JP3825670B2 - Electric compressor - Google Patents

Electric compressor Download PDF

Info

Publication number
JP3825670B2
JP3825670B2 JP2001315687A JP2001315687A JP3825670B2 JP 3825670 B2 JP3825670 B2 JP 3825670B2 JP 2001315687 A JP2001315687 A JP 2001315687A JP 2001315687 A JP2001315687 A JP 2001315687A JP 3825670 B2 JP3825670 B2 JP 3825670B2
Authority
JP
Japan
Prior art keywords
refrigerant
sealed container
pipe
compression element
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001315687A
Other languages
Japanese (ja)
Other versions
JP2003120538A (en
Inventor
兼三 松本
昌也 只野
晴久 山崎
大 松浦
里  和哉
隆泰 斎藤
俊行 江原
悟 今井
淳志 小田
孝 佐藤
裕之 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001315687A priority Critical patent/JP3825670B2/en
Priority to US10/225,442 priority patent/US7128540B2/en
Priority to ES06013468T priority patent/ES2398963T3/en
Priority to EP06013469A priority patent/EP1703131A3/en
Priority to EP06013471A priority patent/EP1703133A3/en
Priority to EP02256240A priority patent/EP1298324A3/en
Priority to EP06013467A priority patent/EP1703129B1/en
Priority to EP06013470A priority patent/EP1703132B1/en
Priority to ES06013467T priority patent/ES2398363T3/en
Priority to EP04030238A priority patent/EP1517036A3/en
Priority to EP04030239A priority patent/EP1522733A3/en
Priority to EP06013468A priority patent/EP1703130B1/en
Priority to EP04030233A priority patent/EP1517041A3/en
Priority to ES06013470T priority patent/ES2398245T3/en
Priority to KR1020020058289A priority patent/KR20030028388A/en
Priority to CNB2006100743724A priority patent/CN100425842C/en
Publication of JP2003120538A publication Critical patent/JP2003120538A/en
Priority to US10/747,285 priority patent/US7174725B2/en
Priority to US10/747,288 priority patent/US20040151603A1/en
Priority to US10/790,085 priority patent/US7435063B2/en
Priority to US10/790,181 priority patent/US7435062B2/en
Priority to US11/377,402 priority patent/US7302803B2/en
Publication of JP3825670B2 publication Critical patent/JP3825670B2/en
Application granted granted Critical
Priority to US11/896,347 priority patent/US7837449B2/en
Priority to US11/896,346 priority patent/US7762792B2/en
Priority to KR1020080067906A priority patent/KR20080071956A/en
Priority to KR1020080067910A priority patent/KR100892840B1/en
Priority to KR1020080067905A priority patent/KR100892838B1/en
Priority to KR1020080067919A priority patent/KR20080071961A/en
Priority to KR1020080067907A priority patent/KR100892839B1/en
Priority to KR1020080067917A priority patent/KR100892841B1/en
Priority to KR1020080067914A priority patent/KR20080071959A/en
Priority to KR1020080067904A priority patent/KR100862822B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の圧縮要素を設けて成る電動圧縮機に関するものである。
【0002】
【従来の技術】
従来のこの種電動圧縮機、例えば内部中間圧型多段圧縮式のロータリコンプレッサでは、冷媒導入管を経て第1の回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となりシリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。そして、この密閉容器内の中間圧の冷媒ガスは第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経て冷媒吐出管から放熱器に流入し、放熱した後、膨張弁で絞られて蒸発器で吸熱し、第1の回転圧縮要素に吸入されるサイクルを繰り返す。
【0003】
【発明が解決しようとする課題】
ここで、密閉容器内に吐出された中間圧の冷媒ガスを密閉容器外に位置するもう一つの冷媒導入管により第2の回転圧縮要素に吸い込ませる場合、第1の回転圧縮要素への冷媒導入管と第2の回転圧縮要素への冷媒導入管は、相隣接した位置にて密閉容器に接続されることになる。
【0004】
そのため、両冷媒導入管が相互に干渉し合い、取り回しが困難となる問題がある。特に、第1の回転圧縮要素への冷媒導入管には通常アキュムレータが接続され、このアキュムレータは各冷媒導入管の接続位置の上方に配置されるので、両冷媒導入管の干渉が生じ易く、アキュムレータの位置も下げに難くなる問題もあった。
【0005】
本発明は、係る従来の技術的課題を解決するために成されたものであり、第1及び第2の冷媒導入管が相互に干渉すること無くスペース効率も改善できる電動圧縮機を提供することを目的とする。
【0006】
【課題を解決するための手段】
即ち、請求項1の発明の電動圧縮機は、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の圧縮要素と、第1の圧縮要素に冷媒を導入する冷媒管と、第1の圧縮要素で圧縮した中間圧の冷媒ガスを第2の圧縮要素に導入する冷媒管と、第2の圧縮要素で圧縮した高圧ガスを吐出する冷媒管とを備えるものであって、第1及び第2の圧縮要素の冷媒管は相隣接する位置で密閉容器に接続され、当該密閉容器から相互に反対方向に向かって取り回されていることを特徴とする。
【0007】
請求項2の発明の電動圧縮機は、上記において第1の圧縮要素の冷媒管は第2の圧縮要素の冷媒管の下側の位置で密閉容器に接続されており、各冷媒管の密閉容器への接続位置の上方にはアキュムレータが配置され、当該アキュムレータは第1の圧縮要素に冷媒を導入する冷媒管に接続されていることを特徴とする。
【0008】
請求項1の発明によれば、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の圧縮要素と、第1の圧縮要素に冷媒を導入する冷媒管と、第1の圧縮要素で圧縮した中間圧の冷媒ガスを第2の圧縮要素に導入する冷媒管と、第2の圧縮要素で圧縮した高圧ガスを吐出する冷媒管とを備える電動圧縮機において、第1及び第2の圧縮要素の冷媒管は相隣接する位置で密閉容器に接続され、当該密閉容器から相互に反対方向に向かって取り回すようにしたので、各冷媒管を限られたスペース内で相互に干渉すること無く取り回すことができるようになる。
【0009】
特に、請求項2の如く第1の圧縮要素の冷媒管は第2の圧縮要素の冷媒管の下側の位置で密閉容器に接続されており、各冷媒管の密閉容器への接続位置の上方にはアキュムレータが配置され、当該アキュムレータは第1の圧縮要素に冷媒を導入する冷媒管に接続されている場合には、両冷媒管相互の干渉を避けながら、アキュムレータの位置を最大限下げて第2の圧縮要素の冷媒管に接近させることが可能となり、スペース効率の著しい改善を図ることができるようになるものである。
【0010】
また、請求項3の発明の電動圧縮機は、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の圧縮要素を備え、第1の冷媒導入管より吸い込んだ冷媒ガスを第1の圧縮要素で圧縮して密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを、密閉容器外に位置する第2の冷媒導入管を介して吸い込み、第2の圧縮要素で圧縮するものであって、第1及び第2の冷媒導入管は相隣接する位置で密閉容器に接続され、当該密閉容器から相互に反対方向に向かって取り回されていることを特徴とする。
【0011】
請求項4の発明の電動圧縮機は、上記において第1の冷媒導入管は第2の冷媒導入管の下側の位置で密閉容器に接続されており、各冷媒導入管の密閉容器への接続位置の上方にはアキュムレータが配置され、当該アキュムレータに第1の冷媒導入管が接続されていることを特徴とする。
【0012】
請求項3の発明によれば、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の圧縮要素を備え、第1の冷媒導入管より吸い込んだ冷媒ガスを第1の圧縮要素で圧縮して密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを、密閉容器外に位置する第2の冷媒導入管を介して吸い込み、第2の圧縮要素で圧縮する電動圧縮機において、第1及び第2の冷媒導入管を相隣接する位置で密閉容器に接続し、当該密閉容器から相互に反対方向に向かって取り回すようにしたので、各冷媒導入管を限られたスペース内で相互に干渉すること無く取り回すことができるようになる。
【0013】
特に、請求項4の如く第1の冷媒導入管が第2の冷媒導入管の下側の位置で密閉容器に接続され、各冷媒導入管の密閉容器への接続位置の上方にアキュムレータが配置されて、当該アキュムレータが第1の冷媒導入管に接続される場合には、両冷媒導入管相互の干渉を避けながら、アキュムレータの位置を最大限下げて第2の冷媒導入管に接近させることが可能となり、スペース効率の著しい改善を図ることができるようになるものである。
【0014】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の電動圧縮機の実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式のロータリコンプレッサ10の縦断面図、図2はロータリコンプレッサ10の正面図、図3ロータリコンプレッサ10の側面図、図4はロータリコンプレッサ10のもう一つの縦断面図、図5はロータリコンプレッサ10の更にもう一つの縦断面図、図6はロータリコンプレッサ10の電動要素14部分の平断面図、図7はロータリコンプレッサ10の回転圧縮機構部18の拡大断面図をそれぞれ示している。
【0015】
各図において、10は二酸化炭素(CO2)を冷媒として使用する内部中間圧型多段圧縮式のロータリコンプレッサで、このロータリコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)からなる回転圧縮機構部18にて構成されている。実施例のロータリコンプレッサ10の高さ寸法は220mm(外径120mm)、電動要素14の高さ寸法は約80mm(外径110mm)、回転圧縮機構部18の高さ寸法は約70mm(外径110mm)で、電動要素14と回転圧縮機構部18との間隔は約5mmとなっている。また、第2の回転圧縮要素34の排除容積は第1の回転圧縮要素32の排除容積よりも小さく設定されている。
【0016】
密閉容器12は実施例では厚さ4.5mmの鋼板より構成され、底部をオイル溜とし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0017】
この場合、ターミナル20の周囲のエンドキャップ12Bには、座押成形によって所定曲率の段差部12Cが環状に形成されている。また、ターミナル20は電気的端子139が貫通して取り付けられた円形のガラス部20Aと、このガラス部20Aの周囲に形成され、斜め外下方に鍔状に張り出した金属製の取付部20Bとから構成されている。取付部20Bの厚さ寸法は2.4±0.5mmとされている。そして、ターミナル20は、そのガラス部20Aを下側から取付孔12Dに挿入して上側に臨ませ、取付部20Bを取付孔12Dの周縁に当接させた状態でエンドキャップ12Bの取付孔12D周縁に取付部20Bを溶接することで、エンドキャップ12Bに固定されている。
【0018】
電動要素14は、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隙を設けて挿入配置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。
【0019】
ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している(図6)。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して構成されている。
【0020】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置されたシリンダ38、シリンダ40と、この上下シリンダ38、40内を180度の位相差を有して回転軸16に設けた上下偏心部42、44に嵌合されて偏心回転する上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画する後述する上下ベーン50(下側のベーンは図示せず)と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成される。
【0021】
上部支持部材54および下部支持部材56には、吸込ポート161、162にて上下シリンダ38、40の内部とそれぞれ連通する吸込通路58、60と、凹陥した吐出消音室62、64が形成されると共に、これら両吐出消音室62、64の開口部はそれぞれカバーにより閉塞される。即ち、吐出消音室62はカバーとしての上部カバー66、吐出消音室64はカバーとしての下部カバー68にて閉塞される。
【0022】
この場合、上部支持部材54の中央には軸受け54Aが起立形成されており、この軸受け54A内面には筒状のブッシュ122が装着されている。また、下部支持部材56の中央には軸受け56Aが貫通形成されており、この軸受け56A内面にも筒状のブッシュ123が装着されている。これらブッシュ122、123は後述する如き摺動性の良い材料にて構成されており、回転軸16はこれらブッシュ122、123を介して上部支持部材54の軸受け54Aと下部支持部材56の軸受け56Aに保持される。
【0023】
この場合、下部カバー68はドーナッツ状の円形鋼板から構成されており、周辺部の4カ所を主ボルト129・・・によって下から下部支持部材56に固定され、吐出ポート41にて第1の回転圧縮要素32の下シリンダ40内部と連通する吐出消音室64の下面開口部を閉塞する。この主ボルト129・・・の先端は上部支持部材54に螺合する。下部カバー68の内周縁は下部支持部材56の軸受け56A内面より内方に突出しており、これによって、ブッシュ123の下端面は下部カバー68によって保持され、脱落が防止されている(図9)。図10は下部支持部材56の下面を示しており、128は吐出消音室64内において吐出ポート41を開閉する第1の回転圧縮要素32の吐出弁である。
【0024】
ここで、下部支持部材56は鉄系の焼結材料(若しくは鋳物でも可)により構成されており、下部カバー68を取り付ける側の面(下面)は、平面度0.1mm以下に加工された後、スチーム処理が加えられている。このスチーム処理によって下部カバー68を取り付ける側の面は酸化鉄となるため、焼結材料内部の孔が塞がれてシール性が向上する。これにより、下部カバー68と下部支持部材56間にガスケットを介設する必要が無くなる。
【0025】
尚、吐出消音室64と密閉容器12内における上部カバー66の電動要素14側は、上下シリンダ38、40や中間仕切板36を貫通する孔である連通路63にて連通されている(図4)。この場合、連通路63の上端には中間吐出管121が立設されており、この中間吐出管121は上方の電動要素14のステータ22に巻装された相隣接するステータコイル28、28間の隙間に指向している(図6)。
【0026】
また、上部カバー66は吐出ポート39にて第2の回転圧縮要素34の上シリンダ38内部と連通する吐出消音室62の上面開口部を閉塞し、密閉容器12内を吐出消音室62と電動要素14側とに仕切る。この上部カバー66は図11に示す如く厚さ2mm以上10mm以下(実施例では最も望ましい6mmとされている)であって、前記上部支持部材54の軸受け54Aが貫通する孔が形成された略ドーナッツ状の円形鋼板から構成されており、上部支持部材54との間にビード付きのガスケット124を挟み込んだ状態で、当該ガスケット124を介して周辺部が4本の主ボルト78・・・により、上から上部支持部材54に固定されている。この主ボルト78・・・の先端は下部支持部材56に螺合する。
【0027】
上部カバー66を係る厚さ寸法とすることで、密閉容器12内よりも高圧となる吐出消音室62の圧力に十分に耐えながら、小型化を達成し、電動要素14との絶縁距離を確保することもできるようになる。更に、この上部カバー66の内周縁と軸受け54Aの外面間にはOリング126が設けられている(図12)。係るOリング126により軸受け54A側のシールを行うことで、上部カバー66の内周縁で十分にシールを行い、ガスリークを防ぐことができるようになり、吐出消音室62の容積拡大が図れると共に、Cリングにより上部カバー66の内周縁側を軸受け54Aに固定する必要も無くなる。ここで、図11において127は吐出消音室62内において吐出ポート39を開閉する第2の回転圧縮要素34の吐出弁である。
【0028】
次に、上シリンダ38の下側の開口面及び下シリンダ40の上側の開口面を閉塞する中間仕切板36内には、上シリンダ38内の吸込側に対応する位置に、図13、図14に示す如く外周面から内周面に至り、外周面と内周面とを連通して給油路を構成する貫通孔131が穿設されており、この貫通路131の外周面側の封止材132を圧入して外周面側の開口を封止している。また、この貫通孔131の中途部には上側に延在する連通孔133が穿設されている。
【0029】
一方、上シリンダ38の吸込ポート161(吸込側)には中間仕切板36の連通孔133に連通する連通孔134が穿設されている。また、回転軸16内には図7に示す如く軸中心に鉛直方向のオイル孔80と、このオイル孔80に連通する横方向の給油孔82、84(回転軸16の上下偏心部42、44にも形成されている)が形成されており、中間仕切板36の貫通孔131の内周面側の開口は、これらの給油孔82、84を介してオイル孔80に連通している。
【0030】
後述する如く密閉容器12内は中間圧となるため、2段目で高圧となる上シリンダ38内にはオイルの供給が困難となるが、中間仕切板36を係る構成としたことにより、密閉容器12内底部のオイル溜めから汲み上げられてオイル孔80を上昇し、給油孔82、84から出たオイルは、中間仕切板36の貫通孔131に入り、連通孔133、134から上シリンダ38の吸込側(吸込ポート161)に供給されるようになる。
【0031】
図16中Lは上シリンダ38の吸入側の圧力変動を示し、図中P1は中間仕切板36の内周面の圧力を示す。この図にL1で示す如く上シリンダ38の吸込側の圧力(吸入圧力)は、吸入過程においては吸入圧損により中間仕切板36の内周面側の圧力よりも低下する。この期間に中間仕切板36の貫通孔131、連通孔133から上シリンダ38の連通孔134を介して上シリンダ38内に給油が成されることになる。
【0032】
上述の如く上下シリンダ38、40、中間仕切板36、上下支持部材54、56及び上下カバー66、68はそれぞれ4本の主ボルト78・・・と主ボルト129・・・にて上下から締結されるが、更に、上下シリンダ38、40、中間仕切板36、上下支持部材54、56は、これら主ボルト78、129の外側に位置する補助ボルト136、136により締結される(図4)。この補助ボルト136は上部支持部材54側から挿入され、先端は下支持部材56に螺合している。
【0033】
また、この補助ボルト136は前述したベーン50の後述する案内溝70の近傍に位置している。このように補助ボルト136、136を追加して回転圧縮機構部18を一体化することで、内部が極めて高圧となることに対するシール性の確保が成されると共に、ベーン50の案内溝70の近傍を締め付けるので、ベーン50に加える高圧の背圧のリークも防止できるようになる。
【0034】
一方、上シリンダ38内には前述したベーン50を収納する案内溝70と、この案内溝70の外側に位置してバネ部材としてのスプリング76を収納する収納部70Aが形成されており、この収納部70Aは案内溝70側と密閉容器12(容器本体12A)側に開口している(図8)。前記スプリング76はベーン50の外側端部に当接し、常時ベーン50をローラ46側に付勢する。そして、このスプリング76の密閉容器12側の収納部70A内には金属製のプラグ137が設けられ、スプリング76の抜け止めの役目を果たす。
【0035】
この場合、プラグ137の外寸は収納部70Aの内寸よりも小さく設定され、プラグ137は収納部70A内に隙間嵌めにより挿入される。また、プラグ137の周面には当該プラグ137と収納部70Aの内面間をシールするためのOリング138が取り付けられている。そして、上シリンダ38の外端、即ち、収納部70Aの外端と密閉容器12の容器本体12A間の間隔は、Oリング138からプラグ137の密閉容器12側の端部までの距離よりも小さく設定されている。そして、ベーン50の案内溝70に連通する図示しない背圧室には第2の回転圧縮要素34の吐出圧力である高圧が背圧として加えられる。従って、プラグ137のスプリング76側は高圧、密閉容器12側は中間圧となる。
【0036】
係る寸法関係としたことにより、プラグ137を収納部70A内に圧入固定する場合の如く、上シリンダ38が変形して上部支持部材54との間のシール性が低下し、性能悪化を来す不都合を未然に回避することができるようになる。また、係る隙間嵌めであっても、上シリンダ38と密閉容器12間の間隔をOリング138からプラグ137の密閉容器12側の端部までの距離よりも小さく設定しているので、スプリング76側の高圧(ベーン50の背圧)によってプラグ137が収納部70Aから押し出される方向に移動しても、密閉容器12に当接して移動が阻止された時点で依然Oリング138は収納部70A内に位置してシールするので、プラグ138の機能には何ら問題は生じない。
【0037】
ところで、回転軸16と一体に180度の位相差を持って形成される上下偏心部42、44の相互間を連結する連結部90は、その断面形状を回転軸16の円形断面より断面積を大きくして剛性を持たせるために非円形状の例えばラグビーボール状とされている(図17)。即ち、回転軸16に設けた上下偏心部42、44を連結する連結部90の断面形状は上下偏心部42、44の偏心方向に直交する方向でその肉厚を大きくしている(図中ハッチングの部分)。
【0038】
これにより、回転軸16に一体に設けられた上下偏心部42、44を連結する連結部90の断面積が大きくし、断面2次モーメントを増加させて強度(剛性)を増し、耐久性と信頼性を向上させている。特に使用圧力の高い冷媒を2段圧縮する場合、高低圧の圧力差が大きいために回転軸16にかかる荷重も大きくなるが、連結部90の断面積を大きくしてその強度(剛性)を増し、回転軸16が弾性変形してしまうのを防止している。
【0039】
この場合、上側の偏心部42の中心をO1とし、下側の偏心部44の中心をO2とすると、偏心部42の偏心方向側の連結部90の面の円弧の中心はO1、偏心部44の偏心方向側の連結部90の面の円弧の中心はO2としている。これにより、回転軸16を切削加工機にチャックして上下偏心部42、44と連結部90を切削加工する際、偏心部42を加工した後、半径のみを変更して連結部90の一面を加工し、チャック位置を変更して連結部90の他面を加工し、半径のみを変更して偏心部44を加工すると云う作業が可能となる。これにより、回転軸16をチャックし直す回数が減少して生産性が著しく改善されるようになる。
【0040】
そして、この場合冷媒としては地球環境にやさしく、可燃性および毒性等を考慮して自然冷媒である炭酸ガスの一例としての前記二酸化炭素(CO2)を使用し、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油等既存のオイルが使用される。
【0041】
密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路58、60、吐出消音室62及び上部カバー66の上側(電動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。スリーブ141と142は上下に相隣接すると共に、スリーブ143はスリーブ141の略対角線上にある。また、スリーブ144はスリーブ141と略90度ずれた位置にある。
【0042】
そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92(冷媒管。第2の冷媒導入管。)の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の吸込通路58に連通される。この冷媒導入管92は密閉容器12の上側(従って、冷媒導入管92は密閉容器12外に位置する。)を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0043】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94(冷媒管。第1の冷媒導入管。)の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60に連通される。そして、この冷媒導入管94の他端はアキュムレータ146の下端に接続されている。また、スリーブ143内には冷媒吐出管96(冷媒管)が挿入接続され、この冷媒吐出管96の一端は吐出消音室62に連通される。
【0044】
上記アキュムレータ146は吸込冷媒の気液分離を行うタンクであり、密閉容器12の容器本体12Aの上部側面に溶接固定された密閉容器側のブラケット147にアキュムレータ側のブラケット148を介して取り付けられ、スリーブ141や142の上方に位置している。このブラケット148は下端部両側がブラケット147にネジ171によって固定されており、当該ブラケット147から上方に延在し、その上端部両側にネジ173によって取り付けられるバンド172にてアキュムレータ146の上下方向の略中央部を保持している。この場合、アキュムレータ148は溶接によってブラケット148に固定してもよい。その状態でアキュムレータ146は密閉容器12の側方に沿うかたちで配置される。
【0045】
このようにブラケット147とブラケット148を介してアキュムレータ146を密閉容器12の本体12Aに取り付けるようにしているので、アキュムレータ146の容量が拡大され、その上下寸法が大きくなった場合にも、ブラケット147を変更すること無く、ブラケット148の上下寸法を拡大(変更)するのみで、アキュムレータ146の略中央を保持したまま、その下端位置を持ち上げることができるようになる。これにより、その下方の冷媒導入管92とも干渉し難くなる。
【0046】
また、ブラケット147は密閉容器12の塗装時に製造設備のハンガーを掛ける引っかけ部となるが、係る構成としたことで、このハンガーの変更も不要となる。そして、アキュムレータ146の容量変更が生じた場合にも、前述の如くアブラケット148を変更するのみでその略中央(若しくは略重心位置)でアキュムレータ146を保持可能となり、振動による騒音の増大も防止できるようになる。
【0047】
一方、図3に示す如く冷媒導入管92はスリーブ141から出た後、実施例では右方に屈曲した後、上昇しており、アキュムレータ146の下端はこの冷媒導入管92に近接する位置まで下げられている。そこで、アキュムレータ146の下端から降下する冷媒導入管94は、スリーブ141から見て冷媒導入管92の屈曲方向とは反対の左側を迂回してスリーブ142に至るように取り回されている。
【0048】
即ち、上部支持部材38と下部支持部材40の吸込通路58、60にそれぞれ連通する冷媒導入管92、94は密閉容器12から見て水平面上で反対の方向(180度異なる方向)に屈曲されたかたちで取り回されており、これにより、アキュムレータ146の上下寸法を拡大して容積を増やし、或いは、取付位置を下げることでその下端が冷媒導入管92に近接するようになっても、各冷媒導入管92、94が相互に干渉しなくなる。
【0049】
また、スリーブ141、143、144の外面周囲には配管接続用のカプラが係合可能な鍔部151が形成されており、スリーブ142の外面には配管接続用のネジ溝152が形成されている。これにより、スリーブ141、143、144にはロータリコンプレッサ10の製造工程における完成検査で気密試験を行う場合に試験用配管のカプラを鍔部151に容易に接続できるようになると共に、スリーブ142にはネジ溝152を使用して試験用配管を容易にネジ止めできるようになる。特に、上下で隣接するスリーブ141と142は、一方のスリーブ141に鍔部151が、他方のスリーブ142にネジ溝152が形成されていることで、狭い空間で試験用配管を各スリーブ141、142に接続可能となる。
【0050】
そして、実施例のロータリコンプレッサ10は図18に示すような給湯装置153の冷媒回路に使用される。即ち、ロータリコンプレッサ10の冷媒吐出管96は水加熱用のガスクーラ154の入口に接続される。このガスクーラ154が給湯装置153の図示しない貯湯タンクに設けられる。ガスクーラ154を出た配管は減圧装置としての膨張弁156を経て蒸発器157の入口に至り、蒸発器157の出口は冷媒導入管94に接続される。また、冷媒導入管92の中途部からは図2、図3では図示していないが除霜回路を構成するデフロスト管158が分岐し、流路制御装置としての電磁弁159を介してガスクーラ154の入口に至る冷媒吐出管96に接続されている。尚、図18ではアキュムレータ146は省略されている。
【0051】
以上の構成で次に動作を説明する。尚、加熱運転では電磁弁159は閉じているものとする。ターミナル20および図示されない配線を介して電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0052】
これにより、冷媒導入管94および下部支持部材56に形成された吸込通路60を経由して吸込ポート162から下シリンダ40の低圧室側に吸入された低圧(一段目吸入圧LP:4MPaG)の冷媒ガスは、ローラ48とベーンの動作により圧縮されて中間圧(MP1:8MPaG)となり下シリンダ40の高圧室側より吐出ポート41、下部支持部材56に形成された吐出消音室64から連通路63を経て中間吐出管121から密閉容器12内に吐出される。
【0053】
このとき、中間吐出管121は上方の電動要素14のステータ22に巻装された相隣接するステータコイル28、28間の隙間に指向しているので、未だ比較的温度の低い冷媒ガスを電動要素14方向に積極的に供給できるようになり、電動要素14の温度上昇が抑制されるようになる。また、これによって、密閉容器12内は中間圧(MP1)となる。
【0054】
そして、密閉容器12内の中間圧の冷媒ガスは、スリーブ144から出て(中間吐出圧は前記MP1)冷媒導入管92及び上部支持部材54に形成された吸込通路58を経由して吸込ポート161から上シリンダ38の低圧室側に吸入される(2段目吸入圧MP2)。吸入された中間圧の冷媒ガスは、ローラ46とベーン50の動作により2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり(2段目吐出圧HP:12MPaG)、高圧室側から吐出ポート39を通り上部支持部材54に形成された吐出消音室62、冷媒吐出管96を経由してガスクーラ154内に流入する。このときの冷媒温度は略+100℃まで上昇しており、係る高温高圧の冷媒ガスは放熱して、貯湯タンク内の水を加熱し、約+90℃の温水を生成する。
【0055】
一方、ガスクーラ154において冷媒自体は冷却され、ガスクーラ154を出る。そして、膨張弁156で減圧された後、蒸発器157に流入して蒸発し、アキュムレータ146(図18では示していない)を経て冷媒導入管94から第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0056】
特に、低外気温の環境ではこのような加熱運転で蒸発器157には着霜が成長する。その場合には電磁弁159を開放し、膨張弁156は全開状態として蒸発器157の除霜運転を実行する。これにより、密閉容器12内の中間圧の冷媒(第2の回転圧縮要素34から吐出された少量の高圧冷媒を含む)は、デフロスト管158を通ってガスクーラ154に至る。この冷媒の温度は+50〜+60℃程であり、ガスクーラ154では放熱せず、当初は逆に冷媒が熱を吸収するかたちとなる。そして、ガスクーラ154から出た冷媒は膨張弁156を通過し、蒸発器157に至るようになる。即ち、蒸発器157には略中間圧の比較的温度の高い冷媒が減圧されずに実質的に直接供給されるかたちとなり、これによって、蒸発器157は加熱され、除霜されることになる。
【0057】
ここで、第2の回転圧縮要素34から吐出された高圧冷媒を減圧せずに蒸発器157に供給して除霜した場合には、膨張弁156が全開のために第1の回転圧縮要素32の吸込圧力が上昇し、これにより、第1の回転圧縮要素32の吐出圧力(中間圧)が高くなる。この冷媒は第2の回転圧縮要素34を通って吐出されるが、膨張弁156が全開のために第2の回転圧縮要素34の吐出圧力が第1の回転圧縮要素32の吸込圧力と同様となってしまうために第2の回転圧縮要素34の吐出(高圧)と吸込(中間圧)で圧力の逆転現象が発生してしまう。しかしながら、上述の如く第1の回転圧縮要素32から吐出された中間圧の冷媒ガスを密閉容器12から取り出して蒸発器157の除霜を行うようにしているので、係る高圧と中間圧の逆転現象を防止することができるようになる。
【0058】
尚、実施例では縦型のロータリコンプレッサのためにスリーブ141と142を上下に隣接して設けたが、請求項1では横型ロータリコンプレッサの如く両スリーブが左右に相隣接する場合も含む。そして、その場合には冷媒導入管92、94は上方と下方、若しくは、右方と左方と云うように、反対方向に取り回されることになる。
【0059】
また、上記実施例では第1の回転圧縮要素32にて圧縮された中間圧の冷媒ガスを密閉容器12内に吐出したが、請求項1及び請求項2の発明ではこれに限らず、第1の回転圧縮要素32から吐出された冷媒ガスを、密閉容器12内に吐出すること無く、直接冷媒導入管92に流入させて第2の回転圧縮要素34に吸い込ませるようにしてもよい。
【0060】
更に、上記実施例では第2の回転圧縮要素34の冷媒導入管92と第1の回転圧縮要素32の冷媒導入管94を上下に隣接して設けたが、請求項1及び請求項2の発明ではそれに限らず、第2の回転圧縮要素34の冷媒吐出管96と第1の回転圧縮要素32の冷媒導入管94を上下に隣接して設けてもよい。その場合には、冷媒吐出管96と冷媒導入管94が密閉容器12から相互に反対方向に向かって取り回されることになる。
【0061】
更にまた、上記実施例では電動圧縮機として内部中間圧型多段圧縮式のロータリコンプレッサを採りあげたが、それに限らず、理論的には他の方式のコンプレッサ(レシプロ、スクロールなど)にも有効である。更に、実施例ではロータリコンプレッサを給湯装置の冷媒回路に用いたが、これに限らず、室内の暖房用などに用いても本発明は有効である。
【0062】
【発明の効果】
以上詳述した如く請求項1の発明によれば、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の圧縮要素と、第1の圧縮要素に冷媒を導入する冷媒管と、第1の圧縮要素で圧縮した中間圧の冷媒ガスを第2の圧縮要素に導入する冷媒管と、第2の圧縮要素で圧縮した高圧ガスを吐出する冷媒管とを備える電動圧縮機において、第1及び第2の圧縮要素の冷媒管は相隣接する位置で密閉容器に接続され、当該密閉容器から相互に反対方向に向かって取り回すようにしたので、各冷媒管を限られたスペース内で相互に干渉すること無く取り回すことができるようになる。
【0063】
特に、請求項2の如く第1の圧縮要素の冷媒管は第2の圧縮要素の冷媒管の下側の位置で密閉容器に接続されており、各冷媒管の密閉容器への接続位置の上方にはアキュムレータが配置され、当該アキュムレータは第1の圧縮要素に冷媒を導入する冷媒管に接続されている場合には、両冷媒管相互の干渉を避けながら、アキュムレータの位置を最大限下げて第2の圧縮要素の冷媒管に接近させることが可能となり、スペース効率の著しい改善を図ることができるようになるものである。
【0064】
また、請求項3の発明によれば、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の圧縮要素を備え、第1の冷媒導入管より吸い込んだ冷媒ガスを第1の圧縮要素で圧縮して密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを、密閉容器外に位置する第2の冷媒導入管を介して吸い込み、第2の圧縮要素で圧縮する電動圧縮機において、第1及び第2の冷媒導入管を相隣接する位置で密閉容器に接続し、当該密閉容器から相互に反対方向に向かって取り回すようにしたので、各冷媒導入管を限られたスペース内で相互に干渉すること無く取り回すことができるようになる。
【0065】
特に、請求項4の如く第1の冷媒導入管が第2の冷媒導入管の下側の位置で密閉容器に接続され、各冷媒導入管の密閉容器への接続位置の上方にアキュムレータが配置されて、当該アキュムレータが第1の冷媒導入管に接続される場合には、両冷媒導入管相互の干渉を避けながら、アキュムレータの位置を最大限下げて第2の冷媒導入管に接近させることが可能となり、スペース効率の著しい改善を図ることができるようになるものである。
【図面の簡単な説明】
【図1】本発明の電動圧縮機の実施例のロータリコンプレッサの縦断面図である。
【図2】図1のロータリコンプレッサの正面図である。
【図3】図1のロータリコンプレッサの側面図である。
【図4】図1のロータリコンプレッサのもう一つの縦断面図である。
【図5】図1のロータリコンプレッサの更にもう一つの縦断面図である。
【図6】図1のロータリコンプレッサの電動要素部分の平断面図である。
【図7】図1のロータリコンプレッサの回転圧縮機構部の拡大断面図である。
【図8】図1のロータリコンプレッサの第2の回転圧縮要素のベーン部分の拡大断面図である。
【図9】図1のロータリコンプレッサの下部支持部材及び下部カバーの断面図である。
【図10】図1のロータリコンプレッサの下部支持部材の下面図である。
【図11】図1のロータリコンプレッサの上部支持部材及び上部カバーの上面図である。
【図12】図1のロータリコンプレッサの上部支持部材及び上カバーの断面図である。
【図13】図1のロータリコンプレッサの中間仕切板の上面図である。
【図14】図13A−A線断面図である。
【図15】図1のロータリコンプレッサの上シリンダの上面図である。
【図16】図1のロータリコンプレッサの上シリンダの吸入側の圧力変動を示す図である。
【図17】図1のロータリコンプレッサの回転軸の連結部の形状を説明するための断面図である。
【図18】図1のロータリコンプレッサを適用した給湯装置の冷媒回路図である。
【符号の説明】
10 ロータリコンプレッサ
12 密閉容器
12A 容器本体
14 電動要素
16 回転軸
18 回転圧縮機構部
20 ターミナル
32 第1の回転圧縮要素
34 第2の回転圧縮要素
36 中間仕切板
38、40 シリンダ
39、41 吐出ポート
42 偏心部
44 偏心部
46 ローラ
48 ローラ
50 ベーン
54 上部支持部材
56 下部支持部材
62 吐出消音室
64 吐出消音室
66 上部カバー
68 下部カバー
70 案内溝
70A 収納部
76 スプリング(バネ部材)
78、129 主ボルト
90 連結部
92、94 冷媒導入管
96 冷媒吐出管
131 貫通孔(給油路)
132 封止材
133、134 連通孔
137 プラグ
138 Oリング
141、142、143、144 スリーブ
146 アキュムレータ
147、148 ブラケット
151 鍔部
153 給湯装置
154 ガスクーラ
156 膨張弁
157 蒸発器
158 デフロスト管
159 電磁弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric compressor in which an electric element and first and second compression elements driven by the electric element are provided in an airtight container.
[0002]
[Prior art]
In a conventional electric compressor of this type, for example, an internal intermediate pressure type multistage compression rotary compressor, refrigerant gas is sucked from the suction port of the first rotary compression element through the refrigerant introduction pipe to the low pressure chamber side of the cylinder, and the roller and vane. Compressed by the above operation, becomes an intermediate pressure, and is discharged from the high pressure chamber side of the cylinder into the sealed container through the discharge port and the discharge silencer chamber. The intermediate-pressure refrigerant gas in the sealed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second stage compression is performed by the operation of the roller and the vane, so It becomes refrigerant gas, flows from the high pressure chamber side through the discharge port and discharge silencer chamber, flows from the refrigerant discharge pipe to the radiator, radiates heat, is throttled by the expansion valve, absorbs heat by the evaporator, and is sucked into the first rotary compression element Repeat the cycle.
[0003]
[Problems to be solved by the invention]
Here, in the case where the intermediate pressure refrigerant gas discharged into the closed container is sucked into the second rotary compression element by another refrigerant introduction pipe located outside the closed container, the refrigerant is introduced into the first rotary compression element. The refrigerant introduction pipe to the pipe and the second rotary compression element is connected to the sealed container at a position adjacent to each other.
[0004]
Therefore, there is a problem that both refrigerant introduction pipes interfere with each other and are difficult to handle. In particular, an accumulator is normally connected to the refrigerant introduction pipe to the first rotary compression element, and this accumulator is disposed above the connection position of each refrigerant introduction pipe. There was also a problem that it was difficult to lower the position.
[0005]
The present invention has been made to solve the conventional technical problem, and provides an electric compressor capable of improving the space efficiency without the first and second refrigerant introduction pipes interfering with each other. With the goal.
[0006]
[Means for Solving the Problems]
That is, the electric compressor according to the first aspect of the present invention includes an electric element in a sealed container, first and second compression elements driven by the electric element, and a refrigerant that introduces refrigerant into the first compression element. A refrigerant pipe for introducing intermediate pressure refrigerant gas compressed by the first compression element into the second compression element, and a refrigerant pipe for discharging high-pressure gas compressed by the second compression element. The refrigerant pipes of the first and second compression elements are connected to the sealed container at positions adjacent to each other, and are routed in the opposite directions from the sealed container.
[0007]
In the electric compressor according to the second aspect of the present invention, the refrigerant pipe of the first compression element is connected to the closed container at a position below the refrigerant pipe of the second compression element. An accumulator is disposed above the connection position to the, and the accumulator is connected to a refrigerant pipe for introducing the refrigerant into the first compression element.
[0008]
According to the first aspect of the present invention, the electric element in the sealed container, the first and second compression elements driven by the electric element, the refrigerant pipe for introducing the refrigerant into the first compression element, In an electric compressor comprising: a refrigerant pipe that introduces an intermediate pressure refrigerant gas compressed by a first compression element into a second compression element; and a refrigerant pipe that discharges a high-pressure gas compressed by a second compression element. And the refrigerant pipes of the second compression element are connected to the sealed container at positions adjacent to each other, and are routed in the opposite directions from each other, so that the refrigerant pipes are mutually connected within a limited space. It becomes possible to handle without interfering with.
[0009]
In particular, as described in claim 2, the refrigerant pipe of the first compression element is connected to the sealed container at a position below the refrigerant pipe of the second compression element, and above the connection position of each refrigerant pipe to the sealed container. When the accumulator is connected to a refrigerant pipe for introducing the refrigerant into the first compression element, the accumulator position is lowered to the maximum while avoiding mutual interference between the two refrigerant pipes. It becomes possible to make it approach the refrigerant pipe of 2 compression elements, and can aim at the remarkable improvement of space efficiency.
[0010]
According to a third aspect of the present invention, there is provided an electric compressor including an electric element in a hermetically sealed container and first and second compression elements driven by the electric element, and refrigerant sucked from a first refrigerant introduction pipe. The gas is compressed by the first compression element and discharged into the sealed container. Further, the discharged intermediate pressure refrigerant gas is sucked through the second refrigerant introduction pipe located outside the sealed container, and the second The first and second refrigerant introduction pipes are compressed by a compression element, and are connected to a sealed container at adjacent positions, and are routed from the sealed container in opposite directions to each other. And
[0011]
In the electric compressor of the invention of claim 4, in the above, the first refrigerant introduction pipe is connected to the sealed container at a position below the second refrigerant introduction pipe, and the connection of each refrigerant introduction pipe to the sealed container An accumulator is disposed above the position, and a first refrigerant introduction pipe is connected to the accumulator.
[0012]
According to the invention of claim 3, the electric element and the first and second compression elements driven by the electric element are provided in the sealed container, and the refrigerant gas sucked from the first refrigerant introduction pipe is the first. Compressed by the compression element and discharged into the sealed container, and the discharged intermediate-pressure refrigerant gas is sucked through the second refrigerant introduction pipe located outside the sealed container and compressed by the second compression element. In the electric compressor, the first and second refrigerant introduction pipes are connected to the sealed container at positions adjacent to each other, and are routed in the opposite directions from the closed container. It becomes possible to operate in a limited space without interfering with each other.
[0013]
In particular, as in claim 4, the first refrigerant introduction pipe is connected to the sealed container at a position below the second refrigerant introduction pipe, and an accumulator is disposed above the connection position of each refrigerant introduction pipe to the sealed container. Thus, when the accumulator is connected to the first refrigerant introduction pipe, the position of the accumulator can be lowered as much as possible to approach the second refrigerant introduction pipe while avoiding interference between the two refrigerant introduction pipes. Thus, the space efficiency can be remarkably improved.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. 1 is a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor 10 having first and second rotary compression elements 32 and 34 as an embodiment of the electric compressor of the present invention. Is a front view of the rotary compressor 10, FIG. 3 is a side view of the rotary compressor 10, FIG. 4 is another longitudinal sectional view of the rotary compressor 10, FIG. 5 is yet another longitudinal sectional view of the rotary compressor 10, and FIG. FIG. 7 is an enlarged cross-sectional view of the rotary compression mechanism 18 of the rotary compressor 10.
[0015]
In each figure, 10 is carbon dioxide (CO 2 ) Is used as a refrigerant. The rotary compressor 10 includes a cylindrical sealed container 12 made of a steel plate, and an electric element 14 disposed and housed above the inner space of the sealed container 12. And a first rotary compression element 32 (first stage) and a second rotary compression element 34 (second stage) which are arranged below the electric element 14 and are driven by the rotating shaft 16 of the electric element 14. The rotary compression mechanism 18 is configured. The height dimension of the rotary compressor 10 of the embodiment is 220 mm (outer diameter 120 mm), the height dimension of the electric element 14 is about 80 mm (outer diameter 110 mm), and the height dimension of the rotary compression mechanism 18 is about 70 mm (outer diameter 110 mm). ), The distance between the electric element 14 and the rotary compression mechanism 18 is about 5 mm. Further, the excluded volume of the second rotary compression element 34 is set smaller than the excluded volume of the first rotary compression element 32.
[0016]
In the embodiment, the sealed container 12 is made of a steel plate having a thickness of 4.5 mm, the bottom is an oil reservoir, the container body 12A that houses the electric element 14 and the rotary compression mechanism 18, and the upper opening of the container body 12A is closed. And a circular mounting hole 12D is formed in the center of the upper surface of the end cap 12B. The mounting element 12D has a power supply to the electric element 14. A terminal (wiring is omitted) 20 is attached.
[0017]
In this case, the end cap 12B around the terminal 20 is formed with a stepped portion 12C having a predetermined curvature in an annular shape by press-fitting. The terminal 20 includes a circular glass portion 20A through which the electrical terminal 139 is attached, and a metal attachment portion 20B formed around the glass portion 20A and projecting obliquely outward and downward in a bowl shape. It is configured. The thickness dimension of the mounting portion 20B is 2.4 ± 0.5 mm. And the terminal 20 inserts the glass part 20A into the mounting hole 12D from the lower side and faces the upper side, and attaches the mounting part 20B to the peripheral edge of the mounting hole 12D, and the peripheral edge of the mounting hole 12D of the end cap 12B. The attachment portion 20B is welded to the end cap 12B.
[0018]
The electric element 14 includes a stator 22 attached in an annular shape along the inner peripheral surface of the upper space of the hermetic container 12, and a rotor 24 inserted and arranged with a slight gap inside the stator 22. The rotor 24 is fixed to a rotating shaft 16 that passes through the center and extends in the vertical direction.
[0019]
The stator 22 includes a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method (FIG. 6). Similarly to the stator 22, the rotor 24 is also formed by a laminated body 30 of electromagnetic steel plates, and a permanent magnet MG is inserted into the laminated body 30.
[0020]
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, a cylinder 38 and a cylinder 40 disposed above and below the intermediate partition plate 36, and the inside of the upper and lower cylinders 38 and 40. The upper and lower rollers 46 and 48 are fitted to the upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 with a phase difference of 180 degrees and rotate eccentrically, and the upper and lower cylinders 38 are in contact with the upper and lower rollers 46 and 48. , 40 are divided into a low pressure chamber side and a high pressure chamber side, respectively, and upper and lower vanes 50 (lower vanes are not shown), an upper opening surface of the upper cylinder 38 and an opening surface of the lower cylinder 40 below. And an upper support member 54 and a lower support member 56 as support members that also serve as bearings for the rotary shaft 16.
[0021]
The upper support member 54 and the lower support member 56 are formed with suction passages 58 and 60 that communicate with the inside of the upper and lower cylinders 38 and 40 through suction ports 161 and 162, and recessed discharge silencer chambers 62 and 64, respectively. The openings of both the discharge silencing chambers 62 and 64 are respectively closed by covers. That is, the discharge silence chamber 62 is closed by an upper cover 66 as a cover, and the discharge silence chamber 64 is closed by a lower cover 68 as a cover.
[0022]
In this case, a bearing 54A is erected at the center of the upper support member 54, and a cylindrical bush 122 is mounted on the inner surface of the bearing 54A. A bearing 56A is formed through the center of the lower support member 56, and a cylindrical bushing 123 is mounted on the inner surface of the bearing 56A. The bushes 122 and 123 are made of a material having good slidability as will be described later, and the rotating shaft 16 is connected to the bearing 54A of the upper support member 54 and the bearing 56A of the lower support member 56 through the bushes 122 and 123. Retained.
[0023]
In this case, the lower cover 68 is made of a donut-shaped circular steel plate, and is fixed to the lower support member 56 from below by main bolts 129... The lower surface opening of the discharge silencing chamber 64 communicating with the inside of the lower cylinder 40 of the compression element 32 is closed. The front ends of the main bolts 129 are screwed into the upper support member 54. The inner peripheral edge of the lower cover 68 protrudes inward from the inner surface of the bearing 56A of the lower support member 56, whereby the lower end surface of the bush 123 is held by the lower cover 68 and is prevented from falling off (FIG. 9). FIG. 10 shows the lower surface of the lower support member 56, and 128 is a discharge valve of the first rotary compression element 32 that opens and closes the discharge port 41 in the discharge silencing chamber 64.
[0024]
Here, the lower support member 56 is made of an iron-based sintered material (or can be cast), and the surface (lower surface) on which the lower cover 68 is attached is processed to have a flatness of 0.1 mm or less. Steam processing has been added. Since the surface on which the lower cover 68 is attached by this steam treatment is made of iron oxide, the hole inside the sintered material is blocked and the sealing performance is improved. This eliminates the need for a gasket between the lower cover 68 and the lower support member 56.
[0025]
In addition, the electric element 14 side of the upper cover 66 in the discharge silencer chamber 64 and the sealed container 12 is communicated with a communication passage 63 that is a hole penetrating the upper and lower cylinders 38 and 40 and the intermediate partition plate 36 (FIG. 4). ). In this case, an intermediate discharge pipe 121 is erected at the upper end of the communication path 63, and this intermediate discharge pipe 121 is between the adjacent stator coils 28, 28 wound around the stator 22 of the upper electric element 14. It is directed to the gap (FIG. 6).
[0026]
Further, the upper cover 66 closes the upper opening of the discharge silencer chamber 62 communicating with the inside of the upper cylinder 38 of the second rotary compression element 34 at the discharge port 39, and the discharge silencer chamber 62 and the electric element inside the sealed container 12. Divide into 14 sides. As shown in FIG. 11, the upper cover 66 has a thickness of 2 mm or more and 10 mm or less (6 mm is the most desirable in the embodiment), and a substantially donut having a hole through which the bearing 54A of the upper support member 54 is formed. In the state in which a gasket 124 with a bead is sandwiched between the upper support member 54 and the upper support member 54, the peripheral portion is surrounded by four main bolts 78. To the upper support member 54. The front ends of the main bolts 78 are screwed into the lower support member 56.
[0027]
By setting the upper cover 66 to have such a thickness dimension, it is possible to achieve downsizing and secure an insulation distance from the electric element 14 while sufficiently withstanding the pressure of the discharge silencer chamber 62 that is higher than that in the sealed container 12. You can also do that. Further, an O-ring 126 is provided between the inner peripheral edge of the upper cover 66 and the outer surface of the bearing 54A (FIG. 12). By sealing the bearing 54A side with the O-ring 126, it becomes possible to sufficiently seal the inner periphery of the upper cover 66 and prevent gas leakage, and the volume of the discharge silencer chamber 62 can be increased. The ring eliminates the need to fix the inner peripheral edge of the upper cover 66 to the bearing 54A. Here, in FIG. 11, 127 is a discharge valve of the second rotary compression element 34 that opens and closes the discharge port 39 in the discharge silencer chamber 62.
[0028]
Next, in the intermediate partition plate 36 that closes the lower opening surface of the upper cylinder 38 and the upper opening surface of the lower cylinder 40, a position corresponding to the suction side in the upper cylinder 38 is shown in FIGS. 13 and 14. As shown in FIG. 2, a through hole 131 is formed from the outer peripheral surface to the inner peripheral surface, and the outer peripheral surface communicates with the inner peripheral surface to form an oil supply passage. A sealing material on the outer peripheral surface side of the through passage 131 is formed. 132 is press-fitted to seal the opening on the outer peripheral surface side. A communication hole 133 extending upward is formed in the middle of the through hole 131.
[0029]
On the other hand, a communication hole 134 communicating with the communication hole 133 of the intermediate partition plate 36 is formed in the suction port 161 (suction side) of the upper cylinder 38. Further, in the rotating shaft 16, as shown in FIG. 7, a vertical oil hole 80 at the center of the shaft and lateral oil supply holes 82 and 84 communicating with the oil hole 80 (upper and lower eccentric portions 42 and 44 of the rotating shaft 16). The opening on the inner peripheral surface side of the through hole 131 of the intermediate partition plate 36 communicates with the oil hole 80 via these oil supply holes 82 and 84.
[0030]
As will be described later, since the inside of the sealed container 12 is at an intermediate pressure, it is difficult to supply oil into the upper cylinder 38, which is at a high pressure in the second stage. The oil that has been pumped up from the oil sump at the inner bottom of the cylinder 12 and moved up through the oil hole 80 enters the through hole 131 of the intermediate partition plate 36 and is sucked into the upper cylinder 38 through the communication holes 133 and 134. To the side (suction port 161).
[0031]
In FIG. 16, L indicates the pressure fluctuation on the suction side of the upper cylinder 38, and P1 in the drawing indicates the pressure on the inner peripheral surface of the intermediate partition plate 36. As indicated by L1 in this figure, the suction side pressure (suction pressure) of the upper cylinder 38 is lower than the pressure on the inner peripheral surface side of the intermediate partition plate 36 due to suction pressure loss during the suction process. During this period, oil is supplied from the through hole 131 and the communication hole 133 of the intermediate partition plate 36 to the upper cylinder 38 through the communication hole 134 of the upper cylinder 38.
[0032]
As described above, the upper and lower cylinders 38 and 40, the intermediate partition plate 36, the upper and lower support members 54 and 56, and the upper and lower covers 66 and 68 are fastened from above and below by the four main bolts 78. However, the upper and lower cylinders 38, 40, the intermediate partition plate 36, and the upper and lower support members 54, 56 are fastened by auxiliary bolts 136, 136 positioned outside the main bolts 78, 129 (FIG. 4). The auxiliary bolt 136 is inserted from the upper support member 54 side, and the tip thereof is screwed to the lower support member 56.
[0033]
The auxiliary bolt 136 is positioned in the vicinity of the guide groove 70 described later of the vane 50 described later. Thus, by adding the auxiliary bolts 136 and 136 and integrating the rotary compression mechanism 18, the sealing performance against the extremely high pressure inside is ensured, and the vicinity of the guide groove 70 of the vane 50. Therefore, it is possible to prevent leakage of high-pressure back pressure applied to the vane 50.
[0034]
On the other hand, a guide groove 70 for storing the vane 50 described above and a storage portion 70A for storing a spring 76 as a spring member located outside the guide groove 70 are formed in the upper cylinder 38. The portion 70A is open to the guide groove 70 side and the closed container 12 (container body 12A) side (FIG. 8). The spring 76 is in contact with the outer end of the vane 50 and constantly urges the vane 50 toward the roller 46. A metal plug 137 is provided in the housing portion 70A of the spring 76 on the closed container 12 side, and serves to prevent the spring 76 from coming off.
[0035]
In this case, the outer dimension of the plug 137 is set smaller than the inner dimension of the storage portion 70A, and the plug 137 is inserted into the storage portion 70A by a clearance fit. An O-ring 138 is attached to the peripheral surface of the plug 137 for sealing between the plug 137 and the inner surface of the storage portion 70A. The distance between the outer end of the upper cylinder 38, that is, the outer end of the storage portion 70A, and the container body 12A of the sealed container 12 is smaller than the distance from the O-ring 138 to the end of the plug 137 on the sealed container 12 side. Is set. A high pressure, which is a discharge pressure of the second rotary compression element 34, is applied as a back pressure to a back pressure chamber (not shown) communicating with the guide groove 70 of the vane 50. Accordingly, the plug 137 has a high pressure on the spring 76 side and an intermediate pressure on the sealed container 12 side.
[0036]
Due to such a dimensional relationship, as in the case where the plug 137 is press-fitted and fixed in the housing portion 70A, the upper cylinder 38 is deformed and the sealing performance with the upper support member 54 is deteriorated, resulting in a deterioration in performance. Can be avoided in advance. Even with such clearance fitting, the distance between the upper cylinder 38 and the sealed container 12 is set to be smaller than the distance from the O-ring 138 to the end of the plug 137 on the sealed container 12 side. Even if the plug 137 moves in the direction in which the plug 137 is pushed out of the storage portion 70A due to the high pressure (back pressure of the vane 50), the O-ring 138 is still in the storage portion 70A when the movement is prevented by contacting the sealed container 12. Because it is positioned and sealed, there is no problem with the function of the plug 138.
[0037]
By the way, the connecting portion 90 that connects the upper and lower eccentric portions 42 and 44 formed integrally with the rotating shaft 16 with a phase difference of 180 degrees has a cross-sectional shape that is larger than the circular cross section of the rotating shaft 16. In order to enlarge and give rigidity, it is made into a non-circular shape such as a rugby ball (FIG. 17). That is, the cross-sectional shape of the connecting portion 90 that connects the upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 is increased in thickness in the direction perpendicular to the eccentric direction of the upper and lower eccentric portions 42 and 44 (hatching in the figure). Part).
[0038]
As a result, the cross-sectional area of the connecting portion 90 that connects the upper and lower eccentric portions 42 and 44 provided integrally with the rotating shaft 16 is increased, the second moment is increased, and the strength (rigidity) is increased. Improves sex. In particular, when a refrigerant having a high working pressure is compressed in two stages, the load applied to the rotary shaft 16 increases due to the large pressure difference between the high and low pressures. However, the strength (rigidity) is increased by increasing the cross-sectional area of the connecting portion 90. The rotation shaft 16 is prevented from being elastically deformed.
[0039]
In this case, if the center of the upper eccentric portion 42 is O1, and the center of the lower eccentric portion 44 is O2, the center of the arc of the surface of the connecting portion 90 on the eccentric direction side of the eccentric portion 42 is O1, and the eccentric portion 44. The center of the arc of the surface of the connecting portion 90 on the eccentric direction side is O2. Thus, when the rotary shaft 16 is chucked to the cutting machine to cut the upper and lower eccentric portions 42 and 44 and the connecting portion 90, after machining the eccentric portion 42, only the radius is changed and one surface of the connecting portion 90 is changed. It is possible to perform an operation of machining, changing the chuck position, machining the other surface of the connecting portion 90, and machining the eccentric portion 44 by changing only the radius. As a result, the number of rechucking of the rotating shaft 16 is reduced, and the productivity is remarkably improved.
[0040]
In this case, the carbon dioxide (CO 2) as an example of carbon dioxide, which is a natural refrigerant in consideration of flammability and toxicity, is used as the refrigerant. 2 As the lubricating oil, existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil and ester oil are used.
[0041]
On the side surface of the container main body 12A of the sealed container 12, the suction passages 58, 60 of the upper support member 54 and the lower support member 56, the upper side of the discharge silencer chamber 62, and the upper cover 66 (position substantially corresponding to the lower end of the electric element 14). The sleeves 141, 142, 143, and 144 are fixed by welding at positions corresponding to. The sleeves 141 and 142 are adjacent to each other in the vertical direction, and the sleeve 143 is substantially diagonal to the sleeve 141. Further, the sleeve 144 is located at a position shifted by approximately 90 degrees from the sleeve 141.
[0042]
One end of a refrigerant introduction pipe 92 (refrigerant pipe; second refrigerant introduction pipe) for introducing refrigerant gas into the upper cylinder 38 is inserted into and connected to the sleeve 141, and one end of the refrigerant introduction pipe 92 is connected to the upper cylinder 38. It communicates with a suction passage 58 of the cylinder 38. The refrigerant introduction pipe 92 passes through the upper side of the sealed container 12 (therefore, the refrigerant introduction pipe 92 is located outside the sealed container 12) and reaches the sleeve 144, and the other end is inserted and connected into the sleeve 144. 12 communicates.
[0043]
Also, one end of a refrigerant introduction pipe 94 (refrigerant pipe; first refrigerant introduction pipe) for introducing refrigerant gas into the lower cylinder 40 is inserted into and connected to the sleeve 142, and one end of the refrigerant introduction pipe 94 is connected to the bottom of the sleeve 142. The suction passage 60 of the cylinder 40 communicates with the suction passage 60. The other end of the refrigerant introduction tube 94 is connected to the lower end of the accumulator 146. In addition, a refrigerant discharge pipe 96 (refrigerant pipe) is inserted and connected in the sleeve 143, and one end of the refrigerant discharge pipe 96 communicates with the discharge silencer chamber 62.
[0044]
The accumulator 146 is a tank that performs gas-liquid separation of the suction refrigerant. The accumulator 146 is attached to a bracket 147 on the hermetic container side welded to the upper side surface of the container body 12A of the hermetic container 12 via a bracket 148 on the accumulator side, 141 and 142 are located above. The bracket 148 is fixed to the bracket 147 by screws 171 on both sides at the lower end portion, extends upward from the bracket 147, and is attached to the both ends of the upper end portion by screws 173 so that the accumulator 146 is substantially in the vertical direction. Holds the center. In this case, the accumulator 148 may be fixed to the bracket 148 by welding. In this state, the accumulator 146 is arranged along the side of the sealed container 12.
[0045]
Since the accumulator 146 is attached to the main body 12A of the sealed container 12 through the bracket 147 and the bracket 148 in this way, the bracket 147 can be mounted even when the capacity of the accumulator 146 is increased and its vertical dimension is increased. Without changing, it is possible to lift the lower end position of the accumulator 146 while maintaining the approximate center by simply expanding (changing) the vertical dimension of the bracket 148. Thereby, it becomes difficult to interfere with the refrigerant introduction pipe 92 below.
[0046]
In addition, the bracket 147 serves as a hook portion for hanging the hanger of the manufacturing facility when the sealed container 12 is painted. However, the configuration of the hanger eliminates the need for changing the hanger. Even when the capacity of the accumulator 146 is changed, the accumulator 146 can be held at its substantially center (or substantially center of gravity) simply by changing the bracket 148 as described above, and an increase in noise due to vibration can be prevented. It becomes like this.
[0047]
On the other hand, as shown in FIG. 3, after the refrigerant introduction pipe 92 exits from the sleeve 141, in the embodiment is bent to the right and then rises, the lower end of the accumulator 146 is lowered to a position close to the refrigerant introduction pipe 92. It has been. Therefore, the refrigerant introduction pipe 94 descending from the lower end of the accumulator 146 is routed around the left side opposite to the bending direction of the refrigerant introduction pipe 92 as viewed from the sleeve 141 so as to reach the sleeve 142.
[0048]
That is, the refrigerant introduction pipes 92 and 94 respectively communicating with the suction passages 58 and 60 of the upper support member 38 and the lower support member 40 are bent in opposite directions (180 degrees different directions) on the horizontal plane when viewed from the sealed container 12. Even if the lower end of the accumulator 146 is enlarged by increasing the vertical dimension of the accumulator 146 to increase the volume, or by lowering the mounting position, The introduction pipes 92 and 94 do not interfere with each other.
[0049]
Further, a flange 151 capable of engaging with a coupler for pipe connection is formed around the outer surface of the sleeves 141, 143, 144, and a thread groove 152 for pipe connection is formed on the outer surface of the sleeve 142. . As a result, the sleeves 141, 143, 144 can be easily connected to the coupler 151 of the test pipe when the airtight test is performed in the completion inspection in the manufacturing process of the rotary compressor 10. It becomes possible to easily screw the test pipe using the screw groove 152. In particular, the sleeves 141 and 142 that are adjacent in the upper and lower sides are formed with a flange 151 on one sleeve 141 and a thread groove 152 on the other sleeve 142, so that the test pipes can be connected to the sleeves 141 and 142 in a narrow space. Can be connected.
[0050]
And the rotary compressor 10 of an Example is used for the refrigerant circuit of the hot-water supply apparatus 153 as shown in FIG. That is, the refrigerant discharge pipe 96 of the rotary compressor 10 is connected to the inlet of the gas cooler 154 for water heating. This gas cooler 154 is provided in a hot water storage tank (not shown) of the hot water supply device 153. The pipe exiting the gas cooler 154 reaches the inlet of the evaporator 157 through an expansion valve 156 as a decompression device, and the outlet of the evaporator 157 is connected to the refrigerant introduction pipe 94. Further, although not shown in FIGS. 2 and 3, a defrost pipe 158 constituting a defrost circuit branches from the middle of the refrigerant introduction pipe 92, and the gas cooler 154 is connected via an electromagnetic valve 159 as a flow path control device. It is connected to a refrigerant discharge pipe 96 that reaches the inlet. In FIG. 18, the accumulator 146 is omitted.
[0051]
Next, the operation of the above configuration will be described. In the heating operation, the solenoid valve 159 is closed. When the stator coil 28 of the electric element 14 is energized through the terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotary shaft 16 rotate eccentrically in the upper and lower cylinders 38 and 40.
[0052]
As a result, the low-pressure refrigerant (first-stage suction pressure LP: 4 MPaG) is sucked from the suction port 162 to the low-pressure chamber side of the lower cylinder 40 via the refrigerant introduction pipe 94 and the suction passage 60 formed in the lower support member 56. The gas is compressed by the operation of the roller 48 and the vane to become an intermediate pressure (MP1: 8 MPaG), and from the high pressure chamber side of the lower cylinder 40 to the discharge port 41 and the discharge silencer chamber 64 formed in the lower support member 56, the communication path 63. Then, it is discharged from the intermediate discharge pipe 121 into the sealed container 12.
[0053]
At this time, since the intermediate discharge pipe 121 is directed to the gap between the adjacent stator coils 28 and 28 wound around the stator 22 of the upper electric element 14, the refrigerant gas still having a relatively low temperature is supplied to the electric element. It becomes possible to actively supply in the 14 directions, and the temperature rise of the electric element 14 is suppressed. Moreover, the inside of the airtight container 12 becomes intermediate pressure (MP1) by this.
[0054]
Then, the intermediate pressure refrigerant gas in the sealed container 12 exits from the sleeve 144 (intermediate discharge pressure is MP1), and the suction port 161 passes through the refrigerant introduction pipe 92 and the suction passage 58 formed in the upper support member 54. To the low pressure chamber side of the upper cylinder 38 (second-stage suction pressure MP2). The suctioned intermediate-pressure refrigerant gas is compressed in the second stage by the operation of the roller 46 and the vane 50 to become a high-temperature and high-pressure refrigerant gas (second-stage discharge pressure HP: 12 MPaG), and is discharged from the high-pressure chamber side. The gas flows into the gas cooler 154 through the discharge silencer chamber 62 formed in the upper support member 54 and the refrigerant discharge pipe 96. The refrigerant temperature at this time has risen to approximately + 100 ° C., and the high-temperature and high-pressure refrigerant gas dissipates heat to heat the water in the hot water storage tank and generate hot water of about + 90 ° C.
[0055]
On the other hand, the refrigerant itself is cooled in the gas cooler 154 and exits the gas cooler 154. Then, after the pressure is reduced by the expansion valve 156, the refrigerant flows into the evaporator 157 to evaporate, and is sucked into the first rotary compression element 32 from the refrigerant introduction pipe 94 through the accumulator 146 (not shown in FIG. 18). repeat.
[0056]
In particular, in an environment of low outside air temperature, frost forms on the evaporator 157 by such heating operation. In that case, the electromagnetic valve 159 is opened, the expansion valve 156 is fully opened, and the defrosting operation of the evaporator 157 is executed. As a result, the intermediate-pressure refrigerant in the sealed container 12 (including a small amount of high-pressure refrigerant discharged from the second rotary compression element 34) reaches the gas cooler 154 through the defrost pipe 158. The temperature of this refrigerant is about +50 to + 60 ° C., and the gas cooler 154 does not radiate heat, but initially the refrigerant absorbs heat. Then, the refrigerant discharged from the gas cooler 154 passes through the expansion valve 156 and reaches the evaporator 157. That is, the refrigerant having a relatively high intermediate pressure is supplied directly to the evaporator 157 without being depressurized, whereby the evaporator 157 is heated and defrosted.
[0057]
Here, when the high-pressure refrigerant discharged from the second rotary compression element 34 is supplied to the evaporator 157 without depressurization and defrosted, the first rotary compression element 32 is opened to fully open the expansion valve 156. As a result, the suction pressure of the first rotary compression element 32 increases (the intermediate pressure). Although this refrigerant is discharged through the second rotary compression element 34, the discharge pressure of the second rotary compression element 34 is the same as the suction pressure of the first rotary compression element 32 because the expansion valve 156 is fully open. As a result, a pressure reversal phenomenon occurs between the discharge (high pressure) and the suction (intermediate pressure) of the second rotary compression element 34. However, since the intermediate-pressure refrigerant gas discharged from the first rotary compression element 32 is taken out from the sealed container 12 to defrost the evaporator 157 as described above, the reverse phenomenon between the high pressure and the intermediate pressure. Can be prevented.
[0058]
In the embodiment, the sleeves 141 and 142 are provided vertically adjacent to each other for a vertical rotary compressor. However, the first aspect includes a case where both sleeves are adjacent to each other as in the horizontal rotary compressor. In this case, the refrigerant introduction pipes 92 and 94 are routed in opposite directions such as upward and downward, or right and left.
[0059]
In the above-described embodiment, the intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 is discharged into the sealed container 12, but the inventions of claims 1 and 2 are not limited thereto, The refrigerant gas discharged from the rotary compression element 32 may be directly introduced into the refrigerant introduction pipe 92 and sucked into the second rotary compression element 34 without being discharged into the sealed container 12.
[0060]
Furthermore, in the above embodiment, the refrigerant introduction pipe 92 of the second rotary compression element 34 and the refrigerant introduction pipe 94 of the first rotary compression element 32 are provided adjacent to each other in the upper and lower sides. However, the invention is not limited thereto, and the refrigerant discharge pipe 96 of the second rotary compression element 34 and the refrigerant introduction pipe 94 of the first rotary compression element 32 may be provided adjacent to each other in the vertical direction. In that case, the refrigerant discharge pipe 96 and the refrigerant introduction pipe 94 are routed from the sealed container 12 in opposite directions.
[0061]
Furthermore, in the above embodiment, the internal intermediate pressure type multi-stage compression type rotary compressor is taken up as the electric compressor. . Furthermore, although the rotary compressor is used in the refrigerant circuit of the hot water supply apparatus in the embodiments, the present invention is not limited to this, and the present invention is effective when used for indoor heating.
[0062]
【The invention's effect】
As described above in detail, according to the first aspect of the present invention, the electric element is introduced into the sealed container, the first and second compression elements driven by the electric element, and the refrigerant is introduced into the first compression element. Electric compression comprising a refrigerant pipe, a refrigerant pipe for introducing intermediate-pressure refrigerant gas compressed by the first compression element into the second compression element, and a refrigerant pipe for discharging high-pressure gas compressed by the second compression element In the machine, the refrigerant pipes of the first and second compression elements are connected to the sealed container at positions adjacent to each other, and the refrigerant pipes are routed in the opposite directions from each other. It becomes possible to operate without interfering with each other in the space.
[0063]
In particular, as described in claim 2, the refrigerant pipe of the first compression element is connected to the sealed container at a position below the refrigerant pipe of the second compression element, and above the connection position of each refrigerant pipe to the sealed container. When the accumulator is connected to a refrigerant pipe for introducing the refrigerant into the first compression element, the accumulator position is lowered to the maximum while avoiding mutual interference between the two refrigerant pipes. It becomes possible to make it approach the refrigerant pipe of 2 compression elements, and can aim at the remarkable improvement of space efficiency.
[0064]
According to a third aspect of the invention, the airtight container includes the electric element and the first and second compression elements driven by the electric element, and the refrigerant gas sucked from the first refrigerant introduction pipe is supplied. The second compression element is compressed by the first compression element and discharged into the sealed container, and the discharged intermediate-pressure refrigerant gas is sucked through the second refrigerant introduction pipe located outside the sealed container. In the electric compressor that compresses the first and second refrigerant introduction pipes, the first and second refrigerant introduction pipes are connected to the sealed container at positions adjacent to each other, and are routed in the opposite directions from the sealed container. The tubes can be routed in a limited space without interfering with each other.
[0065]
In particular, as in claim 4, the first refrigerant introduction pipe is connected to the sealed container at a position below the second refrigerant introduction pipe, and an accumulator is disposed above the connection position of each refrigerant introduction pipe to the sealed container. Thus, when the accumulator is connected to the first refrigerant introduction pipe, the position of the accumulator can be lowered as much as possible to approach the second refrigerant introduction pipe while avoiding interference between the two refrigerant introduction pipes. Thus, the space efficiency can be remarkably improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a rotary compressor of an embodiment of an electric compressor according to the present invention.
2 is a front view of the rotary compressor of FIG. 1. FIG.
3 is a side view of the rotary compressor of FIG. 1. FIG.
4 is another longitudinal sectional view of the rotary compressor of FIG. 1. FIG.
FIG. 5 is still another longitudinal sectional view of the rotary compressor of FIG. 1;
6 is a plan sectional view of an electric element portion of the rotary compressor of FIG. 1;
7 is an enlarged cross-sectional view of a rotary compression mechanism portion of the rotary compressor of FIG.
8 is an enlarged cross-sectional view of a vane portion of a second rotary compression element of the rotary compressor of FIG. 1. FIG.
9 is a cross-sectional view of a lower support member and a lower cover of the rotary compressor of FIG.
10 is a bottom view of a lower support member of the rotary compressor of FIG. 1. FIG.
11 is a top view of an upper support member and an upper cover of the rotary compressor of FIG. 1. FIG.
12 is a cross-sectional view of an upper support member and an upper cover of the rotary compressor of FIG. 1. FIG.
13 is a top view of an intermediate partition plate of the rotary compressor of FIG. 1. FIG.
FIG. 14 is a cross-sectional view taken along line AA in FIG.
15 is a top view of an upper cylinder of the rotary compressor of FIG. 1. FIG.
16 is a diagram showing pressure fluctuation on the suction side of the upper cylinder of the rotary compressor of FIG. 1; FIG.
17 is a cross-sectional view for explaining the shape of a connecting portion of a rotary shaft of the rotary compressor in FIG. 1. FIG.
18 is a refrigerant circuit diagram of a hot water supply apparatus to which the rotary compressor of FIG. 1 is applied.
[Explanation of symbols]
10 Rotary compressor
12 Sealed container
12A Container body
14 Electric elements
16 Rotating shaft
18 Rotary compression mechanism
20 terminal
32 First rotary compression element
34 Second rotational compression element
36 Intermediate divider
38, 40 cylinders
39, 41 Discharge port
42 Eccentric part
44 Eccentric part
46 Laura
48 Laura
50 Vane
54 Upper support member
56 Lower support member
62 Discharge silencer
64 Discharge silencer
66 Top cover
68 Bottom cover
70 guide groove
70A storage unit
76 Spring (spring member)
78, 129 Main bolt
90 connecting part
92, 94 Refrigerant introduction pipe
96 Refrigerant discharge pipe
131 Through hole (oil supply passage)
132 Sealant
133, 134 communication hole
137 plug
138 O-ring
141, 142, 143, 144 sleeve
146 Accumulator
147, 148 bracket
151 Buttocks
153 Water heater
154 Gas cooler
156 expansion valve
157 evaporator
158 Defrost tube
159 Solenoid valve

Claims (4)

密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の圧縮要素と、前記第1の圧縮要素に冷媒を導入する冷媒管と、前記第1の圧縮要素で圧縮した中間圧の冷媒ガスを前記第2の圧縮要素に導入する冷媒管と、前記第2の圧縮要素で圧縮した高圧ガスを吐出する冷媒管とを備える電動圧縮機において、
前記第1及び第2の圧縮要素の冷媒管は相隣接する位置で前記密閉容器に接続され、当該密閉容器から相互に反対方向に向かって取り回されていることを特徴とする電動圧縮機。
An electric element in a sealed container, first and second compression elements driven by the electric element, a refrigerant pipe for introducing a refrigerant into the first compression element, and compression by the first compression element In an electric compressor comprising: a refrigerant pipe for introducing an intermediate pressure refrigerant gas into the second compression element; and a refrigerant pipe for discharging a high-pressure gas compressed by the second compression element.
The electric compressor is characterized in that the refrigerant pipes of the first and second compression elements are connected to the hermetic container at positions adjacent to each other, and are routed from the hermetic container in opposite directions.
前記第1の圧縮要素の冷媒管は前記第2の圧縮要素の冷媒管の下側の位置で前記密閉容器に接続されており、各冷媒管の前記密閉容器への接続位置の上方にはアキュムレータが配置され、当該アキュムレータは前記第1の圧縮要素に冷媒を導入する冷媒管に接続されていることを特徴とする請求項1の電動圧縮機。The refrigerant pipe of the first compression element is connected to the sealed container at a position below the refrigerant pipe of the second compression element, and an accumulator is located above the connection position of each refrigerant pipe to the sealed container. The electric compressor according to claim 1, wherein the accumulator is connected to a refrigerant pipe for introducing a refrigerant into the first compression element. 密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の圧縮要素を備え、第1の冷媒導入管より吸い込んだ冷媒ガスを前記第1の圧縮要素で圧縮して前記密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを、前記密閉容器外に位置する第2の冷媒導入管を介して吸い込み、前記第2の圧縮要素で圧縮する電動圧縮機において、
前記第1及び第2の冷媒導入管は相隣接する位置で前記密閉容器に接続され、当該密閉容器から相互に反対方向に向かって取り回されていることを特徴とする電動圧縮機。
The airtight container includes an electric element and first and second compression elements driven by the electric element, and the refrigerant gas sucked from the first refrigerant introduction pipe is compressed by the first compression element. In the electric compressor that discharges into the sealed container, further sucks the discharged intermediate-pressure refrigerant gas through the second refrigerant introduction pipe located outside the sealed container, and compresses it by the second compression element. ,
The electric compressor characterized in that the first and second refrigerant introduction pipes are connected to the sealed container at positions adjacent to each other, and are routed from the sealed container in opposite directions.
前記第1の冷媒導入管は前記第2の冷媒導入管の下側の位置で前記密閉容器に接続されており、各冷媒導入管の前記密閉容器への接続位置の上方にはアキュムレータが配置され、当該アキュムレータは前記第1の冷媒導入管に接続されていることを特徴とする請求項3の電動圧縮機。The first refrigerant introduction pipe is connected to the sealed container at a position below the second refrigerant introduction pipe, and an accumulator is disposed above the connection position of each refrigerant introduction pipe to the sealed container. The electric compressor according to claim 3, wherein the accumulator is connected to the first refrigerant introduction pipe.
JP2001315687A 2001-09-27 2001-10-12 Electric compressor Expired - Fee Related JP3825670B2 (en)

Priority Applications (31)

Application Number Priority Date Filing Date Title
JP2001315687A JP3825670B2 (en) 2001-10-12 2001-10-12 Electric compressor
US10/225,442 US7128540B2 (en) 2001-09-27 2002-08-22 Refrigeration system having a rotary compressor
EP04030238A EP1517036A3 (en) 2001-09-27 2002-09-10 A high pressure pump for an internal-combustion engine
EP06013471A EP1703133A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor
EP02256240A EP1298324A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor with vane holding plug
EP06013467A EP1703129B1 (en) 2001-09-27 2002-09-10 Rotary vane compressor
ES06013468T ES2398963T3 (en) 2001-09-27 2002-09-10 Rotary vane compressor and defroster
ES06013467T ES2398363T3 (en) 2001-09-27 2002-09-10 Rotary vane compressor
EP06013469A EP1703131A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor
EP04030239A EP1522733A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor with vane holding plug
EP06013468A EP1703130B1 (en) 2001-09-27 2002-09-10 Rotary vane compressor and defroster
EP04030233A EP1517041A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor with vane holding plug
ES06013470T ES2398245T3 (en) 2001-09-27 2002-09-10 Rotary vane compressor
EP06013470A EP1703132B1 (en) 2001-09-27 2002-09-10 Rotary vane compressor
KR1020020058289A KR20030028388A (en) 2001-09-27 2002-09-26 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
CNB2006100743724A CN100425842C (en) 2001-09-27 2002-09-26 Compressor
US10/747,285 US7174725B2 (en) 2001-09-27 2003-12-30 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US10/747,288 US20040151603A1 (en) 2001-09-27 2003-12-30 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US10/790,085 US7435063B2 (en) 2001-09-27 2004-03-02 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US10/790,181 US7435062B2 (en) 2001-09-27 2004-03-02 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US11/377,402 US7302803B2 (en) 2001-09-27 2006-03-17 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigerant unit
US11/896,347 US7837449B2 (en) 2001-09-27 2007-08-31 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigerant unit
US11/896,346 US7762792B2 (en) 2001-09-27 2007-08-31 Compressor
KR1020080067904A KR100862822B1 (en) 2001-09-27 2008-07-14 Rotary compressor
KR1020080067914A KR20080071959A (en) 2001-09-27 2008-07-14 Compressor
KR1020080067906A KR20080071956A (en) 2001-09-27 2008-07-14 Rotary compressor
KR1020080067910A KR100892840B1 (en) 2001-09-27 2008-07-14 Compressor
KR1020080067905A KR100892838B1 (en) 2001-09-27 2008-07-14 Rotary compressor
KR1020080067919A KR20080071961A (en) 2001-09-27 2008-07-14 Refrigeration unit
KR1020080067907A KR100892839B1 (en) 2001-09-27 2008-07-14 Closed type electric compressor
KR1020080067917A KR100892841B1 (en) 2001-09-27 2008-07-14 Defroster of refrigerant circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001315687A JP3825670B2 (en) 2001-10-12 2001-10-12 Electric compressor

Publications (2)

Publication Number Publication Date
JP2003120538A JP2003120538A (en) 2003-04-23
JP3825670B2 true JP3825670B2 (en) 2006-09-27

Family

ID=19133811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315687A Expired - Fee Related JP3825670B2 (en) 2001-09-27 2001-10-12 Electric compressor

Country Status (1)

Country Link
JP (1) JP3825670B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373108B2 (en) * 2014-07-23 2018-08-15 東芝キヤリア株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JP2003120538A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
JP3728227B2 (en) Rotary compressor
JP3963740B2 (en) Rotary compressor
JP2006214445A (en) Rotary compressor
JP4020612B2 (en) Rotary compressor
JP3825670B2 (en) Electric compressor
JP3963703B2 (en) Electric compressor
JP3963695B2 (en) Manufacturing method of rotary compressor
JP3913507B2 (en) Rotary compressor
JP3986283B2 (en) Rotary compressor
JP4236400B2 (en) Defroster for refrigerant circuit
JP3762690B2 (en) Rotary compressor
JP4024056B2 (en) Rotary compressor
JP4020622B2 (en) Rotary compressor
JP2003201982A (en) Rotary compressor
JP3963691B2 (en) Hermetic electric compressor
JP3883837B2 (en) Rotary compressor
JP2006200541A (en) Hermetic electric compressor
JP4401365B2 (en) Rotary compressor
JP2003129958A (en) Rotary compressor
JP2006200542A (en) Hermetic electric compressor
JP2003201981A (en) Rotary compressor
JP2003097472A (en) Rotary compressor
JP2003206879A (en) Rotary compressor
JP2003097434A (en) Hermetic electric compressor
JP4169620B2 (en) Refrigerant cycle equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060630

R151 Written notification of patent or utility model registration

Ref document number: 3825670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees