JP2006177225A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP2006177225A
JP2006177225A JP2004370380A JP2004370380A JP2006177225A JP 2006177225 A JP2006177225 A JP 2006177225A JP 2004370380 A JP2004370380 A JP 2004370380A JP 2004370380 A JP2004370380 A JP 2004370380A JP 2006177225 A JP2006177225 A JP 2006177225A
Authority
JP
Japan
Prior art keywords
compression
pressure
rotary
area
sealed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004370380A
Other languages
Japanese (ja)
Inventor
Atsushi Kubota
淳 久保田
Kazutaka Watabe
一孝 渡部
Masato Kaneko
正人 金子
Atsushi Onuma
敦 大沼
Hiroshi Izaki
宏 井崎
Tetsuya Tadokoro
哲也 田所
Original Assignee
Hitachi Home & Life Solutions Inc
日立ホーム・アンド・ライフ・ソリューション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home & Life Solutions Inc, 日立ホーム・アンド・ライフ・ソリューション株式会社 filed Critical Hitachi Home & Life Solutions Inc
Priority to JP2004370380A priority Critical patent/JP2006177225A/en
Publication of JP2006177225A publication Critical patent/JP2006177225A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the oil rate of rotary two-stage compressor with high pressure in a sealed container. <P>SOLUTION: The rotary two-stage compressor is provided, in a sealed container, with a motor having a stator 7 with an iron core part and copper wires, and a rotor 8; a rotary shaft driven by the motor and having two eccentric parts; a rotary compression element wherein a low pressure compression element and a high pressure compression element with rollers provided in compression chambers respectively and put in revolving motion by the eccentric rotation of the eccentric parts are provided through an intermediate partition plate; and intermediate passages connected to the compression chamber of the low pressure compression element and the compression chamber of the high pressure compression element and separated from the internal space of the sealed container. In this case, the stator 7 has cutout passages of an outer peripheral part and air holes of the core part, and the passage cross-sectional area (a) which is the space cross-sectional area of the motor, to the inside cross-sectional area A of the sealed container (a/A) is 0.09 or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷凍サイクルを備えた空気調和機に使用されるロータリ圧縮機に関する。   The present invention relates to a rotary compressor used in an air conditioner equipped with a refrigeration cycle.
従来、冷凍サイクルに使用されるロータリ2段圧縮機として、例えば特開昭60−128990号公報(以下、特許文献1)に開示された構造が知られている。この従来技術における圧縮機は、密閉容器の内部において上部にステータとロータからなる電動機を備えている。電動機に連結された回転軸は2つの偏心部を備えている。それらの偏心部に対応した圧縮機構として、電動機側から順に、高圧用圧縮要素と低圧用圧縮要素とが密閉容器の内部に設けられている。   Conventionally, as a rotary two-stage compressor used in a refrigeration cycle, for example, a structure disclosed in Japanese Patent Application Laid-Open No. 60-128990 (hereinafter referred to as Patent Document 1) is known. The compressor in this prior art is provided with an electric motor composed of a stator and a rotor at the upper part inside a sealed container. The rotating shaft connected to the electric motor has two eccentric portions. As a compression mechanism corresponding to these eccentric portions, a high-pressure compression element and a low-pressure compression element are provided inside the sealed container in order from the electric motor side.
各圧縮要素は、回転軸の偏心部の偏心回転によりローラを公転運動させる。それらの偏心部は位相が180°異なり、各圧縮要素の圧縮工程の位相差は180°である。すなわち2つの圧縮要素の圧縮工程は逆位相である。   Each compression element revolves the roller by the eccentric rotation of the eccentric portion of the rotation shaft. The eccentric portions have a phase difference of 180 °, and the phase difference of the compression process of each compression element is 180 °. That is, the compression process of the two compression elements is in antiphase.
作動流体であるガス冷媒は低圧Psで低圧用圧縮要素内に吸入されて、圧縮されて中間圧Pmに上昇する。中間圧Pmで吐出されたガス冷媒は中間流路に吐出される。次に中間圧Pmのガス冷媒は中間流路を経て高圧用圧縮要素内に吸入され、高圧Pdに圧縮される。   The gas refrigerant, which is a working fluid, is sucked into the low pressure compression element at a low pressure Ps, is compressed, and rises to an intermediate pressure Pm. The gas refrigerant discharged at the intermediate pressure Pm is discharged into the intermediate flow path. Next, the gas refrigerant having the intermediate pressure Pm is sucked into the high pressure compression element through the intermediate flow path and compressed to the high pressure Pd.
圧縮機から吐出された高圧Pdのガス冷媒は凝縮器で凝縮された後、膨張機構で低圧Psまで減圧される。その後、蒸発器で蒸発してガス冷媒となり低圧用圧縮要素内に吸入される。   The high-pressure Pd gas refrigerant discharged from the compressor is condensed by the condenser and then decompressed to the low pressure Ps by the expansion mechanism. After that, it evaporates in an evaporator to become a gas refrigerant and is sucked into the low pressure compression element.
このような密閉容器の内圧が高圧Pdとなるロータリ2段圧縮機の構造として、例えば特許文献1に開示された構造が知られている。従来技術のロータリ2段圧縮機は、低圧用圧縮要素で低圧Psから中間圧Pmへ、高圧用圧縮要素で中間Pmから高圧Pdへ段階的にガス冷媒を圧縮する。   As a structure of such a rotary two-stage compressor in which the internal pressure of the hermetic container is a high pressure Pd, for example, a structure disclosed in Patent Document 1 is known. The conventional rotary two-stage compressor compresses the gas refrigerant stepwise from the low pressure Ps to the intermediate pressure Pm by the low pressure compression element and from the intermediate Pm to the high pressure Pd by the high pressure compression element.
従来のロータリ2段圧縮機では単段のロータリ圧縮機と同様に、内部空間の下部に封入された冷凍機油が回転軸の内部に設けられた給油流路により揚程され、内部圧力と圧縮室内との差圧により圧縮室内に給油される。   In the conventional rotary two-stage compressor, similarly to the single-stage rotary compressor, the refrigerating machine oil sealed in the lower part of the internal space is lifted by the oil supply passage provided inside the rotary shaft, and the internal pressure and the compression chamber are The oil is supplied into the compression chamber by the differential pressure.
特開昭60−128990号公報(第5頁、第1図)JP-A-60-128990 (page 5, FIG. 1)
従来技術で述べたロータリ2段圧縮機では、従来の単段のロータリ圧縮機と異なりガス冷媒が各圧縮室を順次流下する。したがって同一の冷媒循環量であっても、ロータリ2段圧縮機では冷媒が給油されている時間が長くなり、冷凍機油の漏れ込み量が増大しやすい。圧縮機では吐出空間や中間流路等の部材同士の接触等で封止するシール箇所が多いため、単段のロータリ圧縮機に比べて冷凍機油が漏れ込みやすい。したがって吐出管より吐出されるガス冷媒のオイルレートが従来よりも高いという課題があった。ここでオイルレートは、冷凍機油の質量流量を冷凍機油とガス冷媒をあわせた質量流量で除した値である。   In the rotary two-stage compressor described in the prior art, unlike the conventional single-stage rotary compressor, the gas refrigerant sequentially flows down the compression chambers. Therefore, even if the refrigerant circulation amount is the same, in the rotary two-stage compressor, the time during which the refrigerant is supplied is prolonged, and the amount of refrigerating machine oil tends to increase. In a compressor, since there are many seal locations to be sealed by contact between members such as a discharge space and an intermediate flow path, refrigeration oil is more likely to leak compared to a single-stage rotary compressor. Therefore, there has been a problem that the oil rate of the gas refrigerant discharged from the discharge pipe is higher than before. Here, the oil rate is a value obtained by dividing the mass flow rate of the refrigerating machine oil by the mass flow rate of the refrigerating machine oil and the gas refrigerant.
従来の単段のロータリ圧縮機のオイルレート低減の方法は、電動機でのガス冷媒の流速を十分低下させ、吐出管の上流側の入り口までで油分離を促進する方法である。一般的な単段のロータリ圧縮機では、ロータの外径とステータの内径とのエアギャップに加えて、ステータの外周側に切欠部やコア部に風穴を設けて流路断面積aを確保する方法がとられる。しかるに密閉空間が高圧Pdのロータリ2段圧縮機においては、流路断面積aとオイルレートとの関係が明確ではなく、設計が困難であるという課題があった。   The conventional method for reducing the oil rate of a single-stage rotary compressor is a method of sufficiently reducing the flow rate of the gas refrigerant in the electric motor and promoting oil separation up to the inlet on the upstream side of the discharge pipe. In a general single-stage rotary compressor, in addition to the air gap between the outer diameter of the rotor and the inner diameter of the stator, a notch or a core hole is provided on the outer peripheral side of the stator to ensure a flow passage cross-sectional area a. The method is taken. However, in a rotary two-stage compressor with a high-pressure Pd sealed space, there is a problem that the relationship between the flow path cross-sectional area a and the oil rate is not clear and the design is difficult.
本発明は上記課題に対して、流路断面積を適正な値とすることにより、オイルレートを低減する事にある。   The present invention is directed to reducing the oil rate by setting the flow path cross-sectional area to an appropriate value.
上記目的を達成するために、本発明のロータリ2段圧縮機は、密閉容器内に電動機と、その電動機で駆動され2つの偏心部を有する回転軸と、前記偏心部の偏心回転により公転運動するローラをそれぞれ圧縮室に備えた低圧用圧縮要素と高圧用圧縮要素とが中間仕切板を介して設けられた回転圧縮要素と、前記低圧用圧縮要素の圧縮室と前記高圧用圧縮要素の圧縮室とに接続する前記密閉容器の内部空間と隔てた中間流路と、を備え、前記密閉容器内の圧力が高圧である。流路断面積を適正にしてオイルレートを低減するために、上述のロータリ2段圧縮機において、ステータの外周部の切欠流路とコア部の風穴とを備え、切欠流路と風穴とステータとロータとの間の空間を合わせた前記電動機の空間断面積である流路断面積aが密閉容器の内側の断面積Aに対して(a/A)が0.09以上とした。   In order to achieve the above object, a rotary two-stage compressor according to the present invention revolves by an electric motor in a hermetically sealed container, a rotating shaft driven by the electric motor and having two eccentric parts, and an eccentric rotation of the eccentric part. A rotary compression element in which a low pressure compression element and a high pressure compression element each provided with a roller in a compression chamber are provided via an intermediate partition plate; a compression chamber of the low pressure compression element; and a compression chamber of the high pressure compression element And an intermediate flow path separated from the internal space of the sealed container connected to each other, and the pressure in the sealed container is high. In order to reduce the oil rate by making the channel cross-sectional area appropriate, the rotary two-stage compressor described above includes a notch channel in the outer peripheral portion of the stator and an air hole in the core portion, The flow path cross-sectional area a which is the space cross-sectional area of the electric motor including the space between the rotor and the cross-sectional area A on the inner side of the sealed container was (a / A) 0.09 or more.
本発明は、密閉容器内圧が高圧であるロータリ2段圧縮機のオイルレートを低減する。     The present invention reduces the oil rate of a rotary two-stage compressor in which the pressure inside the sealed container is high.
本発明の実施形態を図を用いて説明する。図1に、本実施形態のロータリ2段圧縮機1の縦断面図を示す。圧縮機1は、底部21と蓋部12と胴部22からなる密閉容器13を備える。密閉容器13内部の上方には、ステータ7とロータ8を有する電動機14が設けられている。電動機14に連結された回転軸2は、2つの偏心部5を備えて、主軸受9と副軸受19aに軸支されている。その回転軸2に対して電動機14側から順に、端板部9aを備えた主軸受9、高圧用圧縮要素20b、中間仕切板15、低圧用圧縮要素20a及び端板部19bと副軸受19aを備えた中間容器19が積層され、ボルト等の締結要素36で一体化されている。   Embodiments of the present invention will be described with reference to the drawings. In FIG. 1, the longitudinal cross-sectional view of the rotary two-stage compressor 1 of this embodiment is shown. The compressor 1 includes a sealed container 13 including a bottom portion 21, a lid portion 12, and a body portion 22. An electric motor 14 having a stator 7 and a rotor 8 is provided above the inside of the sealed container 13. The rotating shaft 2 connected to the electric motor 14 includes two eccentric portions 5 and is pivotally supported by the main bearing 9 and the auxiliary bearing 19a. The main bearing 9, the high-pressure compression element 20b, the intermediate partition plate 15, the low-pressure compression element 20a, the end plate portion 19b, and the auxiliary bearing 19a provided with the end plate portion 9a are sequentially arranged with respect to the rotating shaft 2 from the electric motor 14 side. The provided intermediate container 19 is laminated and integrated with a fastening element 36 such as a bolt.
端板部9aは、胴部22の内壁に溶接によって固定されて、主軸受9を支持している。端板部19bは、副軸受19aに支持されている。なお、本実施形態は端板部19bを締結要素36で固定されているが、胴部22に溶接で固定されても構わない。   The end plate portion 9 a is fixed to the inner wall of the body portion 22 by welding and supports the main bearing 9. The end plate portion 19b is supported by the auxiliary bearing 19a. In this embodiment, the end plate portion 19b is fixed by the fastening element 36, but may be fixed to the body portion 22 by welding.
各圧縮要素20aと20bは、図1のように構成されている。低圧圧縮要素20aは、端板部19bと、円筒状のシリンダ10aと、偏心部5aの外周に嵌め合わされた円筒状のローラ11aと、中間仕切板15とで圧縮室23aは構成される。また、高圧圧縮要素20bは、主軸受9と、円筒状のシリンダ10bと、偏心部5bの外周に嵌め合わされた円筒状のローラ11bと、中間仕切板15とで圧縮室23bは構成される。それらの圧縮室23a、23bは、コイルバネのような付勢力付与手段に連結された平板状のベーン(図示せず)が、偏心部5a、5bの偏心運動に合わせて回転するローラ11a、11bの外周上を接触しながら進退運動することにより、圧縮室23a、23bを圧縮空間と吸込み空間に分割する。   Each compression element 20a and 20b is configured as shown in FIG. In the low-pressure compression element 20a, a compression chamber 23a is composed of an end plate portion 19b, a cylindrical cylinder 10a, a cylindrical roller 11a fitted to the outer periphery of the eccentric portion 5a, and an intermediate partition plate 15. In the high-pressure compression element 20b, a compression chamber 23b is constituted by the main bearing 9, the cylindrical cylinder 10b, the cylindrical roller 11b fitted to the outer periphery of the eccentric portion 5b, and the intermediate partition plate 15. These compression chambers 23a and 23b are made up of rollers 11a and 11b in which flat vanes (not shown) connected to biasing force applying means such as coil springs rotate in accordance with the eccentric motion of the eccentric portions 5a and 5b. The compression chambers 23a and 23b are divided into a compression space and a suction space by moving forward and backward while contacting the outer periphery.
圧縮要素20は、偏心部5が偏心回転することでローラ11を駆動する。図1に示すように偏心部5aと偏心部5bは位相が180°異なり、圧縮要素20a、20bの圧縮工程の位相差は180°である。すなわち2つの圧縮要素の圧縮工程は逆位相となっている。   The compression element 20 drives the roller 11 when the eccentric part 5 rotates eccentrically. As shown in FIG. 1, the eccentric portion 5a and the eccentric portion 5b have a phase difference of 180 °, and the phase difference in the compression process of the compression elements 20a and 20b is 180 °. That is, the compression process of the two compression elements is in opposite phase.
作動流体であるガス冷媒の流れを、図1の矢印で表す。配管31を通って供給される低圧Psのガス冷媒は、配管31と接続する吸入口25aより低圧用圧縮要素20a内に吸入され、ローラ11aが偏心回転することにより中間圧Pmまで圧縮される。圧縮室23a内の圧力が予め設定された圧力になると開口する吐出弁28aが中間圧Pmで開口すると、中間圧Pmとなったガス冷媒が、吐出口26aと連通する吐出空間33に吐出される。この吐出空間33は、中間容器19と平板状のカバー35とにより密閉容器13内の密閉空間29と隔離された空間であり、その内部圧力は基本的には中間圧Pmとなる。中間流路30は、吐出空間33からの排出口26cと吸入口25bを連通する流路である。吐出弁28aが開口した吐出口26aから吐出された圧力Pmのガス冷媒は、吐出空間33に吐出された後、中間流路30を通って高圧圧力要素20bの圧力室23bと連通する吸入口25bに至る。   The flow of the gas refrigerant which is a working fluid is represented by an arrow in FIG. The low-pressure Ps gas refrigerant supplied through the pipe 31 is sucked into the low-pressure compression element 20a from the suction port 25a connected to the pipe 31, and is compressed to the intermediate pressure Pm by the eccentric rotation of the roller 11a. When the discharge valve 28a that opens when the pressure in the compression chamber 23a reaches a preset pressure opens at the intermediate pressure Pm, the gas refrigerant that has reached the intermediate pressure Pm is discharged into the discharge space 33 that communicates with the discharge port 26a. . The discharge space 33 is a space separated from the sealed space 29 in the sealed container 13 by the intermediate container 19 and the flat cover 35, and the internal pressure thereof is basically the intermediate pressure Pm. The intermediate flow path 30 is a flow path that connects the discharge port 26c from the discharge space 33 and the suction port 25b. The gas refrigerant having the pressure Pm discharged from the discharge port 26a opened by the discharge valve 28a is discharged into the discharge space 33, and then passes through the intermediate flow path 30 and communicates with the pressure chamber 23b of the high-pressure element 20b. To.
次に、中間流路30を通過して吸入口25bより高圧用圧縮要素20b内に吸入された中間圧Pmのガス冷媒は、ローラ11bが公転することにより高圧Pdまで圧縮される。圧縮室23b内の圧力が予め設定された圧力になると開口する吐出弁28bが高圧Pdで開口すると、ガス冷媒は吐出口26bから密閉容器13の内部空間である密閉空間29に吐出される。この密閉空間29に吐出された高圧Pdのガス冷媒は、電動機14を通過して吐出管27より吐出される。   Next, the gas refrigerant having the intermediate pressure Pm passing through the intermediate flow path 30 and sucked into the high pressure compression element 20b from the suction port 25b is compressed to the high pressure Pd by the revolution of the roller 11b. When the discharge valve 28b that opens when the pressure in the compression chamber 23b reaches a preset pressure opens at high pressure Pd, the gas refrigerant is discharged from the discharge port 26b to the sealed space 29 that is the internal space of the sealed container 13. The high-pressure Pd gas refrigerant discharged into the sealed space 29 passes through the electric motor 14 and is discharged from the discharge pipe 27.
ここで高圧Pdの冷媒ガスには、冷凍機油48が溶け込んでいる。冷凍機油48は、密閉容器13の下部に封入されている。冷凍機油48は、中央穴52の開いた円板状の給油ピース51、回転軸2の内部に設けられた給油流路53を流下し、高圧Pdと各圧縮室23との差圧により各圧縮室23へ漏れこむ。   Here, the refrigerating machine oil 48 is dissolved in the high-pressure Pd refrigerant gas. The refrigerating machine oil 48 is sealed in the lower part of the sealed container 13. The refrigerating machine oil 48 flows down a disk-shaped oil supply piece 51 having a central hole 52 and an oil supply passage 53 provided inside the rotary shaft 2, and is compressed by a differential pressure between the high pressure Pd and each compression chamber 23. Leak into chamber 23.
このように冷凍機油48は、各圧縮要素20においてローラ11の端面と図示しないベーンの摺動面等より、圧縮室23に流入してガス冷媒と交じり合う。   In this way, the refrigerating machine oil 48 flows into the compression chamber 23 through the end face of the roller 11 and the sliding surface of the vane (not shown) in each compression element 20 and mixes with the gas refrigerant.
次に図1に示した本実施形態の電動機14のB−B断面を、図2に示す。ロータ8は、回転軸2に圧入もしくは焼嵌により固定する。ステータ7は、胴部22に焼嵌により肯定した。ロータ8の外径とステータ7の内径には、所定のエアギャップを設けた。   Next, FIG. 2 shows a BB cross section of the electric motor 14 of the present embodiment shown in FIG. The rotor 8 is fixed to the rotary shaft 2 by press fitting or shrink fitting. The stator 7 affirmed by shrink fitting to the body portion 22. A predetermined air gap was provided between the outer diameter of the rotor 8 and the inner diameter of the stator 7.
ステータ7は鉄製のコアと、図2中の斜線領域に示した銅線部を12個備えている。以下、銅線部間の空間をスロット隙間部と呼ぶ。ステータ7はコア部分の外周側に、切欠部59を6個備えている。ステータ7はコア部分に、風穴54を12個備えている。   The stator 7 includes an iron core and twelve copper wire portions shown in the hatched area in FIG. Hereinafter, the space between the copper wire portions is referred to as a slot gap portion. The stator 7 includes six notch portions 59 on the outer peripheral side of the core portion. The stator 7 includes twelve air holes 54 in the core portion.
銅線部や切欠部59や風穴54は、ほぼ周方向6個均等とした。風穴54は、隣り合う切欠部59と切欠部59の間に設けた。エアギャップや切欠部59や風穴54は、モータ効率を低下させない範囲とした。   The copper wire part, the notch part 59, and the air holes 54 are substantially equal in the circumferential direction. The air hole 54 is provided between the adjacent notches 59. The air gap, the notch 59, and the air hole 54 are within a range that does not decrease the motor efficiency.
このとき流路断面積aは、エアギャップ、スロット隙間部、風穴54、切欠部59の各断面積の総和である。オイルレートには、流路断面積a以外にロータリ圧縮機1全体の大きさも関係する。したがって流路断面積aと胴部22の内側の面積Aの比(a/A)と、オイルレートを関連付け整理した結果を図3に示す。   At this time, the channel cross-sectional area a is the sum of the cross-sectional areas of the air gap, the slot gap, the air hole 54, and the notch 59. The oil rate is related to the overall size of the rotary compressor 1 in addition to the channel cross-sectional area a. Therefore, FIG. 3 shows the result of associating and organizing the ratio (a / A) of the channel cross-sectional area a and the area A inside the body portion 22 to the oil rate.
図3より比(a/A)が大きいほど、オイルレートが低下する。比(a/A)が大きいと電動機14でのガス冷媒流速が低下し、冷凍機油48の分離を促進するためと考えられる。またオイルレートは比(a/A)が0.09で大きな傾きを持ち、(a/A)が0.09以上であれば安定してオイルレートを低減できる。   From FIG. 3, the oil rate decreases as the ratio (a / A) increases. It is considered that when the ratio (a / A) is large, the flow rate of the gas refrigerant in the electric motor 14 is lowered and the separation of the refrigerating machine oil 48 is promoted. The oil rate has a large slope when the ratio (a / A) is 0.09. If (a / A) is 0.09 or more, the oil rate can be stably reduced.
したがって本実施形態では、流路面積比(a/A)を0.09以上でモータ効率を低下しない値として、比(a/A)を0.12とした。エアギャップや切欠部59や風穴54の流路面積を増やすと磁気的な問題やステータの能力に影響があり好ましくない。本実施形態では、そのモータ効率をオイルレートとの兼ね合いで上限を設けることで、圧縮機の能力を低下させること無く、圧縮機から吐出される吐出ガス中のオイルレートを低減した。   Therefore, in this embodiment, the flow path area ratio (a / A) is set to a value that does not decrease the motor efficiency at 0.09 or more, and the ratio (a / A) is set to 0.12. Increasing the flow gap area of the air gap, the notch 59 or the air hole 54 is not preferable because it affects the magnetic problem and the stator performance. In the present embodiment, by setting an upper limit for the motor efficiency in consideration of the oil rate, the oil rate in the discharge gas discharged from the compressor is reduced without reducing the capacity of the compressor.
本発明の一実施形態を示すロータリ2段圧縮機の縦断面図。The longitudinal cross-sectional view of the rotary 2 stage compressor which shows one Embodiment of this invention. 本発明の一実施形態を示す電動機の断面図。Sectional drawing of the electric motor which shows one Embodiment of this invention. 比(a/A)とオイルレートの関係を表す図。The figure showing the relationship between ratio (a / A) and an oil rate.
符号の説明Explanation of symbols
1…圧縮機、7…ステータ、8…ロータ、12…蓋、13…密閉容器、14…電動機、27…吐出管、48…冷凍機油、59…切欠部、60…風穴。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 7 ... Stator, 8 ... Rotor, 12 ... Cover, 13 ... Sealed container, 14 ... Electric motor, 27 ... Discharge pipe, 48 ... Refrigerating machine oil, 59 ... Notch part, 60 ... Air hole.

Claims (2)

  1. 密閉容器内に、鉄製のコア部と銅線を有するステータとロータを備えた電動機と、その電動機で駆動され2つの偏心部を有する回転軸と、前記偏心部の偏心回転により公転運動するローラをそれぞれ圧縮室に備えた低圧用圧縮要素と高圧用圧縮要素とが中間仕切板を介して設けられた回転圧縮要素と、前記低圧用圧縮要素の圧縮室と前記高圧用圧縮要素の圧縮室とに接続する前記密閉容器の内部空間と隔てた中間流路と、を備え、前記密閉容器内の圧力は前記高圧用圧縮要素で圧縮された吐出ガスの圧力であり、前記ステータの外周部の切欠流路と前記コア部の風穴とを備え、当該切欠流路と風穴と前記ステータと前記ロータとの間の空間を合わせた前記電動機の空間断面積である流路断面積aが、前記密閉容器の内側の断面積Aに対して(a/A)が0.09以上であることを特徴としたロータリ2段圧縮機。   An electric motor including a stator and a rotor having an iron core, a copper wire, and a rotor, a rotating shaft having two eccentric parts driven by the electric motor, and a roller that revolves by eccentric rotation of the eccentric part. A rotary compression element in which a compression element for low pressure and a compression element for high pressure respectively provided in a compression chamber are provided via an intermediate partition plate; a compression chamber for the compression element for low pressure; and a compression chamber for the compression element for high pressure An intermediate flow path separated from the internal space of the sealed container to be connected, and the pressure in the sealed container is the pressure of the discharge gas compressed by the high pressure compression element, and the notch flow in the outer peripheral portion of the stator A flow path cross-sectional area a that is a space cross-sectional area of the electric motor including the notch flow path, the air hole, and the space between the stator and the rotor. For inner cross-sectional area A (a / ) Is rotary 2-stage compressor characterized in that at 0.09 or more.
  2. 請求項1記載のロータリ2段圧縮機において、前記流路断面積aが、前記密閉容器の内側の断面積Aに対して(a/A)が0.12以下であるロータリ2段圧縮機。
    2. The rotary two-stage compressor according to claim 1, wherein the flow path cross-sectional area a is (a / A) of 0.12 or less with respect to the cross-sectional area A inside the sealed container.
JP2004370380A 2004-12-22 2004-12-22 Rotary compressor Pending JP2006177225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004370380A JP2006177225A (en) 2004-12-22 2004-12-22 Rotary compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004370380A JP2006177225A (en) 2004-12-22 2004-12-22 Rotary compressor
CNB2005101369086A CN100523509C (en) 2004-12-22 2005-12-20 Rotary compressor

Publications (1)

Publication Number Publication Date
JP2006177225A true JP2006177225A (en) 2006-07-06

Family

ID=36731561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370380A Pending JP2006177225A (en) 2004-12-22 2004-12-22 Rotary compressor

Country Status (2)

Country Link
JP (1) JP2006177225A (en)
CN (1) CN100523509C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102032189A (en) * 2009-09-30 2011-04-27 三洋电机株式会社 Electric compressor
KR101099810B1 (en) 2009-02-20 2011-12-27 산요덴키가부시키가이샤 Hermetically sealed rotary compressor
KR101164322B1 (en) 2009-02-20 2012-07-09 산요덴키가부시키가이샤 Hermetically sealed rotary compressor
WO2018051567A1 (en) * 2016-09-14 2018-03-22 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device
WO2020013205A1 (en) * 2018-07-11 2020-01-16 株式会社富士通ゼネラル Compressor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328697B2 (en) * 2010-03-02 2013-10-30 三菱電機株式会社 Two-stage compressor and heat pump device
CN105275811A (en) * 2014-06-17 2016-01-27 广东美芝制冷设备有限公司 Rotary compressor and refrigeration system with rotary compressor
CN104948462B (en) * 2015-07-09 2017-01-18 广东美芝制冷设备有限公司 Compressor and air conditioning system with same
CN104976125A (en) * 2015-07-09 2015-10-14 广东美芝制冷设备有限公司 Compressor of air conditioner system and air conditioner system with compressor
CN105041651A (en) * 2015-07-09 2015-11-11 广东美芝制冷设备有限公司 Compressor and air-conditioning system with same
CN104976127A (en) * 2015-07-09 2015-10-14 广东美芝制冷设备有限公司 Compressor of air conditioner system and air conditioner system with compressor
CN105508245B (en) * 2016-01-08 2018-01-02 广东美芝制冷设备有限公司 Multi-cylinder rotary compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128990A (en) * 1983-12-16 1985-07-10 Hitachi Ltd Double stage rotary compressor
JPS61280727A (en) * 1985-05-17 1986-12-11 Sanyo Electric Co Ltd Hermetic motor compressor
JP2001012374A (en) * 1999-06-29 2001-01-16 Sanyo Electric Co Ltd Hermetically closed rotary compressor
JP2001055977A (en) * 1999-08-11 2001-02-27 Toshiba Kyaria Kk Compressor
JP2002327693A (en) * 2001-04-27 2002-11-15 Mitsubishi Electric Corp Hermetic rotary compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128990A (en) * 1983-12-16 1985-07-10 Hitachi Ltd Double stage rotary compressor
JPS61280727A (en) * 1985-05-17 1986-12-11 Sanyo Electric Co Ltd Hermetic motor compressor
JP2001012374A (en) * 1999-06-29 2001-01-16 Sanyo Electric Co Ltd Hermetically closed rotary compressor
JP2001055977A (en) * 1999-08-11 2001-02-27 Toshiba Kyaria Kk Compressor
JP2002327693A (en) * 2001-04-27 2002-11-15 Mitsubishi Electric Corp Hermetic rotary compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101099810B1 (en) 2009-02-20 2011-12-27 산요덴키가부시키가이샤 Hermetically sealed rotary compressor
KR101164322B1 (en) 2009-02-20 2012-07-09 산요덴키가부시키가이샤 Hermetically sealed rotary compressor
CN102032189A (en) * 2009-09-30 2011-04-27 三洋电机株式会社 Electric compressor
WO2018051567A1 (en) * 2016-09-14 2018-03-22 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device
CN109072917A (en) * 2016-09-14 2018-12-21 东芝开利株式会社 Rotary compressor and refrigerating circulatory device
WO2020013205A1 (en) * 2018-07-11 2020-01-16 株式会社富士通ゼネラル Compressor

Also Published As

Publication number Publication date
CN100523509C (en) 2009-08-05
CN1793655A (en) 2006-06-28

Similar Documents

Publication Publication Date Title
JP2006177225A (en) Rotary compressor
JP2006152931A (en) Rotary two-stage compressor
JP2007113542A (en) Hermetic two-stage rotary compressor
US20070041852A1 (en) Rotary compressor
JP2006152839A (en) Rotary two-stage compressor and air conditioner using the compressor
KR20090012839A (en) 2 stage rotary compressor
JP2006177227A (en) Rotary two-stage compressor
JP2006177228A (en) Rotary two-stage compressor and air conditioner using the same
US8967984B2 (en) Rotary compressor
JP4146781B2 (en) Compressor
US8602755B2 (en) Rotary compressor with improved suction portion location
KR20090049411A (en) 2 stage rotary compressor
JP2008128069A (en) Hermetic two stage rotary compressor
JP5112090B2 (en) Scroll compressor
JP4790664B2 (en) Rotary type two-stage compressor and air conditioner
WO2019187272A1 (en) Rotary compressor
KR20090012842A (en) Two stage rotary compressor
US20060177339A1 (en) Horizontal type orbiting vane compressor
KR101328229B1 (en) Rotary compressor
JP2007092738A (en) Compressor
KR20090012861A (en) Two stage rotary compressor
KR20070072104A (en) Modulation type rotary compressor
JP2003269335A (en) Rotary compressor
KR101340164B1 (en) Two stage rotary compressor
JP2006177224A (en) Rotary compressor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201