で圧縮動作が行われる状態を示す垂直断面図である。It is a vertical sectional view showing a state where a compression operation is performed in a first compression chamber of a rotary compressor according to an embodiment of the present invention. 図1のII−II線による水平断面図である。It is a horizontal sectional view by the II-II line of FIG. 本発明の一実施形態によるロータリ圧縮機の第1圧縮室で空回転が行われる状態を示す垂直断面図である。It is a vertical sectional view showing a state where idling is performed in a first compression chamber of a rotary compressor according to an embodiment of the present invention. 図3のIV−IV線による水平断面図である。FIG. 4 is a horizontal sectional view taken along line IV-IV in FIG. 3. 本発明の一実施形態によるロータリ圧縮機の制御状態図である。It is a control state figure of the rotary compressor by one Embodiment of this invention. 本発明の一実施形態によるロータリ圧縮機の部分負荷運転時の時間に対するシリンダの温度変化線図である。It is a temperature change diagram of a cylinder with respect to time at the time of partial load operation of a rotary compressor by one embodiment of the present invention. 本発明の他の実施形態によるロータリ圧縮機の第1圧縮室で圧縮動作が行われる状態を示す垂直断面図である。It is a vertical sectional view showing a state where a compression operation is performed in a first compression chamber of a rotary compressor according to another embodiment of the present invention.

符号の説明Explanation of symbols

3 凝縮器
5 膨脹部
7 蒸発器
8 圧縮機
8’ 圧縮機
9 ケーシング
10 電動要素
11 回転軸
12 固定子
13 回転子
20 圧縮要素
30 シリンダ
31 第1圧縮室
32 第2圧縮室
40 第1圧縮ユニット
42 第1ローラ
43 第1ベーン
44 第1ベーンスロット
50 第2圧縮ユニット
52 第2ローラ
53 第2ベーン
54 第2ベーンスロット
60 ベーン駆動部
61 連結管
62 高圧管
63 低圧管
64 流路転換バルブ
71 吸入配管
72 吸入配管
77 吐出配管
78 アキュムレータ
80 制御部
83 温度感知部
DESCRIPTION OF SYMBOLS 3 Condenser 5 Expansion part 7 Evaporator 8 Compressor 8 'Compressor 9 Casing 10 Electric element 11 Rotating shaft 12 Stator 13 Rotor 20 Compression element 30 Cylinder 31 1st compression chamber 32 2nd compression chamber 40 1st compression unit 42 1st roller 43 1st vane 44 1st vane slot 50 2nd compression unit 52 2nd roller 53 2nd vane 54 2nd vane slot 60 vane drive part 61 connection pipe 62 high pressure pipe 63 low pressure pipe 64 channel change valve 71 Suction piping 72 Suction piping 77 Discharge piping 78 Accumulator 80 Control unit 83 Temperature sensing unit

Claims (9)

相互に区画された第1圧縮室及び第2圧縮室を形成し、前記第1圧縮室及び前記第2圧縮室に形成された第1ベーンスロット及び第2ベーンスロットを有するシリンダと、前記第1圧縮室及び前記第2圧縮室内でそれぞれ回転して被圧縮媒体を圧縮する第1ローラ及び第2ローラとを有し、前記第1圧縮室と前記第2圧縮室とが同時に負荷運転される全負荷運転モードと、前記第2圧縮室のみが負荷運転される部分負荷運転モードとで運転可能なロータリ圧縮機において、
前記第1ベーンスロット内に制御可能に収容される第1ベーンと、
前記第1ベーンを前記第1ローラの外表面に接触又は離隔させ、前記第1圧縮室を負荷運転又は無負荷運転するベーン駆動部と、
前記部分負荷運転モードで前記第1圧縮室を間欠的に負荷運転するように、前記ベーン駆動部の駆動を制御する制御部とを含むことを特徴とするロータリ圧縮機。
A first compression chamber and a second compression chamber partitioned from each other; a cylinder having a first vane slot and a second vane slot formed in the first compression chamber and the second compression chamber; A first roller and a second roller that rotate in the compression chamber and the second compression chamber to compress the medium to be compressed, respectively, and the first compression chamber and the second compression chamber are all simultaneously operated under load. In a rotary compressor operable in a load operation mode and a partial load operation mode in which only the second compression chamber is operated under load,
A first vane controllably accommodated in the first vane slot;
A vane drive unit that contacts or separates the first vane from the outer surface of the first roller, and performs a load operation or no-load operation of the first compression chamber;
And a control unit that controls driving of the vane driving unit so that the first compression chamber is intermittently loaded in the partial load operation mode.
前記制御部は、前記第1ベーンが一定の周期に従って前記第1ローラの外表面に接触又は離隔するように、前記ベーン駆動部の駆動を制御することを特徴とする請求項1に記載のロータリ圧縮機。   2. The rotary according to claim 1, wherein the control unit controls driving of the vane driving unit such that the first vane contacts or separates from an outer surface of the first roller according to a predetermined period. Compressor. 前記シリンダから吐出される被圧縮媒体の温度を測定する温度感知部をさらに含み、
前記制御部は、前記温度感知部の信号に基づいて前記ベーン駆動部の駆動を制御することを特徴とする請求項1または2に記載のロータリ圧縮機。
A temperature sensing unit that measures the temperature of the medium to be compressed discharged from the cylinder;
The rotary compressor according to claim 1, wherein the control unit controls driving of the vane driving unit based on a signal from the temperature sensing unit.
前記ベーン駆動部は、
前記第1ベーンスロットと連通する連結管と、
前記連結管と連通して前記シリンダから吐出される被圧縮媒体の一部が流動する高圧管と、
前記連結管と連通して前記各圧縮室に流入する被圧縮媒体の一部が流動する低圧管と、
前記連結管に設けられ、前記高圧管及び前記低圧管を前記連結管に選択的に連通させる流路転換バルブとを含むことを特徴とする請求項1に記載のロータリ圧縮機。
The vane drive unit is
A connecting pipe communicating with the first vane slot;
A high-pressure pipe that communicates with the connecting pipe and in which a part of the medium to be compressed discharged from the cylinder flows;
A low-pressure pipe communicating with the connecting pipe and flowing through a part of the medium to be compressed flowing into the compression chambers;
2. The rotary compressor according to claim 1, further comprising a flow path switching valve that is provided in the connection pipe and selectively communicates the high-pressure pipe and the low-pressure pipe with the connection pipe.
前記制御部は、前記第1圧縮室の負荷運転モードで前記高圧管と前記連結管とが連通するように前記流路転換バルブを制御し、前記第1圧縮室の無負荷運転モードで前記低圧管と前記連結管とが連通するように前記流路転換バルブを制御することを特徴とする請求項4に記載のロータリ圧縮機。   The control unit controls the flow path switching valve so that the high-pressure pipe and the connection pipe communicate with each other in the load operation mode of the first compression chamber, and the low pressure in the no-load operation mode of the first compression chamber. The rotary compressor according to claim 4, wherein the flow path switching valve is controlled so that the pipe and the connection pipe communicate with each other. 請求項1乃至5のうちのいずれか一項に記載のロータリ圧縮機と、
前記ロータリ圧縮機から圧縮された被圧縮媒体を室外空気と熱交換する凝縮器と、
前記凝縮器から凝縮された被圧縮媒体を減圧させる膨脹部と、
前記膨脹部から膨脹された被圧縮媒体を室内空気と熱交換する蒸発器と、
前記蒸発器から蒸発された被圧縮媒体の気液を分離して、気体状態の前記被圧縮媒体を前記ロータリ圧縮機に提供するアキュムレータとを含むことを特徴とする空気調和機。
A rotary compressor according to any one of claims 1 to 5;
A condenser for exchanging heat between the compressed medium compressed from the rotary compressor and outdoor air;
An expansion section for depressurizing the medium to be compressed condensed from the condenser;
An evaporator for exchanging heat between the compressed medium expanded from the expansion section and room air;
An air conditioner comprising: an accumulator for separating the gas-liquid of the compressed medium evaporated from the evaporator and providing the compressed medium in a gaseous state to the rotary compressor.
相互に区画された第1圧縮室及び第2圧縮室を形成するシリンダを有し、前記第1圧縮室と前記第2圧縮室が同時に負荷運転される全負荷運転モードと、前記第2圧縮室のみが負荷運転される部分負荷運転モードとで運転可能なロータリ圧縮機の制御方法において、
前記第2圧縮室を負荷運転する段階と;
前記部分負荷運転モードで前記第1圧縮室を間欠的に負荷運転する段階とを含むことを特徴とするロータリ圧縮機の制御方法。
A full-load operation mode in which cylinders forming a first compression chamber and a second compression chamber partitioned from each other are provided, and the first compression chamber and the second compression chamber are simultaneously loaded, and the second compression chamber In the control method of the rotary compressor that can be operated in the partial load operation mode in which only the load operation is performed,
Performing a load operation on the second compression chamber;
And a step of intermittently loading the first compression chamber in the partial load operation mode.
前記第1圧縮室は、前記部分負荷運転モードで一定の周期に従って負荷運転されることを特徴とする請求項7に記載のロータリ圧縮機の制御方法。   The method of controlling a rotary compressor according to claim 7, wherein the first compression chamber is load-operated according to a constant cycle in the partial load operation mode. 前記部分負荷運転モードで前記シリンダから吐出される被圧縮冷媒の温度を測定する段階をさらに含み、
前記被圧縮冷媒の温度が所定の温度以上であれば、前記第1圧縮室を間欠的に負荷運転することを特徴とする請求項7または8に記載のロータリ圧縮機の制御方法。
Measuring the temperature of the compressed refrigerant discharged from the cylinder in the partial load operation mode,
The method for controlling a rotary compressor according to claim 7 or 8, wherein the first compression chamber is intermittently loaded when the temperature of the refrigerant to be compressed is equal to or higher than a predetermined temperature.
JP2007149454A 2006-11-27 2007-06-05 Rotary compressor, control method thereof, and air conditioner using the same Pending JP2008133820A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060117738A KR100747496B1 (en) 2006-11-27 2006-11-27 Rotary compressor and control method thereof and air conditioner using the same

Publications (1)

Publication Number Publication Date
JP2008133820A true JP2008133820A (en) 2008-06-12

Family

ID=38602300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007149454A Pending JP2008133820A (en) 2006-11-27 2007-06-05 Rotary compressor, control method thereof, and air conditioner using the same

Country Status (4)

Country Link
US (1) US20080120985A1 (en)
JP (1) JP2008133820A (en)
KR (1) KR100747496B1 (en)
CN (1) CN101191486B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020530081A (en) * 2017-08-10 2020-10-15 グリーン リフリッジレイション エクィップメント エンジニアリング リサーチ センター オブ ズーハイ グリー シーオー., エルティーディー.Green Refrigeration Equipment Engineering Research Center of Zhuhai Gree Co., Ltd. How to assemble compressors, air conditioners and compressors
US11519410B2 (en) * 2017-11-08 2022-12-06 Green Refrigeration Equipment Engineering Research Center Of Zhuhai Gree Co., Ltd. Variable-capacity control structure, compressor and variable-capacity control method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101270542B1 (en) 2008-03-18 2013-06-03 삼성전자주식회사 Variable capacity rotary compressor and air conditioning cycle having the same
US9429158B2 (en) * 2008-07-22 2016-08-30 Lg Electronics Inc. Air conditioner and compressor having power and saving modes of operation
JP5675121B2 (en) * 2010-01-27 2015-02-25 三菱重工業株式会社 Centrifugal compressor and cleaning method
WO2011134030A2 (en) * 2010-04-26 2011-11-03 Whirlpool S.A. Cooling system of a refrigerator and suction system for a compressor fluid
JPWO2012042894A1 (en) * 2010-09-30 2014-02-06 パナソニック株式会社 Positive displacement compressor
CN101995110B (en) * 2010-10-29 2013-03-27 广东美的电器股份有限公司 Control method of double-cylinder variable-capacity compressor air conditioning system
WO2014010320A1 (en) * 2012-07-13 2014-01-16 カルソニックカンセイ株式会社 Electric compressor and method for assembling electric compressor
KR102148716B1 (en) * 2014-01-23 2020-08-27 삼성전자주식회사 The freezing apparatus and compressor
JP6164427B2 (en) * 2014-03-28 2017-07-19 株式会社富士通ゼネラル Rotary compressor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090488A (en) * 2003-09-19 2005-04-07 Samsung Electronics Co Ltd Variable displacement rotary compressor
JP2005155609A (en) * 2003-11-25 2005-06-16 Samsung Electronics Co Ltd Variable capacity rotary compressor
JP2005155608A (en) * 2003-11-25 2005-06-16 Samsung Electronics Co Ltd Variable capacity rotary compressor
JP2006169979A (en) * 2004-12-13 2006-06-29 Sanyo Electric Co Ltd Compression system and refrigerating unit using this compression system
JP2006169978A (en) * 2004-12-13 2006-06-29 Sanyo Electric Co Ltd Multi-cylinder rotary compressor
JP2006233954A (en) * 2005-02-25 2006-09-07 Samsung Electronics Co Ltd Variable displacement compressor and start operation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040063217A (en) * 2003-01-06 2004-07-14 삼성전자주식회사 Variable capacity rotary compressor
JP4343627B2 (en) * 2003-03-18 2009-10-14 東芝キヤリア株式会社 Rotary hermetic compressor and refrigeration cycle apparatus
KR20040086892A (en) * 2003-03-22 2004-10-13 삼성전자주식회사 Rotary compressor
US20040241010A1 (en) * 2003-03-27 2004-12-02 Samsung Electronics Co., Ltd. Variable capacity rotary compressor
JP4247077B2 (en) * 2003-09-02 2009-04-02 東芝キヤリア株式会社 Air conditioner
US20050180823A1 (en) * 2003-12-23 2005-08-18 Terry Sadowski Net free erosion control blanket
KR100565338B1 (en) * 2004-08-12 2006-03-30 엘지전자 주식회사 Capacity variable type twin rotary compressor and driving method thereof and airconditioner with this and driving method thereof
KR20060056801A (en) * 2004-11-22 2006-05-25 삼성전자주식회사 Rotary compressor and refrigerating cycle having the same
TW200619505A (en) * 2004-12-13 2006-06-16 Sanyo Electric Co Multicylindrical rotary compressor, compression system, and freezing device using the compression system
KR100595766B1 (en) * 2005-02-23 2006-07-03 엘지전자 주식회사 Modulation apparatus for rotary compressor and airconditioner with this
KR100620044B1 (en) * 2005-07-29 2006-09-06 엘지전자 주식회사 Modulation apparatus for rotary compressor
KR100677516B1 (en) * 2005-05-09 2007-02-02 엘지전자 주식회사 Modulation type multi-stage rotary compressor
US20080034772A1 (en) * 2006-07-27 2008-02-14 Bristol Compressors, Inc. Method and system for automatic capacity self-modulation in a comrpessor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090488A (en) * 2003-09-19 2005-04-07 Samsung Electronics Co Ltd Variable displacement rotary compressor
JP2005155609A (en) * 2003-11-25 2005-06-16 Samsung Electronics Co Ltd Variable capacity rotary compressor
JP2005155608A (en) * 2003-11-25 2005-06-16 Samsung Electronics Co Ltd Variable capacity rotary compressor
JP2006169979A (en) * 2004-12-13 2006-06-29 Sanyo Electric Co Ltd Compression system and refrigerating unit using this compression system
JP2006169978A (en) * 2004-12-13 2006-06-29 Sanyo Electric Co Ltd Multi-cylinder rotary compressor
JP2006233954A (en) * 2005-02-25 2006-09-07 Samsung Electronics Co Ltd Variable displacement compressor and start operation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020530081A (en) * 2017-08-10 2020-10-15 グリーン リフリッジレイション エクィップメント エンジニアリング リサーチ センター オブ ズーハイ グリー シーオー., エルティーディー.Green Refrigeration Equipment Engineering Research Center of Zhuhai Gree Co., Ltd. How to assemble compressors, air conditioners and compressors
JP7036842B2 (en) 2017-08-10 2022-03-15 グリーン リフリッジレイション エクィップメント エンジニアリング リサーチ センター オブ ズーハイ グリー シーオー., エルティーディー. How to assemble a compressor, air conditioner and compressor
US11519410B2 (en) * 2017-11-08 2022-12-06 Green Refrigeration Equipment Engineering Research Center Of Zhuhai Gree Co., Ltd. Variable-capacity control structure, compressor and variable-capacity control method thereof

Also Published As

Publication number Publication date
CN101191486A (en) 2008-06-04
US20080120985A1 (en) 2008-05-29
CN101191486B (en) 2010-09-22
KR100747496B1 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP2008133820A (en) Rotary compressor, control method thereof, and air conditioner using the same
JP4856091B2 (en) Variable capacity rotary compressor and cooling system including the same
TWI337223B (en)
US20080206071A1 (en) Compression system, multicylinder rotary compressor, and refrigeration apparatus using the same
WO2006013959A1 (en) Displacement type expansion machine and fluid machine
WO2005026499A1 (en) Rotary expansion machine and fluid machinery
JP2008520902A (en) Variable capacity rotary compressor
JP6291533B2 (en) High-pressure compressor and refrigeration cycle apparatus including the same
WO2004053298A1 (en) Volume expander and fluid machine
JP2005003239A (en) Refrigerant cycling device
JP2010156488A (en) Refrigerating device
US8277202B2 (en) Multicylindrical rotary compressor
WO2008023962A1 (en) Variable capacity type rotary compressor
JP2006177225A (en) Rotary compressor
KR100724452B1 (en) Modulation type rotary compressor
EP3508725A1 (en) Backpressure passage rotary compressor
JP2006022723A (en) Compression system and refrigerating apparatus using the same
WO2012160832A1 (en) Refrigeration cycle device
KR100747495B1 (en) Variable capacity rotary compressor
JP2014125914A (en) Scroll compressor
WO2006057212A1 (en) Fluid machine and heat pump employing it
KR100724450B1 (en) Capacity modulation type rotary compressor
KR100677527B1 (en) Rotary compressor
KR100677515B1 (en) Modulation type multi-stage rotary compressor and airconditioner using this
CN102124229B (en) Rotary compressor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706