JP2004293450A - Refrigerant cycle apparatus - Google Patents

Refrigerant cycle apparatus Download PDF

Info

Publication number
JP2004293450A
JP2004293450A JP2003088001A JP2003088001A JP2004293450A JP 2004293450 A JP2004293450 A JP 2004293450A JP 2003088001 A JP2003088001 A JP 2003088001A JP 2003088001 A JP2003088001 A JP 2003088001A JP 2004293450 A JP2004293450 A JP 2004293450A
Authority
JP
Japan
Prior art keywords
oil
refrigerant
rotary compressor
refrigerant cycle
rotary compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003088001A
Other languages
Japanese (ja)
Other versions
JP4169620B2 (en
Inventor
Masaru Matsuura
大 松浦
Hiroyuki Matsumori
裕之 松森
Takashi Sato
孝 佐藤
Toshiyuki Ebara
俊行 江原
Takayasu Saito
隆泰 斎藤
Aritomo Yoshida
有智 吉田
Shigeo Takakusaki
茂夫 高草木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003088001A priority Critical patent/JP4169620B2/en
Publication of JP2004293450A publication Critical patent/JP2004293450A/en
Application granted granted Critical
Publication of JP4169620B2 publication Critical patent/JP4169620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerant cycle apparatus capable of precisely performing oil returning to a rotary compressor. <P>SOLUTION: The refrigerant cycle apparatus 1 is provided with a rotary compressor 10 which is equipped with a drive element 14 and a rotary compressor mechanism part 18 driven by the drive element, and an oil separator 170 which separates oil in the refrigerant discharged from the rotary compressor and returns it to an airtight container through an oil returning pipe 190. The apparatus is provided with an electric expansion valve 172 and controls a flow path of the oil return pipe by the electric expansion valve 172 according to the number of revolutions of the drive element. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ロータリコンプレッサから吐出された冷媒中のオイルを分離して密閉容器内に戻すためのオイル分離器を備えた冷媒サイクル装置に関するものである。
【0002】
【従来の技術】
近年地球環境問題に対応するためにカーエアコンなどの空調機器の冷媒サイクル装置に冷媒として二酸化炭素(CO)が用いられてきている(特許文献1参照)。そして、係る冷媒サイクル装置では例えば内部中間圧型多段(二段)圧縮式のロータリコンプレッサが使用される。このロータリコンプレッサは、密閉容器内に駆動要素と回転圧縮機構部を備え、この回転圧縮機構部を構成する第1の回転圧縮要素の吸込ポートからガス冷媒がシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となり、シリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。
【0003】
そして、この密閉容器内の中間圧のガス冷媒は第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行われて高温高圧のガス冷媒となり、高圧室側より吐出ポート、吐出消音室を経て冷媒吐出管より外部に吐出されるものであった。
【0004】
このロータリコンプレッサから吐出されたガス冷媒は冷媒回路のガスクーラに流入して放熱した後、膨張弁で絞られて蒸発器(エバポレータ)で蒸発し、ロータリコンプレッサの第1の回転圧縮要素に吸入される冷媒サイクルを繰り返す。
【0005】
【特許文献1】
特開平2−294587号公報
【0006】
【発明が解決しようとする課題】
ここで、このようなロータリコンプレッサを備えた冷媒サイクル装置では第2の回転圧縮要素から吐出されたガス冷媒はそのまま外部の熱交換器に吐出されるため、冷媒回路へのオイルの流出が多くなる。係るオイル吐出量が多くなると、冷媒回路の冷媒循環に支障を来すと共に、ロータリコンプレッサ内のオイルレベルも低下し、摺動性能やシール性が低下してしまう問題がある。また、この問題は係る内部中間圧型のロータリコンプレッサに限らず、密閉容器内に吸い込んだ冷媒を回転圧縮要素で圧縮し、外部に吐出する内部低圧型のロータリコンプレッサでも同様に生じる。
【0007】
そこで、従来よりロータリコンプレッサから出た冷媒吐出管にオイル分離器を接続して吐出ガス冷媒からオイルを分離し、オイル戻し管を介して密閉容器内に戻す工夫が成されているが、オイル分離器内は高圧となるため、それより低い中間圧或いは低圧の密閉容器内にオイルを戻すために圧力調整が必要となる。そのため、従来ではオイル戻し管に通常キャピラリチューブを設けていたが、駆動要素の回転数が低くなってオイル吐出量が少なくなると、オイル戻し管内にオイルが無くなり、このオイル戻し管を介して冷媒サイクル装置の高圧側と中間圧側(低圧側)とが連通され、バイパスされてしまう。これによって著しい効率の低下が発生する。
【0008】
一方、駆動要素の回転数が高くなってオイル吐出量が多くなると、今度はオイル戻り量が不足してオイルレベルが低下し、オイル枯渇が生じて摺動性能やシール性の低下が生じる問題があった。
【0009】
本発明は、係る従来の技術的課題を解決するために成されたものであり、ロータリコンプレッサへのオイル戻しを的確に行うことができる冷媒サイクル装置を提供するものである。
【0010】
【課題を解決するための手段】
本発明では、密閉容器内に駆動要素と該駆動要素にて駆動される回転圧縮機構部とを備えたロータリコンプレッサと、該ロータリコンプレッサから吐出された冷媒中のオイルを分離し、オイル戻し管を介して密閉容器内に戻すためのオイル分離器とを備えた冷媒サイクル装置において、オイル戻し管に流路制御装置を設け、該流路制御装置により、駆動要素の回転数に応じてオイル戻し管の流路を制御するようにしたので、請求項2の如く流路制御装置を電動膨張弁として駆動要素の回転数の二乗に比例して当該電動膨張弁の弁開度を制御し、或いは、請求項3の如く流路制御装置を電磁弁とし、駆動要素の回転数の二乗に比例して当該電磁弁の開時間若しくは開回数を制御することで、駆動要素の回転数が高い状態における密閉容器内のオイル枯渇を防止できるようになる。
【0011】
また、請求項4の如く密閉容器内が中間圧となる多段圧縮式のロータリコンプレッサや請求項5の如く密閉容器内が低圧となるロータリコンプレッサにおいて、従来のキャピラリチューブを用いた場合の如く、駆動要素の回転数が低下した場合に、オイル分離器を介して高圧側と密閉容器内の中間圧側若しくは低圧側とが連通されてしまう不都合も回避できるようになる。
【0012】
これらにより、常時最適なオイル戻しを実現できるようになり、ロータリコンプレッサの信頼性の向上と性能及び効率の著しい改善を図ることが可能となるものである。
【0013】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明を適用した冷媒サイクル装置1に使用されるロータリコンプレッサの実施例としての内部中間圧型多段(二段)圧縮式のロータリコンプレッサ10の縦断面図、図2は本発明の冷媒サイクル装置1の冷媒回路図をそれぞれ示している。尚、実施例の冷媒サイクル装置1は高圧側が超臨界となる遷臨界冷媒サイクルである。
【0014】
図中10は二酸化炭素(CO)を冷媒として使用する内部中間圧型多段(二段)圧縮式のロータリコンプレッサで、このロータリコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された駆動要素14及びこの駆動要素14の下側に配置され、駆動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)からなる回転圧縮機構部18にて構成されている。
【0015】
密閉容器12は、底部をオイル溜めTとし、駆動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成されている。このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには駆動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0016】
エンドキャップ12Bのターミナル20周囲には、座押成形によって所定曲率の段差部12Cが環状に形成されている。また、ターミナル20は端子139、139が貫通して取り付けられた円形のガラス部20Aと、このガラス部20Aの周囲に形成され、斜め外下方に鍔状に張り出した金属製の取付部20Bとから構成されている。そして、ターミナル20は、そのガラス部20Aを下側から取付孔12Dに挿入して上側に臨ませ、取付部20Bを取付孔12Dの周縁に当接させた状態でエンドキャップ12Bの取付孔12D周縁に取付部20Bを溶接することで、エンドキャップ12Bに固定されている。
【0017】
駆動要素14は、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隙を設けて挿入配置されたロータ24とから構成されている。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。
【0018】
ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26に形成された図示しない歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して構成されている。
【0019】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。即ち、第2の回転圧縮要素34と第1の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置されたシリンダ38、シリンダ40と、この上下シリンダ38、40内を180度の位相差を有して回転軸16に設けられた上下偏心部42、44に嵌合されて偏心回転する上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画する後述する上下ベーン(図示せず)と、上シリンダ38の上側(駆動要素14側)の開口面及び下シリンダ40の下側(駆動要素14とは反対側)の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成される。
【0020】
上部支持部材54および下部支持部材56には、吸込ポート161、162にて上下シリンダ38、40の内部とそれぞれ連通する吸込通路58、60と、凹陥した吐出消音室62、64が形成されると共に、これら両吐出消音室62、64の開口部はそれぞれカバーにより閉塞される。即ち、吐出消音室62はカバーとしての上部カバー66、吐出消音室64はカバーとしての下部カバー68にて閉塞される。
【0021】
この場合、上部支持部材54の中央には駆動要素14方向に突出する長軸受けとなる軸受け54Aが起立形成されており、この軸受け54A内面には筒状のブッシュ122が装着されている。このブッシュ122は、回転軸16と軸受け54A間に介在し、当該ブッシュ122の内面が回転軸16に摺動自在に接触している。ブッシュ122は給油が不十分な状況でも良好な摺動性を保持できる耐摩耗性の高いカーボン材料にて構成されている。
【0022】
また、下部支持部材56の中央には軸受け54Aと比較して短軸受けとなる軸受け56Aが貫通形成されており、この軸受け56A内面にもブッシュ122同様のブッシュ124が装着されている。このブッシュ124も、回転軸16と軸受け56A間に介在し、当該ブッシュ124の内面が回転軸16に摺動自在に接触している。これにより、回転軸16は、回転圧縮機構部18の駆動要素14側(上側)ではブッシュ122を介して上部支持部材54の軸受け54Aに保持され、駆動要素14と反対側(下側)はブッシュ124を介して下部支持部材56の軸受け56Aに保持される。
【0023】
下部カバー68は、ドーナッツ状の円形鋼板から構成されており、周辺部の4カ所を主ボルト129・・・によって下から下部支持部材56に固定され、第1の回転圧縮要素32の下シリンダ40内部と連通する吐出消音室64の下面開口部を閉塞する。この主ボルト129・・・の先端は上部支持部材54に螺合する。
【0024】
尚、吐出消音室64と密閉容器12内における上部カバー66の駆動要素14側は、上下シリンダ38、40や中間仕切板36を貫通する孔である図示しない連通路にて連通されている。この連通路の上端には中間吐出管121が立設されており、この中間吐出管121は上方の駆動要素14のステータ22に巻装された相隣接するステータコイル28、28間の隙間に指向している。
【0025】
また、上部カバー66は第2の回転圧縮要素34の上シリンダ38内部と連通する吐出消音室62の上面開口部を閉塞し、密閉容器12内を吐出消音室62と駆動要素14側とに仕切る。この上部カバー66は周辺部が4本の主ボルト78・・・により、上から上部支持部材54に固定されている。この主ボルト78・・・の先端は下部支持部材56に螺合する。
【0026】
次に、上シリンダ38の下側の開口面及び下シリンダ40の上側の開口面を閉塞する中間仕切板36内には、上シリンダ38内の吸込側に対応する位置に、外周面から内周面に至り、外周面と内周面とを連通して給油路を構成する貫通孔131が穿設されており、この貫通孔131の外周面側に封止材132を圧入して外周面側の開口を封止している。また、この貫通孔131の中途部には上側に延在する連通孔133が穿設されている。
【0027】
一方、上シリンダ38の吸込ポート161(吸込側)には中間仕切板36の連通孔133に連通する連通孔134が穿設されている。また、回転軸16内には軸中心に鉛直方向に設けられたオイル孔(図示せず)と、このオイル孔に連通する横方向の給油孔82、84が形成されており(図示しないが回転軸16の上下偏心部42、44にも給油孔が形成されている)、中間仕切板36の貫通孔131の内周面側の開口は、これらの給油孔82、84を介して前記オイル孔に連通している。
【0028】
そして、密閉容器12内は後述する如く中間圧となるため、2段目で高圧となる上シリンダ38内にはオイルの供給が困難となるが、中間仕切板36を係る構成としたことにより、密閉容器12内底部のオイル溜めTから汲み上げられたオイルは、前記オイル孔を上昇して給油孔82、84から出て中間仕切板36の貫通孔131に入り、連通孔133、134から上シリンダ38の吸込側(吸込ポート161)に供給される。
【0029】
ところで、回転軸16と一体に180度の位相差を持って形成される上下偏心部42、44の相互間を連結する連結部90は、その断面形状を回転軸16の円形断面より断面積を大きくして剛性を持たせるために非円形状の例えばラグビーボール状とされている。即ち、回転軸16に設けた上下偏心部42、44を連結する連結部90の断面形状は上下偏心部42、44の偏心方向に直交する方向でその肉厚を大きくしている。
【0030】
これにより、回転軸16に一体に設けられた上下偏心部42、44を連結する連結部90の断面積を大きくし、断面2次モーメントを増加させて強度(剛性)を増し、耐久性と信頼性を向上させている。特に、使用圧力の高い冷媒を2段圧縮する場合、高低圧の圧力差が大きくなるために回転軸16にかかる荷重も大きくなるが、連結部90の断面積を大きくしてその強度(剛性)を増しているので、回転軸16が弾性変形してしまうのを防止できる。
【0031】
そして、このロータリコンプレッサ10には冷媒としては地球環境にやさしく、可燃性および毒性等を考慮して自然冷媒である前記二酸化炭素(CO)を使用し、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油等既存のオイルが使用される。
【0032】
密閉容器12の側面(容器本体12Aの側面)には、上部支持部材54と下部支持部材56の吸込通路58、60、吐出消音室62及び上部カバー66の上側(駆動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。スリーブ141と142は上下に隣接すると共に、スリーブ143はスリーブ141の略対角線上にある。また、スリーブ144はスリーブ141と略90度ずれた位置にある。
【0033】
そして、スリーブ141内には上シリンダ38にガス冷媒を導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の吸込通路58に連通される。この冷媒導入管92は密閉容器12の外側を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0034】
また、スリーブ142内には下シリンダ40にガス冷媒を導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60に連通される。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒吐出管96の一端は吐出消音室62に連通される。容器本体12Aの側面となる冷媒吐出管96と駆動要素14との間には後述するオイル戻し管190の一端が溶接固定されて密閉容器12内に開口し、他端は後述するオイル冷却通路184出口に溶接固定され、連通している。
【0035】
また、スリーブ141、143、144の外面周囲には配管接続用のカプラが係合可能な鍔部151(スリーブ144の鍔部は図示せず)が形成されており、スリーブ142の外面には配管接続用のネジ溝152が形成されている。これにより、スリーブ141、143、144にはロータリコンプレッサ10の製造工程における完成検査で気密試験を行う場合に試験用配管の図示しないカプラを鍔部151に容易に接続できるようになると共に、スリーブ142にはネジ溝152を使用して試験用配管を容易にネジ止めできるようになる。特に、上下で隣接するスリーブ141と142は、一方のスリーブ141に鍔部151が、他方のスリーブ142にネジ溝152が形成されていることで、狭い空間で試験用配管を各スリーブ141、142に接続可能となる。
【0036】
そして、上記ロータリコンプレッサ10は、例えば図2に示すような冷蔵庫、ルームエアコン、カーエアコン、パッケージエアコンなどの冷媒サイクル装置1の冷媒回路の一部を構成する。即ち、ロータリコンプレッサ10の冷媒吐出管96はオイル分離器170に接続され、このオイル分離器170の冷媒出口はガスクーラ154の入口に接続される。このガスクーラ154の出口側の配管153は減圧装置としての膨張弁156を経て蒸発器(エバポレータ)157の入口に至り、蒸発器157の出口は冷媒導入管94に接続される。
【0037】
オイル分離器170のオイル出口にはオイル戻し管190の一端が接続されている。このオイル戻し管190には流路制御装置としての電動膨張弁172が接続されており、オイル戻し管190の他端は密閉容器12内に連通接続されている。また、171は制御装置としてインバータを有するコントローラであり、このコントローラ171はインバータを用いてロータリコンプレッサ10の駆動要素14の回転数(運転周波数)を制御する。また、コントローラ171はこの駆動要素14の回転数(運転周波数)を用いて後述する如く電動膨張弁172の弁開度を制御する。
【0038】
以上の構成で、次に冷媒サイクル装置1の動作を説明する。コントローラ171によりロータリコンプレッサ2の駆動要素14に通電され、それによって第1及び第2の回転圧縮要素52、53が駆動されると、ロータリコンプレッサ10からは前述した如く二段圧縮され、超臨界圧力となったガス冷媒(CO)が冷媒吐出管96内に吐出される。吐出されたガス冷媒は冷媒吐出管96からオイル分離器170に入り、そこで冷媒中に混入したオイルが分離され、オイル分離器170内底部に溜まる。
【0039】
このオイル分離器170でオイルが分離された高温高圧のガス冷媒は、ガスクーラ154に流入して空冷される(ここで加熱作用を発揮)がこの時点では冷媒は依然超臨界域にあり、凝縮しない。ガスクーラ154内で所定の温度に冷却された冷媒は、配管153から膨張弁156に入り、そこで減圧される過程で凝縮する。液化した冷媒はその後蒸発器157に入り、そこで蒸発して冷却作用を発揮する。蒸発器157を出た冷媒はその後、ロータリコンプレッサ10の第1の回転圧縮要素32に吸入されるサイクルを繰り返す。
【0040】
一方、オイル分離器170で分離されたオイルはオイル戻し管190に入り、電動膨張弁172を経て密閉容器12内に帰還する。ここで、コントローラ171による電動膨張弁172の弁開度制御を図3に基づいて説明する。
【0041】
コントローラ171は前記蒸発器157にて要求される冷却能力或いはガスクーラ154にて要求される加熱能力などに基づいてロータリコンプレッサ10の駆動要素14の回転数(運転周波数)を制御している。そして、コントローラ171はこの駆動要素14の回転数(運転周波数)の二乗に比例して電動膨張弁172の弁開度を制御する。図3において横軸Xは駆動要素14の運転周波数(回転数)、縦軸Yは電動膨張弁172の弁開度を示しており、制御に用いる関数はY=F(X)で表される。
【0042】
これにより、オイル分離器170からオイル戻し管190を介して密閉容器12内に帰還するオイル量は駆動要素14の回転数(運転周波数)の二乗に比例して変化することになる。即ち、駆動要素14の回転数が2倍となると電動膨張弁172の弁開度は2の二乗に比例して拡大され、それによってオイル戻し管190から帰還するオイル量は増量される。また、駆動要素14の回転数が1/2となると電動膨張弁172の弁開度は1/2の二乗に比例して狭められ、それによって帰還オイル量は減少される。
【0043】
ここで、第2の回転圧縮要素34から冷媒吐出管96に吐出されるオイル量は駆動要素14の回転数の二乗に比例して増大することが分かっているが、本発明によれば、駆動要素14の回転数が高いときに多量のオイルを密閉容器12に帰還させることができるので、オイル枯渇が生じなくなる。これにより、係る高回転時における回転圧縮機構部18におけるシール性や摺動性が低下する不都合も回避される。
【0044】
また、駆動要素14の回転数が低くなると第2の回転圧縮要素34からのオイル吐出量もその二乗に比例して少なくなるので、オイル分離器170内に溜まるオイル量も減る。従って、オイル分離器170からオイル戻し管190に入るオイル量も減少する。そして、オイル戻し管190内にオイルが存在しなくなると、オイル分離器170内と密閉容器12内とが連通され、冷媒回路の高圧側と中間圧側とがバイパスされてしまうが、本発明ではコントローラ171が電動膨張弁172の弁開度を狭めて係るバイパス現象の発生を回避する。これにより、冷媒サイクル装置1の効率悪化を防止する。
【0045】
尚、実施例では電動膨張弁172をオイル戻し管190の流路制御装置として用いたが、それに限らず、通常の電磁弁を用いてもよい。その場合には、単位時間当たりに電磁弁が開いている時間や、単位時間当たりに開く回数(一回の開時間は固定)を駆動要素14の回転数の二乗に比例してコントローラ171により制御することになる。
【0046】
また、実施例では内部中間圧型の2段圧縮式ロータリコンプレッサを例にとって説明したが、それに限らず、蒸発器157からの冷媒を密閉容器内に吸い込み、この密閉容器内の低圧冷媒を回転圧縮要素で圧縮して外部に吐出する所謂内部低圧型のロータリコンプレッサにも本発明は有効である。係る内部低圧型のロータリコンプレッサも回転圧縮要素からのオイル吐出が多くなるので、ロータリコンプレッサのオイル枯渇を確実に防止できると共に、高圧となるオイル分離器170内と低圧の密閉容器内とのバイパスを防止して効率の改善も実現できるようになる。
【0047】
【発明の効果】
以上詳述した如く本発明によれば、密閉容器内に駆動要素と該駆動要素にて駆動される回転圧縮機構部とを備えたロータリコンプレッサと、該ロータリコンプレッサから吐出された冷媒中のオイルを分離し、オイル戻し管を介して密閉容器内に戻すためのオイル分離器とを備えた冷媒サイクル装置において、オイル戻し管に流路制御装置を設け、該流路制御装置により、駆動要素の回転数に応じてオイル戻し管の流路を制御するようにしたので、請求項2の如く流路制御装置を電動膨張弁として駆動要素の回転数の二乗に比例して当該電動膨張弁の弁開度を制御し、或いは、請求項3の如く流路制御装置を電磁弁とし、駆動要素の回転数の二乗に比例して当該電磁弁の開時間若しくは開回数を制御することで、駆動要素の回転数が高い状態における密閉容器内のオイル枯渇を防止できるようになる。
【0048】
また、請求項4の如く密閉容器内が中間圧となる多段圧縮式のロータリコンプレッサや請求項5の如く密閉容器内が低圧となるロータリコンプレッサにおいて、従来のキャピラリチューブを用いた場合の如く、駆動要素の回転数が低下した場合に、オイル分離器を介して高圧側と密閉容器内の中間圧側若しくは低圧側とが連通されてしまう不都合も回避できるようになる。
【0049】
これらにより、常時最適なオイル戻しを実現できるようになり、ロータリコンプレッサの信頼性の向上と性能及び効率の著しい改善を図ることが可能となるものである。
【図面の簡単な説明】
【図1】本発明を適用した冷媒サイクル装置の一実施例の冷媒回路に使用される内部中間圧型多段(二段)圧縮式のロータリコンプレッサの縦断面図である。
【図2】本発明の冷媒サイクル装置の一実施例の冷媒回路図である。
【図3】図2の電動膨張弁の弁開度制御を説明する図である。
【符号の説明】
1 冷媒サイクル装置
10 ロータリコンプレッサ
12 密閉容器
14 駆動要素
18 回転圧縮機構部
32 第1の回転圧縮要素
34 第2の回転圧縮要素
36 中間仕切板
96 冷媒吐出管
154 ガスクーラ
156 膨張弁
157 蒸発器
170 オイル分離器
171 コントローラ(制御装置)
172 電動膨張弁
190 オイル戻し管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerant cycle device including an oil separator for separating oil in a refrigerant discharged from a rotary compressor and returning the oil to a closed container.
[0002]
[Prior art]
2. Description of the Related Art In recent years, carbon dioxide (CO 2 ) has been used as a refrigerant in a refrigerant cycle device of an air conditioner such as a car air conditioner to cope with global environmental problems (see Patent Document 1). In such a refrigerant cycle device, for example, an internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor is used. The rotary compressor includes a drive element and a rotary compression mechanism in a closed container, and a gas refrigerant is sucked into a low pressure chamber side of a cylinder from a suction port of a first rotary compression element constituting the rotary compression mechanism. The pressure is compressed to an intermediate pressure by the action of the vane and the vane, and is discharged from the high pressure chamber side of the cylinder through the discharge port and the discharge silence chamber into the closed container.
[0003]
Then, the intermediate-pressure gas refrigerant in the sealed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second-stage compression is performed by the operation of the roller and the vane, so that the high-temperature and high-pressure It became a gas refrigerant, and was discharged from the refrigerant discharge pipe to the outside through the discharge port and the discharge muffling chamber from the high pressure chamber side.
[0004]
The gas refrigerant discharged from the rotary compressor flows into the gas cooler of the refrigerant circuit to radiate heat, is then throttled by an expansion valve, evaporates in an evaporator (evaporator), and is sucked into the first rotary compression element of the rotary compressor. Repeat the refrigerant cycle.
[0005]
[Patent Document 1]
JP-A-2-294587
[Problems to be solved by the invention]
Here, in the refrigerant cycle device provided with such a rotary compressor, the gas refrigerant discharged from the second rotary compression element is directly discharged to an external heat exchanger, so that the outflow of oil to the refrigerant circuit increases. . When such an oil discharge amount increases, the circulation of the refrigerant in the refrigerant circuit is hindered, and the oil level in the rotary compressor also decreases, resulting in a problem that the sliding performance and the sealing performance decrease. This problem occurs not only in the internal intermediate pressure type rotary compressor but also in an internal low pressure type rotary compressor in which the refrigerant sucked into the closed vessel is compressed by the rotary compression element and discharged to the outside.
[0007]
Therefore, conventionally, an oil separator is connected to a refrigerant discharge pipe coming out of the rotary compressor to separate oil from the discharged gas refrigerant, and the oil is returned to the closed container via an oil return pipe. Since the inside of the vessel is at a high pressure, it is necessary to adjust the pressure in order to return the oil to a lower intermediate pressure or lower pressure sealed container. For this reason, the conventional capillary tube is conventionally provided in the oil return pipe, but when the rotation speed of the drive element is reduced and the oil discharge amount is reduced, the oil in the oil return pipe runs out, and the refrigerant cycle through the oil return pipe is performed. The high-pressure side and the intermediate-pressure side (low-pressure side) of the device communicate with each other and are bypassed. This causes a significant loss of efficiency.
[0008]
On the other hand, when the number of rotations of the driving element increases and the oil discharge amount increases, the oil return amount becomes insufficient, the oil level decreases, and the oil depletion occurs, which causes a problem that the sliding performance and the sealability decrease. there were.
[0009]
The present invention has been made to solve such a conventional technical problem, and provides a refrigerant cycle device capable of accurately returning oil to a rotary compressor.
[0010]
[Means for Solving the Problems]
In the present invention, a rotary compressor including a driving element and a rotary compression mechanism driven by the driving element in a closed container, separating oil in refrigerant discharged from the rotary compressor, and an oil return pipe A refrigerant cycle device provided with an oil separator for returning the oil return pipe into the closed vessel via the oil return pipe, wherein the oil return pipe is provided with an oil return pipe according to the rotation speed of the driving element by the flow path control apparatus. The flow path is controlled by controlling the valve opening degree of the electric expansion valve in proportion to the square of the rotation speed of the drive element as a motor-operated expansion valve as in claim 2, or An airtight valve in a state where the rotational speed of the drive element is high by controlling the opening time or the number of times of opening of the electromagnetic valve in proportion to the square of the rotational speed of the drive element, wherein the flow path control device is an electromagnetic valve as in claim 3. O in the container It becomes possible to prevent Le depletion.
[0011]
Further, in a multi-stage compression type rotary compressor in which the inside of the closed vessel has an intermediate pressure as in claim 4, or in a rotary compressor in which the inside of the closed vessel has a low pressure as in claim 5, the drive is performed as in the case where a conventional capillary tube is used. When the number of rotations of the element is reduced, the disadvantage that the high pressure side is communicated with the intermediate pressure side or the low pressure side in the closed vessel via the oil separator can also be avoided.
[0012]
As a result, optimal oil return can always be realized, and the reliability and performance and efficiency of the rotary compressor can be significantly improved.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor 10 as an embodiment of a rotary compressor used in a refrigerant cycle device 1 to which the present invention is applied, and FIG. The refrigerant circuit diagrams of the device 1 are respectively shown. The refrigerant cycle device 1 of the embodiment is a transcritical refrigerant cycle in which the high pressure side is supercritical.
[0014]
In the figure, reference numeral 10 denotes a rotary compressor of an internal intermediate pressure type multi-stage (two-stage) compression type using carbon dioxide (CO 2 ) as a refrigerant. The rotary compressor 10 includes a cylindrical hermetic container 12 made of a steel plate, and a hermetic container 12. The first rotary compression element 32 (first stage) and the first rotary compression element 32 that are disposed and housed above the internal space of the drive element 14 and are disposed below the drive element 14 and driven by the rotation shaft 16 of the drive element 14. The rotary compression mechanism 18 includes two rotary compression elements 34 (second stage).
[0015]
The hermetically sealed container 12 has an oil reservoir T at its bottom, a container body 12A for accommodating the drive element 14 and the rotary compression mechanism 18, and a substantially bowl-shaped end cap (lid) 12B for closing an upper opening of the container body 12A. It is composed of A circular mounting hole 12D is formed in the center of the upper surface of the end cap 12B, and a terminal (wiring omitted) 20 for supplying electric power to the driving element 14 is mounted in the mounting hole 12D.
[0016]
Around the terminal 20 of the end cap 12B, a stepped portion 12C having a predetermined curvature is formed in an annular shape by stamping. The terminal 20 includes a circular glass portion 20A through which the terminals 139 and 139 penetrate, and a metal mounting portion 20B formed around the glass portion 20A and projecting obliquely outward and downward in a flange shape. It is configured. Then, the terminal 20 inserts the glass portion 20A from below into the mounting hole 12D so as to face upward, and in a state where the mounting portion 20B is in contact with the peripheral edge of the mounting hole 12D, the peripheral edge of the mounting hole 12D of the end cap 12B. Is fixed to the end cap 12B by welding the mounting portion 20B to the end cap 12B.
[0017]
The driving element 14 is composed of a stator 22 annularly mounted along the inner peripheral surface of the upper space of the closed casing 12, and a rotor 24 inserted and arranged with a slight gap inside the stator 22. I have. The rotor 24 is fixed to the rotating shaft 16 that extends vertically through the center.
[0018]
The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel sheets are laminated, and a stator coil 28 wound around teeth (not shown) formed in the laminated body 26 by a direct winding (concentrated winding) method. . The rotor 24 is also formed of a laminated body 30 of electromagnetic steel sheets, like the stator 22, and is configured by inserting a permanent magnet MG into the laminated body 30.
[0019]
An intermediate partition plate 36 is held between the first rotary compression element 32 and the second rotary compression element 34. That is, the second rotary compression element 34 and the first rotary compression element 34 include an intermediate partition plate 36, cylinders 38 and 40 disposed above and below the intermediate partition plate 36, and the upper and lower cylinders 38 and 40. The upper and lower rollers 46, 48 which are fitted to the upper and lower eccentric portions 42, 44 provided on the rotary shaft 16 with a phase difference of 180 degrees and rotate eccentrically, and the upper and lower cylinders Upper and lower vanes (not shown) which divide the inside of the cylinders 38 and 40 into a low-pressure chamber side and a high-pressure chamber side, respectively, an upper opening surface of the upper cylinder 38 (the driving element 14 side) and a lower side of the lower cylinder 40 (driving). An upper support member 54 and a lower support member 56 are used as a support member that also serves as a bearing for the rotating shaft 16 by closing an opening surface on the side opposite to the element 14).
[0020]
In the upper support member 54 and the lower support member 56, suction passages 58, 60 communicating with the insides of the upper and lower cylinders 38, 40 at suction ports 161 and 162, respectively, and concaved sound absorbing and silencing chambers 62 and 64 are formed. The openings of the two discharge muffling chambers 62 and 64 are closed by covers. That is, the discharge silence chamber 62 is closed by the upper cover 66 as a cover, and the discharge silence chamber 64 is closed by the lower cover 68 as a cover.
[0021]
In this case, a bearing 54A as a long bearing projecting toward the drive element 14 is formed upright at the center of the upper support member 54, and a cylindrical bush 122 is mounted on the inner surface of the bearing 54A. The bush 122 is interposed between the rotary shaft 16 and the bearing 54A, and the inner surface of the bush 122 is slidably in contact with the rotary shaft 16. The bush 122 is made of a carbon material having high abrasion resistance that can maintain good slidability even in a situation where lubrication is insufficient.
[0022]
A bearing 56A, which is a shorter bearing than the bearing 54A, is formed through the center of the lower support member 56, and a bush 124 similar to the bush 122 is mounted on the inner surface of the bearing 56A. This bush 124 is also interposed between the rotary shaft 16 and the bearing 56A, and the inner surface of the bush 124 is slidably in contact with the rotary shaft 16. Thus, the rotary shaft 16 is held by the bearing 54A of the upper support member 54 via the bush 122 on the drive element 14 side (upper side) of the rotary compression mechanism 18, and the bush 122 on the opposite side (lower side) of the drive element 14. It is held by the bearing 56A of the lower support member 56 via 124.
[0023]
The lower cover 68 is made of a donut-shaped circular steel plate, and is fixed to the lower supporting member 56 from below at four peripheral portions by main bolts 129... And the lower cylinder 40 of the first rotary compression element 32. The lower surface opening of the discharge silencing chamber 64 communicating with the inside is closed. The tips of the main bolts 129 are screwed into the upper support member 54.
[0024]
In addition, the discharge muffling chamber 64 and the drive element 14 side of the upper cover 66 in the closed casing 12 are communicated with each other through a communication passage (not shown) which is a hole penetrating the upper and lower cylinders 38 and 40 and the intermediate partition plate 36. An intermediate discharge pipe 121 is provided upright at the upper end of the communication path. The intermediate discharge pipe 121 is directed to a gap between adjacent stator coils 28 wound around the stator 22 of the driving element 14 above. are doing.
[0025]
The upper cover 66 closes the upper opening of the discharge muffle chamber 62 communicating with the inside of the upper cylinder 38 of the second rotary compression element 34, and partitions the inside of the sealed container 12 into the discharge muffle chamber 62 and the drive element 14 side. . The upper cover 66 is fixed to the upper support member 54 from above with four main bolts 78 at the periphery. The tips of the main bolts 78 are screwed into the lower support member 56.
[0026]
Next, in the intermediate partition plate 36 that closes the lower opening surface of the upper cylinder 38 and the upper opening surface of the lower cylinder 40, a position corresponding to the suction side in the upper cylinder 38 is provided from the outer peripheral surface to the inner peripheral surface. A through-hole 131 is formed to communicate with the outer peripheral surface and the inner peripheral surface to form an oil supply passage. A sealing material 132 is press-fitted into the outer peripheral surface of the through-hole 131 to form an outer peripheral surface. Is sealed. A communication hole 133 extending upward is formed in the middle of the through hole 131.
[0027]
On the other hand, a communication hole 134 communicating with the communication hole 133 of the intermediate partition plate 36 is formed in the suction port 161 (suction side) of the upper cylinder 38. Further, an oil hole (not shown) provided in the rotation shaft 16 in the vertical direction at the center of the shaft, and horizontal oil supply holes 82 and 84 communicating with the oil hole are formed (not shown, but are rotated). Oil supply holes are also formed in the upper and lower eccentric portions 42 and 44 of the shaft 16), and the opening on the inner peripheral surface side of the through hole 131 of the intermediate partition plate 36 is provided with the oil hole through these oil supply holes 82 and 84. Is in communication with
[0028]
Since the inside of the sealed container 12 has an intermediate pressure as described later, it is difficult to supply oil into the upper cylinder 38 which is at a high pressure in the second stage. The oil pumped up from the oil reservoir T at the bottom of the closed container 12 rises up the oil hole, exits through the oil supply holes 82 and 84, enters the through hole 131 of the intermediate partition plate 36, and passes through the communication holes 133 and 134 into the upper cylinder. 38 is supplied to the suction side (suction port 161).
[0029]
By the way, the connecting portion 90 that connects the upper and lower eccentric portions 42 and 44 formed integrally with the rotating shaft 16 with a phase difference of 180 degrees has a cross-sectional shape that is larger in cross-sectional area than the circular cross-section of the rotating shaft 16. In order to increase the rigidity, a non-circular shape such as a rugby ball shape is used. That is, the cross-sectional shape of the connecting portion 90 for connecting the upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 is increased in thickness in a direction orthogonal to the eccentric direction of the upper and lower eccentric portions 42 and 44.
[0030]
Thereby, the cross-sectional area of the connecting portion 90 connecting the upper and lower eccentric portions 42 and 44 provided integrally with the rotating shaft 16 is increased, the second moment of area is increased, and the strength (rigidity) is increased. Improve the quality. In particular, when a refrigerant having a high working pressure is subjected to two-stage compression, the load applied to the rotating shaft 16 increases because the pressure difference between the high and low pressures increases, but the cross-sectional area of the connecting portion 90 is increased to increase its strength (rigidity). The rotation shaft 16 can be prevented from being elastically deformed.
[0031]
The rotary compressor 10 uses the carbon dioxide (CO 2 ), which is a natural refrigerant in consideration of flammability and toxicity, as a refrigerant, and is friendly to the global environment. Existing oils such as (mineral oil), alkylbenzene oil, ether oil and ester oil are used.
[0032]
On the side surface of the closed container 12 (side surface of the container body 12A), the suction passages 58 and 60 of the upper support member 54 and the lower support member 56, the discharge muffling chamber 62, and the upper side of the upper cover 66 (substantially correspond to the lower end of the drive element 14). The sleeves 141, 142, 143, and 144 are respectively welded and fixed at positions corresponding to the respective positions. The sleeves 141 and 142 are vertically adjacent to each other, and the sleeve 143 is substantially on a diagonal line of the sleeve 141. The sleeve 144 is located at a position shifted from the sleeve 141 by approximately 90 degrees.
[0033]
One end of a refrigerant introduction pipe 92 for introducing a gas refrigerant into the upper cylinder 38 is inserted into the sleeve 141, and one end of the refrigerant introduction pipe 92 is connected to the suction passage 58 of the upper cylinder 38. The refrigerant introduction pipe 92 passes through the outside of the closed container 12 to reach the sleeve 144, and the other end is inserted and connected into the sleeve 144 and communicates with the inside of the closed container 12.
[0034]
One end of a refrigerant introduction pipe 94 for introducing a gas refrigerant into the lower cylinder 40 is inserted and connected into the sleeve 142, and one end of the refrigerant introduction pipe 94 communicates with the suction passage 60 of the lower cylinder 40. A refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant discharge pipe 96 is connected to the discharge muffling chamber 62. One end of an oil return pipe 190 to be described later is welded and fixed between the refrigerant discharge pipe 96 serving as a side surface of the container body 12A and the driving element 14 and is opened in the sealed container 12, and the other end is an oil cooling passage 184 to be described later. Welded and fixed at the outlet.
[0035]
A flange 151 (a flange of the sleeve 144 is not shown) is formed around the outer surfaces of the sleeves 141, 143, and 144 so that a pipe connection coupler can be engaged. A connection screw groove 152 is formed. Accordingly, a coupler (not shown) of a test pipe can be easily connected to the flange 151 when performing an airtightness test in a completion inspection in the manufacturing process of the rotary compressor 10, and the sleeves 142, 143, and 144 can be easily connected. In this case, the test pipe can be easily screwed using the screw groove 152. In particular, the upper and lower adjacent sleeves 141 and 142 have a flange 151 formed on one sleeve 141 and a thread groove 152 formed on the other sleeve 142, so that the test pipe can be connected to each sleeve 141, 142 in a narrow space. Can be connected.
[0036]
The rotary compressor 10 constitutes a part of a refrigerant circuit of the refrigerant cycle device 1 such as a refrigerator, a room air conditioner, a car air conditioner, and a package air conditioner as shown in FIG. That is, the refrigerant discharge pipe 96 of the rotary compressor 10 is connected to the oil separator 170, and the refrigerant outlet of the oil separator 170 is connected to the inlet of the gas cooler 154. A pipe 153 on the outlet side of the gas cooler 154 reaches an inlet of an evaporator (evaporator) 157 via an expansion valve 156 as a decompression device, and the outlet of the evaporator 157 is connected to a refrigerant introduction pipe 94.
[0037]
One end of an oil return pipe 190 is connected to an oil outlet of the oil separator 170. The oil return pipe 190 is connected to an electric expansion valve 172 as a flow path control device, and the other end of the oil return pipe 190 is connected to the inside of the sealed container 12. Reference numeral 171 denotes a controller having an inverter as a control device. The controller 171 controls the rotation speed (operating frequency) of the drive element 14 of the rotary compressor 10 using the inverter. Further, the controller 171 controls the valve opening of the electric expansion valve 172 using the rotation speed (operating frequency) of the driving element 14 as described later.
[0038]
Next, the operation of the refrigerant cycle device 1 having the above configuration will be described. When the drive element 14 of the rotary compressor 2 is energized by the controller 171 and thereby drives the first and second rotary compression elements 52 and 53, the rotary compressor 10 performs two-stage compression as described above, and the supercritical pressure. The discharged gas refrigerant (CO 2 ) is discharged into the refrigerant discharge pipe 96. The discharged gas refrigerant enters the oil separator 170 through the refrigerant discharge pipe 96, where oil mixed in the refrigerant is separated and accumulates at the bottom of the oil separator 170.
[0039]
The high-temperature and high-pressure gas refrigerant from which oil has been separated by the oil separator 170 flows into the gas cooler 154 and is air-cooled (here, exerts a heating action), but at this time, the refrigerant is still in the supercritical region and does not condense. . The refrigerant cooled to a predetermined temperature in the gas cooler 154 enters the expansion valve 156 through the pipe 153, and condenses there while being depressurized. The liquefied refrigerant then enters the evaporator 157, where it evaporates and exerts a cooling action. The refrigerant that has exited the evaporator 157 then repeats the cycle of being drawn into the first rotary compression element 32 of the rotary compressor 10.
[0040]
On the other hand, the oil separated by the oil separator 170 enters the oil return pipe 190 and returns to the inside of the closed container 12 via the electric expansion valve 172. Here, valve opening control of the electric expansion valve 172 by the controller 171 will be described with reference to FIG.
[0041]
The controller 171 controls the rotation speed (operating frequency) of the drive element 14 of the rotary compressor 10 based on the cooling capacity required by the evaporator 157 or the heating capacity required by the gas cooler 154. The controller 171 controls the valve opening of the electric expansion valve 172 in proportion to the square of the rotation speed (operating frequency) of the drive element 14. In FIG. 3, the horizontal axis X indicates the operating frequency (rotation speed) of the drive element 14, and the vertical axis Y indicates the valve opening of the electric expansion valve 172. The function used for control is represented by Y = F (X 2 ). You.
[0042]
As a result, the amount of oil that returns from the oil separator 170 into the closed casing 12 via the oil return pipe 190 changes in proportion to the square of the rotation speed (operating frequency) of the drive element 14. That is, when the number of rotations of the drive element 14 is doubled, the valve opening of the electric expansion valve 172 is increased in proportion to the square of 2, whereby the amount of oil returned from the oil return pipe 190 is increased. Further, when the rotation speed of the drive element 14 becomes 1 /, the valve opening of the electric expansion valve 172 is reduced in proportion to the square of 1 /, so that the feedback oil amount is reduced.
[0043]
Here, it has been found that the amount of oil discharged from the second rotary compression element 34 to the refrigerant discharge pipe 96 increases in proportion to the square of the rotation speed of the drive element 14. Since a large amount of oil can be returned to the closed container 12 when the rotation speed of the element 14 is high, oil depletion does not occur. Thereby, the disadvantage that the sealing property and the slidability of the rotary compression mechanism 18 at the time of the high rotation are reduced is also avoided.
[0044]
Further, when the number of rotations of the drive element 14 decreases, the amount of oil discharged from the second rotary compression element 34 also decreases in proportion to the square thereof, so that the amount of oil accumulated in the oil separator 170 also decreases. Therefore, the amount of oil entering the oil return pipe 190 from the oil separator 170 also decreases. When no oil is present in the oil return pipe 190, the inside of the oil separator 170 and the inside of the closed container 12 are communicated, and the high pressure side and the intermediate pressure side of the refrigerant circuit are bypassed. 171 narrows the valve opening of the electric expansion valve 172 to avoid the occurrence of such a bypass phenomenon. This prevents the efficiency of the refrigerant cycle device 1 from deteriorating.
[0045]
In the embodiment, the electric expansion valve 172 is used as a flow path control device for the oil return pipe 190. However, the present invention is not limited to this, and a normal electromagnetic valve may be used. In this case, the controller 171 controls the time during which the solenoid valve is opened per unit time and the number of times the solenoid valve is opened per unit time (one open time is fixed) in proportion to the square of the rotation speed of the drive element 14. Will do.
[0046]
In the embodiment, the internal intermediate pressure type two-stage compression type rotary compressor has been described as an example. However, the present invention is not limited to this. The refrigerant from the evaporator 157 is sucked into the closed vessel, and the low-pressure refrigerant in the closed vessel is rotated by the rotary compression element. The present invention is also effective for a so-called internal low-pressure type rotary compressor that compresses and discharges to the outside. Such an internal low pressure type rotary compressor also increases the oil discharge from the rotary compression element, so that it is possible to reliably prevent the rotary compressor from being depleted of oil, and also to bypass the high pressure oil separator 170 and the low pressure sealed container. Prevention and improvement of efficiency can be realized.
[0047]
【The invention's effect】
As described in detail above, according to the present invention, a rotary compressor including a drive element and a rotary compression mechanism driven by the drive element in a closed container, and oil in the refrigerant discharged from the rotary compressor is provided. In a refrigerant cycle device having an oil separator for separating and returning to the inside of a closed vessel via an oil return pipe, a flow path control device is provided in the oil return pipe, and rotation of the driving element is performed by the flow path control device. Since the flow path of the oil return pipe is controlled according to the number, the flow path control device is used as an electric expansion valve, and the valve of the electric expansion valve is opened in proportion to the square of the rotation speed of the driving element. Controlling the opening degree or the number of times of opening of the electromagnetic valve in proportion to the square of the rotation speed of the driving element, thereby controlling the driving element. High rotational speed Kicking it becomes possible to prevent the oil depletion in the closed container.
[0048]
Further, in a multi-stage compression type rotary compressor in which the inside of the closed vessel has an intermediate pressure as in claim 4, or in a rotary compressor in which the inside of the closed vessel has a low pressure as in claim 5, the drive is performed as in the case where a conventional capillary tube is used. When the number of rotations of the element is reduced, the disadvantage that the high pressure side is communicated with the intermediate pressure side or the low pressure side in the closed vessel via the oil separator can also be avoided.
[0049]
As a result, optimal oil return can always be realized, and the reliability and performance and efficiency of the rotary compressor can be significantly improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor used in a refrigerant circuit of an embodiment of a refrigerant cycle device to which the present invention is applied.
FIG. 2 is a refrigerant circuit diagram of one embodiment of the refrigerant cycle device of the present invention.
FIG. 3 is a diagram illustrating valve opening control of the electric expansion valve of FIG. 2;
[Explanation of symbols]
1 Refrigerant Cycle Device 10 Rotary Compressor 12 Closed Vessel 14 Drive Element 18 Rotary Compression Mechanism 32 First Rotary Compression Element 34 Second Rotary Compression Element 36 Intermediate Partition Plate 96 Refrigerant Discharge Tube 154 Gas Cooler 156 Expansion Valve 157 Evaporator 170 Oil Separator 171 Controller (control device)
172 Electric expansion valve 190 Oil return pipe

Claims (5)

密閉容器内に駆動要素と該駆動要素にて駆動される回転圧縮機構部とを備えたロータリコンプレッサと、該ロータリコンプレッサから吐出された冷媒中のオイルを分離し、オイル戻し管を介して前記密閉容器内に戻すためのオイル分離器とを備えた冷媒サイクル装置において、
前記オイル戻し管に流路制御装置を設け、該流路制御装置により、前記駆動要素の回転数に応じて前記オイル戻し管の流路を制御することを特徴とする冷媒サイクル装置。
A rotary compressor having a driving element and a rotary compression mechanism driven by the driving element in a closed container; separating oil in refrigerant discharged from the rotary compressor, and sealing the oil through an oil return pipe. In a refrigerant cycle device comprising an oil separator for returning into the container,
A refrigerant cycle device, wherein a flow path control device is provided in the oil return pipe, and the flow path control apparatus controls a flow path of the oil return pipe according to a rotation speed of the drive element.
前記流路制御装置は電動膨張弁であり、前記駆動要素の回転数の二乗に比例して当該電動膨張弁の弁開度を制御することを特徴とする請求項1の冷媒サイクル装置。2. The refrigerant cycle device according to claim 1, wherein the flow path control device is an electric expansion valve, and controls a valve opening of the electric expansion valve in proportion to a square of a rotation speed of the driving element. 前記流路制御装置は電磁弁であり、前記駆動要素の回転数の二乗に比例して当該電磁弁の開時間若しくは開回数を制御することを特徴とする請求項1の冷媒サイクル装置。2. The refrigerant cycle device according to claim 1, wherein the flow path control device is an electromagnetic valve, and controls the opening time or the number of times of opening of the electromagnetic valve in proportion to the square of the rotation speed of the driving element. 前記回転圧縮機構部は第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素にて圧縮され、前記密閉容器内に吐出された冷媒を前記第2の回転圧縮要素に吸い込み、圧縮して前記密閉容器外に吐出することを特徴とする請求項1、請求項2又は請求項3の冷媒サイクル装置。The rotary compression mechanism section includes first and second rotary compression elements, and sucks the refrigerant compressed by the first rotary compression element and discharged into the closed container into the second rotary compression element. 4. The refrigerant cycle device according to claim 1, wherein the refrigerant is compressed and discharged out of the closed container. 前記回転圧縮機構部は、前記密閉容器内に流入した冷媒を吸い込んで圧縮し、当該密閉容器外に吐出することを特徴とする請求項1、請求項2又は請求項3の冷媒サイクル装置。4. The refrigerant cycle device according to claim 1, wherein the rotary compression mechanism sucks and compresses the refrigerant flowing into the closed container and discharges the refrigerant outside the closed container. 5.
JP2003088001A 2003-03-27 2003-03-27 Refrigerant cycle equipment Expired - Fee Related JP4169620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088001A JP4169620B2 (en) 2003-03-27 2003-03-27 Refrigerant cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088001A JP4169620B2 (en) 2003-03-27 2003-03-27 Refrigerant cycle equipment

Publications (2)

Publication Number Publication Date
JP2004293450A true JP2004293450A (en) 2004-10-21
JP4169620B2 JP4169620B2 (en) 2008-10-22

Family

ID=33402247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088001A Expired - Fee Related JP4169620B2 (en) 2003-03-27 2003-03-27 Refrigerant cycle equipment

Country Status (1)

Country Link
JP (1) JP4169620B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110985393A (en) * 2019-10-28 2020-04-10 珠海格力节能环保制冷技术研究中心有限公司 Low-backpressure rotary compressor, corresponding oil return pressure drop control method and air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110985393A (en) * 2019-10-28 2020-04-10 珠海格力节能环保制冷技术研究中心有限公司 Low-backpressure rotary compressor, corresponding oil return pressure drop control method and air conditioner
CN110985393B (en) * 2019-10-28 2021-11-16 珠海格力节能环保制冷技术研究中心有限公司 Low-backpressure rotary compressor, corresponding oil return pressure drop control method and air conditioner

Also Published As

Publication number Publication date
JP4169620B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
KR20070037306A (en) Refrigerant compressor and refrigerant cycle apparatus incorporating the same
US20100226796A1 (en) Rotary compressor
JP2005003239A (en) Refrigerant cycling device
JP3728227B2 (en) Rotary compressor
JP3963740B2 (en) Rotary compressor
JP3370027B2 (en) 2-stage compression type rotary compressor
JP3983115B2 (en) Refrigerant circuit using CO2 refrigerant
JP2006022723A (en) Compression system and refrigerating apparatus using the same
JP2004308968A (en) Heat exchanger
JP4169620B2 (en) Refrigerant cycle equipment
JP4766872B2 (en) Multi-cylinder rotary compressor
JP4024056B2 (en) Rotary compressor
JP4236400B2 (en) Defroster for refrigerant circuit
JP4020612B2 (en) Rotary compressor
JP3913507B2 (en) Rotary compressor
JP3883837B2 (en) Rotary compressor
JP3963695B2 (en) Manufacturing method of rotary compressor
JP4020622B2 (en) Rotary compressor
JP3963703B2 (en) Electric compressor
JP4726444B2 (en) Multi-cylinder rotary compressor
JP2003201982A (en) Rotary compressor
JP3825670B2 (en) Electric compressor
JP3986283B2 (en) Rotary compressor
JP2004092469A (en) Rotary compressor
JP2005147562A (en) Two-stage compression type rotary compressor, and car air conditioner and heat pump type hot water supply apparatus using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080805

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees