WO2006057212A1 - Fluid machine and heat pump employing it - Google Patents

Fluid machine and heat pump employing it Download PDF

Info

Publication number
WO2006057212A1
WO2006057212A1 PCT/JP2005/021349 JP2005021349W WO2006057212A1 WO 2006057212 A1 WO2006057212 A1 WO 2006057212A1 JP 2005021349 W JP2005021349 W JP 2005021349W WO 2006057212 A1 WO2006057212 A1 WO 2006057212A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
suction
pressure
discharge
expander
Prior art date
Application number
PCT/JP2005/021349
Other languages
French (fr)
Japanese (ja)
Inventor
Masaru Matsui
Hiroshi Hasegawa
Atsuo Okaichi
Takeshi Ogata
Tomoichiro Tamura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004339833A external-priority patent/JP2008031845A/en
Priority claimed from JP2004371854A external-priority patent/JP2008032234A/en
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006057212A1 publication Critical patent/WO2006057212A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/356Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F01C1/3562Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F01C1/3564Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F01C1/3441Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F01C1/3442Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/006Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to an expander-integrated fluid machine connected to an expander that supplies a high-pressure working fluid to generate rotational power, and a heat pump device using the expander-integrated fluid machine.
  • FIG. 11 shows a system configuration of a conventional general power recovery type air conditioner.
  • the system includes a condenser 101, an evaporator 102, a compressor 103, and an expander 104.
  • the compressor 103 compresses the working fluid and an expansion that generates rotational power from the high-pressure working fluid.
  • the machine 104 is connected to the motor 105 in one axis.
  • the expander 104 is configured to generate rotational power by ideally entropy expansion of the high-pressure working fluid and directly assist the driving power of the compressor 103.
  • the reason why the compressor 103 and the expander 104 are connected to each other is that the structure is simple and the power recovery loss is small.
  • Fig. 12 shows how the refrigeration cycle changes when the working fluid is carbon dioxide.
  • 1 ⁇ 2 is the compression process in which the working fluid is compressed and raised from the low pressure P1 to the high pressure Ph in the compressor 103
  • 2 ⁇ 3 is in the condenser 101
  • 3 ⁇ 4 is the expansion process in which the working fluid is expanded from the high pressure Ph to the low pressure P1 in the expander 104 to recover the power
  • 4 ⁇ 1 is the isobaric heat absorption process in the evaporator 102. Show.
  • FIG. 13 shows another conventional air conditioner system. The configuration is shown. In the present air conditioner, a bypass pipe 112 is provided between the discharge pipe 110 and the suction pipe 111 of the expander 104, and the passage area of the bypass pipe 112 is adjusted to increase or decrease. A control valve 106 is provided.
  • the air conditioner having such a configuration performs the following operations.
  • a target value of the discharge temperature of the compressor 103 is set, and then the opening degree of the control valve 106 is controlled so that the discharge temperature of the compressor 103 becomes the target value.
  • the control valve 106 is controlled in the closing direction, the amount of working fluid passing through the bypass line 112 decreases, and the amount of working fluid entering the expander 104 increases.
  • the control valve 106 is controlled to open, the amount of working fluid that passes through the bypass line 112 increases, and the amount of working fluid that enters the expander 104 decreases.
  • the pressure after the expansion of the working fluid is reduced under the operating conditions where the ratio of the high pressure to the low pressure of the system (pressure ratio) is smaller than the pressure ratio assumed in the design of the expander. This is to prevent the amount of recovered power from falling below the pressure (loss due to overexpansion).
  • the communication passage is branched from the working fluid inflow side of the expander and communicates with the suction Z expansion process position of the expander, and the communication passage is provided with a valve for controlling the passage of the working fluid. When the conditions arise, the valve is opened to allow a part of the working fluid to flow into the expander, increasing the amount of working fluid entering the expander, and increasing the pressure of the working fluid after expansion.
  • the carbon dioxide supercritical refrigeration cycle rotary expansion device (not shown) is mainly composed of a cylinder body, a rolling piston, an eccentric cam shaft, a pedestal, and an electromagnetic valve.
  • the inner chamber of the expansion device is divided into two high-pressure chambers and two low-pressure chambers by the main / sub bearings and the intermediate partition plate.
  • Carbon dioxide enters the expansion cylinder, moves the force eccentric cam shaft, changes the volume of the expansion cylinder, lowers the fluid pressure, and outputs mechanical power.
  • the intake time of the expansion device is controlled by outputting a signal based on the rotation angle of the eccentric cam shaft and controlling the opening of the electromagnetic valve, and this causes the power generation cycle to be performed.
  • Patent Document 1 JP 2001-116371 A
  • Patent Document 2 JP 2004-197640 A
  • Patent Document 3 Patent CN1164904C
  • the dead space on the intake side it is possible to recover the maximum power from the high-pressure working fluid and to provide an expander-integrated fluid machine that always obtains high operating efficiency.
  • the fluid machine of the present invention has a compression chamber and a drive shaft, and compresses the working fluid sucked into the compression chamber by rotating the drive shaft, and the expansion chamber and the expansion chamber. It has a suction hole that guides the working fluid with pressure, a discharge hole that discharges the working fluid from the expansion chamber, and a power recovery shaft connected to the drive shaft. The working fluid sucked into the expansion chamber is expanded to expand the power recovery shaft.
  • An expander unit for obtaining rotational power a sealed container having a compressor unit and an expander unit disposed therein, and a suction valve for controlling the amount of working fluid introduced into the expansion chamber in the sealed container. It is a thing. According to the present embodiment, the dead space between the suction valve and the expansion chamber can be reduced, and the amount of working fluid introduced into the expansion chamber by the suction valve can be controlled with high operating efficiency.
  • the fluid machine of the present invention detects the expander discharge pressure of the working fluid discharged by the discharge hole force.
  • the pressure of the suction valve and the amount of working fluid guided from the suction hole to the expansion chamber become a target amount determined from the expander suction pressure and the expander discharge pressure that maximize the refrigeration cycle efficiency.
  • an opening / closing timing control means for controlling the opening / closing timing.
  • an expander-integrated fluid machine capable of always obtaining high operating efficiency can be obtained by varying the opening / closing timing of the suction valve so that the expansion chamber has an ideal volume. provide.
  • the fluid machine of the present invention includes a suction temperature sensor that measures the suction temperature of the working fluid sucked into the suction hole, and a discharge temperature sensor that measures the discharge temperature of the working fluid discharged from the discharge hole.
  • the expansion machine suction pressure is obtained from the discharge temperature.
  • the target suction pressure that maximizes the refrigeration cycle efficiency can be obtained by calculation.
  • the fluid machine of the present invention includes a discharge temperature sensor that measures the discharge temperature of the working fluid discharged from the discharge hole, and the discharge temperature force also obtains the expander discharge pressure, and the working fluid guided from the suction hole to the expansion chamber And an opening / closing timing control means for controlling the opening / closing timing of the intake valve so that the amount of air reaches the target amount obtained from the expander suction pressure and the expander discharge pressure that maximize the refrigeration cycle efficiency. It is. According to this embodiment, it can be linked to cost reduction.
  • the suction valve is an electromagnetic valve. According to the present embodiment, the opening / closing timing can be easily measured, and the problem of non-inflation can be prevented.
  • the opening timing at which the suction valve is opened from the closed time is defined as the suction start time at which the volume of the expansion chamber is minimized, and the closing timing at which the suction valve is opened from the closed time is determined from the suction start time to the expansion chamber. It is configured to have a control function that sets the time until the volume reaches the volume corresponding to the target amount. According to the present embodiment, the brake loss can be minimized, and the volume of the expansion chamber into which the working fluid is introduced can be set to an ideal volume.
  • the fluid machine of the present invention is provided with a working fluid state holding unit that holds the relationship between the volume and pressure of the working fluid when expanding in the expansion chamber, and the operation that the working fluid state holding unit holds The target amount is obtained using the relationship between the volume of the fluid and the pressure.
  • the relationship between the volume of the working fluid and the pressure can be an approximate expression of a practical expansion process, for example, and higher operating efficiency can be obtained.
  • the fluid machine of the present invention operates using a working fluid that expands from a supercritical phase to a liquid phase or a gas-liquid two phase.
  • the fluid machine of the present invention is operated using a working fluid mainly composed of carbon dioxide.
  • the fluid machine of the present invention is provided with a discharge valve in the first discharge hole of the expander. According to the present embodiment, it is possible to prevent occurrence of overexpansion loss.
  • the discharge valve is a reed valve, and the discharge valve opens when the pressure in the expansion chamber reaches a predetermined value.
  • the reed valve automatically opens when the pressure reaches a predetermined value, and recompression is possible so as not to cause an overexpansion loss.
  • the heat pump device controls the opening / closing timing of the intake valve so that the amount of the working fluid guided to the expansion chamber becomes a target amount that maximizes the refrigeration cycle efficiency. According to the present embodiment, the operation efficiency of the heat pump device can always be increased.
  • the opening / closing timing of the suction valve can be controlled, and the amount of working fluid guided to the expansion chamber can be set to a target amount that provides high operating efficiency.
  • FIG. 1 is a longitudinal sectional view of a compressor according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an expander section in the compressor of the present embodiment
  • FIG. 4 is a diagram showing the relationship between the opening / closing timing of the solenoid valve and the flow rate of the working fluid entering the working chamber in the present embodiment.
  • FIG. 5 is a perspective view of an angle detection gear in the compressor of the present embodiment.
  • FIG. 13 System configuration diagram of another conventional air conditioner
  • FIG. 1 is a longitudinal sectional view of the compressor according to the first embodiment of the present invention
  • FIG. 2 is a transverse sectional view of an expander section in the compressor according to the present embodiment.
  • 1 and 2 show a rotary vane compressor and expander, but the compressor and expander are not limited to this.
  • the rotary type, reciprocating type and scrolling type may be used.
  • As the working fluid a working fluid that expands from a supercritical phase to a liquid phase or a gas-liquid two phase, for example, a working fluid mainly composed of carbon dioxide is used.
  • the compressor according to the present embodiment includes a compressor unit 12, an electric motor unit 16, an expander unit 20, and a control unit inside a hermetic container 10.
  • This control unit may be arranged inside or outside the closed container 10.
  • the compressor unit 12 includes a compression chamber 13, a drive shaft 14, and a rotor 15. By rotating the drive shaft 14 and the rotor 15, the working fluid sucked into the compression chamber 13 is changed from a low pressure to a high pressure. Compress.
  • the electric motor section 16 includes a stator 17 and a rotor 18, and the rotor 18 is fixed to the drive shaft 14.
  • the expander unit 20 includes a cylinder 21, a rotor 23, and a power recovery shaft 26 (hereinafter referred to as a shaft 26).
  • the expander unit 20 sucks the working fluid through the suction path 32 and the suction hole 27, and the cylinder 21 and the rotor 23 A high pressure is expanded to a low pressure in the working chamber 25 as an expansion chamber to be formed, and the shaft 26 is rotated by discharging from the working chamber 25 through the discharge chamber 33 and the discharge passage 34. This rotational power is transmitted from the shaft 26 to the drive shaft 14 and is recovered as the driving force of the compressor section 12.
  • the expander section 20 provided in the sealed container 10 includes a cylinder 21, a port 23, four vanes 24, a shaft 26, a canopy 31, a suction pipe. 35 and a solenoid valve 40.
  • the cylinder 21 has a cylindrical inner wall 21a, and side plates 21b and 21c (see FIG. 1) are provided at both ends thereof.
  • a cylindrical rotor 23 is disposed inside the cylinder 21, and a part of the outer periphery of the rotor 23 forms a small gap 22 with the inner wall 21 a of the cylinder 21.
  • the inner wall 21 a and the outer periphery of the rotor 23 are in contact with each other at the base point (contact point) of the small gap 22.
  • the rotor 23 is provided with four grooves 23a perpendicular to the upper and lower end surfaces at a pitch of 90 deg.
  • Each vane 24 is slidably inserted in each groove 23 a, and the tip of the vane 24 is in contact with the inner wall 21 a of the cylinder 21.
  • the working chamber 25 is formed as a space 25a, 25b, 25c, 25d, 25e surrounded by the inner wall 21a of the cylinder 21, the rotor 23 and the vanes 24! /.
  • the shaft 26 is formed integrally with the rotor 23, and is rotatably supported by the side plates 21b and 21c. It is connected to 12 drive shafts 14.
  • the cylinder 21 is provided with a suction hole 27 through which the working fluid flows into the working chamber 25 and a discharge hole 28 through which the working chamber 25 force also flows out the working fluid.
  • the electromagnetic valve 40 that constitutes a part of the expander unit 20 in the sealed container 10 is disposed in the suction hole 27 immediately before the inlet of the working chamber 25 (that is, the expansion chamber).
  • an opening 28a that is opened in a range in the circumferential direction of the inner wall 21a of the cylinder 21.
  • the range in which the opening 28a is provided is that if the number of vanes 24 is n, the base force of the small gap 22 is also at the start position 28b of ⁇ 180 X (l + 1 / n) ⁇ deg in the rotational direction indicated by the arrow of the shaft 26.
  • the range starts and ends at the end position 28c in the vicinity of the small gap 22.
  • the starting position 28b of the opening 28a in FIG. 2 is a position of 225 deg because there are four vanes 24.
  • a cover 31 is provided on the side of the cylinder 21, and a suction pipe 35 is inserted into the cover 31, and a suction path 32 that guides the working fluid to the suction hole 27 is formed inside the suction pipe 35.
  • a discharge chamber 33 for temporarily storing the working fluid flowing out from the discharge hole 28 is formed inside the sealed container 10, and inside the discharge pipe 36 joined to the sealed container 10, A discharge path 34 is formed through which the working fluid flows out from the discharge chamber 33.
  • control unit includes a discharge pressure sensor 48, a suction temperature sensor 50, a discharge temperature sensor 51, a gap sensor 52, a solenoid valve control unit 60, and a working fluid state holding unit 61. Composed.
  • the solenoid valve 40 is energized via the solenoid valve control unit 60, and the solenoid valve 40 is electrically opened and closed to control the communication between the working chamber 25 and the suction hole 27.
  • the solenoid valve 40 be normally opened and closed when energized (controlled), assuming an electrical problem. The reason for this is that if the solenoid valve is a normally open solenoid valve, it is easy to control the opening and closing of the valve (measure the timing of opening and closing), and it will not close even if an electrical problem occurs. This is because it does not function as an expander, which prevents the problem of non-expansion.
  • the suction temperature sensor 50 measures the temperature of the working fluid in the suction path 32 or the suction hole 27 as the suction temperature Tb of the expander. Further, the discharge pressure sensor 48 and the discharge temperature sensor 51 measure the pressure and temperature of the working fluid in the discharge chamber 33 or the discharge path 34 as the discharge pressure Pc and the discharge temperature Tc of the expander. Any temperature sensor or pressure sensor may be used as long as it can measure the temperature and pressure of the working fluid. Also, the expander intake temperature Tb is measured between the condenser (see Fig. 11) and the intake pipe 35, and the expander discharge pressure Pc and the expander (see Fig. 11) are measured between the discharge pipe 36 and the evaporator (see Fig. 11). The discharge temperature Tc may be measured. The gap sensor 52 detects the rotation angle ⁇ X of the shaft 14 using an angle detection gear 45 provided on the shaft 14.
  • the solenoid valve control unit 60 controls the opening and closing of the solenoid valve 40.
  • the working fluid state holding unit 61 holds data indicating the relationship between the volume and pressure of the working fluid when the working fluid expands in the working chamber 25, an approximate expression, and the like, and is configured using, for example, a semiconductor memory. Has been.
  • the working fluid state holding unit 61 may be integrated with the solenoid valve control unit 60! / ⁇ .
  • the working chamber 25 is a space 25 a on the suction hole 27 side of the small gap 22. Thereafter, while the volume is increased with the rotation of the rotor 23, a process of sucking a working fluid having a suction pressure Pb corresponding to the high pressure Ph of the refrigeration cycle from the suction hole 27, that is, a suction process is performed.
  • the inhalation process corresponds to AB in Fig. 3.
  • the working chamber 25 When the working chamber 25 reaches the position of the space 25b, the communication with the suction hole 27 is cut off to become a sealed space, and then the volume increases with the rotation of the rotor 23, and the pressure of the working fluid inside decreases.
  • the process of going, that is, the expansion process is performed.
  • the expansion process corresponds to BC in Fig. 3.
  • the working chamber 25 has a maximum volume at the position of the space 25c. This time corresponds to C in Fig. 3, and the discharge pressure in the working chamber 25 is Pc. From the moment when the rotor 23 is slightly rotated from here, the working chamber 25 located in the space 25c communicates with the discharge hole 28 through the opening 28a, and the working fluid is pushed out from the working chamber 25 to the discharge chamber 33.
  • the low pressure P1 of the refrigeration cycle varies depending on the heat exchange conditions in the evaporator (see FIG. 11), the operating conditions of the refrigeration cycle, and the like.
  • the ratio of the volume at the moment when the working fluid is sealed (space 25b in FIG. 2) to the volume immediately before the working fluid is discharged (space 25c in FIG. 2), that is, the expansion ratio is constant. Therefore, when the low pressure P1 fluctuates, it cannot be made equal to the discharge pressure Pc of the expander. Therefore, in the present embodiment, the operation of changing the amount of working fluid sucked into the working chamber 25 using the electromagnetic valve 40 and controlling the discharge pressure Pc of the expander and the low pressure P1 of the refrigeration cycle to be equal is performed. Done.
  • FIG. 4 shows the relationship between the opening / closing timing of the solenoid valve 40 in the present embodiment and the flow rate of the working fluid entering the working chamber 25 during the suction process.
  • time Top the time from when the solenoid valve 40 is closed to open
  • time Tel the time from when the solenoid valve 40 is opened to closed
  • the solenoid valve 40 is controlled to be opened immediately before the working chamber 25 communicates with the suction hole 27. If the solenoid valve 40 is kept closed at this time, the working chamber 25 is evacuated as it rotates, which causes a loss of braking the rotation of the rotor 23, which is not preferable. That is, the brake loss is minimized by a configuration having a control function in which the opening timing (that is, the time Top) at which the solenoid valve 40 is opened from the closed state is set to the suction start time at which the volume of the working chamber 25 is minimized. Can do.
  • the working chamber 25 communicates with the suction hole 27 and the working fluid is sucked into the working chamber 25.
  • the electromagnetic valve 40 is closed at a time Tel in which the working chamber 25 reaches the maximum volume Vb that can be sucked.
  • the suction amount of the working fluid becomes a volume Vb ′ smaller than the maximum volume Vb.
  • the magnitude of Vb ′ can be varied by changing the timing of the closing time Tel of the solenoid valve 40.
  • the configuration having a control function that sets the closing timing (that is, at the time of time Tel) for closing the solenoid valve 40 from the suction start time to the time when the volume of the working chamber 25 becomes the maximum The amount of inhalation can be varied.
  • a solenoid valve 40 is provided in the suction hole 27 just before the inlet of the working chamber 25, and the distance from the solenoid valve 40 to the inlet of the working chamber 25 of the suction hole 27 is shortened.
  • the dead space in which the water cannot be recovered becomes smaller, and the reduction in expansion efficiency can be avoided.
  • the efficiency of the refrigeration cycle and the high pressure Ph have a relationship that maximizes the efficiency at a certain high pressure.
  • the optimal pressure Popt the high pressure that maximizes the refrigeration cycle efficiency
  • te is the evaporator temperature (that is, the temperature corresponding to the discharge temperature Tc of the expander)
  • tg is the condenser outlet temperature (that is, the temperature corresponding to the suction temperature Tb of the expander)
  • the respective temperatures are the discharge temperatures. It can be measured by the sensor 51 and the suction temperature sensor 50. Then, using Equation 1, a target expander suction pressure Popt can be calculated from the suction temperature Tb and the discharge temperature Tc.
  • the refrigeration cycle is operated so that the high pressure Ph, that is, the suction pressure Pb of the expander corresponding to the high pressure Ph becomes the optimum pressure Popt as the target expander suction pressure. It is desirable because it maximizes.
  • the saturation pressure 'temperature of the working fluid is determined based on the evaporator temperature te. From this relationship, the low pressure P1 (evaporator pressure) of the refrigeration cycle, that is, the discharge pressure Pc of the expander corresponding to the low pressure P1 can be obtained. That is, even if the discharge pressure sensor 48 is not provided, a configuration in which the discharge temperature Tc measured by the discharge temperature sensor 51 is converted to obtain the expander discharge pressure Pc can be obtained, which leads to cost reduction.
  • the volume Vc of the working chamber 25 in the final state C (space 25c in FIG. 3) of the expansion process (curve BC in FIG. 3) is also known from the design specifications. Therefore, if the relationship between the volume of the working chamber 25 and the pressure is known, the target volume Vb of the expansion chamber that sucks the working fluid is determined by changing the state transition from the final state C to the initial state B of the expansion process. can do. For example, assuming that the working fluid is an ideal gas and the ideal isentropic change that does not cause leakage, friction, or heat in / out during the expansion process, the relationship between the volume of the working chamber 25 and the pressure is expressed by the following equation.
  • Equation 2 in order to obtain the optimum pressure Popt with the suction pressure Pb as the target in the initial state B of the expansion process, the low pressure P1 in the final state C (that is, the detected discharge pressure Pc) From the chamber volume Vc (known from the design specifications), Vb expressed by the following equation is the target volume to be set for B, that is, the working fluid suction amount.
  • Vbo ' (Pl / Popt) 1 / ⁇ Vc
  • the timing of closing the electromagnetic valve 40 is determined. That is, the amount of working fluid introduced into the expansion chamber is determined by the expansion machine discharge pressure Pc (i.e., low pressure P1), suction temperature Tb, and discharge temperature Tc force. The time Tel will be determined so that the target amount obtained from
  • An example of the method for determining the time Tel from the target volume Vb is as follows.
  • An angle detection gear 45 for detecting the rotation angle is installed on a part of the shaft 14.
  • the angle detection gear 45 has a shape in which irregularities are regularly engraved in the circumferential direction, part of which is not concave, and a part 45a. Without the recess, the rotation angle ⁇ X of the shaft 14 is detected by reading the unevenness of the angle detection gear 45 accompanying the rotation of the shaft 14 with the gap sensor 52 using the portion 45a as a rotation base.
  • the rotation angle ⁇ bo from the base point to the point of the target volume Vb is obtained and the detected rotation
  • the time when the angle ⁇ X reaches the rotation angle ⁇ bo is time Tel, and is the closing timing of the solenoid valve 40.
  • the relationship between the volume and pressure of the working fluid in the expansion process is preferably expressed using experimental data or an approximate expression that also obtains experimental data force.
  • obtaining the target volume Vb will result in higher operating efficiency compared to obtaining the target volume Vb.
  • the above-described working fluid state holding unit 61 holds data and approximate expressions representing the relationship between the volume and pressure of the above-described working fluid and the relationship between the saturation pressure and the temperature of the above-described working fluid.
  • the working fluid state holding unit 61 that holds the relationship between the volume and pressure of the working fluid when expanding in the expansion chamber is provided, and the target volume Vb (that is, the target that maximizes the refrigeration cycle efficiency) is provided using this relationship. If it is the structure which calculates
  • the electromagnetic valve 40 is installed in the suction hole 27 in the sealed container 10 and immediately before the working chamber 25, and the low pressure P1 of the refrigeration cycle is detected. Operates by controlling the opening time (Tel Top) of the solenoid valve 40 with the solenoid valve controller 60 so that the high pressure Ph of the refrigeration cycle becomes the optimum pressure Popt that maximizes the refrigeration cycle efficiency based on P1 In other words, the flow rate of the working fluid entering the chamber 25 is adjusted.
  • the compressor of the present embodiment is used in a heat pump device to control the opening / closing timing of the intake valve of the compressor so that the amount of working fluid led to the expansion chamber becomes a target amount that maximizes the refrigeration cycle efficiency. As a result, the operation efficiency of the heat pump device can be constantly increased.
  • FIG. 6 is a longitudinal sectional view of the compressor according to the second embodiment of the present invention
  • FIG. 7 is a transverse sectional view of the compressor shown in FIG.
  • the compressor of the present embodiment shows the detailed shape of the rolling piston type expander section and the solenoid valve, and has a different configuration and operation from the first embodiment. I will explain the work. And the description regarding the same composition and the same operation is omitted.
  • the compressor according to the present embodiment includes a compressor unit 12, an electric motor unit 16, an expander unit 70, and a control unit inside the sealed container 10.
  • the expander unit 70 is fitted with a power recovery shaft 76 having an eccentric portion 76a (hereinafter referred to as shaft 76), a cylinder 71 having a cylindrical inner wall 71a, and the eccentric portion 76a.
  • a rotor 73 that performs eccentric rotational movement inside the cylinder 71, and reciprocates inside the vane groove 71b of the cylinder 71 with its tip in contact with the rotor 73, and serves as an expansion chamber between the cylinder 71 and the rotor 73.
  • the side plate 71c including 71c, 71d (see FIG. 6), the suction pipe 35, and the solenoid valve 40 is connected to the suction pipe 35, and the working fluid sucked from the suction pipe 35 is introduced into the working chamber 25. It has a suction hole 27.
  • the side plate 71d has a discharge hole 78 for discharging the working fluid expanded in the working chamber 25 to the discharge chamber 33.
  • the electromagnetic valve 40 that is part of the expander unit 70 in the sealed container 10 includes a frame 80, a plunger 81, a core 82, a solenoid 83, and a spring 8. 4 and the like, and is arranged near the inlet of the working chamber 25 of the suction hole 27.
  • the electromagnetic valve 40 is installed in the airtight container 10 in the vicinity of the working chamber 25 of the suction hole 27, and the opening / closing timing of the electromagnetic valve 40 is varied to enter the working chamber 25.
  • the number of bypass lines can be reduced and the valve control
  • the maximum power recovery from the high-pressure working fluid can be achieved to always obtain high operating efficiency. Can do.
  • the rolling piston type expander part of the present embodiment has an advantage that the number of times of opening and closing the electromagnetic valve can be reduced as compared with the rotary vane type expander part of the first embodiment.
  • FIG. 8 is a longitudinal sectional view of the compressor according to the third embodiment of the present invention
  • FIG. 9 is a transverse sectional view of an expander section in the compressor according to the present embodiment.
  • 8 and 9 show rotary vane type compressors and expanders, but the compressor and expander types are not limited to this, and other types such as rotary type, reciprocating type, scroll type, etc. But you can.
  • the working fluid a working fluid that expands from a liquid phase or a supercritical phase to a gas-liquid two phase, or a working fluid mainly composed of carbon dioxide is used.
  • the compressor of the present embodiment is configured to include a compressor unit 12, an electric motor unit 16, and an expander unit 20 inside the hermetic container 10.
  • the compressor unit 12 includes a compression chamber 13, a drive shaft 14, and a rotor 15, and compresses the working fluid sucked into the compression chamber 13 from a low pressure to a high pressure by rotating the drive shaft 14 and the rotor 15.
  • the electric motor unit 16 includes a stator 17 and a rotor 18, and the rotor 18 is fixed to the drive shaft 14.
  • the expander unit 20 includes a cylinder 21, a rotor 23, and a shaft 26, and sucks the working fluid through the suction passage 32 and the suction hole 27, and is high in the working chamber 25 formed by the cylinder 21 and the rotor 23.
  • the pressure is also expanded to a low pressure and discharged from the working chamber 25 through the discharge chamber 33 and the discharge path 34, thereby obtaining rotational power for the shaft 26.
  • This rotational power is transmitted from the shaft 26 to the drive shaft 14 and is recovered as the drive force of the compressor unit 12.
  • the expander ⁇ 20 has a cylinder 21, a rotor 23, four vanes 24, a shaft 26, a valve mechanism 30, a cover 31, a suction pipe 35, an electromagnetic That is, the cylinder 21 includes a cylindrical inner wall 21a, and side plates 21b and 21c (see FIG. 8) at both ends thereof. Is provided.
  • a cylindrical rotor 23 is disposed inside the cylinder 21, and a part of the outer periphery of the rotor 23 forms a small gap 22 with the inner wall 21 a of the cylinder 21.
  • the inner wall 21 a and the outer periphery of the rotor 23 are in contact with each other at the base point (contact point) of the small gap 22.
  • the rotor 23 is provided with four grooves 23a perpendicular to the upper and lower end surfaces at a pitch of 90 deg.
  • Each vane 24 is slidably inserted in each groove 23 a, and the tip of the vane 24 is in contact with the inner wall 21 a of the cylinder 21.
  • the working chamber 25 is formed as a space 25a, 25b, 25c, 25d, 25e surrounded by the inner wall 21a of the cylinder 21, the rotor 23 and the vanes 24! /.
  • the shaft 26 is formed integrally with the rotor 23, is rotatably supported on the side plates 21b and 21c, and is connected to the drive shaft 14 of the compressor unit 12.
  • the electromagnetic valve 40 that is part of the expander unit 20 in the sealed container 10 is disposed at a position close to the working chamber 25 of the suction hole 27.
  • the cylinder 21 has a suction hole 27 through which the working fluid flows into the working chamber 25, a first discharge hole 28 (hereinafter referred to as a discharge hole 28) and a second discharge hole 29 through which the working chamber 25 force working fluid flows out. (Hereinafter, the discharge hole 29) is provided.
  • the discharge hole 28 is moved to a position where the base force of the small gap 22 has moved by an angle of ⁇ 180 X (1 + 1 / n) ⁇ deg in the rotation direction indicated by the arrow of the shaft 26. Is provided.
  • the discharge hole 28 is provided with a valve mechanism 30 including a discharge valve lead valve 30a and a valve stop 30b.
  • the discharge hole 29 is provided in the vicinity of the base point of the small gap 22, and a part of the discharge hole 29 has a shape including the position of the base point of the small gap 22 at a position of 315 deg in the rotation direction of the shaft 26.
  • No valve mechanism is provided.
  • the position of the discharge hole 29 is not limited to this. If the center angle around the shaft 26 of the inner wall 21a of the cylinder 21 between the suction hole 27 and the discharge hole 29 is n vanes 24 (360Zn) or less As long as the discharge hole 29 is in the vicinity of the base point of the small gap 22.
  • a cover 31 is provided on the side of the cylinder 21, and the suction pipe 35 is provided on the cover 31. Is inserted, and a suction passage 32 for guiding the working fluid to the suction hole 27 is formed in the suction pipe 35.
  • a discharge chamber 33 for storing and storing the working fluid flowing out from the discharge holes 28 and 29 is formed inside the sealed container 10, and the discharge pipe 36 joined to the sealed container 10 is provided. Inside, a discharge path 34 is formed for allowing the working fluid to flow out from the discharge chamber 33 to the outside.
  • the solenoid valve 40 is energized through a wiring (not shown) from a control device (not shown), and the solenoid valve 40 is electrically opened and closed, whereby communication between the suction hole 27 and the suction path 32 is established. It is configured to control. In addition, it is desirable that the solenoid valve 40 be normally opened and closed when energized (controlled), assuming an electrical problem. The reason for this is that if an electromagnetic valve is used, it is easy to control the opening and closing of the valve (timing the opening and closing timing), and since it is a normally open solenoid valve that does not close even with an electrical trouble, the expander As a result, the non-inflating harmful effect of not functioning as a non-function is prevented.
  • FIG. 3 is a PV diagram of the working chamber when the solenoid valve is normally open in the present embodiment, that is, a PV diagram of the working chamber 25 of the expansion unit 20. Note that the description of the compressor section not related to the features of the present invention is omitted.
  • the working chamber 25 is generated in a space 25 a on the suction hole 27 side of the small gap 22. Thereafter, the process of sucking the working fluid having the high-pressure side pressure Pb from the suction hole 27, that is, the suction process is performed while increasing the volume as the rotor 23 rotates.
  • the inhalation process corresponds to AB in Figure 3.
  • the working chamber 25 When the working chamber 25 reaches the position of the space 25b, the communication with the suction hole 27 is cut off to become a sealed space, and then the volume increases with the rotation of the rotor 23, and the pressure of the working fluid inside decreases.
  • the process of going, that is, the expansion process is performed.
  • the expansion process corresponds to BC in Fig. 3.
  • the working chamber 25 has a maximum volume at the position of the space 25c. This time corresponds to C in Fig. 3, and the pressure in the working chamber 25 is Pc. Then, at the moment when the rotor 23 is slightly rotated, the working chamber 25 positioned in the space 25 c communicates with the discharge hole 28.
  • FIG. 4 shows the relationship between the opening / closing timing of the electromagnetic valve 40 in the present embodiment and the flow rate of the working fluid entering the working chamber 25 during the suction process.
  • time Top the time from when the solenoid valve 40 is closed to open
  • time Tel the time from when the solenoid valve 40 is opened to closed
  • the solenoid valve 40 is controlled to be opened immediately before the working chamber 25 communicates with the suction hole 27. If the solenoid valve 40 is kept closed at this time, the working chamber 25 is evacuated as it rotates, which causes a loss of braking the rotation of the rotor 23, which is not preferable. That is, the brake loss is minimized by a configuration having a control function in which the opening timing (that is, the time Top) at which the solenoid valve 40 is opened from the closed state is set to the suction start time at which the volume of the working chamber 25 is minimized. Can do.
  • the working chamber 25 communicates with the suction hole 27 and the working fluid is sucked into the working chamber 25.
  • the solenoid valve 40 is closed at the time Tel that the working chamber 25 reaches the maximum volume Vb that can be sucked.
  • the amount of working fluid drawn becomes V, which is smaller than Vb.
  • the magnitude of Vb ′ can be varied by changing the timing of the closing time Tel of the solenoid valve 40.
  • the expansion chamber has a control function in which the closing timing for opening the solenoid valve 40 from opening to closing (that is, at the time of time Tel) is the time from the suction start time until the volume of the working chamber 25 becomes maximum.
  • the flow rate of the working fluid entering can be varied.
  • the working chamber 25 performs a suction process in which the working fluid of the pressure Pb on the high pressure side is sucked from the suction hole 27 until the state force of the space 25a in FIG. 9 also closes the electromagnetic valve 40.
  • the inhalation process corresponds to that of Fig. 10.
  • the amount of inhalation at this time is Vb '.
  • the working chamber 25 has a maximum volume at the position of the space 25c. At this time, the pressure in the working chamber 25 is P lower than the pressure Pc when the solenoid valve 40 is normally opened. . This process corresponds to HC in Fig. 10.
  • the reed valve 30a is provided in the discharge hole 28, and the reed valve 30a closes the discharge hole 28 by the pressure difference between the pressure PcT of the discharge chamber 33 and the pressure Pc of the working chamber 25. Therefore, the working fluid can be prevented from flowing from the discharge chamber 33 into the working chamber 25. Thereafter, the volume of the working chamber 25 decreases with the rotation of the rotor 3, but since it remains closed by the discharge hole 28 force S reed valve 30a, compression occurs in the space 25c, and the pressure is again in FIG. Ascend C'B '.
  • the reed valve 30a is opened for the first time at the moment when the pressure in the working chamber 25 exceeds Pc, that is, at H in FIG. 10 when the pressure in the working chamber 25 reaches a predetermined value. This process corresponding to H is called the recompression process. Since the discharge valve is the reed valve 30a, there is an advantage that when the pressure in the working chamber 25 reaches a predetermined value, it automatically opens and recompression is performed.
  • the working chamber 25 reduces the volume while discharging the working fluid having the low-pressure side pressure Pc from the discharge hole 28, that is, a discharge process.
  • the force that eliminates the communication with the discharge hole 28 while the working chamber 25 moves from the space 25d to the position of the space 25e causes a part of the discharge hole 29 to rotate from the base point of the small gap 22 to the rotation direction of the shaft 26.
  • the shape includes the position moved in the circumferential direction by (360 Zn) deg, which is the pitch of the vanes 24 from the discharge holes 28. Continue from hole 29.
  • This discharge process corresponds to HD in Fig. 10.
  • time-telling change control for closing the solenoid valve 40 will be described.
  • the discharge pressure of the working fluid discharged from the compressor is measured by, for example, a pressure sensor, and the target discharge efficiency and the efficiency of the entire system including the compressor and expander are the best.
  • the time width from time Top to time Tc is controlled by comparing the pressure with the discharge pressure of the compressor and the target pressure. In other words, when the discharge pressure of the compressor is higher than the target pressure, the flow rate of the working fluid is increased by increasing the time width of the difference between the time Top and the time Tel. In addition, when the discharge pressure of the compressor is smaller than the target pressure, the time width of the time Top and the time Tel is reduced to reduce the flow rate of the working fluid. As a result, the efficiency of the entire system can be maximized.
  • the operating efficiency of the heat pump device is always high. Can be.
  • the target pressure is a value that can determine the physical property value of the working fluid.
  • changing the intake valve opening / closing timing that is, controlling the time width, for example, detects the rotation speed of the expander and the rotation angle from the base point, and based on this rotation speed and rotation angle!
  • This can be done with a configuration (not shown) that opens and closes the solenoid valve 40 by setting the inhalation start time (time point) and time span.
  • the solenoid valve 40 is installed in the sealed container 10 at a position close to the working chamber 25 of the suction hole 27 and the time width (Tel Top) during which the solenoid valve 40 is open is controlled.
  • the discharge chamber 33 can be used in the case of overexpansion that can occur when the electromagnetic valve 40 is controlled.
  • the working fluid is prevented from flowing back into the working chamber 25 and can be recompressed to the discharge pressure Pc, so there is no overexpansion loss (corresponding to the area of CC'H in Fig. 10)!
  • a machine-integrated compressor can be provided.
  • valve mechanism 30 described in the third embodiment is applied to the discharge hole 78 in the second embodiment. I'll do it for you.
  • the compressor according to the present invention and the heat pump device using the compressor control the expansion chamber volume of the expander into which the working fluid is sucked by opening and closing a suction valve installed in the suction hole immediately before the inlet of the expansion chamber, Since high-pressure working fluid force also recovers power to the maximum, high operation efficiency can be obtained at all times, and it can be applied to an expander-integrated compressor, a heat pump device using the compressor, an air conditioner, and the like.

Abstract

A compressor integrated with an expander, having a constant high operation efficiency by reducing the bypass pipeline, embodying valve control, reducing the dead space on the suction side, and recovering power from high-pressure working fluid while eliminating the operation condition (restriction) of density ratio=constant . A fluid machine comprising a compressor section (12) for compressing a working fluid sucked into a compression chamber (13) by rotating a drive shaft (14) and an expander section (20) for producing the rotational power of a power recovery shaft (26) by expanding the working fluid sucked into a working chamber (25) is further provided with a sensor (48) for detecting delivery pressure of a delivery chamber (33) and a solenoid valve (40) located at a suction port (27) immediately in front of the inlet of the working chamber (25) and controlling the communication between the suction port (27) and the working chamber (25). High operation efficiency can be ensured constantly without providing a bypass pipeline and without causing deterioration in expansion efficiency due to over expansion or dead space by varying open/closure timing of the solenoid valve (40) such that the quantity of working fluid introduced into the working chamber (25) is a target quantity determined from the delivery pressure obtained from the delivery pressure sensor (48) and a target suction pressure for maximizing the refrigeration cycle efficiency.

Description

流体機械およびそれを用いたヒートポンプ装置  Fluid machine and heat pump device using the same
技術分野  Technical field
[0001] 本発明は、高圧の作動流体を供給して回転動力を発生する膨張機と連結された膨 張機一体型の流体機械およびそれを用いたヒートポンプ装置に関する。  The present invention relates to an expander-integrated fluid machine connected to an expander that supplies a high-pressure working fluid to generate rotational power, and a heat pump device using the expander-integrated fluid machine.
背景技術  Background art
[0002] 図 11には、従来の一般的な動力回収式の空気調和装置のシステム構成を示して いる。図 11において、本システムは、凝縮器 101、蒸発器 102、圧縮機 103及び膨 張機 104を含み構成され、作動流体を圧縮する圧縮機 103と、高圧の作動流体から 回転動力を発生させる膨張機 104とはモータ 105に対して一軸に連結されている。 すなわち、膨張機 104では、高圧の作動流体が理想的には等エントロピー膨張する ことにより回転動力を発生させ、直接圧縮機 103の駆動動力を補助する構成となって いる。このように圧縮機 103と膨張機 104とを一軸に連結するのは、構造が単純で動 力回収ロスが少ないためである。  FIG. 11 shows a system configuration of a conventional general power recovery type air conditioner. In FIG. 11, the system includes a condenser 101, an evaporator 102, a compressor 103, and an expander 104. The compressor 103 compresses the working fluid and an expansion that generates rotational power from the high-pressure working fluid. The machine 104 is connected to the motor 105 in one axis. In other words, the expander 104 is configured to generate rotational power by ideally entropy expansion of the high-pressure working fluid and directly assist the driving power of the compressor 103. The reason why the compressor 103 and the expander 104 are connected to each other is that the structure is simple and the power recovery loss is small.
このような従来の空気調和装置において、作動流体を二酸化炭素とした場合の、冷 凍サイクル状態変化の様子を図 12に示す。図 12のモリエル線図(p—h線図)におい て、 1→2は圧縮機 103において作動流体を低圧圧力 P1から高圧圧力 Phに圧縮 '昇 圧する圧縮過程、 2→3は凝縮器 101における等圧放熱過程、 3→4は膨張機 104に おいて作動流体を高圧圧力 Phから低圧圧力 P1に膨張させて動力回収を行う膨張過 程、 4→1は蒸発器 102における等圧吸熱過程を示している。  In such a conventional air conditioner, Fig. 12 shows how the refrigeration cycle changes when the working fluid is carbon dioxide. In the Mollier diagram (p-h diagram) in Fig. 12, 1 → 2 is the compression process in which the working fluid is compressed and raised from the low pressure P1 to the high pressure Ph in the compressor 103, and 2 → 3 is in the condenser 101. 3 → 4 is the expansion process in which the working fluid is expanded from the high pressure Ph to the low pressure P1 in the expander 104 to recover the power, and 4 → 1 is the isobaric heat absorption process in the evaporator 102. Show.
しかし、圧縮機 103と膨張機 104とを一軸に連結した上記の構成では、圧縮機 103 と膨張機 104とが常時同一回転数で回転するため、一定の冷媒循環量でシステムが 運転される場合には、作動流体の「密度比 =一定」の運転条件 (制約)が発生し、例 えば、システムの効率に影響を与える圧縮機 103の吐出圧力(高圧圧力 Ph)を適切 に制御し難いなどの理由から、必ずしも高効率運転が実現できるとは限らない。 そこで、このような「密度比 =一定」の運転条件 (制約)を排除するための技術として 、特許文献 1記載の公知技術がある。図 13に、従来の他の空気調和装置のシステム 構成を示す。本空気調和装置では、膨張機 104の吐出管路 110と吸入管路 111と の間に、両者を連通させるバイパス管路 112を設け、そのノ ィパス管路 112にその通 路面積を増減調整する制御弁 106を設けている。 However, in the above configuration in which the compressor 103 and the expander 104 are connected to one shaft, the compressor 103 and the expander 104 always rotate at the same rotation speed, and therefore the system is operated with a constant refrigerant circulation rate. Operating conditions (constraints) of the working fluid “density ratio = constant” occur, for example, it is difficult to properly control the discharge pressure (high pressure Ph) of the compressor 103 that affects the efficiency of the system. For this reason, high-efficiency operation cannot always be realized. Therefore, as a technique for eliminating such an operation condition (constraint) of “density ratio = constant”, there is a known technique described in Patent Document 1. Figure 13 shows another conventional air conditioner system. The configuration is shown. In the present air conditioner, a bypass pipe 112 is provided between the discharge pipe 110 and the suction pipe 111 of the expander 104, and the passage area of the bypass pipe 112 is adjusted to increase or decrease. A control valve 106 is provided.
このような構成の空気調和装置は、以下の動作を行う。  The air conditioner having such a configuration performs the following operations.
圧縮機 103の吐出温度の目標値を設定し、次に圧縮機 103の吐出温度が該目標 値になるように、制御弁 106の開度を制御する。制御弁 106が閉じる方向に制御され ると、バイパス管路 112を通る作動流体の量が少なくなり、膨張機 104に入る作動流 体の量が増加する。逆に、制御弁 106が開く方向に制御されると、バイパス管路 112 を通る作動流体の量が多くなり、膨張機 104に入る作動流体の量が減少する。このよ うに制御弁 106の開度を制御することによって、膨張機 104を利用しながら高い運転 効率を得るようにシステムの運転条件を自由に定めることができる。  A target value of the discharge temperature of the compressor 103 is set, and then the opening degree of the control valve 106 is controlled so that the discharge temperature of the compressor 103 becomes the target value. When the control valve 106 is controlled in the closing direction, the amount of working fluid passing through the bypass line 112 decreases, and the amount of working fluid entering the expander 104 increases. Conversely, when the control valve 106 is controlled to open, the amount of working fluid that passes through the bypass line 112 increases, and the amount of working fluid that enters the expander 104 decreases. Thus, by controlling the opening degree of the control valve 106, the operating conditions of the system can be freely determined so as to obtain high operating efficiency while using the expander 104.
また、「密度比 =一定」の運転条件 (制約)を排除するための別の技術として、特許 文献 2記載の公知技術がある。この技術は、システムの高圧圧力と低圧圧力との比( 圧力比)が、膨張機設計の際に想定された圧力比よりも小さくなる運転条件において 、作動流体の膨張後の圧力がシステムの低圧圧力より低くなり、動力回収量が低下 すること (過膨張による損失)を防止するものである。即ち、膨張機の作動流体流入側 から分岐して該膨張機の吸入 Z膨張過程位置に連通する連絡通路を備え、該連絡 通路に作動流体の通過を制御するバルブを設ける構成とし、過膨張が発生する条件 になると該バルブを開けて膨張機内に作動流体の一部を流入させ、膨張機に入る作 動流体の量を増加させ、膨張後の作動流体の圧力を上昇させている。  As another technique for eliminating the operation condition (constraint) of “density ratio = constant”, there is a known technique described in Patent Document 2. In this technology, the pressure after the expansion of the working fluid is reduced under the operating conditions where the ratio of the high pressure to the low pressure of the system (pressure ratio) is smaller than the pressure ratio assumed in the design of the expander. This is to prevent the amount of recovered power from falling below the pressure (loss due to overexpansion). That is, the communication passage is branched from the working fluid inflow side of the expander and communicates with the suction Z expansion process position of the expander, and the communication passage is provided with a valve for controlling the passage of the working fluid. When the conditions arise, the valve is opened to allow a part of the working fluid to flow into the expander, increasing the amount of working fluid entering the expander, and increasing the pressure of the working fluid after expansion.
さらなる別の技術として、特許文献 3記載の公知技術がある。即ち、二酸化炭素超 臨界冷凍サイクルロータリ膨張装置(図示せず)は、主にシリンダボディ、ローリングピ ストン、偏心カム軸、台座及び電磁バルブによって構成される。膨張装置の内室は、 主 ·副軸受ならびに中間仕切板によって 2つの高圧室と 2つの低圧室に分けられる。 二酸ィ匕炭素が膨張シリンダに入って力 偏心カム軸を動かし、膨張シリンダの容積を 変化させ、流体の圧力が下がり、機械的動力を出力する。電気回路制御システムを 通じ、偏心カム軸の旋転角度に基づいて信号を出力して電磁バルブの開きを制御 することによって膨張装置の吸気時間を制御し、これに動力発生サイクルを行わせる 特許文献 1 :特開 2001— 116371号公報 As another technique, there is a known technique described in Patent Document 3. That is, the carbon dioxide supercritical refrigeration cycle rotary expansion device (not shown) is mainly composed of a cylinder body, a rolling piston, an eccentric cam shaft, a pedestal, and an electromagnetic valve. The inner chamber of the expansion device is divided into two high-pressure chambers and two low-pressure chambers by the main / sub bearings and the intermediate partition plate. Carbon dioxide enters the expansion cylinder, moves the force eccentric cam shaft, changes the volume of the expansion cylinder, lowers the fluid pressure, and outputs mechanical power. Through the electric circuit control system, the intake time of the expansion device is controlled by outputting a signal based on the rotation angle of the eccentric cam shaft and controlling the opening of the electromagnetic valve, and this causes the power generation cycle to be performed. Patent Document 1: JP 2001-116371 A
特許文献 2:特開 2004 - 197640号公報  Patent Document 2: JP 2004-197640 A
特許文献 3:特許 CN1164904C号公報  Patent Document 3: Patent CN1164904C
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、上記特許文献 1の技術では、バイパス管路を通る作動流体に関して は動力回収を行うことができず、高圧の作動流体の持つ潜在的なエネルギーを無条 件に破棄することになつていた。また、上記特許文献 2の技術では、過膨張の発生を 防止しうる構成にはなっているものの、それを実現するためのバルブの具体的な制御 方法については記されていない。さらに、上記特許文献 3の技術では、電磁弁がハウ ジング外にあって吸気側のデッドスペースが大きぐ膨張効率が低下してしまう。  [0003] However, in the technique of Patent Document 1 described above, the power recovery cannot be performed for the working fluid passing through the bypass line, and the potential energy of the high-pressure working fluid is unconditionally discarded. I was supposed to do it. Further, although the technique of Patent Document 2 is configured to prevent the occurrence of overexpansion, it does not describe a specific valve control method for realizing it. Furthermore, in the technique of Patent Document 3, the expansion efficiency is reduced because the electromagnetic valve is outside the housing and the dead space on the intake side is large.
[0004] したがって本発明は、上記従来の課題を解決するもので、バイパス管路を設けずに 「密度比 =一定」の制約条件を排除することで、また過膨張を防止するバルブ制御を 具体化することで、また吸気側のデッドスペースを小さくすることで、高圧の作動流体 から最大限に動力回収を行 ヽ、常時高 ヽ運転効率を得る膨張機一体型の流体機械 を提供することを目的として!ヽる。  [0004] Accordingly, the present invention solves the above-described conventional problems, and eliminates the restriction condition of “density ratio = constant” without providing a bypass pipe, and further provides valve control that prevents overexpansion. In addition, by reducing the dead space on the intake side, it is possible to recover the maximum power from the high-pressure working fluid and to provide an expander-integrated fluid machine that always obtains high operating efficiency. As a goal!
課題を解決するための手段  Means for solving the problem
[0005] 本発明の流体機械は、圧縮室、駆動シャフトを有し、駆動シャフトを回転させること により圧縮室に吸入した作動流体を圧縮する圧縮機部と、膨張室、膨張室に膨張機 吸入圧力で作動流体を導く吸入孔、膨張室から作動流体を吐出する吐出孔、駆動 シャフトに連結された動力回収シャフトを有し、膨張室に吸入した作動流体を膨張さ せることにより動力回収シャフトの回転動力を得る膨張機部と、圧縮機部と膨張機部 とを内部に配設した密閉容器と、密閉容器内に、膨張室に導かれる作動流体の量を 制御する吸入バルブと、を備えたものである。本実施の形態によれば、吸入バルブと 膨張室との間のデッドスペースを小さくでき、吸入バルブによる作動流体の膨張室へ の導入量を高 ヽ運転効率で制御することができる。 The fluid machine of the present invention has a compression chamber and a drive shaft, and compresses the working fluid sucked into the compression chamber by rotating the drive shaft, and the expansion chamber and the expansion chamber. It has a suction hole that guides the working fluid with pressure, a discharge hole that discharges the working fluid from the expansion chamber, and a power recovery shaft connected to the drive shaft. The working fluid sucked into the expansion chamber is expanded to expand the power recovery shaft. An expander unit for obtaining rotational power, a sealed container having a compressor unit and an expander unit disposed therein, and a suction valve for controlling the amount of working fluid introduced into the expansion chamber in the sealed container. It is a thing. According to the present embodiment, the dead space between the suction valve and the expansion chamber can be reduced, and the amount of working fluid introduced into the expansion chamber by the suction valve can be controlled with high operating efficiency.
本発明の流体機械は、吐出孔力 吐出される作動流体の膨張機吐出圧力を検知 する圧力検知手段と、吸入孔から膨張室に導かれる作動流体の量が、冷凍サイクル 効率を最大にする膨張機吸入圧力と膨張機吐出圧力とから求められる目標量になる ように、吸入バルブの開閉タイミングを制御する開閉タイミング制御手段と、を備えた ものである。本実施の形態によれば、膨張室の容積を理想的な容積とするように吸入 バルブの開閉タイミングを可変することにより、常時高い運転効率を得ることが可能な 膨張機一体型の流体機械を提供する。 The fluid machine of the present invention detects the expander discharge pressure of the working fluid discharged by the discharge hole force. The pressure of the suction valve and the amount of working fluid guided from the suction hole to the expansion chamber become a target amount determined from the expander suction pressure and the expander discharge pressure that maximize the refrigeration cycle efficiency. And an opening / closing timing control means for controlling the opening / closing timing. According to the present embodiment, an expander-integrated fluid machine capable of always obtaining high operating efficiency can be obtained by varying the opening / closing timing of the suction valve so that the expansion chamber has an ideal volume. provide.
本発明の流体機械は、吸入孔に吸入される作動流体の吸入温度を計測する吸入 温度センサと、吐出孔から吐出される作動流体の吐出温度を計測する吐出温度セン サとを備え、吸入温度と吐出温度とから膨張機吸入圧力を求めるものである。本実施 の形態によれば、冷凍サイクル効率が最大となる目標吸入圧力を演算で得ることが できる。  The fluid machine of the present invention includes a suction temperature sensor that measures the suction temperature of the working fluid sucked into the suction hole, and a discharge temperature sensor that measures the discharge temperature of the working fluid discharged from the discharge hole. The expansion machine suction pressure is obtained from the discharge temperature. According to the present embodiment, the target suction pressure that maximizes the refrigeration cycle efficiency can be obtained by calculation.
本発明の流体機械は、吐出孔から吐出される作動流体の吐出温度を計測する吐 出温度センサを備え、吐出温度力も膨張機吐出圧力を求めるとともに、吸入孔から膨 張室に導かれる作動流体の量が、冷凍サイクル効率を最大にする膨張機吸入圧力 と膨張機吐出圧力とから求められる目標量になるように、吸入バルブの開閉タイミン グを制御する開閉タイミング制御手段と、を備えたものである。本実施の形態によれ ば、コスト低減に結び付けることができる。  The fluid machine of the present invention includes a discharge temperature sensor that measures the discharge temperature of the working fluid discharged from the discharge hole, and the discharge temperature force also obtains the expander discharge pressure, and the working fluid guided from the suction hole to the expansion chamber And an opening / closing timing control means for controlling the opening / closing timing of the intake valve so that the amount of air reaches the target amount obtained from the expander suction pressure and the expander discharge pressure that maximize the refrigeration cycle efficiency. It is. According to this embodiment, it can be linked to cost reduction.
本発明の流体機械は、吸入バルブが電磁弁であるものである。本実施の形態によ れば、開閉タイミングを容易に計ることができるとともに、不膨張弊害を防止することが できる。  In the fluid machine of the present invention, the suction valve is an electromagnetic valve. According to the present embodiment, the opening / closing timing can be easily measured, and the problem of non-inflation can be prevented.
本発明の流体機械は、吸入バルブを閉から開にする開タイミングを膨張室の容積 が最小となる吸入開始時間とし、吸入バルブを開から閉にする閉タイミングを吸入開 始時間から膨張室の容積が目標量に相当する容積となるまでの時間とする制御機能 を有する構成にしたものである。本実施の形態によれば、ブレーキロスを最小とする ことができるとともに、作動流体が導入される膨張室の容積を理想的な容積とすること ができる。  In the fluid machine according to the present invention, the opening timing at which the suction valve is opened from the closed time is defined as the suction start time at which the volume of the expansion chamber is minimized, and the closing timing at which the suction valve is opened from the closed time is determined from the suction start time to the expansion chamber. It is configured to have a control function that sets the time until the volume reaches the volume corresponding to the target amount. According to the present embodiment, the brake loss can be minimized, and the volume of the expansion chamber into which the working fluid is introduced can be set to an ideal volume.
本発明の流体機械は、膨張室で膨張するときの作動流体の体積と圧力との関係を 保持する作動流体状態保持部を設け、当該作動流体状態保持部が保持する作動 流体の体積と圧力との関係を用いて目標量を求めるものである。本実施の形態によ れば、作動流体の体積と圧力との関係を例えば実際的な膨張過程の近似式とするこ とができ、より高い運転効率を得ることができる。 The fluid machine of the present invention is provided with a working fluid state holding unit that holds the relationship between the volume and pressure of the working fluid when expanding in the expansion chamber, and the operation that the working fluid state holding unit holds The target amount is obtained using the relationship between the volume of the fluid and the pressure. According to the present embodiment, the relationship between the volume of the working fluid and the pressure can be an approximate expression of a practical expansion process, for example, and higher operating efficiency can be obtained.
本発明の流体機械は、超臨界相から液相あるいは気液二相に膨張する作動流体 を用いて運転するものである。  The fluid machine of the present invention operates using a working fluid that expands from a supercritical phase to a liquid phase or a gas-liquid two phase.
本発明の流体機械は、二酸化炭素を主成分とする作動流体を用いて運転するもの である。  The fluid machine of the present invention is operated using a working fluid mainly composed of carbon dioxide.
本発明の流体機械は、膨張機の当該第 1の吐出孔に吐出バルブを設けたものであ る。本実施の形態によれば、過膨張損失の発生を防止することができる。  The fluid machine of the present invention is provided with a discharge valve in the first discharge hole of the expander. According to the present embodiment, it is possible to prevent occurrence of overexpansion loss.
本発明の流体機械は、吐出バルブをリードバルブとし、膨張室の圧力が所定の値 になったときに吐出バルブが開くものである。本実施の形態によれば、リードバルブ は圧力が所定値になれば自動的に開き、過膨張損失を発生させないための再圧縮 が可能になる。  In the fluid machine of the present invention, the discharge valve is a reed valve, and the discharge valve opens when the pressure in the expansion chamber reaches a predetermined value. According to the present embodiment, the reed valve automatically opens when the pressure reaches a predetermined value, and recompression is possible so as not to cause an overexpansion loss.
本発明のヒートポンプ装置は、吸入バルブの開閉タイミングを制御することで、膨張 室に導く作動流体の量を冷凍サイクル効率が最大となる目標量にするものである。本 実施の形態によれば、ヒートポンプ装置の運転効率を常に高いものとすることができ る。  The heat pump device according to the present invention controls the opening / closing timing of the intake valve so that the amount of the working fluid guided to the expansion chamber becomes a target amount that maximizes the refrigeration cycle efficiency. According to the present embodiment, the operation efficiency of the heat pump device can always be increased.
発明の効果  The invention's effect
[0006] 本発明の流体機械およびそれを用いたヒートポンプ装置によれば、吸入バルブの 開閉タイミングを制御し、膨張室に導く作動流体の量を高い運転効率となる目標量に することができるので、バイパス管路の削減、バルブ制御の具体化、吸気側のデッド スペースの減少化などを図り、「密度比 =一定」の運転条件 (制約)を排除しつつ、高 圧の作動流体から最大限に動力回収を行 、、常時高 、運転効率を得ることができる  [0006] According to the fluid machine of the present invention and the heat pump device using the fluid machine, the opening / closing timing of the suction valve can be controlled, and the amount of working fluid guided to the expansion chamber can be set to a target amount that provides high operating efficiency. , By reducing bypass pipe lines, realizing valve control, reducing dead space on the intake side, etc., and eliminating the operating conditions (constraints) of “density ratio = constant” while maximizing from working fluid of high pressure Power recovery is always possible, and high operation efficiency can be obtained at all times.
図面の簡単な説明 Brief Description of Drawings
[0007] [図 1]本発明による実施の形態 1の圧縮機の縦断面図 FIG. 1 is a longitudinal sectional view of a compressor according to a first embodiment of the present invention.
[図 2]本実施の形態の圧縮機における膨張機部の横断面図  FIG. 2 is a cross-sectional view of an expander section in the compressor of the present embodiment
[図 3]本実施の形態における電磁弁が常時開時の作動室の PV線図 [図 4]本実施の形態における電磁弁の開閉タイミングと作動室に入る作動流体の流 量との関係を示した図 [Fig. 3] PV diagram of the working chamber when the solenoid valve is normally open in this embodiment FIG. 4 is a diagram showing the relationship between the opening / closing timing of the solenoid valve and the flow rate of the working fluid entering the working chamber in the present embodiment.
[図 5]本実施の形態の圧縮機における角度検出歯車の斜視図  FIG. 5 is a perspective view of an angle detection gear in the compressor of the present embodiment.
圆 6]本発明による実施の形態 2の圧縮機の縦断面図 [6] A longitudinal sectional view of the compressor according to the second embodiment of the present invention.
圆 7]図 6に示す圧縮機の X—X矢視の横断面図 圆 7] Cross section of the compressor shown in Fig. 6 along the line XX
圆 8]本発明による実施の形態 3の圧縮機の縦断面図 [8] Vertical sectional view of the compressor according to the third embodiment of the present invention.
圆 9]本実施の形態の圧縮機における膨張機部の横断面図 9] Cross-sectional view of the expander section in the compressor of the present embodiment
[図 10]本実施の形態における電磁弁の開閉タイミングを変えた時の作動室の PV線 図  [Fig. 10] PV line in the working chamber when the opening and closing timing of the solenoid valve in this embodiment is changed
[図 11]従来の空気調和装置のシステム構成図  [Fig. 11] System configuration of conventional air conditioner
圆 12]従来の空気調和装置において、作動流体を二酸ィ匕炭素とした場合のモリエル 線図 圆 12] Mollier diagram when the working fluid is diacid-carbon in the conventional air conditioner
[図 13]従来の他の空気調和装置のシステム構成図  [FIG. 13] System configuration diagram of another conventional air conditioner
符号の説明 Explanation of symbols
10 密閉容器  10 Airtight container
12 圧縮機部  12 Compressor section
13 圧縮室  13 Compression chamber
14 駆動シャフト  14 Drive shaft
15, 73 ロータ  15, 73 rotor
16 電動機部  16 Motor section
17 固定子  17 Stator
18 回転子  18 Rotor
20 膨張機部  20 Expansion unit
21, 71 シリンダ  21, 71 cylinders
22 小隙間  22 Small gap
23 ロータ  23 Rotor
24, 74 ベーン  24, 74 Vane
25 室 26, 76 動力回収シャフト 25 rooms 26, 76 Power recovery shaft
27 吸入孔  27 Suction hole
28 吐出孔及び第 1の吐出孔  28 Discharge hole and first discharge hole
29 第 2の吐出孔  29 Second discharge hole
30 バルブ機構  30 Valve mechanism
30a リードバルブ  30a reed valve
30b バルブストップ  30b valve stop
31 カノく一  31 Kano Kuichi
32 吸入経路  32 Inhalation route
33 吐出室  33 Discharge chamber
34 吐出経路  34 Discharge path
35 吸入管  35 Suction tube
36 吐出管  36 Discharge pipe
40 電磁弁  40 Solenoid valve
45 角度検出歯車  45 Angle detection gear
48 吐出圧力センサ  48 Discharge pressure sensor
50 吸入温度センサ  50 Suction temperature sensor
51 吐出温度センサ  51 Discharge temperature sensor
52 ギャップセンサ  52 Gap sensor
60 電磁弁制御部  60 Solenoid valve controller
61 作動流体状態保持部  61 Working fluid state holder
77 ばね  77 Spring
78 吐出孔  78 Discharge hole
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
(実施の形態 1) (Embodiment 1)
図 1は本発明による実施の形態 1の圧縮機の縦断面図であり、図 2は本実施の形態 の圧縮機における膨張機部の横断面図である。図 1及び図 2には、ロータリーベーン 式の圧縮機及び膨張機を示しているが、圧縮機及び膨張機の方式はこれに限るもの ではなぐロータリー式、レシプロ式、スクロール式でも良い。また、作動流体としては 、超臨界相から液相あるいは気液二相に膨張する作動流体、例えば二酸化炭素を 主成分とする作動流体を用いる。 FIG. 1 is a longitudinal sectional view of the compressor according to the first embodiment of the present invention, and FIG. 2 is a transverse sectional view of an expander section in the compressor according to the present embodiment. 1 and 2 show a rotary vane compressor and expander, but the compressor and expander are not limited to this. The rotary type, reciprocating type and scrolling type may be used. As the working fluid, a working fluid that expands from a supercritical phase to a liquid phase or a gas-liquid two phase, for example, a working fluid mainly composed of carbon dioxide is used.
図 1において、本実施の形態の圧縮機は、密閉容器 10の内部に、圧縮機部 12と、 電動機部 16と、膨張機部 20と、さらに制御部とを備えている。なお、この制御部は密 閉容器 10の内部に配置しても外部に配置してもよ 、。  In FIG. 1, the compressor according to the present embodiment includes a compressor unit 12, an electric motor unit 16, an expander unit 20, and a control unit inside a hermetic container 10. This control unit may be arranged inside or outside the closed container 10.
そして、圧縮機部 12は、圧縮室 13と駆動シャフト 14とロータ 15とを有し、駆動シャ フト 14及びロータ 15を回転させることにより圧縮室 13に吸入した作動流体を低圧か ら高圧へと圧縮する。また、電動機部 16は、固定子 17と回転子 18とを有し、回転子 18は駆動シャフト 14に固定されている。そして、膨張機部 20は、シリンダ 21とロータ 23と動力回収シャフト 26 (以下、シャフト 26)とを有し、作動流体を吸入経路 32及び 吸入孔 27を経て吸入し、シリンダ 21及びロータ 23で形成する膨張室としての作動室 25で高圧力も低圧に膨張させ、作動室 25から吐出室 33及び吐出経路 34を経て吐 出することにより、シャフト 26に回転動力を得る。この回転動力は、シャフト 26から駆 動シャフト 14に伝達され、圧縮機部 12の駆動力として回収される。  The compressor unit 12 includes a compression chamber 13, a drive shaft 14, and a rotor 15. By rotating the drive shaft 14 and the rotor 15, the working fluid sucked into the compression chamber 13 is changed from a low pressure to a high pressure. Compress. The electric motor section 16 includes a stator 17 and a rotor 18, and the rotor 18 is fixed to the drive shaft 14. The expander unit 20 includes a cylinder 21, a rotor 23, and a power recovery shaft 26 (hereinafter referred to as a shaft 26). The expander unit 20 sucks the working fluid through the suction path 32 and the suction hole 27, and the cylinder 21 and the rotor 23 A high pressure is expanded to a low pressure in the working chamber 25 as an expansion chamber to be formed, and the shaft 26 is rotated by discharging from the working chamber 25 through the discharge chamber 33 and the discharge passage 34. This rotational power is transmitted from the shaft 26 to the drive shaft 14 and is recovered as the driving force of the compressor section 12.
また、密閉容器 10内に備えられた膨張機部 20は、図 2において、シリンダ 21と、口 ータ 23と、 4個のベーン 24と、シャフト 26と、カノく一 31と、吸人管 35と、電磁弁 40と を含み構成される。  Further, in FIG. 2, the expander section 20 provided in the sealed container 10 includes a cylinder 21, a port 23, four vanes 24, a shaft 26, a canopy 31, a suction pipe. 35 and a solenoid valve 40.
即ち、シリンダ 21は、筒状の内壁 21aを有し、その両端には側板 21b, 21c (図 1参 照)が設けられている。シリンダ 21の内部には、円柱形状のロータ 23が配設されてい て、ロータ 23の外周の一部がシリンダ 21の内壁 21aと小隙間 22を形成している。そ して、小隙間 22の基点 (接点)で内壁 21aとロータ 23の外周とが接している。  That is, the cylinder 21 has a cylindrical inner wall 21a, and side plates 21b and 21c (see FIG. 1) are provided at both ends thereof. A cylindrical rotor 23 is disposed inside the cylinder 21, and a part of the outer periphery of the rotor 23 forms a small gap 22 with the inner wall 21 a of the cylinder 21. The inner wall 21 a and the outer periphery of the rotor 23 are in contact with each other at the base point (contact point) of the small gap 22.
また、ロータ 23には、 90degのピッチで上下端面に垂直な溝 23aが 4箇所に設けら れている。各溝 23aには、各々のべーン 24が摺動自在に挿入されており、ベーン 24 の先端はシリンダ 21の内壁 21aと接している。  The rotor 23 is provided with four grooves 23a perpendicular to the upper and lower end surfaces at a pitch of 90 deg. Each vane 24 is slidably inserted in each groove 23 a, and the tip of the vane 24 is in contact with the inner wall 21 a of the cylinder 21.
作動室 25は、シリンダ 21の内壁 21a、ロータ 23および各々のべーン 24に囲まれた 空間 25a, 25b, 25c, 25d, 25eとして形成されて! /、る。シャフト 26は、ロータ 23と一 体的に形成され、側板 21b, 21cに回転自在に軸支持されているとともに、圧縮機部 12の駆動シャフト 14と連結されている。 The working chamber 25 is formed as a space 25a, 25b, 25c, 25d, 25e surrounded by the inner wall 21a of the cylinder 21, the rotor 23 and the vanes 24! /. The shaft 26 is formed integrally with the rotor 23, and is rotatably supported by the side plates 21b and 21c. It is connected to 12 drive shafts 14.
[0011] また、シリンダ 21には、作動室 25に作動流体を流入させる吸入孔 27と、作動室 25 力も作動流体を流出させる吐出孔 28が設けられている。さらに、密閉容器 10内にあ つて膨張機部 20の一部を構成する電磁弁 40は、作動室 25 (即ち、膨張室)の入口 直前の吸入孔 27に配設されている。 In addition, the cylinder 21 is provided with a suction hole 27 through which the working fluid flows into the working chamber 25 and a discharge hole 28 through which the working chamber 25 force also flows out the working fluid. Further, the electromagnetic valve 40 that constitutes a part of the expander unit 20 in the sealed container 10 is disposed in the suction hole 27 immediately before the inlet of the working chamber 25 (that is, the expansion chamber).
そして、吐出孔 28の近傍には、シリンダ 21の内壁 21aの周方向にある範囲で開口 させた開口部 28aが設けられている。この開口部 28aを設ける範囲は、ベーン 24の 枚数を nとすると、小隙間 22の基点力もシャフト 26の矢印で示す回転方向に { 180 X (l + 1/n) }degの開始位置 28bに始まり、小隙間 22の近傍にある終了位置 28cで 終わる範囲である。図 2における開口部 28aの開始位置 28bは、ベーン 24が 4枚な ので、 225degの位置である。  In the vicinity of the discharge hole 28, there is provided an opening 28a that is opened in a range in the circumferential direction of the inner wall 21a of the cylinder 21. The range in which the opening 28a is provided is that if the number of vanes 24 is n, the base force of the small gap 22 is also at the start position 28b of {180 X (l + 1 / n)} deg in the rotational direction indicated by the arrow of the shaft 26. The range starts and ends at the end position 28c in the vicinity of the small gap 22. The starting position 28b of the opening 28a in FIG. 2 is a position of 225 deg because there are four vanes 24.
また、シリンダ 21の側方にはカバー 31が備えられており、カバー 31には吸入管 35 が挿入され、吸入管 35の内部には吸入孔 27に作動流体を導く吸入経路 32が形成 されている。そして、図 1に示すように、密閉容器 10の内部には、吐出孔 28から流出 した作動流体を一旦蓄える吐出室 33が形成され、密閉容器 10に接合された吐出管 36の内部には、吐出室 33から作動流体を外部へ流出させる吐出経路 34が形成さ れている。  Also, a cover 31 is provided on the side of the cylinder 21, and a suction pipe 35 is inserted into the cover 31, and a suction path 32 that guides the working fluid to the suction hole 27 is formed inside the suction pipe 35. Yes. As shown in FIG. 1, a discharge chamber 33 for temporarily storing the working fluid flowing out from the discharge hole 28 is formed inside the sealed container 10, and inside the discharge pipe 36 joined to the sealed container 10, A discharge path 34 is formed through which the working fluid flows out from the discharge chamber 33.
[0012] さらに、制御部の構成について説明する。  [0012] Further, the configuration of the control unit will be described.
制御部は、図 1に示すように、吐出圧力センサ 48と、吸入温度センサ 50と、吐出温 度センサ 51と、ギャップセンサ 52と、電磁弁制御部 60と、作動流体状態保持部 61と から構成される。  As shown in FIG. 1, the control unit includes a discharge pressure sensor 48, a suction temperature sensor 50, a discharge temperature sensor 51, a gap sensor 52, a solenoid valve control unit 60, and a working fluid state holding unit 61. Composed.
すなわち、電磁弁制御部 60を介して電磁弁 40に通電し、電磁弁 40の開閉を電気 的に行うことにより、作動室 25と吸入孔 27との連通を制御する構成としている。ところ で、電磁弁 40は電気的なトラブルを想定して常時開、通電時 (制御時)に閉となるも のが望ましい。この理由は、電磁弁であれば、弁の開閉制御(開閉タイミングを計るこ と)が容易に可能であり、また電気的なトラブルが生じても閉じることのない常時開の 電磁弁であれば、膨張機として機能しな 、と 、ぅ不膨張弊害が防止されるからである また、吸入温度センサ 50は、吸入経路 32あるいは吸入孔 27の作動流体の温度を 膨張機の吸入温度 Tbとして計測する。また、吐出圧力センサ 48及び吐出温度セン サ 51は、吐出室 33あるいは吐出経路 34の作動流体の圧力及び温度を膨張機の吐 出圧力 Pc及び吐出温度 Tcとして計測する。なお、温度センサや圧力センサは、作 動流体の温度や圧力を計測できるものであれば何でもよい。また、凝縮器(図 11参 照)と吸入管 35との間で膨張機の吸入温度 Tbを計測し、吐出管 36と蒸発器 (図 11 参照)との間で膨張機の吐出圧力 Pc及び吐出温度 Tcを計測する構成でもよい。 また、ギャップセンサ 52は、シャフト 14に設けられた角度検出歯車 45を利用してシ ャフト 14の回転角度 θ Xを検出する。 In other words, the solenoid valve 40 is energized via the solenoid valve control unit 60, and the solenoid valve 40 is electrically opened and closed to control the communication between the working chamber 25 and the suction hole 27. However, it is desirable that the solenoid valve 40 be normally opened and closed when energized (controlled), assuming an electrical problem. The reason for this is that if the solenoid valve is a normally open solenoid valve, it is easy to control the opening and closing of the valve (measure the timing of opening and closing), and it will not close even if an electrical problem occurs. This is because it does not function as an expander, which prevents the problem of non-expansion. The suction temperature sensor 50 measures the temperature of the working fluid in the suction path 32 or the suction hole 27 as the suction temperature Tb of the expander. Further, the discharge pressure sensor 48 and the discharge temperature sensor 51 measure the pressure and temperature of the working fluid in the discharge chamber 33 or the discharge path 34 as the discharge pressure Pc and the discharge temperature Tc of the expander. Any temperature sensor or pressure sensor may be used as long as it can measure the temperature and pressure of the working fluid. Also, the expander intake temperature Tb is measured between the condenser (see Fig. 11) and the intake pipe 35, and the expander discharge pressure Pc and the expander (see Fig. 11) are measured between the discharge pipe 36 and the evaporator (see Fig. 11). The discharge temperature Tc may be measured. The gap sensor 52 detects the rotation angle θ X of the shaft 14 using an angle detection gear 45 provided on the shaft 14.
また、電磁弁制御部 60は、電磁弁 40の開閉を制御する。また、作動流体状態保持 部 61は、作動流体が作動室 25で膨張する際の作動流体の体積と圧力との関係を示 すデータや近似式などを保持し、例えば半導体メモリ等を用いて構成されている。な お、作動流体状態保持部 61は電磁弁制御部 60と一体化されて ヽる構成でもよ!/ヽ。 次に、以上のような構成の本実施の形態の圧縮機における膨張機部の動作を、ま ず、電磁弁 40を常時開とした基本的な場合について説明する。図 3は本実施の形態 における電磁弁が常時開時の作動室の PV線図であり、即ち膨張機部 20の作動室 2 5の PV線図である。なお、本発明の特徴に関わらない圧縮機部の説明は省略する。 作動室 25は小隙間 22の吸入孔 27側の空間 25aである。その後、ロータ 23の回転 に伴い容積を増加しつつ、吸入孔 27から冷凍サイクルの高圧圧力 Phに相当する吸 入圧力 Pbの作動流体を吸入する過程、すなわち、吸入過程を行う。吸入過程は図 3 の ABに相当する。  Further, the solenoid valve control unit 60 controls the opening and closing of the solenoid valve 40. In addition, the working fluid state holding unit 61 holds data indicating the relationship between the volume and pressure of the working fluid when the working fluid expands in the working chamber 25, an approximate expression, and the like, and is configured using, for example, a semiconductor memory. Has been. The working fluid state holding unit 61 may be integrated with the solenoid valve control unit 60! / ヽ. Next, the operation of the expander unit in the compressor of the present embodiment configured as described above will be described first in the basic case where the solenoid valve 40 is normally open. FIG. 3 is a PV diagram of the working chamber when the solenoid valve in the present embodiment is normally open, that is, a PV diagram of the working chamber 25 of the expander section 20. In addition, description of the compressor part which is not related to the characteristic of this invention is abbreviate | omitted. The working chamber 25 is a space 25 a on the suction hole 27 side of the small gap 22. Thereafter, while the volume is increased with the rotation of the rotor 23, a process of sucking a working fluid having a suction pressure Pb corresponding to the high pressure Ph of the refrigeration cycle from the suction hole 27, that is, a suction process is performed. The inhalation process corresponds to AB in Fig. 3.
作動室 25が空間 25bの位置に達すると、吸入孔 27との連通が断たれて密閉空間 となり、その後、ロータ 23の回転に伴い容積は増加し、内部の作動流体の圧力が低 下してゆく過程、すなわち、膨張過程を行う。膨張過程は図 3の BCに相当する。 作動室 25は空間 25cの位置で容積が最大となる。この時点は図 3の Cに相当し、作 動室 25の吐出圧力は Pcとなっている。ここからロータ 23が僅かに回転した瞬間、空 間 25cに位置する作動室 25は、開口部 28aを介して吐出孔 28と連通し、作動流体 は作動室 25から吐出室 33に押し出される。ここで、 Cにおける作動室 25の吐出圧力 Pcが冷凍サイクルの低圧圧力 PIと等 U、場合は、減圧された作動流体がスムーズに 排出され、低圧圧力 P1で作動室 25の容積が減少していく。すなわち、図 3の Cから D に移行する吐出過程を行う。 When the working chamber 25 reaches the position of the space 25b, the communication with the suction hole 27 is cut off to become a sealed space, and then the volume increases with the rotation of the rotor 23, and the pressure of the working fluid inside decreases. The process of going, that is, the expansion process is performed. The expansion process corresponds to BC in Fig. 3. The working chamber 25 has a maximum volume at the position of the space 25c. This time corresponds to C in Fig. 3, and the discharge pressure in the working chamber 25 is Pc. From the moment when the rotor 23 is slightly rotated from here, the working chamber 25 located in the space 25c communicates with the discharge hole 28 through the opening 28a, and the working fluid is pushed out from the working chamber 25 to the discharge chamber 33. Where the discharge pressure of the working chamber 25 in C When Pc is equal to the low pressure PI of the refrigeration cycle U, the reduced working fluid is discharged smoothly, and the volume of the working chamber 25 decreases at the low pressure P1. That is, the discharge process from C to D in Fig. 3 is performed.
その後、作動室 25は再び吸入孔 27と連通して、図 3の Aの状態に戻る。  Thereafter, the working chamber 25 communicates with the suction hole 27 again and returns to the state of A in FIG.
[0014] し力 実際は、冷凍サイクルの低圧圧力 P1が蒸発器(図 11参照)での熱交換条件 や冷凍サイクルの運転条件等に応じて変動する。上述の膨張機の動作では、作動流 体を密閉した瞬間(図 2の空間 25b)の容積と、作動流体を吐出する直前(図 2の空間 25c)の容積の比、すなわち膨張比が一定であるため、低圧圧力 P1が変動した場合、 膨張機の吐出圧力 Pcと等しくすることはできない。そこで本実施の形態では、電磁弁 40を用いて作動室 25に吸入する作動流体の量を変更し、膨張機の吐出圧力 Pcと 冷凍サイクルの低圧圧力 P1とが等しくなるように制御する動作が行われる。 [0014] In practice, the low pressure P1 of the refrigeration cycle varies depending on the heat exchange conditions in the evaporator (see FIG. 11), the operating conditions of the refrigeration cycle, and the like. In the operation of the expander described above, the ratio of the volume at the moment when the working fluid is sealed (space 25b in FIG. 2) to the volume immediately before the working fluid is discharged (space 25c in FIG. 2), that is, the expansion ratio is constant. Therefore, when the low pressure P1 fluctuates, it cannot be made equal to the discharge pressure Pc of the expander. Therefore, in the present embodiment, the operation of changing the amount of working fluid sucked into the working chamber 25 using the electromagnetic valve 40 and controlling the discharge pressure Pc of the expander and the low pressure P1 of the refrigeration cycle to be equal is performed. Done.
[0015] 次に電磁弁 40の開閉動作について説明する。 Next, the opening / closing operation of the electromagnetic valve 40 will be described.
図 4に本実施の形態における電磁弁 40の開閉タイミングと、吸入過程において作 動流体が作動室 25に入る流量の関係を示す。ここで、電磁弁 40が閉から開となる時 間を時間 Top、開から閉となる時間を時間 Telと表記する。  FIG. 4 shows the relationship between the opening / closing timing of the solenoid valve 40 in the present embodiment and the flow rate of the working fluid entering the working chamber 25 during the suction process. Here, the time from when the solenoid valve 40 is closed to open is expressed as time Top, and the time from when the solenoid valve 40 is opened to closed is expressed as time Tel.
まず、電磁弁 40は作動室 25が吸入孔 27と連通する直前に開となるように制御され る。なお、この時電磁弁 40を閉じたままにしておくと、作動室 25は回転に伴って真空 引きを行うことになり、ロータ 23の回転にブレーキをかけるロスが発生するので好まし くない。即ち、電磁弁 40を閉から開にする開タイミング (すなわち時間 Topの時点)を 、作動室 25の容積が最小となる吸入開始時間とする制御機能を有する構成により、 ブレーキロスを最小とすることができる。  First, the solenoid valve 40 is controlled to be opened immediately before the working chamber 25 communicates with the suction hole 27. If the solenoid valve 40 is kept closed at this time, the working chamber 25 is evacuated as it rotates, which causes a loss of braking the rotation of the rotor 23, which is not preferable. That is, the brake loss is minimized by a configuration having a control function in which the opening timing (that is, the time Top) at which the solenoid valve 40 is opened from the closed state is set to the suction start time at which the volume of the working chamber 25 is minimized. Can do.
次に、時間 Topから、作動室 25は吸入孔 27と連通し、作動流体が作動室 25に吸 入される。そして、作動室 25が吸入可能な最大容積 Vbとなる事前の時間 Telに、電 磁弁 40を閉じる。この結果、作動流体の吸入量は、最大容積 Vbより小さい容積 Vb' となる。このように電磁弁 40を閉じる時間 Telのタイミングを変えることにより、 Vb'の 大きさを可変する。即ち、電磁弁 40を開から閉にする閉タイミング (すなわち時間 Tel の時点)を、吸入開始時間から作動室 25の容積が最大となるまでの時間とする制御 機能を有する構成により、作動流体の吸入量を可変することができる。 一方、作動室 25入口直前の吸入孔 27に電磁弁 40を設けて、電磁弁 40から吸入 孔 27の作動室 25入口までの距離を短くして 、るので、冷媒が滞留して膨張エネル ギーを回収できないデッドスペースが小さくなり、膨張効率の低下を回避することがで きる。 Next, from time Top, the working chamber 25 communicates with the suction hole 27 and the working fluid is sucked into the working chamber 25. Then, the electromagnetic valve 40 is closed at a time Tel in which the working chamber 25 reaches the maximum volume Vb that can be sucked. As a result, the suction amount of the working fluid becomes a volume Vb ′ smaller than the maximum volume Vb. Thus, the magnitude of Vb ′ can be varied by changing the timing of the closing time Tel of the solenoid valve 40. In other words, with the configuration having a control function that sets the closing timing (that is, at the time of time Tel) for closing the solenoid valve 40 from the suction start time to the time when the volume of the working chamber 25 becomes the maximum, The amount of inhalation can be varied. On the other hand, a solenoid valve 40 is provided in the suction hole 27 just before the inlet of the working chamber 25, and the distance from the solenoid valve 40 to the inlet of the working chamber 25 of the suction hole 27 is shortened. The dead space in which the water cannot be recovered becomes smaller, and the reduction in expansion efficiency can be avoided.
[0016] 次に電磁弁 40を閉じる時間 Telの決定方法について説明する。  [0016] Next, a method for determining the time Tel for closing the solenoid valve 40 will be described.
作動流体に二酸ィヒ炭素を用いた空気調和機を考えた場合、冷凍サイクルの効率と 高圧圧力 Phとは、ある高圧圧力でその効率が最大となるような関係を持つ。 S. M. Liao氏によると、冷凍サイクル効率が最大となるような高圧圧力(以下、最適圧力 Po ptと呼ぶ)は、次式で表現できる。  When considering an air conditioner that uses carbon dioxide as the working fluid, the efficiency of the refrigeration cycle and the high pressure Ph have a relationship that maximizes the efficiency at a certain high pressure. According to S. M. Liao, the high pressure that maximizes the refrigeration cycle efficiency (hereinafter referred to as the optimal pressure Popt) can be expressed by the following equation.
Popt= (2. 778-0. 0157 X te) tg+ (0. 381 X te— 9. 34)…(数式 1)  Popt = (2. 778-0. 0157 X te) tg + (0. 381 X te— 9. 34)… (Formula 1)
ここで、 teは蒸発器温度 (すなわち膨張機の吐出温度 Tcに相当する温度)、 tgは 凝縮器出口温度 (すなわち膨張機の吸入温度 Tbに相当する温度)であり、それぞれ の温度を吐出温度センサ 51と吸入温度センサ 50で計測することができる。そして、 数式 1を用いて、吸入温度 Tbと吐出温度 Tcとから目標とする膨張機吸入圧力 Popt を演算することができる。  Here, te is the evaporator temperature (that is, the temperature corresponding to the discharge temperature Tc of the expander), tg is the condenser outlet temperature (that is, the temperature corresponding to the suction temperature Tb of the expander), and the respective temperatures are the discharge temperatures. It can be measured by the sensor 51 and the suction temperature sensor 50. Then, using Equation 1, a target expander suction pressure Popt can be calculated from the suction temperature Tb and the discharge temperature Tc.
従って、冷凍サイクルは、高圧圧力 Ph、すなわち高圧圧力 Phに相当する膨張機の 吸入圧力 Pbが目標膨張機吸入圧力としての最適圧力 Poptとなるように運転すること 力 空気調和機の冷凍サイクル効率を最大にするので望ま 、と言える。  Therefore, the refrigeration cycle is operated so that the high pressure Ph, that is, the suction pressure Pb of the expander corresponding to the high pressure Ph becomes the optimum pressure Popt as the target expander suction pressure. It is desirable because it maximizes.
[0017] ところで、本実施の形態の作動流体は、蒸発器温度 teにお 、て気液二相状態にな つているため、この蒸発器温度 teを元に、当該作動流体の飽和圧力'温度の関係か ら換算して、冷凍サイクルの低圧圧力 P1 (蒸発器圧力)、すなわち低圧圧力 P1に相当 する膨張機の吐出圧力 Pcを知ることができる。即ち、吐出圧力センサ 48を設けなく ても、吐出温度センサ 51で計測した吐出温度 Tcを元に換算して膨張機吐出圧力 Pc を得る構成にすることができ、コスト低減に結び付けられる。 [0017] Incidentally, since the working fluid of the present embodiment is in a gas-liquid two-phase state at the evaporator temperature te, the saturation pressure 'temperature of the working fluid is determined based on the evaporator temperature te. From this relationship, the low pressure P1 (evaporator pressure) of the refrigeration cycle, that is, the discharge pressure Pc of the expander corresponding to the low pressure P1 can be obtained. That is, even if the discharge pressure sensor 48 is not provided, a configuration in which the discharge temperature Tc measured by the discharge temperature sensor 51 is converted to obtain the expander discharge pressure Pc can be obtained, which leads to cost reduction.
さらに、膨張機の膨張過程 (図 3の曲線 BC)の最終状態 C (図 3の空間 25c)におけ る作動室 25の容積 Vcも設計仕様により既知である。そこで、作動室 25の体積と圧力 との関係が分かれば、膨張過程の最終状態 Cから初期状態 Bへ逆の状態遷移を迪る ことにより、作動流体を吸入する膨張室の目標容積 Vb を決定することができる。 例えば、作動流体が理想気体で、膨張過程で漏れや摩擦や熱の出入り等がなぐ 理想的な等エントロピー変化を行うものとすると、作動室 25の体積と圧力の関係は、 次式で表される。 Furthermore, the volume Vc of the working chamber 25 in the final state C (space 25c in FIG. 3) of the expansion process (curve BC in FIG. 3) is also known from the design specifications. Therefore, if the relationship between the volume of the working chamber 25 and the pressure is known, the target volume Vb of the expansion chamber that sucks the working fluid is determined by changing the state transition from the final state C to the initial state B of the expansion process. can do. For example, assuming that the working fluid is an ideal gas and the ideal isentropic change that does not cause leakage, friction, or heat in / out during the expansion process, the relationship between the volume of the working chamber 25 and the pressure is expressed by the following equation. The
PVK = (—定) · · ·(数式 2) PV K = (—Constant) · · · (Formula 2)
ただし、 κは比熱比である。  Where κ is the specific heat ratio.
この数式 2を用いることにより、膨張過程の初期状態 Bにおいて、吸入圧力 Pbを目 標とする最適圧力 Poptにするには、最終状態 Cの低圧圧力 P1 (すなわち検知した吐 出圧力 Pc)、作動室容積 Vc (設計仕様により既知)より、次式で表される Vb が、 B にお!、て設定すべき目標容積、即ち作動流体の吸入量となる。  By using Equation 2, in order to obtain the optimum pressure Popt with the suction pressure Pb as the target in the initial state B of the expansion process, the low pressure P1 in the final state C (that is, the detected discharge pressure Pc) From the chamber volume Vc (known from the design specifications), Vb expressed by the following equation is the target volume to be set for B, that is, the working fluid suction amount.
Vbo' = (Pl/Popt) 1/ κ · Vc · · · (数式 3) Vbo '= (Pl / Popt) 1 / κVc
そして、この Vbo'を用いて電磁弁 40を閉じる時間 Telのタイミングを決定する。 即ち、膨張室に導かれる作動流体の量を、膨張機吐出圧力 Pc (すなわち低圧圧力 P1)と、吸入温度 Tb及び吐出温度 Tc力 演算した冷凍サイクル効率を最大にする目 標膨張機吸入圧力 Poptとから求められる目標量にするように、時間 Telを決めること になる。  Then, using this Vbo ′, the timing of closing the electromagnetic valve 40 is determined. That is, the amount of working fluid introduced into the expansion chamber is determined by the expansion machine discharge pressure Pc (i.e., low pressure P1), suction temperature Tb, and discharge temperature Tc force. The time Tel will be determined so that the target amount obtained from
なお、目標容積 Vb から時間 Telを決定する方法の一例は、次のとおりである。 シャフト 14の一部に回転角度検出用の角度検出歯車 45を設置する。角度検出歯 車 45は、例えば図 5に示すように、円周方向に凹凸が規則的に刻まれ、かつ一部凹 部がな!、部分 45aを有する形状となって 、る。この凹部がな 、部分 45aを回転の基 点として、シャフト 14の回転に伴う角度検出歯車 45の凹凸をギャップセンサ 52など によって読み取ることにより、シャフト 14の回転角度 θ Xを検出する。そして、基点から の回転角度 Θ bと作動室 25の容積 Vbとの関係は設計仕様により既知であるから、基 点から目標容積 Vb の点までの回転角度 Θ boを求めておき、検出する回転角度 Θ Xが回転角度 Θ boに達した時点を時間 Telとし、電磁弁 40の閉タイミングとする。 ところで、実際の膨張過程 BCにおいては、作動流体はその膨張するときの体積と 圧力との関係が、数式 2で表される理想気体として扱うことはできず、例えば二酸ィ匕 炭素では膨張過程で超臨界状態力 気液二相状態に遷移する。また、膨張過程 BC は、漏れ、摩擦、流体抵抗の影響により理想的な等エントロピー変化にはならない。 したがって、実際には、膨張過程における作動流体の体積と圧力との関係は、実験 データ、もしくは、実験データ力も得られる近似式を用いて表現することが望ましぐこ のような近似式等を用いて目標容積 Vb を求めることが、理想気体として求める場 合と比べて、より高い運転効率を得ることになる。 An example of the method for determining the time Tel from the target volume Vb is as follows. An angle detection gear 45 for detecting the rotation angle is installed on a part of the shaft 14. For example, as shown in FIG. 5, the angle detection gear 45 has a shape in which irregularities are regularly engraved in the circumferential direction, part of which is not concave, and a part 45a. Without the recess, the rotation angle θ X of the shaft 14 is detected by reading the unevenness of the angle detection gear 45 accompanying the rotation of the shaft 14 with the gap sensor 52 using the portion 45a as a rotation base. Since the relationship between the rotation angle Θb from the base point and the volume Vb of the working chamber 25 is known from the design specifications, the rotation angle Θbo from the base point to the point of the target volume Vb is obtained and the detected rotation The time when the angle Θ X reaches the rotation angle Θ bo is time Tel, and is the closing timing of the solenoid valve 40. By the way, in the actual expansion process BC, the relationship between the volume and pressure when the working fluid expands cannot be treated as an ideal gas expressed by Equation 2, for example, the expansion process for carbon dioxide Transition to a supercritical state force gas-liquid two-phase state. Also, the expansion process BC is not ideal isentropic change due to the effects of leakage, friction and fluid resistance. Therefore, in practice, the relationship between the volume and pressure of the working fluid in the expansion process is preferably expressed using experimental data or an approximate expression that also obtains experimental data force. Thus, obtaining the target volume Vb will result in higher operating efficiency compared to obtaining the target volume Vb.
そして、前述の作動流体状態保持部 61には、上述の作動流体の体積と圧力の関 係や、前述の作動流体の飽和圧力'温度の関係を表すデータや近似式などを保持 している。言い換えれば、膨張室で膨張するときの作動流体の体積と圧力の関係を 保持する作動流体状態保持部 61を設け、この関係を用いて目標容積 Vb (すなわ ち冷凍サイクル効率を最大にする目標量)を求める構成であれば、より高い運転効率 を得ることができる。  The above-described working fluid state holding unit 61 holds data and approximate expressions representing the relationship between the volume and pressure of the above-described working fluid and the relationship between the saturation pressure and the temperature of the above-described working fluid. In other words, the working fluid state holding unit 61 that holds the relationship between the volume and pressure of the working fluid when expanding in the expansion chamber is provided, and the target volume Vb (that is, the target that maximizes the refrigeration cycle efficiency) is provided using this relationship. If it is the structure which calculates | requires (quantity), higher operating efficiency can be obtained.
[0019] 以上により、本実施の形態では、密閉容器 10内であって作動室 25入口直前の吸 入孔 27に電磁弁 40を設置し、冷凍サイクルの低圧圧力 P1を検知し、この低圧圧力 P 1に基づいて冷凍サイクルの高圧圧力 Phが冷凍サイクル効率を最大とする最適圧力 Poptとなるように、電磁弁制御部 60で電磁弁 40の開く時間幅 (Tel Top)を制御し て、作動室 25に入る作動流体の流量を調節するので、換言すれば、吸入バルブの 開閉タイミングを可変して作動流体を吸入することができる膨張室の容積を理想的な 容積とし、且つ最小のデッドスペースとするので、膨張機のロータ 23を圧縮機の駆動 シャフトと直結した場合でも、「密度比 =一定」の運転条件 (制約)を排除でき、高圧 の作動流体カゝら常時最大限に動力回収を行う膨張機一体型の圧縮機を提供するこ とがでさる。  [0019] As described above, in the present embodiment, the electromagnetic valve 40 is installed in the suction hole 27 in the sealed container 10 and immediately before the working chamber 25, and the low pressure P1 of the refrigeration cycle is detected. Operates by controlling the opening time (Tel Top) of the solenoid valve 40 with the solenoid valve controller 60 so that the high pressure Ph of the refrigeration cycle becomes the optimum pressure Popt that maximizes the refrigeration cycle efficiency based on P1 In other words, the flow rate of the working fluid entering the chamber 25 is adjusted. In other words, the volume of the expansion chamber in which the working fluid can be sucked by varying the opening and closing timing of the suction valve is the ideal volume, and the minimum dead space Therefore, even when the rotor 23 of the expander is directly connected to the drive shaft of the compressor, the operating conditions (constraints) of “density ratio = constant” can be eliminated, and the maximum power recovery is always possible, such as a high-pressure working fluid. To provide a compressor integrated with an expander Togashi.
なお、本実施の形態の圧縮機をヒートポンプ装置に用いて、圧縮機の吸入バルブ の開閉タイミングを制御して、膨張室に導く作動流体の量を冷凍サイクル効率が最大 となる目標量にすることにより、ヒートポンプ装置の運転効率を常に高いものとするこ とがでさる。  The compressor of the present embodiment is used in a heat pump device to control the opening / closing timing of the intake valve of the compressor so that the amount of working fluid led to the expansion chamber becomes a target amount that maximizes the refrigeration cycle efficiency. As a result, the operation efficiency of the heat pump device can be constantly increased.
(実施の形態 2)  (Embodiment 2)
[0020] 図 6は本発明による実施の形態 2の圧縮機の縦断面図であり、図 7は図 6に示す圧 縮機の X—X矢視の横断面図である。本実施の形態の圧縮機については、ローリン グピストン式の膨張機部と電磁弁の詳細形状を示し、実施の形態 1と異なる構成や動 作に関して説明する。そして、同一構成や同一動作に関する説明は省略する。 FIG. 6 is a longitudinal sectional view of the compressor according to the second embodiment of the present invention, and FIG. 7 is a transverse sectional view of the compressor shown in FIG. The compressor of the present embodiment shows the detailed shape of the rolling piston type expander section and the solenoid valve, and has a different configuration and operation from the first embodiment. I will explain the work. And the description regarding the same composition and the same operation is omitted.
本実施の形態の圧縮機は、密閉容器 10の内部に、圧縮機部 12と、電動機部 16と 、膨張機部 70と、制御部とを備えて構成される。  The compressor according to the present embodiment includes a compressor unit 12, an electric motor unit 16, an expander unit 70, and a control unit inside the sealed container 10.
膨張機部 70は、偏心部 76aを有する動力回収シャフト 76 (以下、シャフト 76)と、筒 状の内壁 71aを有するシリンダ 71と、偏心部 76aと嵌合し、シャフト 76の回転に伴つ てシリンダ 71の内側で偏心回転運動を行うロータ 73と、ロータ 73に先端を接しなが らシリンダ 71のべーン溝 71bの内部を往復し、シリンダ 71とロータ 73との間に膨張室 としての作動室 25 (空間 25f, 25g)を形成するべーン 74と、ベーン 74の背面に設置 されてベーン 74をロータ 73に押し付けるばね 77と、シリンダ 71を挟持してシャフト 76 を軸支する側板 71c, 71d (図 6参照)と、吸入管 35と、電磁弁 40とを含み構成される 側板 71cは、吸入管 35に接続され、この吸入管 35から吸入した作動流体を作動室 25に導入する吸入孔 27を有する。また、側板 71dは、作動室 25で膨張された作動 流体を吐出室 33に吐出する吐出孔 78を有する。そして、吸入孔 27の作動室 25入 口及び吐出孔 78の作動室 25出口は、ベーン溝開口部の近傍に設けられている。 また、密閉容器 10内にあって膨張機部 70の一部を構成する電磁弁 40は、図 7に 示すように、フレーム 80と、プランジャー 81と、コア 82と、ソレノイド 83と、スプリング 8 4などから構成され、吸入孔 27の作動室 25入口近傍に配設されている。この理由は 、吸入孔 27の作動室 25入口にできるだけ近い位置に電磁弁 40を設けると、作動室 25と電磁弁 40との距離が短くなり、冷媒が滞留して膨張エネルギーを回収できない デッドスペースが減少するので、膨張効率の低下を回避することができるからである。 電動機部 16に通電してシャフト 14及びシャフト 76を回転させると、ロータ 73が偏心 回転運動を行い、作動室 25の容積が変化する。この時に電磁弁 40の開閉制御が実 行されて、作動流体が適宜に吸入孔 27から作動室 25に吸入され、作動室 25にて膨 張される。膨張した作動流体は吐出孔 78から吐出されるという動作が行われる。 以上により、本実施の形態では、密閉容器 10内であって吸入孔 27の作動室 25近 傍位置に電磁弁 40を設置し、電磁弁 40の開閉タイミングを可変して作動室 25に入 る作動流体の流量を調節することにより、バイパス管路の削減、バルブ制御の具体ィ匕 、吸気側のデッドスペースの減少化などを図り、「密度比 =一定」の運転条件 (制約) を排除しつつ、高圧の作動流体から最大限に動力回収を行い、常時高い運転効率 を得ることができる。 The expander unit 70 is fitted with a power recovery shaft 76 having an eccentric portion 76a (hereinafter referred to as shaft 76), a cylinder 71 having a cylindrical inner wall 71a, and the eccentric portion 76a. A rotor 73 that performs eccentric rotational movement inside the cylinder 71, and reciprocates inside the vane groove 71b of the cylinder 71 with its tip in contact with the rotor 73, and serves as an expansion chamber between the cylinder 71 and the rotor 73. A vane 74 that forms a working chamber 25 (space 25f, 25g), a spring 77 that is installed on the back of the vane 74 and presses the vane 74 against the rotor 73, and a side plate that supports the shaft 76 with the cylinder 71 interposed therebetween. The side plate 71c including 71c, 71d (see FIG. 6), the suction pipe 35, and the solenoid valve 40 is connected to the suction pipe 35, and the working fluid sucked from the suction pipe 35 is introduced into the working chamber 25. It has a suction hole 27. The side plate 71d has a discharge hole 78 for discharging the working fluid expanded in the working chamber 25 to the discharge chamber 33. The inlet of the working chamber 25 of the suction hole 27 and the outlet of the working chamber 25 of the discharge hole 78 are provided in the vicinity of the vane groove opening. In addition, as shown in FIG. 7, the electromagnetic valve 40 that is part of the expander unit 70 in the sealed container 10 includes a frame 80, a plunger 81, a core 82, a solenoid 83, and a spring 8. 4 and the like, and is arranged near the inlet of the working chamber 25 of the suction hole 27. The reason for this is that if the solenoid valve 40 is provided as close as possible to the inlet of the working chamber 25 of the suction hole 27, the distance between the working chamber 25 and the solenoid valve 40 is shortened, and refrigerant accumulates so that the expansion energy cannot be recovered. Dead space This is because a decrease in expansion efficiency can be avoided. When the motor unit 16 is energized to rotate the shaft 14 and the shaft 76, the rotor 73 performs an eccentric rotational motion, and the volume of the working chamber 25 changes. At this time, opening / closing control of the electromagnetic valve 40 is executed, and the working fluid is appropriately sucked into the working chamber 25 through the suction hole 27 and expanded in the working chamber 25. The expanded working fluid is discharged from the discharge hole 78. As described above, in the present embodiment, the electromagnetic valve 40 is installed in the airtight container 10 in the vicinity of the working chamber 25 of the suction hole 27, and the opening / closing timing of the electromagnetic valve 40 is varied to enter the working chamber 25. By adjusting the flow rate of the working fluid, the number of bypass lines can be reduced and the valve control In order to reduce the dead space on the intake side and eliminate the operating conditions (constraints) where the “density ratio = constant”, the maximum power recovery from the high-pressure working fluid can be achieved to always obtain high operating efficiency. Can do.
なお、本実施の形態のローリングピストン式の膨張機部は、実施の形態 1のロータリ 一べーン式の膨張機部に比べて電磁弁の開閉回数を減らすことができるという利点 がある。  In addition, the rolling piston type expander part of the present embodiment has an advantage that the number of times of opening and closing the electromagnetic valve can be reduced as compared with the rotary vane type expander part of the first embodiment.
(実施の形態 3)  (Embodiment 3)
[0022] 図 8は本発明による実施の形態 3の圧縮機の縦断面図であり、図 9は本実施の形態 の圧縮機における膨張機部の横断面図である。図 8及び図 9には、ロータリーベーン 式の圧縮機及び膨張機を示しているが、圧縮機及び膨張機の方式はこれに限るもの ではなぐロータリー式、レシプロ式、又はスクロール式など他のタイプでもよい。また 、作動流体としては、液相あるいは超臨界相から気液二相に膨張する作動流体や、 二酸化炭素を主成分とする作動流体を用いる。  FIG. 8 is a longitudinal sectional view of the compressor according to the third embodiment of the present invention, and FIG. 9 is a transverse sectional view of an expander section in the compressor according to the present embodiment. 8 and 9 show rotary vane type compressors and expanders, but the compressor and expander types are not limited to this, and other types such as rotary type, reciprocating type, scroll type, etc. But you can. As the working fluid, a working fluid that expands from a liquid phase or a supercritical phase to a gas-liquid two phase, or a working fluid mainly composed of carbon dioxide is used.
図 8において、本実施の形態の圧縮機は、密閉容器 10の内部に、圧縮機部 12と、 電動機部 16と、膨張機部 20とを備えて構成される。そして、圧縮機部 12は、圧縮室 13と駆動シャフト 14とロータ 15とを有し、駆動シャフト 14及びロータ 15を回転させる ことにより圧縮室 13に吸入した作動流体を低圧から高圧へと圧縮する。また、電動機 部 16は、固定子 17と回転子 18とを有し、回転子 18は駆動シャフト 14に固定されて いる。そして、膨張機部 20は、シリンダ 21とロータ 23とシャフト 26とを有し、作動流体 を吸入経路 32及び吸入孔 27を経て吸入し、シリンダ 21及びロータ 23で形成する作 動室 25で高圧力も低圧に膨張させ、作動室 25から吐出室 33及び吐出経路 34を経 て吐出することにより、シャフト 26に回転動力を得る。この回転動力は、シャフト 26か ら駆動シャフト 14に伝達され、圧縮機部 12の駆動力として回収される。  In FIG. 8, the compressor of the present embodiment is configured to include a compressor unit 12, an electric motor unit 16, and an expander unit 20 inside the hermetic container 10. The compressor unit 12 includes a compression chamber 13, a drive shaft 14, and a rotor 15, and compresses the working fluid sucked into the compression chamber 13 from a low pressure to a high pressure by rotating the drive shaft 14 and the rotor 15. . The electric motor unit 16 includes a stator 17 and a rotor 18, and the rotor 18 is fixed to the drive shaft 14. The expander unit 20 includes a cylinder 21, a rotor 23, and a shaft 26, and sucks the working fluid through the suction passage 32 and the suction hole 27, and is high in the working chamber 25 formed by the cylinder 21 and the rotor 23. The pressure is also expanded to a low pressure and discharged from the working chamber 25 through the discharge chamber 33 and the discharge path 34, thereby obtaining rotational power for the shaft 26. This rotational power is transmitted from the shaft 26 to the drive shaft 14 and is recovered as the drive force of the compressor unit 12.
[0023] さらに、膨張機部の構成について詳説する。  [0023] Further, the configuration of the expander unit will be described in detail.
図 9にお!/ヽて、膨張機咅 20は、シリンダ 21と、ロータ 23と、 4個のベーン 24と、シャ フト 26と、バルブ機構 30と、カバー 31と、吸入管 35と、電磁弁 40とを含み構成される 即ち、シリンダ 21は、筒状の内壁 21aを有し、その両端には側板 21b, 21c (図 8参 照)が設けられている。シリンダ 21の内部には、円柱形状のロータ 23が配設されてい て、ロータ 23の外周の一部がシリンダ 21の内壁 21aと小隙間 22を形成している。そ して、小隙間 22の基点 (接点)で内壁 21aとロータ 23の外周とが接している。 As shown in FIG. 9, the expander 咅 20 has a cylinder 21, a rotor 23, four vanes 24, a shaft 26, a valve mechanism 30, a cover 31, a suction pipe 35, an electromagnetic That is, the cylinder 21 includes a cylindrical inner wall 21a, and side plates 21b and 21c (see FIG. 8) at both ends thereof. Is provided. A cylindrical rotor 23 is disposed inside the cylinder 21, and a part of the outer periphery of the rotor 23 forms a small gap 22 with the inner wall 21 a of the cylinder 21. The inner wall 21 a and the outer periphery of the rotor 23 are in contact with each other at the base point (contact point) of the small gap 22.
また、ロータ 23には、 90degのピッチで上下端面に垂直な溝 23aが 4箇所に設けら れている。各溝 23aには、各々のべーン 24が摺動自在に挿入されており、ベーン 24 の先端はシリンダ 21の内壁 21aと接している。  The rotor 23 is provided with four grooves 23a perpendicular to the upper and lower end surfaces at a pitch of 90 deg. Each vane 24 is slidably inserted in each groove 23 a, and the tip of the vane 24 is in contact with the inner wall 21 a of the cylinder 21.
作動室 25は、シリンダ 21の内壁 21a、ロータ 23および各々のべーン 24に囲まれた 空間 25a, 25b, 25c, 25d, 25eとして形成されて! /、る。シャフト 26は、ロータ 23と一 体的に形成され、側板 21b, 21cに回転自在に軸支持されているとともに、圧縮機部 12の駆動シャフト 14と連結されている。  The working chamber 25 is formed as a space 25a, 25b, 25c, 25d, 25e surrounded by the inner wall 21a of the cylinder 21, the rotor 23 and the vanes 24! /. The shaft 26 is formed integrally with the rotor 23, is rotatably supported on the side plates 21b and 21c, and is connected to the drive shaft 14 of the compressor unit 12.
そして、密閉容器 10内にあって膨張機部 20の一部を構成する電磁弁 40は、吸入 孔 27の作動室 25に近接する位置に配設されている。作動室 25に近接する位置に 電磁弁 40を設けることにより、作動室 25と電磁弁 40配設位置との距離を短くしてデ ッドスペースを小さくし、膨張効率の低下を回避する。  The electromagnetic valve 40 that is part of the expander unit 20 in the sealed container 10 is disposed at a position close to the working chamber 25 of the suction hole 27. By providing the solenoid valve 40 at a position close to the working chamber 25, the distance between the working chamber 25 and the solenoid valve 40 is shortened, the dead space is reduced, and the reduction of the expansion efficiency is avoided.
また、シリンダ 21には、作動室 25に作動流体を流入させる吸入孔 27と、作動室 25 力 作動流体を流出させる第 1の吐出孔 28 (以下、吐出孔 28)及び第 2の吐出孔 29 (以下、吐出孔 29)が設けられている。そして、吐出孔 28は、ベーン 24の枚数を nと すると、小隙間 22の基点力もシャフト 26の矢印で示す回転方向に { 180 X (1 + 1/ n) }degの角度だけ移動した位置に設けられている。本実施の形態では、ベーン 24 が 4枚なので、 225degの位置である。また、吐出孔 28には、吐出バルブのリードバ ルブ 30aとバルブストップ 30bとから成るバルブ機構 30が備えられている。  Further, the cylinder 21 has a suction hole 27 through which the working fluid flows into the working chamber 25, a first discharge hole 28 (hereinafter referred to as a discharge hole 28) and a second discharge hole 29 through which the working chamber 25 force working fluid flows out. (Hereinafter, the discharge hole 29) is provided. Then, when the number of vanes 24 is n, the discharge hole 28 is moved to a position where the base force of the small gap 22 has moved by an angle of {180 X (1 + 1 / n)} deg in the rotation direction indicated by the arrow of the shaft 26. Is provided. In the present embodiment, since there are four vanes 24, the position is 225deg. Further, the discharge hole 28 is provided with a valve mechanism 30 including a discharge valve lead valve 30a and a valve stop 30b.
一方、吐出孔 29は、小隙間 22の基点近傍に設けられており、かつ、この吐出孔 29 の一部が小隙間 22の基点力もシャフト 26の回転方向に 315degの位置を含む形状 としており、バルブ機構は備えられていない。なお、吐出孔 29の位置はこの限りでは なぐ吸入孔 27と吐出孔 29の間の、シリンダ 21の内壁 21aのシャフト 26周りの中心 角が、ベーン 24を n枚とすれば(360Zn) deg以下となる位置であり、かつ、吐出孔 2 9が小隙間 22の基点近傍にある構成であれば良い。  On the other hand, the discharge hole 29 is provided in the vicinity of the base point of the small gap 22, and a part of the discharge hole 29 has a shape including the position of the base point of the small gap 22 at a position of 315 deg in the rotation direction of the shaft 26. No valve mechanism is provided. The position of the discharge hole 29 is not limited to this. If the center angle around the shaft 26 of the inner wall 21a of the cylinder 21 between the suction hole 27 and the discharge hole 29 is n vanes 24 (360Zn) or less As long as the discharge hole 29 is in the vicinity of the base point of the small gap 22.
また、シリンダ 21の側方にはカバー 31が備えられており、カバー 31には吸入管 35 が挿入され、吸入管 35の内部には吸入孔 27に作動流体を導く吸入経路 32が形成 されている。そして、図 8に示すように、密閉容器 10の内部には、吐出孔 28, 29から 流出した作動流体をー且蓄える吐出室 33が形成され、密閉容器 10に接合された吐 出管 36の内部には、吐出室 33から作動流体を外部へ流出させる吐出経路 34が形 成されている。 In addition, a cover 31 is provided on the side of the cylinder 21, and the suction pipe 35 is provided on the cover 31. Is inserted, and a suction passage 32 for guiding the working fluid to the suction hole 27 is formed in the suction pipe 35. As shown in FIG. 8, a discharge chamber 33 for storing and storing the working fluid flowing out from the discharge holes 28 and 29 is formed inside the sealed container 10, and the discharge pipe 36 joined to the sealed container 10 is provided. Inside, a discharge path 34 is formed for allowing the working fluid to flow out from the discharge chamber 33 to the outside.
更に、制御装置(図示せず)から配線(図示せず)を介して電磁弁 40に通電し、電 磁弁 40の開閉を電気的に行うことにより、吸入孔 27と吸入経路 32との連通を制御す る構成としている。また、電磁弁 40は電気的なトラブルを想定して常時開、通電時( 制御時)に閉となるものが望ましい。この理由は、電磁弁であれば、容易に弁の開閉 制御(開閉タイミングを計ること)が可能であり、また常時開の電磁弁とし、電気的なト ラブルでも閉じることがないので、膨張機として機能しないという不膨張弊害が防止さ れるカゝらである。  Further, the solenoid valve 40 is energized through a wiring (not shown) from a control device (not shown), and the solenoid valve 40 is electrically opened and closed, whereby communication between the suction hole 27 and the suction path 32 is established. It is configured to control. In addition, it is desirable that the solenoid valve 40 be normally opened and closed when energized (controlled), assuming an electrical problem. The reason for this is that if an electromagnetic valve is used, it is easy to control the opening and closing of the valve (timing the opening and closing timing), and since it is a normally open solenoid valve that does not close even with an electrical trouble, the expander As a result, the non-inflating harmful effect of not functioning as a non-function is prevented.
次に、以上のような構成の本実施の形態の圧縮機における膨張機部の動作を、ま ず、電磁弁 40を常時開とした場合について、図 9及び図 3を参照して説明する。図 3 は本実施の形態における電磁弁の常時開時の作動室の PV線図であり、即ち膨張機 部 20の作動室 25の PV線図である。なお、本発明の特徴に関わらない圧縮機部の 説明は省略する。  Next, the operation of the expander unit in the compressor of the present embodiment configured as described above will be described with reference to FIGS. 9 and 3 in the case where the solenoid valve 40 is normally open. FIG. 3 is a PV diagram of the working chamber when the solenoid valve is normally open in the present embodiment, that is, a PV diagram of the working chamber 25 of the expansion unit 20. Note that the description of the compressor section not related to the features of the present invention is omitted.
作動室 25は小隙間 22の吸入孔 27側の空間 25aで生成する。その後、ロータ 23の 回転に伴 、容積を増加しつつ、吸入孔 27から高圧側の圧力 Pbの作動流体を吸入 する過程、すなわち、吸入過程を行う。吸入過程は図 3の ABに相当する。  The working chamber 25 is generated in a space 25 a on the suction hole 27 side of the small gap 22. Thereafter, the process of sucking the working fluid having the high-pressure side pressure Pb from the suction hole 27, that is, the suction process is performed while increasing the volume as the rotor 23 rotates. The inhalation process corresponds to AB in Figure 3.
作動室 25が空間 25bの位置に達すると、吸入孔 27との連通が断たれて密閉空間 となり、その後、ロータ 23の回転に伴い容積は増加し、内部の作動流体の圧力が低 下してゆく過程、すなわち、膨張過程を行う。膨張過程は図 3の BCに相当する。 作動室 25は空間 25cの位置で容積が最大となる。この時点は図 3の Cに相当し、作 動室 25の圧力は Pcとなっている。そして、ロータ 23が僅かに回転した瞬間、空間 25 cに位置する作動室 25は吐出孔 28と連通する。ここで、吐出孔 28にリードバルブ 30 aを設けず、かつ圧力 Pcが吐出室 33の圧力と等しい場合は、作動室 25から吐出室 3 3に作動流体が押し出され、圧力 Pcの状態で作動流体を押し出しながら作動室 25 の容積が減少していく。すなわち、図 3の C力も Dに移行する吐出過程を行う。 When the working chamber 25 reaches the position of the space 25b, the communication with the suction hole 27 is cut off to become a sealed space, and then the volume increases with the rotation of the rotor 23, and the pressure of the working fluid inside decreases. The process of going, that is, the expansion process is performed. The expansion process corresponds to BC in Fig. 3. The working chamber 25 has a maximum volume at the position of the space 25c. This time corresponds to C in Fig. 3, and the pressure in the working chamber 25 is Pc. Then, at the moment when the rotor 23 is slightly rotated, the working chamber 25 positioned in the space 25 c communicates with the discharge hole 28. Here, when the reed valve 30a is not provided in the discharge hole 28 and the pressure Pc is equal to the pressure in the discharge chamber 33, the working fluid is pushed out from the working chamber 25 to the discharge chamber 33 and operates in the state of the pressure Pc. Working chamber while pushing out fluid 25 The volume of is decreasing. That is, the discharge process in which the C force in Fig. 3 also shifts to D is performed.
その後、作動室 25は再び吸入孔 27と連通して、図 3の Aの状態に戻る。  Thereafter, the working chamber 25 communicates with the suction hole 27 again and returns to the state of A in FIG.
[0026] 次に電磁弁 40を開閉制御した場合について説明する。 Next, the case where the solenoid valve 40 is controlled to open and close will be described.
図 4に本実施の形態における電磁弁 40の開閉タイミングと、吸入過程において作 動流体が作動室 25に入る流量との関係を示す。ここで、電磁弁 40が閉から開となる 時間を時間 Top、開から閉となる時間を時間 Telと表記する。  FIG. 4 shows the relationship between the opening / closing timing of the electromagnetic valve 40 in the present embodiment and the flow rate of the working fluid entering the working chamber 25 during the suction process. Here, the time from when the solenoid valve 40 is closed to open is expressed as time Top, and the time from when the solenoid valve 40 is opened to closed is expressed as time Tel.
まず、電磁弁 40は作動室 25が吸入孔 27と連通する直前に開となるように制御され る。なお、この時電磁弁 40を閉じたままにしておくと、作動室 25は回転に伴って真空 引きを行うことになり、ロータ 23の回転にブレーキをかけるロスが発生するので好まし くない。即ち、電磁弁 40を閉から開にする開タイミング (すなわち時間 Topの時点)を 、作動室 25の容積が最小となる吸入開始時間とする制御機能を有する構成により、 ブレーキロスを最小とすることができる。  First, the solenoid valve 40 is controlled to be opened immediately before the working chamber 25 communicates with the suction hole 27. If the solenoid valve 40 is kept closed at this time, the working chamber 25 is evacuated as it rotates, which causes a loss of braking the rotation of the rotor 23, which is not preferable. That is, the brake loss is minimized by a configuration having a control function in which the opening timing (that is, the time Top) at which the solenoid valve 40 is opened from the closed state is set to the suction start time at which the volume of the working chamber 25 is minimized. Can do.
次に、時間 Topから、作動室 25は吸入孔 27と連通し、作動流体が作動室 25に吸 入される。そして、作動室 25が吸入可能な最大容積 Vbとなる事前の時間 Telに電磁 弁 40を閉じる。この結果、作動流体の吸入量は Vbより小さい V となる。このように 電磁弁 40を閉じる時間 Telのタイミングを変えることにより、 Vb'の大きさを可変する。 即ち、電磁弁 40を開から閉にする閉タイミング (すなわち時間 Telの時点)を、吸入開 始時間から作動室 25の容積が最大となるまでの時間とする制御機能を有する構成 により、膨張室に入る作動流体の流量を可変することができる。  Next, from time Top, the working chamber 25 communicates with the suction hole 27 and the working fluid is sucked into the working chamber 25. Then, the solenoid valve 40 is closed at the time Tel that the working chamber 25 reaches the maximum volume Vb that can be sucked. As a result, the amount of working fluid drawn becomes V, which is smaller than Vb. Thus, the magnitude of Vb ′ can be varied by changing the timing of the closing time Tel of the solenoid valve 40. In other words, the expansion chamber has a control function in which the closing timing for opening the solenoid valve 40 from opening to closing (that is, at the time of time Tel) is the time from the suction start time until the volume of the working chamber 25 becomes maximum. The flow rate of the working fluid entering can be varied.
[0027] 上記時間 Telのタイミングを変えた場合の動作を、図 10の本実施の形態における 電磁弁の開閉タイミングを変えた時の作動室の PV線図を用いて説明する。 [0027] The operation when the time Tel is changed will be described with reference to the PV diagram of the working chamber when the opening / closing timing of the solenoid valve in the present embodiment in FIG. 10 is changed.
作動室 25は、図 9の空間 25aの状態力も電磁弁 40を閉じるまでの間、吸入孔 27か ら高圧側の圧力 Pbの作動流体を吸入する吸入過程を行う。すなわち、吸入過程は 図 10の ΑΒΊこ相当する。そして、このときの吸入量は Vb'である。  The working chamber 25 performs a suction process in which the working fluid of the pressure Pb on the high pressure side is sucked from the suction hole 27 until the state force of the space 25a in FIG. 9 also closes the electromagnetic valve 40. In other words, the inhalation process corresponds to that of Fig. 10. And the amount of inhalation at this time is Vb '.
電磁弁 40を時間 Telに閉じると、ロータ 23に伴い容積を増加しつつ、内部の作動 流体の圧力が低下して膨張過程を行う。この過程は図 10の B'Hに相当する。  When the solenoid valve 40 is closed at time Tel, the volume increases with the rotor 23, and the pressure of the internal working fluid decreases to perform the expansion process. This process corresponds to B'H in Figure 10.
作動室 25は空間 25cの位置で容積が最大となる。この時点は図 10の こ相当し 、作動室 25の圧力は、電磁弁 40を常時開とした場合の圧力 Pcよりも低い P となる 。この過程は図 10の HC こ相当する。 The working chamber 25 has a maximum volume at the position of the space 25c. At this time, the pressure in the working chamber 25 is P lower than the pressure Pc when the solenoid valve 40 is normally opened. . This process corresponds to HC in Fig. 10.
そして、ロータ 23が僅かに回転し、作動室 25が吐出孔 28と連通した瞬間、作動流 体の吐出が開始される。  Then, the discharge of the working fluid is started at the moment when the rotor 23 rotates slightly and the working chamber 25 communicates with the discharge hole 28.
ここで、吐出孔 28にリードバルブ 30aを設けない場合、例えば、電磁弁 40を常時開 の状態から、上記の開閉制御を行う状態に移行したときに、圧力 Pcの吐出室 33から 作動室 25に作動流体が逆流し、容積が Vc—定のまま作動室 25の圧力が PcTから P cまで上昇する。すなわち、図 10の から Cに移行し、 CC'Hで囲まれた部分の面 積の動力がロスとなる過膨張損失が発生する。  Here, when the reed valve 30a is not provided in the discharge hole 28, for example, when the solenoid valve 40 is shifted from a normally open state to a state in which the above opening / closing control is performed, the discharge chamber 33 of the pressure Pc is changed to the working chamber 25. The working fluid flows backward, and the pressure in the working chamber 25 rises from PcT to Pc with the volume kept constant at Vc. That is, from FIG. 10 to C, an overexpansion loss occurs in which the power of the area of the part surrounded by CC'H becomes a loss.
[0028] しかし、本実施の形態では、吐出孔 28にリードバルブ 30aを設けており、リードバル ブ 30aは吐出室 33の圧力 PcTと作動室 25の圧力 Pcの圧力差により吐出孔 28を閉じ ているため、吐出室 33から作動室 25に作動流体が流れ込むことを防止できる。 その後、作動室 25は、ロータ 3の回転に伴って容積を減少させてゆくが、吐出孔 28 力 Sリードバルブ 30aによって閉じられたままなので、空間 25cでは圧縮が起こり、圧力 は再び図 10の C'B'を迪つて上昇する。 However, in this embodiment, the reed valve 30a is provided in the discharge hole 28, and the reed valve 30a closes the discharge hole 28 by the pressure difference between the pressure PcT of the discharge chamber 33 and the pressure Pc of the working chamber 25. Therefore, the working fluid can be prevented from flowing from the discharge chamber 33 into the working chamber 25. Thereafter, the volume of the working chamber 25 decreases with the rotation of the rotor 3, but since it remains closed by the discharge hole 28 force S reed valve 30a, compression occurs in the space 25c, and the pressure is again in FIG. Ascend C'B '.
そして、作動室 25の圧力が Pcを超えた瞬間、すなわち、作動室 25の圧力が所定 の値になった時点の図 10の Hで、初めてリードバルブ 30aが開く。この Hに相当 する過程を再圧縮過程と呼ぶ。なお、吐出ノ レブをリードバルブ 30aとするので、作 動室 25の圧力が所定値になったときに自動的に開き、再圧縮が行われるという利点 が得られる。  The reed valve 30a is opened for the first time at the moment when the pressure in the working chamber 25 exceeds Pc, that is, at H in FIG. 10 when the pressure in the working chamber 25 reaches a predetermined value. This process corresponding to H is called the recompression process. Since the discharge valve is the reed valve 30a, there is an advantage that when the pressure in the working chamber 25 reaches a predetermined value, it automatically opens and recompression is performed.
その後、ロータ 23の回転に伴って作動室 25は容積を減少させつつ、吐出孔 28か ら低圧側の圧力 Pcの作動流体を吐出する過程、すなわち、吐出過程を行う。  Thereafter, as the rotor 23 rotates, the working chamber 25 reduces the volume while discharging the working fluid having the low-pressure side pressure Pc from the discharge hole 28, that is, a discharge process.
この吐出過程において、作動室 25が空間 25dから空間 25eの位置まで移動する間 に、吐出孔 28との連通が無くなる力 吐出孔 29の一部が小隙間 22の基点からシャ フト 26の回転方向に 315degの位置、すなわち、ベーンを n枚とすると、吐出孔 28か らベーン 24のピッチである(360Zn) degだけ周方向に移動した位置を含む形状とし たため、作動室 25からの吐出は吐出孔 29から継続して行われる。この吐出過程は 図 10の HDに相当する。  During this discharge process, the force that eliminates the communication with the discharge hole 28 while the working chamber 25 moves from the space 25d to the position of the space 25e causes a part of the discharge hole 29 to rotate from the base point of the small gap 22 to the rotation direction of the shaft 26. If the number of vanes is 315 deg, that is, the number of vanes is n, the shape includes the position moved in the circumferential direction by (360 Zn) deg, which is the pitch of the vanes 24 from the discharge holes 28. Continue from hole 29. This discharge process corresponds to HD in Fig. 10.
[0029] 次に、電磁弁 40を閉じる時間 Telの変更制御の一例について説明する。 例えばヒートポンプ装置のシステムにおいて、圧縮機から吐出される作動流体の吐 出圧力を例えば圧力センサで計測し、その計測した吐出圧力と、圧縮機、膨張機を 含むシステム全体の効率が最も良くなる目標圧力との比較を行い、圧縮機の吐出圧 力と目標圧力との大小により、時間 Topから時間 Tcほでの時間幅を制御する。すな わち、圧縮機の吐出圧力が目標圧力よりも大きい時は、時間 Topと時間 Telとの差の 時間幅を大きくして作動流体の流量を増加させる。また、圧縮機の吐出圧力が目標 圧力よりも小さ 、時は、時間 Topと時間 Telの時間幅を小さくして作動流体の流量を 減少させる。これによつて、システム全体の効率を最も良くすることができる。 [0029] Next, an example of time-telling change control for closing the solenoid valve 40 will be described. For example, in a heat pump system, the discharge pressure of the working fluid discharged from the compressor is measured by, for example, a pressure sensor, and the target discharge efficiency and the efficiency of the entire system including the compressor and expander are the best. The time width from time Top to time Tc is controlled by comparing the pressure with the discharge pressure of the compressor and the target pressure. In other words, when the discharge pressure of the compressor is higher than the target pressure, the flow rate of the working fluid is increased by increasing the time width of the difference between the time Top and the time Tel. In addition, when the discharge pressure of the compressor is smaller than the target pressure, the time width of the time Top and the time Tel is reduced to reduce the flow rate of the working fluid. As a result, the efficiency of the entire system can be maximized.
即ち、本実施の形態の圧縮機をヒートポンプ装置に用いて、その吸入バルブの開 閉タイミングを変化させて膨張室に入る作動流体の流量を制御することにより、ヒート ポンプ装置の運転効率を常に高いものとすることができる。  That is, by using the compressor of the present embodiment for a heat pump device and changing the opening / closing timing of the suction valve to control the flow rate of the working fluid entering the expansion chamber, the operating efficiency of the heat pump device is always high. Can be.
なお、目標圧力は、作動流体の物性値力 決めることができる値である。  The target pressure is a value that can determine the physical property value of the working fluid.
また、吸入バルブの開閉タイミングを可変すること、即ち時間幅を制御することは、 例えば膨張機の回転数と基点からの回転角度を検出し、この回転数及び回転角度 に基づ!/ヽて吸入開始時間(時点)や時間幅を設定し、電磁弁 40を開閉する構成(図 示せず)で行える。  In addition, changing the intake valve opening / closing timing, that is, controlling the time width, for example, detects the rotation speed of the expander and the rotation angle from the base point, and based on this rotation speed and rotation angle! This can be done with a configuration (not shown) that opens and closes the solenoid valve 40 by setting the inhalation start time (time point) and time span.
以上により、本実施の形態では、密閉容器 10内であって吸入孔 27の作動室 25に 近接する位置に電磁弁 40を設置し、電磁弁 40が開いている時間幅 (Tel Top)を 制御して、作動室 25に入る作動流体の流量を調節し、且つデッドスペースを小さくす るので、膨張機のロータ 23を圧縮機の駆動シャフトと直結した場合でも、「密度比 = 一定」の運転条件 (制約)を排除でき、高圧の作動流体から常時最大限に動力回収 を行う膨張機一体型の圧縮機を提供することができる。  As described above, in the present embodiment, the solenoid valve 40 is installed in the sealed container 10 at a position close to the working chamber 25 of the suction hole 27 and the time width (Tel Top) during which the solenoid valve 40 is open is controlled. As a result, the flow rate of the working fluid entering the working chamber 25 is adjusted and the dead space is reduced. Therefore, even when the rotor 23 of the expander is directly connected to the drive shaft of the compressor, the operation of “density ratio = constant” is performed. It is possible to provide an expander-integrated compressor that can eliminate the conditions (constraints) and always recover power from the high-pressure working fluid to the maximum extent possible.
また、本実施の形態では、吐出孔 28にリードバルブ 30aとバルブストップ 30bから 成るバルブ機構 30を備えたことにより、電磁弁 40を制御した場合に起こりうる過膨張 の際に、吐出室 33から作動室 25に作動流体が逆流することを防止し、吐出圧力 Pc まで再圧縮させることが可能になるので、過膨張損失(図 10の CC'Hの面積に相当) の生じな!/ヽ膨張機一体型の圧縮機を提供することができる。  In the present embodiment, since the discharge hole 28 is provided with the valve mechanism 30 including the reed valve 30a and the valve stop 30b, the discharge chamber 33 can be used in the case of overexpansion that can occur when the electromagnetic valve 40 is controlled. The working fluid is prevented from flowing back into the working chamber 25 and can be recompressed to the discharge pressure Pc, so there is no overexpansion loss (corresponding to the area of CC'H in Fig. 10)! A machine-integrated compressor can be provided.
なお、実施の形態 2の吐出孔 78に、実施の形態 3で説明したバルブ機構 30を適用 することちでさる。 The valve mechanism 30 described in the third embodiment is applied to the discharge hole 78 in the second embodiment. I'll do it for you.
産業上の利用可能性 Industrial applicability
本発明にかかる圧縮機およびそれを用いたヒートポンプ装置は、膨張室の入口直 前の吸入孔に設置した吸入バルブを開閉し、作動流体が吸入される膨張機の膨張 室体積を制御して、高圧の作動流体力も最大限に動力回収を行うので、常時高い運 転効率を得ることができ、膨張機一体型の圧縮機やそれを用いたヒートポンプ装置、 空気調和装置等に適用される。  The compressor according to the present invention and the heat pump device using the compressor control the expansion chamber volume of the expander into which the working fluid is sucked by opening and closing a suction valve installed in the suction hole immediately before the inlet of the expansion chamber, Since high-pressure working fluid force also recovers power to the maximum, high operation efficiency can be obtained at all times, and it can be applied to an expander-integrated compressor, a heat pump device using the compressor, an air conditioner, and the like.

Claims

請求の範囲 The scope of the claims
[1] 圧縮室、駆動シャフトを有し、前記駆動シャフトを回転させることにより前記圧縮室 に吸入した作動流体を圧縮する圧縮機部と、  [1] A compressor section having a compression chamber and a drive shaft, and compressing the working fluid sucked into the compression chamber by rotating the drive shaft;
膨張室、前記膨張室に膨張機吸入圧力で作動流体を導く吸入孔、前記膨張室から 作動流体を吐出する吐出孔、前記駆動シャフトに連結された動力回収シャフトを有し An expansion chamber, a suction hole for guiding the working fluid to the expansion chamber with an expander suction pressure, a discharge hole for discharging the working fluid from the expansion chamber, and a power recovery shaft connected to the drive shaft
、前記膨張室に吸入した作動流体を膨張させることにより前記動力回収シャフトの回 転動力を得る膨張機部と、 An expander unit that obtains rotational power of the power recovery shaft by expanding the working fluid sucked into the expansion chamber;
前記圧縮機部と前記膨張機部とを内部に配設した密閉容器と、  A sealed container in which the compressor unit and the expander unit are disposed;
前記密閉容器内に、前記膨張室に導かれる作動流体の量を制御する吸入バルブと を備えたことを特徴とする流体機械。  A fluid machine comprising: a suction valve for controlling an amount of working fluid guided to the expansion chamber in the sealed container.
[2] 前記吐出孔から吐出される作動流体の膨張機吐出圧力を検知する圧力検知手段 と、  [2] pressure detecting means for detecting the expander discharge pressure of the working fluid discharged from the discharge hole;
前記吸入孔から前記膨張室に導かれる作動流体の量が、冷凍サイクル効率を最大 にする膨張機吸入圧力と前記膨張機吐出圧力とから求められる目標量になるように 、前記吸入バルブの開閉タイミングを制御する開閉タイミング制御手段と、 を備えたことを特徴とする請求項 1に記載の流体機械。  The opening / closing timing of the intake valve is adjusted so that the amount of working fluid guided from the suction hole to the expansion chamber becomes a target amount obtained from the expander suction pressure and the expander discharge pressure that maximize the refrigeration cycle efficiency. The fluid machine according to claim 1, further comprising: an opening / closing timing control means for controlling
[3] 前記吸入孔に吸入される作動流体の吸入温度を計測する吸入温度センサと、前記 吐出孔から吐出される作動流体の吐出温度を計測する吐出温度センサとを備え、 前記吸入温度と前記吐出温度とから前記膨張機吸入圧力を求めることを特徴とする 請求項 2に記載の流体機械。  [3] A suction temperature sensor that measures a suction temperature of the working fluid sucked into the suction hole, and a discharge temperature sensor that measures a discharge temperature of the working fluid discharged from the discharge hole, and the suction temperature and the The fluid machine according to claim 2, wherein the expander suction pressure is obtained from a discharge temperature.
[4] 前記吐出孔から吐出される作動流体の吐出温度を計測する吐出温度センサを備 え、  [4] A discharge temperature sensor for measuring the discharge temperature of the working fluid discharged from the discharge hole is provided,
前記吐出温度力 前記膨張機吐出圧力を求めるとともに、前記吸入孔力 前記膨張 室に導かれる作動流体の量が、冷凍サイクル効率を最大にする膨張機吸入圧力と 前記膨張機吐出圧力とから求められる目標量になるように、前記吸入バルブの開閉 タイミングを制御する開閉タイミング制御手段と、  The discharge temperature force is obtained from the expander discharge pressure, and the suction hole force is determined from the expander suction pressure that maximizes the refrigeration cycle efficiency and the expander discharge pressure. An opening / closing timing control means for controlling the opening / closing timing of the intake valve so as to achieve a target amount;
を備えたことを特徴とする請求項 1に記載の流体機械。 The fluid machine according to claim 1, further comprising:
[5] 前記吸入バルブが電磁弁であることを特徴とする請求項 1に記載の流体機械。 5. The fluid machine according to claim 1, wherein the suction valve is a solenoid valve.
[6] 前記吸入バルブを閉から開にする開タイミングを前記膨張室の容積が最小となる吸 入開始時間とし、前記吸入バルブを開から閉にする閉タイミングを前記吸入開始時 間から前記膨張室の容積が目標量に相当する容積となるまでの時間とする制御機能 を有する構成にしたことを特徴とする請求項 1に記載の流体機械。  [6] The opening timing at which the suction valve is opened from the closed time is defined as the suction start time at which the volume of the expansion chamber is minimized, and the closing timing at which the suction valve is opened from the closed time is expanded from the suction start time. 2. The fluid machine according to claim 1, wherein the fluid machine is configured to have a control function of setting a time until the volume of the chamber reaches a volume corresponding to a target amount.
[7] 前記膨張室で膨張するときの作動流体の体積と圧力との関係を保持する作動流体 状態保持部を設け、当該作動流体状態保持部が保持する作動流体の体積と圧力と の関係を用いて前記目標量を求めることを特徴とする請求項 1に記載の流体機械。  [7] A working fluid state holding unit is provided that holds a relationship between the volume and pressure of the working fluid when expanding in the expansion chamber, and the relationship between the volume and pressure of the working fluid held by the working fluid state holding unit is provided. The fluid machine according to claim 1, wherein the target amount is obtained by using the fluid machine.
[8] 超臨界相から液相あるいは気液二相に膨張する作動流体を用いて運転することを 特徴とする請求項 1に記載の流体機械。  8. The fluid machine according to claim 1, wherein the fluid machine is operated using a working fluid that expands from a supercritical phase to a liquid phase or a gas-liquid two phase.
[9] 二酸化炭素を主成分とする作動流体を用いて運転することを特徴とする請求項 1に 記載の流体機械。  9. The fluid machine according to claim 1, wherein the fluid machine is operated using a working fluid mainly composed of carbon dioxide.
[10] 前記膨張機の吐出孔に吐出バルブを設けたことを特徴とする請求項 1に記載の流 体機械。  10. The fluid machine according to claim 1, wherein a discharge valve is provided in a discharge hole of the expander.
[11] 前記吐出ノ レブをリードバルブとし、前記膨張室の圧力が所定の値になったときに 前記吐出バルブが開くことを特徴とする請求項 10に記載の流体機械。  11. The fluid machine according to claim 10, wherein the discharge valve is a reed valve, and the discharge valve opens when the pressure in the expansion chamber reaches a predetermined value.
[12] 請求項 1に記載の流体機械を用いたヒートポンプ装置であって、前記吸入バルブ の開閉タイミングを制御することで、前記膨張室に導く作動流体の量を冷凍サイクル 効率が最大となる目標量にすることを特徴とするヒートポンプ装置。  12. A heat pump apparatus using the fluid machine according to claim 1, wherein the amount of working fluid led to the expansion chamber is controlled by controlling the opening / closing timing of the suction valve so that the refrigeration cycle efficiency is maximized. A heat pump device characterized in that the quantity is a quantity.
PCT/JP2005/021349 2004-11-25 2005-11-21 Fluid machine and heat pump employing it WO2006057212A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-339833 2004-11-25
JP2004339833A JP2008031845A (en) 2004-11-25 2004-11-25 Compressor and heat pump device using the compressor
JP2004371854A JP2008032234A (en) 2004-12-22 2004-12-22 Compressor and heat pump device using the same
JP2004-371854 2004-12-22

Publications (1)

Publication Number Publication Date
WO2006057212A1 true WO2006057212A1 (en) 2006-06-01

Family

ID=36497949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021349 WO2006057212A1 (en) 2004-11-25 2005-11-21 Fluid machine and heat pump employing it

Country Status (1)

Country Link
WO (1) WO2006057212A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128576A (en) * 2006-11-22 2008-06-05 Hitachi Appliances Inc Refrigerating cycle device
JP2009085189A (en) * 2007-10-03 2009-04-23 Panasonic Corp Displacement type expander, expander-integrated compressor, and refrigeration cycle equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241033A (en) * 1999-02-23 2000-09-08 Aisin Seiki Co Ltd Vapor compression type refrigerator
JP2001165513A (en) * 1999-12-03 2001-06-22 Aisin Seiki Co Ltd Refrigeration air-conditioner
WO2003089766A1 (en) * 2002-04-19 2003-10-30 Matsushita Electric Industrial Co., Ltd. Vane rotary expansion engine
JP2004190559A (en) * 2002-12-11 2004-07-08 Daikin Ind Ltd Displacement expander and fluid machine
JP2004257303A (en) * 2003-02-26 2004-09-16 Mitsubishi Electric Corp Scroll expansion machine and refrigerating air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241033A (en) * 1999-02-23 2000-09-08 Aisin Seiki Co Ltd Vapor compression type refrigerator
JP2001165513A (en) * 1999-12-03 2001-06-22 Aisin Seiki Co Ltd Refrigeration air-conditioner
WO2003089766A1 (en) * 2002-04-19 2003-10-30 Matsushita Electric Industrial Co., Ltd. Vane rotary expansion engine
JP2004190559A (en) * 2002-12-11 2004-07-08 Daikin Ind Ltd Displacement expander and fluid machine
JP2004257303A (en) * 2003-02-26 2004-09-16 Mitsubishi Electric Corp Scroll expansion machine and refrigerating air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128576A (en) * 2006-11-22 2008-06-05 Hitachi Appliances Inc Refrigerating cycle device
JP2009085189A (en) * 2007-10-03 2009-04-23 Panasonic Corp Displacement type expander, expander-integrated compressor, and refrigeration cycle equipment

Similar Documents

Publication Publication Date Title
EP2295720B1 (en) Two-stage rotary expander, expander-integrated compressor, and refrigeration cycle device
US7585163B2 (en) Compression system, multicylinder rotary compressor, and refrigeration apparatus using the same
KR100747496B1 (en) Rotary compressor and control method thereof and air conditioner using the same
AU2007241901A1 (en) Refrigerating apparatus
US10309700B2 (en) High pressure compressor and refrigerating machine having a high pressure compressor
AU2007241900A1 (en) Refrigerating apparatus
US8979509B2 (en) Screw compressor having reverse rotation protection
JP4866887B2 (en) Scroll compressor
JP2001323881A (en) Compressor
JP4719432B2 (en) Air conditioner and rotary two-stage compressor used therefor
WO2012042894A1 (en) Positive displacement compressor
JP2006177225A (en) Rotary compressor
WO2006057212A1 (en) Fluid machine and heat pump employing it
JP2008106668A (en) Expander, expander-integrated compressor and refrigeration cycle device using same
JP6169261B2 (en) Rotary compressor and heat pump device equipped with the same
JP2007017040A (en) Expansion machine and refrigeration cycle device using the expansion machine
JP2008032234A (en) Compressor and heat pump device using the same
KR101002555B1 (en) Multi-stage rotary compressor and refrigeration cycle having the same
KR20210015098A (en) A refrigerator cycle system including an inverter for controlling a compressor and an expander at the same time
CN100455806C (en) Screw compressor
KR100585808B1 (en) Multi-stage rotary compressor
KR20070014914A (en) Rotary compressor
JP2009013798A (en) Expander-integrated compressor
JP2008031845A (en) Compressor and heat pump device using the compressor
JP2004293450A (en) Refrigerant cycle apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP