JP3883837B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP3883837B2
JP3883837B2 JP2001327809A JP2001327809A JP3883837B2 JP 3883837 B2 JP3883837 B2 JP 3883837B2 JP 2001327809 A JP2001327809 A JP 2001327809A JP 2001327809 A JP2001327809 A JP 2001327809A JP 3883837 B2 JP3883837 B2 JP 3883837B2
Authority
JP
Japan
Prior art keywords
cylinder
refrigerant
rotary compression
pressure
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001327809A
Other languages
Japanese (ja)
Other versions
JP2003129977A (en
Inventor
兼三 松本
昌也 只野
晴久 山崎
孝 佐藤
大 松浦
里  和哉
隆泰 斎藤
俊行 江原
悟 今井
淳志 小田
裕之 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001327809A priority Critical patent/JP3883837B2/en
Priority to US10/225,442 priority patent/US7128540B2/en
Priority to EP04030239A priority patent/EP1522733A3/en
Priority to ES06013468T priority patent/ES2398963T3/en
Priority to ES06013470T priority patent/ES2398245T3/en
Priority to EP04030238A priority patent/EP1517036A3/en
Priority to ES06013467T priority patent/ES2398363T3/en
Priority to EP06013469A priority patent/EP1703131A3/en
Priority to EP06013470A priority patent/EP1703132B1/en
Priority to EP06013467A priority patent/EP1703129B1/en
Priority to EP02256240A priority patent/EP1298324A3/en
Priority to EP06013471A priority patent/EP1703133A3/en
Priority to EP06013468A priority patent/EP1703130B1/en
Priority to EP04030233A priority patent/EP1517041A3/en
Priority to KR1020020058289A priority patent/KR20030028388A/en
Priority to CNB2006100743724A priority patent/CN100425842C/en
Publication of JP2003129977A publication Critical patent/JP2003129977A/en
Priority to US10/747,288 priority patent/US20040151603A1/en
Priority to US10/747,285 priority patent/US7174725B2/en
Priority to US10/790,181 priority patent/US7435062B2/en
Priority to US10/790,085 priority patent/US7435063B2/en
Priority to US11/377,402 priority patent/US7302803B2/en
Publication of JP3883837B2 publication Critical patent/JP3883837B2/en
Application granted granted Critical
Priority to US11/896,347 priority patent/US7837449B2/en
Priority to US11/896,346 priority patent/US7762792B2/en
Priority to KR1020080067914A priority patent/KR20080071959A/en
Priority to KR1020080067910A priority patent/KR100892840B1/en
Priority to KR1020080067907A priority patent/KR100892839B1/en
Priority to KR1020080067905A priority patent/KR100892838B1/en
Priority to KR1020080067904A priority patent/KR100862822B1/en
Priority to KR1020080067906A priority patent/KR20080071956A/en
Priority to KR1020080067917A priority patent/KR100892841B1/en
Priority to KR1020080067919A priority patent/KR20080071961A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を設け、第1の回転圧縮要素で圧縮されたガスを密閉容器内に吐出し、更にこの吐出された中間圧のガスを第2の回転圧縮要素で圧縮するロータリコンプレッサにに関するものである。
【0002】
【従来の技術】
従来のこの種ロータリコンプレッサ、特に、内部中間圧型多段(二段)圧縮式のロータリコンプレッサでは、第1の回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となりシリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。そして、この密閉容器内の中間圧の冷媒ガスは第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経て放熱器に流入し、放熱した後、膨張弁で絞られて蒸発器で吸熱し、第1の回転圧縮要素に吸入されるサイクルを繰り返す。
【0003】
係るロータリコンプレッサに、高低圧差の大きい冷媒、例えば炭酸ガスの一例としての二酸化炭素(CO2)を冷媒として用いた場合、冷媒圧力は高圧となる第2の回転圧縮要素で12MPaGに達し、一方、低段側となる第1の回転圧縮要素で8MPaG(中間圧)となる。
【0004】
【発明が解決しようとする課題】
このような内部中間圧型多段圧縮式のロータリコンプレッサでは、底部がオイル溜めとなる密閉容器内の圧力(中間圧)よりも第2の回転圧縮要素のシリンダ内の圧力(高圧)の方が高くなるため、回転軸のオイル孔から圧力差を利用してシリンダ内にオイルを供給することが極めて困難となり、吸入冷媒に溶け込んだオイルのみによって専ら潤滑されるかたちとなって給油量が不足してしまう問題があった。
【0005】
本発明は、係る従来技術の課題を解決するために成されたものであり、内部中間圧型多段圧縮式のロータリコンプレッサにおいて、高圧となる第2の回転圧縮要素のシリンダ内への給油を円滑且つ確実に行うことを目的とする。
【0006】
【課題を解決するための手段】
即ち、本発明のロータリコンプレッサは、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮されたガスを密閉容器内に吐出し、更にこの吐出された中間圧のガスを第2の回転圧縮要素で圧縮するものであって、第1及び第2の回転圧縮要素をそれぞれ構成するための第1及び第2のシリンダと、これらシリンダ間に介在して各回転圧縮要素を仕切る中間仕切板と、各シリンダの開口面をそれぞれ閉塞し、電動要素の回転軸の軸受けを有する支持部材と、回転軸に形成されたオイル孔とを備え、このオイル孔と第2のシリンダ内の低圧室とを連通するための給油溝を、中間仕切板の第2のシリンダ側の面に形成したことを特徴とする。
【0007】
本発明によれば、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮されたガスを密閉容器内に吐出し、更にこの吐出された中間圧のガスを第2の回転圧縮要素で圧縮するロータリコンプレッサにおいて、第1及び第2の回転圧縮要素をそれぞれ構成するための第1及び第2のシリンダと、これらシリンダ間に介在して各回転圧縮要素を仕切る中間仕切板と、各シリンダの開口面をそれぞれ閉塞し、電動要素の回転軸の軸受けを有する支持部材と、回転軸に形成されたオイル孔とを備え、このオイル孔と第2のシリンダ内の低圧室とを連通するための給油溝を、中間仕切板の第2のシリンダ側の面に形成したので、中間圧となる密閉容器内よりも第2の回転圧縮要素のシリンダ内の圧力が高くなる状況であっても、第2の回転圧縮要素における吸入過程での吸入圧損を利用して、中間仕切板に形成した給油溝からシリンダ内に確実にオイルを供給することができるようになる。
【0008】
これにより、第2の回転圧縮要素の潤滑を確実に行い、性能の確保と信頼性の向上を図ることができるようなる。特に、給油溝は中間仕切板の第2のシリンダ側の面を溝加工するのみで構成できるので、構造を簡素化し、生産コストの高騰も抑制することができるものである。
【0009】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明のロータリコンプレッサの実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式のロータリコンプレッサ10の縦断面図を示している。
【0010】
この図において、10は二酸化炭素(CO2)を冷媒として使用する内部中間圧型多段(2段)圧縮式のロータリコンプレッサで、このロータリコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)からなる回転圧縮機構部18にて構成されている。
【0011】
密閉容器12は、底部をオイル溜とし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面には電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0012】
電動要素14は、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隙を設けて挿入配置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。
【0013】
ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して構成されている。
【0014】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置されたシリンダ38(第2のシリンダ)、シリンダ40(第1のシリンダ)と、この上下シリンダ38、40内を180度の位相差を有して回転軸16に設けた上下偏心部42、44に嵌合されて偏心回転する上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室LR(図5(f))側と高圧室HR(図5(f))側に区画する後述する上下ベーン50(下側のベーンは図示せず)と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成される。
【0015】
上部支持部材54および下部支持部材56には、吸込ポート161、162にて上下シリンダ38、40の内部とそれぞれ連通する吸込通路58、60と、凹陥した吐出消音室62、64が形成されると共に、これら両吐出消音室62、64の各シリンダ38、40とは反対側の開口部はそれぞれカバーにより閉塞される。即ち、吐出消音室62はカバーとしての上部カバー66、吐出消音室64はカバーとしての下部カバー68にて閉塞される。
【0016】
この場合、上部支持部材54の中央には軸受け54Aが起立形成されており、この軸受け54A内面には筒状のブッシュ122が装着されている。また、下部支持部材56の中央には軸受け56Aが貫通形成され、下部支持部材56の下面(下シリンダ40とは反対側の面)は平坦面とされており、更に、軸受け56A内面にも筒状のブッシュ123が装着されている。これらブッシュ122、123は摺動性・耐摩耗性の良いカーボン材料にて構成されており、回転軸16はこれらブッシュ122、123を介して上部支持部材54の軸受け54Aと下部支持部材56の軸受け56Aに保持される。
【0017】
この場合、下部カバー68はドーナッツ状の円形鋼板から構成されており、周辺部の4カ所を主ボルト129・・・によって下から下部支持部材56に固定され、図示しない吐出ポートにて第1の回転圧縮要素32の下シリンダ40内部と連通する吐出消音室64の下面開口部を閉塞する。この主ボルト129・・・の先端は上部支持部材54に螺合する。下部カバー68の内周縁は下部支持部材56の軸受け56A内面より内方に突出しており、これによって、ブッシュ123の下端面(下シリンダ40とは反対側の端部)は下部カバー68によって保持され、脱落が防止されている。
【0018】
尚、吐出消音室64と密閉容器12内における上部カバー66の電動要素14側は、上下シリンダ38、40や中間仕切板36を貫通する図示しない連通路にて連通されている。この場合、連通路の上端には中間吐出管121が立設されており、この中間吐出管121は上方の電動要素14のステータ22に巻装された相隣接するステータコイル28、28間の隙間に指向している。
【0019】
また、上部カバー66は吐出ポート39にて第2の回転圧縮要素34の上シリンダ38内部と連通する吐出消音室62の上面開口部を閉塞し、密閉容器12内を吐出消音室62と電動要素14側とに仕切る。この上部カバー66は周辺部が4本の主ボルト78・・・により、上から上部支持部材54に固定されている。この主ボルト78・・・の先端は下部支持部材56に螺合する。
【0020】
図3は第2の回転圧縮要素34の上シリンダ38の平面図を示している。上シリンダ38内には収納室70が形成され、この収納室70内に前記ベーン50が収納されてローラ46に当接している。そして、このベーン50の一側(図3では向かって右側)前記吐出ポート39が形成され、ベーン50を挟んで反対側の他側(左側)に前記吸込ポート161が形成されている。そして、ベーン50は上シリンダ38とローラ46間に構成される圧縮室を低圧室LR側と高圧室HR側とに区画し、前記吸込ポート161は低圧室LRに、吐出ポート39は高圧室HRに対応する。
【0021】
一方、上シリンダ38の下側の開口面及び下シリンダ40の上側の開口面を閉塞する中間仕切板36は略ドーナッツ形状を呈しており、その上面(上シリンダ38側の面)には、図2に示すように内周面から外側に所定範囲で給油溝131が半径方向に向かって形成されている。この給油溝131は図3における上シリンダ38のベーン50がローラ46に当接する位置から吸込ポート161のベーン50とは反対側の縁部までの範囲α内の下側に対応するように形成されている。また、給油溝131の外側部分は上シリンダ38内の低圧室LR側(吸込側)に連通している。
【0022】
一方、回転軸16内には軸中心に鉛直方向のオイル孔80と、このオイル孔80に連通する横方向の給油孔82、84(上下偏心部42、44にも形成されている)が形成されており、中間仕切板36の給油溝131の内周面側の開口は、これらの給油孔82、84を介してオイル孔80に連通している。これにより、給油溝131はオイル孔80と上シリンダ38内の低圧室LRとを連通する。
【0023】
後述する如く密閉容器12内は中間圧となるため、2段目で高圧となる上シリンダ38内にはオイルの供給が困難となるが、中間仕切板36に係る給油溝131を形成としたことにより、密閉容器12内底部のオイル溜めから汲み上げられてオイル孔80を上昇し、給油孔82、84から出たオイルは、中間仕切板36の給油溝131に入り、そこを通って上シリンダ38の低圧室LR側(吸込側)に供給されるようになる。
【0024】
図4は上シリンダ38内の圧力変動を示し、図中P1は中間仕切板36の内周面側の圧力を示す。この図にLPで示す如く上シリンダ38の低圧室LRの内部圧力(吸入圧力)は、吸入過程においては吸入圧損により中間仕切板36の内周面側の圧力P1よりも低下する。この期間に回転軸16のオイル孔80から中間仕切板36の給油溝131を経て上シリンダ38内の低圧室LRにオイルがインジェクションされ、給油が成されることになる。
【0025】
ここで、図5の(a)〜(l)は係る第2の回転圧縮要素34の上シリンダ38における冷媒の吸込−圧縮行程を説明する図である。回転軸16の偏心部42は各図において反時計回りに回転するものとすると、図5の(a)〜(b)ではローラ46によって吸込ポート161が閉じられている。(c)において吸込ポート161が開き、冷媒の吸込が始まる(反対側では冷媒の吐出も行われている)。そして、(c)〜(e)まで冷媒の吸込が続けられる。この区間では給油溝131はローラ46で塞がれている。
【0026】
そして、(f)で初めて給油溝131がローラ46の下側に現れ、上シリンダ38内のベーン50とローラ46で囲まれた低圧室LR内にオイルが吸い込まれて給油が始まる(図4の供給区間の始まり)。以後(g)〜(i)まで冷媒の吸込のオイルの吸込が行われる。そして、(j)で給油溝131の上側がローラ46で塞がれるまで給油が行われ、ここで給油は停止する(図4の供給区間の終わり)。以後の(k)〜(l)〜(a)〜(b)まで冷媒の吸込が行われ、以後圧縮されて吐出ポート39から吐出されることになる。
【0027】
ところで、回転軸16と一体に180度の位相差を持って形成される上下偏心部42、44の相互間を連結する連結部90は、その断面形状を回転軸16の円形断面より断面積を大きくして剛性を持たせるために非円形状の例えばラグビーボール状とされている。即ち、回転軸16に設けた上下偏心部42、44を連結する連結部90の断面形状は上下偏心部42、44の偏心方向に直交する方向でその肉厚を大きくしている。
【0028】
これにより、回転軸16に一体に設けられた上下偏心部42、44を連結する連結部90の断面積が大きくし、断面2次モーメントを増加させて強度(剛性)を増し、耐久性と信頼性を向上させている。特に使用圧力の高い冷媒を2段圧縮する場合、高低圧の圧力差が大きいために回転軸16にかかる荷重も大きくなるが、連結部90の断面積を大きくしてその強度(剛性)を増し、回転軸16が弾性変形してしまうのを防止している。
【0029】
そして、この場合冷媒としては地球環境にやさしく、可燃性および毒性等を考慮して自然冷媒である炭酸ガスの一例としての前記二酸化炭素(CO2)を使用し、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、PAG(ポリアルキレングリコール)、アルキルベンゼン油、エーテル油、エステル油等既存のオイルが使用される。
【0030】
密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路58、60、吐出消音室62及び上部カバー66の上側(電動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。スリーブ141と142は上下に隣接すると共に、スリーブ143はスリーブ141の略対角線上にある。また、スリーブ144はスリーブ141と略90度ずれた位置にある。
【0031】
そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の吸込通路58に連通される。この冷媒導入管92は密閉容器12の上側を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0032】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60に連通される。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒吐出管96の一端は吐出消音室62に連通される。
【0033】
そして、実施例のロータリコンプレッサ10は図6に示すような給湯装置153の冷媒回路に使用される。即ち、ロータリコンプレッサ10の冷媒吐出管96は水加熱用のガスクーラ154の入口に接続される。このガスクーラ154が給湯装置153の図示しない貯湯タンクに設けられる。ガスクーラ154を出た配管は減圧装置としての膨張弁156を経て蒸発器157の入口に至り、蒸発器157の出口は冷媒導入管94に接続される。また、冷媒導入管92の中途部からは除霜回路を構成するデフロスト管158が分岐し、流路制御装置としての電磁弁159を介してガスクーラ154の入口に至る冷媒吐出管96に接続されている。
【0034】
以上の構成で次に動作を説明する。尚、加熱運転では電磁弁159は閉じているものとする。ターミナル20および図示されない配線を介して電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を前述の如く偏心回転する。
【0035】
これにより、冷媒導入管94および下部支持部材56に形成された吸込通路60を経由して吸込ポート162から下シリンダ40の低圧室側に吸入された低圧(一段目吸入圧LP:4MPaG)の冷媒ガスは、ローラ48とベーンの動作により圧縮されて中間圧(MP1:8MPaG)となり下シリンダ40の高圧室側より吐出ポート41、下部支持部材56に形成された吐出消音室64から連通路63を経て中間吐出管121から密閉容器12内に吐出される。
【0036】
このとき、中間吐出管121は上方の電動要素14のステータ22に巻装された相隣接するステータコイル28、28間の隙間に指向しているので、未だ比較的温度の低い冷媒ガスを電動要素14方向に積極的に供給できるようになり、電動要素14の温度上昇が抑制されるようになる。また、これによって、密閉容器12内は中間圧(MP1)となる。
【0037】
そして、密閉容器12内の中間圧の冷媒ガスは、スリーブ144から出て(中間吐出圧は前記MP1)冷媒導入管92及び上部支持部材54に形成された吸込通路58を経由して吸込ポート161から上シリンダ38の低圧室LR側に吸入される(2段目吸入圧MP2)。吸入された中間圧の冷媒ガスは、ローラ46とベーン50の動作により図5で説明したような2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり(2段目吐出圧HP:12MPaG)、高圧室HR側から吐出ポート39を通り上部支持部材54に形成された吐出消音室62、冷媒吐出管96を経由してガスクーラ154内に流入する。このときの冷媒温度は略+100℃まで上昇しており、係る高温高圧の冷媒ガスは放熱して、貯湯タンク内の水を加熱し、約+90℃の温水を生成する。
【0038】
一方、ガスクーラ154において冷媒自体は冷却され、ガスクーラ154を出る。そして、膨張弁156で減圧された後、蒸発器157に流入して蒸発し、冷媒導入管94から第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0039】
特に、低外気温の環境ではこのような加熱運転で蒸発器157には着霜が成長する。その場合には電磁弁159を開放し、膨張弁156は全開状態として蒸発器157の除霜運転を実行する。これにより、密閉容器12内の中間圧の冷媒(第2の回転圧縮要素34から吐出された少量の高圧冷媒を含む)は、デフロスト管158を通ってガスクーラ154に至る。この冷媒の温度は+50〜+60℃程であり、ガスクーラ154では放熱せず、当初は逆に冷媒が熱を吸収するかたちとなる。そして、ガスクーラ154から出た冷媒は膨張弁156を通過し、蒸発器157に至るようになる。即ち、蒸発器157には略中間圧の比較的温度の高い冷媒が減圧されずに実質的に直接供給されるかたちとなり、これによって、蒸発器157は加熱され、除霜されることになる。
【0040】
このように、第1の回転圧縮要素32から吐出された中間圧の冷媒ガスを密閉容器12から取り出して蒸発器157の除霜を行うようにしているので、第2の回転圧縮要素34から吐出された高圧冷媒を蒸発器157に減圧せずに供給する場合に発生する第2の回転圧縮要素34の吐出(高圧)と吸込(中間圧)における圧力の逆転現象を防止することができるようになる。
【0041】
尚、実施例ではロータリコンプレッサ10を給湯装置153の冷媒回路に用いたが、これに限らず、室内の暖房用などに用いても本発明は有効である。
【0042】
【発明の効果】
以上詳述した如く本発明によれば、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮されたガスを密閉容器内に吐出し、更にこの吐出された中間圧のガスを第2の回転圧縮要素で圧縮するロータリコンプレッサにおいて、第1及び第2の回転圧縮要素をそれぞれ構成するための第1及び第2のシリンダと、これらシリンダ間に介在して各回転圧縮要素を仕切る中間仕切板と、各シリンダの開口面をそれぞれ閉塞し、電動要素の回転軸の軸受けを有する支持部材と、回転軸に形成されたオイル孔とを備え、このオイル孔と第2のシリンダ内の低圧室とを連通するための給油溝を、中間仕切板の第2のシリンダ側の面に形成したので、中間圧となる密閉容器内よりも第2の回転圧縮要素のシリンダ内の圧力が高くなる状況であっても、第2の回転圧縮要素における吸入過程での吸入圧損を利用して、中間仕切板に形成した給油溝からシリンダ内に確実にオイルを供給することができるようになる。
【0043】
これにより、第2の回転圧縮要素の潤滑を確実に行い、性能の確保と信頼性の向上を図ることができるようなる。特に、給油溝は中間仕切板の第2のシリンダ側の面を溝加工するのみで構成できるので、構造を簡素化し、生産コストの高騰も抑制することができるものである。
【図面の簡単な説明】
【図1】本発明の実施例のロータリコンプレッサの縦断面図である。
【図2】図1のロータリコンプレッサの中間仕切板の断面図である。
【図3】図1のロータリコンプレッサの上シリンダ38の平面図である。
【図4】図1のロータリコンプレッサの上シリンダ内の圧力変動を示す図である。
【図5】図1のロータリコンプレッサの上シリンダの冷媒の吸込−圧縮行程を説明する図である。
【図6】図1のロータリコンプレッサを適用した給湯装置の冷媒回路図である。
【符号の説明】
10 ロータリコンプレッサ
12 密閉容器
14 電動要素
16 回転軸
18 回転圧縮機構部
32 第1の回転圧縮要素
34 第2の回転圧縮要素
36 中間仕切板
38、40 シリンダ
39 吐出ポート
42 偏心部
44 偏心部
46 ローラ
48 ローラ
50 ベーン
54 上部支持部材
56 下部支持部材
62 吐出消音室
64 吐出消音室
66 上部カバー
68 下部カバー
80 オイル孔
92、94 冷媒導入管
96 冷媒吐出管
131 給油溝
153 給湯装置
154 ガスクーラ
156 膨張弁
157 蒸発器
[0001]
BACKGROUND OF THE INVENTION
In the present invention, an electric element and first and second rotary compression elements driven by the electric element are provided in a sealed container, and gas compressed by the first rotary compression element is discharged into the sealed container. Further, the present invention relates to a rotary compressor that compresses the discharged intermediate-pressure gas by a second rotary compression element.
[0002]
[Prior art]
In a conventional rotary compressor of this type, in particular, an internal intermediate pressure multistage (two-stage) compression rotary compressor, refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the first rotary compression element, and the roller and vane It is compressed by the operation to become an intermediate pressure, and is discharged from the high pressure chamber side of the cylinder into the sealed container through the discharge port and the discharge silencer chamber. The intermediate-pressure refrigerant gas in the sealed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second stage compression is performed by the operation of the roller and the vane, so The refrigerant gas flows from the high-pressure chamber side through the discharge port and discharge silencer chamber, flows into the radiator, radiates heat, is throttled by the expansion valve, absorbs heat by the evaporator, and is sucked into the first rotary compression element. repeat.
[0003]
When a refrigerant having a large high-low pressure difference, for example, carbon dioxide (CO 2 ) as an example of carbon dioxide gas is used as the refrigerant for the rotary compressor, the refrigerant pressure reaches 12 MPaG in the second rotary compression element having a high pressure, It becomes 8 MPaG (intermediate pressure) by the first rotary compression element on the lower stage side.
[0004]
[Problems to be solved by the invention]
In such an internal intermediate pressure type multi-stage compression rotary compressor, the pressure (high pressure) in the cylinder of the second rotary compression element is higher than the pressure (intermediate pressure) in the sealed container whose bottom is an oil reservoir. For this reason, it becomes extremely difficult to supply oil into the cylinder using the pressure difference from the oil hole of the rotating shaft, and the amount of oil supply becomes insufficient because only the oil dissolved in the suction refrigerant is lubricated. There was a problem.
[0005]
The present invention was made to solve the problems of the related art, and in an internal intermediate pressure type multi-stage compression rotary compressor, the oil supply into the cylinder of the second rotary compression element having a high pressure can be smoothly performed. The purpose is to ensure.
[0006]
[Means for Solving the Problems]
That is, the rotary compressor of the present invention includes an electric element and first and second rotary compression elements driven by the electric element in a hermetic container, and hermetically compresses the gas compressed by the first rotary compression element. The gas is discharged into the container, and the discharged intermediate pressure gas is compressed by the second rotary compression element, and the first and second rotary compression elements are respectively configured. Cylinders, intermediate partition plates that are interposed between the cylinders to partition each rotary compression element, a support member that closes an opening surface of each cylinder and has a bearing for the rotary shaft of the electric element, and a rotary shaft. And an oil supply groove for communicating the oil hole with the low pressure chamber in the second cylinder is formed on the surface of the intermediate partition plate on the second cylinder side.
[0007]
According to the present invention, an electric element and a first and a second rotary compression element driven by the electric element are provided in the sealed container, and the gas compressed by the first rotary compression element is placed in the sealed container. In a rotary compressor that discharges and further compresses the discharged intermediate pressure gas with a second rotary compression element, first and second cylinders for configuring the first and second rotary compression elements, respectively, An intermediate partition plate that is interposed between these cylinders and partitions each rotary compression element, a support member that closes the opening surface of each cylinder and has a bearing for the rotary shaft of the electric element, and an oil hole formed in the rotary shaft; And an oil supply groove for communicating this oil hole and the low pressure chamber in the second cylinder is formed on the surface of the intermediate partition plate on the second cylinder side, so that it is more than in the sealed container that becomes the intermediate pressure. Second rotary compression element Even in a situation where the pressure in the cylinder becomes high, oil is reliably supplied into the cylinder from the oil supply groove formed in the intermediate partition plate by using the suction pressure loss in the suction process in the second rotary compression element. Will be able to.
[0008]
As a result, the second rotary compression element can be reliably lubricated to ensure performance and improve reliability. In particular, since the oil supply groove can be formed only by grooving the surface on the second cylinder side of the intermediate partition plate, the structure can be simplified and the increase in production cost can be suppressed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor 10 having first and second rotary compression elements 32 and 34 as an embodiment of the rotary compressor of the present invention. .
[0010]
In this figure, 10 is an internal intermediate pressure type multi-stage (two-stage) rotary compressor that uses carbon dioxide (CO 2 ) as a refrigerant. The rotary compressor 10 includes a cylindrical sealed container 12 made of a steel plate, The electric element 14 arranged and housed above the internal space of the container 12 and the first rotary compression element 32 (first stage) arranged below the electric element 14 and driven by the rotating shaft 16 of the electric element 14 And a rotary compression mechanism section 18 including a second rotary compression element 34 (second stage).
[0011]
The sealed container 12 has an oil reservoir at the bottom, a container body 12A that houses the electric element 14 and the rotary compression mechanism 18, and a substantially bowl-shaped end cap (lid body) 12B that closes the upper opening of the container body 12A. A terminal (wiring is omitted) 20 for supplying electric power to the electric element 14 is attached to the upper surface of the end cap 12B.
[0012]
The electric element 14 includes a stator 22 attached in an annular shape along the inner peripheral surface of the upper space of the hermetic container 12, and a rotor 24 inserted and arranged with a slight gap inside the stator 22. The rotor 24 is fixed to a rotating shaft 16 that passes through the center and extends in the vertical direction.
[0013]
The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method. Similarly to the stator 22, the rotor 24 is also formed by a laminated body 30 of electromagnetic steel plates, and a permanent magnet MG is inserted into the laminated body 30.
[0014]
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, a cylinder 38 (second cylinder) and a cylinder 40 (first cylinder) disposed above and below the intermediate partition plate 36. Cylinders), and upper and lower rollers 46, 48 that are eccentrically rotated by being fitted to upper and lower eccentric portions 42, 44 provided on the rotary shaft 16 with a phase difference of 180 degrees in the upper and lower cylinders 38, 40. Upper and lower vanes 50 (lower), which will be described later, are in contact with the upper and lower rollers 46 and 48 and divide the upper and lower cylinders 38 and 40 into a low pressure chamber LR (FIG. 5 (f)) side and a high pressure chamber HR (FIG. 5 (f)) side, respectively. (The vane on the side is not shown), and the upper supporting member 54 and the lower supporting member serving as bearing members for the rotating shaft 16 by closing the upper opening surface of the upper cylinder 38 and the lower opening surface of the lower cylinder 40. The support member 56 is used.
[0015]
The upper support member 54 and the lower support member 56 are formed with suction passages 58 and 60 that communicate with the inside of the upper and lower cylinders 38 and 40 through suction ports 161 and 162, and recessed discharge silencer chambers 62 and 64, respectively. The openings on the side opposite to the cylinders 38 and 40 of both the discharge silencing chambers 62 and 64 are respectively closed by covers. That is, the discharge silence chamber 62 is closed by an upper cover 66 as a cover, and the discharge silence chamber 64 is closed by a lower cover 68 as a cover.
[0016]
In this case, a bearing 54A is erected at the center of the upper support member 54, and a cylindrical bush 122 is mounted on the inner surface of the bearing 54A. A bearing 56A is formed through the center of the lower support member 56, the lower surface of the lower support member 56 (the surface opposite to the lower cylinder 40) is a flat surface, and the inner surface of the bearing 56A is also cylindrical. A bush 123 is attached. The bushes 122 and 123 are made of a carbon material having good slidability and wear resistance, and the rotary shaft 16 is supported by the bearings 54A and 54A of the upper support member 54 and the lower support member 56 through the bushes 122 and 123, respectively. 56A.
[0017]
In this case, the lower cover 68 is made of a donut-shaped circular steel plate, and is fixed to the lower support member 56 from below by main bolts 129... The lower surface opening of the discharge silencing chamber 64 communicating with the inside of the lower cylinder 40 of the rotary compression element 32 is closed. The front ends of the main bolts 129 are screwed into the upper support member 54. The inner periphery of the lower cover 68 protrudes inward from the inner surface of the bearing 56 </ b> A of the lower support member 56, whereby the lower end surface of the bush 123 (the end opposite to the lower cylinder 40) is held by the lower cover 68. Dropout is prevented.
[0018]
The discharge silencer chamber 64 and the electric element 14 side of the upper cover 66 in the sealed container 12 are communicated with each other through a communication path (not shown) that penetrates the upper and lower cylinders 38 and 40 and the intermediate partition plate 36. In this case, an intermediate discharge pipe 121 is erected at the upper end of the communication path, and this intermediate discharge pipe 121 is a gap between adjacent stator coils 28, 28 wound around the stator 22 of the upper electric element 14. Oriented to.
[0019]
Further, the upper cover 66 closes the upper opening of the discharge silencer chamber 62 communicating with the inside of the upper cylinder 38 of the second rotary compression element 34 at the discharge port 39, and the discharge silencer chamber 62 and the electric element inside the sealed container 12. Divide into 14 sides. The upper cover 66 is fixed to the upper support member 54 from above by four main bolts 78. The front ends of the main bolts 78 are screwed into the lower support member 56.
[0020]
FIG. 3 shows a plan view of the upper cylinder 38 of the second rotary compression element 34. A storage chamber 70 is formed in the upper cylinder 38, and the vane 50 is stored in the storage chamber 70 and is in contact with the roller 46. The discharge port 39 is formed on one side (right side in FIG. 3) of the vane 50, and the suction port 161 is formed on the other side (left side) opposite to the vane 50. The vane 50 partitions a compression chamber formed between the upper cylinder 38 and the roller 46 into a low pressure chamber LR side and a high pressure chamber HR side, the suction port 161 is a low pressure chamber LR, and the discharge port 39 is a high pressure chamber HR. Corresponding to
[0021]
On the other hand, the intermediate partition plate 36 that closes the lower opening surface of the upper cylinder 38 and the upper opening surface of the lower cylinder 40 has a substantially donut shape, and on the upper surface (the surface on the upper cylinder 38 side), As shown in FIG. 2, an oil supply groove 131 is formed in a predetermined range from the inner peripheral surface to the outer side in the radial direction. The oil supply groove 131 is formed so as to correspond to the lower side in the range α from the position where the vane 50 of the upper cylinder 38 in FIG. 3 contacts the roller 46 to the edge of the suction port 161 opposite to the vane 50. ing. The outer portion of the oil supply groove 131 communicates with the low pressure chamber LR side (suction side) in the upper cylinder 38.
[0022]
On the other hand, a vertical oil hole 80 and lateral oil supply holes 82 and 84 (also formed in the upper and lower eccentric parts 42 and 44) communicating with the oil hole 80 are formed in the rotary shaft 16 at the shaft center. The opening on the inner peripheral surface side of the oil supply groove 131 of the intermediate partition plate 36 communicates with the oil hole 80 through these oil supply holes 82 and 84. As a result, the oil supply groove 131 communicates the oil hole 80 with the low pressure chamber LR in the upper cylinder 38.
[0023]
As will be described later, since the inside of the sealed container 12 is at an intermediate pressure, it is difficult to supply oil into the upper cylinder 38 which is at a high pressure in the second stage, but the oil supply groove 131 related to the intermediate partition plate 36 is formed. As a result, the oil hole 80 is pumped up from the oil sump at the bottom of the closed container 12 and rises through the oil holes 80, and the oil discharged from the oil supply holes 82 and 84 enters the oil supply groove 131 of the intermediate partition plate 36 and passes there through the upper cylinder 38. Is supplied to the low pressure chamber LR side (suction side).
[0024]
4 shows the pressure fluctuation in the upper cylinder 38, and P1 in the figure shows the pressure on the inner peripheral surface side of the intermediate partition plate 36. FIG. As indicated by LP in this figure, the internal pressure (suction pressure) of the low pressure chamber LR of the upper cylinder 38 is lower than the pressure P1 on the inner peripheral surface side of the intermediate partition plate 36 due to suction pressure loss during the suction process. During this period, oil is injected from the oil hole 80 of the rotating shaft 16 into the low pressure chamber LR in the upper cylinder 38 through the oil supply groove 131 of the intermediate partition plate 36, and oil supply is performed.
[0025]
Here, (a) to (l) in FIG. 5 are views for explaining the refrigerant suction-compression process in the upper cylinder 38 of the second rotary compression element 34. Assuming that the eccentric portion 42 of the rotating shaft 16 rotates counterclockwise in each figure, the suction port 161 is closed by the roller 46 in FIGS. In (c), the suction port 161 is opened, and the suction of the refrigerant starts (the refrigerant is also discharged on the opposite side). Then, the refrigerant is continuously sucked from (c) to (e). In this section, the oil supply groove 131 is closed by the roller 46.
[0026]
Then, for the first time in (f), the oil supply groove 131 appears below the roller 46, and the oil is sucked into the low pressure chamber LR surrounded by the vane 50 and the roller 46 in the upper cylinder 38 to start the oil supply (FIG. 4). The beginning of the supply section). Thereafter, the refrigerant suction is performed from (g) to (i). Then, in (j), the oil supply is performed until the upper side of the oil supply groove 131 is blocked by the roller 46, and the oil supply is stopped (the end of the supply section in FIG. 4). Thereafter, the refrigerant is sucked from (k) to (l) to (a) to (b), and then compressed and discharged from the discharge port 39.
[0027]
By the way, the connecting portion 90 that connects the upper and lower eccentric portions 42 and 44 formed integrally with the rotating shaft 16 with a phase difference of 180 degrees has a cross-sectional shape that is larger than the circular cross section of the rotating shaft 16. In order to enlarge and give rigidity, it is made into a non-circular shape such as a rugby ball. That is, the cross-sectional shape of the connecting portion 90 that connects the upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 is increased in thickness in a direction perpendicular to the eccentric direction of the upper and lower eccentric portions 42 and 44.
[0028]
As a result, the cross-sectional area of the connecting portion 90 that connects the upper and lower eccentric portions 42 and 44 provided integrally with the rotating shaft 16 is increased, the second moment is increased, and the strength (rigidity) is increased. Improves sex. In particular, when a refrigerant having a high working pressure is compressed in two stages, the load applied to the rotary shaft 16 increases due to the large pressure difference between the high and low pressures. The rotation shaft 16 is prevented from being elastically deformed.
[0029]
In this case, the carbon dioxide (CO 2 ) is used as an example of carbon dioxide gas which is a natural refrigerant in consideration of flammability and toxicity as the refrigerant, and the oil as the lubricating oil is, for example, Existing oils such as mineral oil (mineral oil), PAG (polyalkylene glycol), alkylbenzene oil, ether oil and ester oil are used.
[0030]
On the side surface of the container main body 12A of the sealed container 12, the suction passages 58, 60 of the upper support member 54 and the lower support member 56, the upper side of the discharge silencer chamber 62, and the upper cover 66 (position substantially corresponding to the lower end of the electric element 14). The sleeves 141, 142, 143, and 144 are fixed by welding at positions corresponding to. The sleeves 141 and 142 are adjacent to each other vertically, and the sleeve 143 is substantially diagonal to the sleeve 141. Further, the sleeve 144 is located at a position shifted by approximately 90 degrees from the sleeve 141.
[0031]
One end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the upper cylinder 38 is inserted and connected into the sleeve 141, and one end of the refrigerant introduction pipe 92 is communicated with the suction passage 58 of the upper cylinder 38. The refrigerant introduction pipe 92 passes through the upper side of the sealed container 12 to reach the sleeve 144, and the other end is inserted and connected into the sleeve 144 to communicate with the sealed container 12.
[0032]
Also, one end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected into the sleeve 142, and one end of the refrigerant introduction pipe 94 is communicated with the suction passage 60 of the lower cylinder 40. A refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant discharge pipe 96 is communicated with the discharge silencer chamber 62.
[0033]
And the rotary compressor 10 of an Example is used for the refrigerant circuit of the hot-water supply apparatus 153 as shown in FIG. That is, the refrigerant discharge pipe 96 of the rotary compressor 10 is connected to the inlet of the gas cooler 154 for water heating. This gas cooler 154 is provided in a hot water storage tank (not shown) of the hot water supply device 153. The pipe exiting the gas cooler 154 reaches the inlet of the evaporator 157 through an expansion valve 156 as a decompression device, and the outlet of the evaporator 157 is connected to the refrigerant introduction pipe 94. Further, a defrost pipe 158 constituting a defrosting circuit branches from a middle portion of the refrigerant introduction pipe 92 and is connected to a refrigerant discharge pipe 96 reaching an inlet of the gas cooler 154 via an electromagnetic valve 159 as a flow path control device. Yes.
[0034]
Next, the operation of the above configuration will be described. In the heating operation, the solenoid valve 159 is closed. When the stator coil 28 of the electric element 14 is energized through the terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotary shaft 16 are eccentrically rotated in the upper and lower cylinders 38 and 40 as described above.
[0035]
As a result, the low-pressure refrigerant (first-stage suction pressure LP: 4 MPaG) is sucked from the suction port 162 to the low-pressure chamber side of the lower cylinder 40 via the refrigerant introduction pipe 94 and the suction passage 60 formed in the lower support member 56. The gas is compressed by the operation of the roller 48 and the vane to become an intermediate pressure (MP1: 8 MPaG), and from the high pressure chamber side of the lower cylinder 40 to the discharge port 41 and the discharge silencer chamber 64 formed in the lower support member 56, through the communication path 63. Then, it is discharged from the intermediate discharge pipe 121 into the sealed container 12.
[0036]
At this time, since the intermediate discharge pipe 121 is directed to the gap between the adjacent stator coils 28 and 28 wound around the stator 22 of the upper electric element 14, the refrigerant gas still having a relatively low temperature is supplied to the electric element. It becomes possible to actively supply in the 14 directions, and the temperature rise of the electric element 14 is suppressed. Moreover, the inside of the airtight container 12 becomes intermediate pressure (MP1) by this.
[0037]
Then, the intermediate pressure refrigerant gas in the sealed container 12 exits from the sleeve 144 (intermediate discharge pressure is MP1), and the suction port 161 passes through the refrigerant introduction pipe 92 and the suction passage 58 formed in the upper support member 54. To the low-pressure chamber LR side of the upper cylinder 38 (second-stage suction pressure MP2). The suctioned intermediate-pressure refrigerant gas is compressed at the second stage as described with reference to FIG. 5 by the operation of the roller 46 and the vane 50 to become a high-temperature and high-pressure refrigerant gas (second-stage discharge pressure HP: 12 MPaG). Then, the gas flows into the gas cooler 154 from the high-pressure chamber HR side through the discharge port 39, the discharge silencer chamber 62 formed in the upper support member 54, and the refrigerant discharge pipe 96. The refrigerant temperature at this time has risen to approximately + 100 ° C., and the high-temperature and high-pressure refrigerant gas dissipates heat to heat the water in the hot water storage tank and generate hot water of about + 90 ° C.
[0038]
On the other hand, the refrigerant itself is cooled in the gas cooler 154 and exits the gas cooler 154. Then, after the pressure is reduced by the expansion valve 156, the refrigerant flows into the evaporator 157 and evaporates, and the cycle of being sucked into the first rotary compression element 32 from the refrigerant introduction pipe 94 is repeated.
[0039]
In particular, in an environment of low outside air temperature, frost forms on the evaporator 157 by such heating operation. In that case, the electromagnetic valve 159 is opened, the expansion valve 156 is fully opened, and the defrosting operation of the evaporator 157 is executed. As a result, the intermediate-pressure refrigerant in the sealed container 12 (including a small amount of high-pressure refrigerant discharged from the second rotary compression element 34) reaches the gas cooler 154 through the defrost pipe 158. The temperature of this refrigerant is about +50 to + 60 ° C., and the gas cooler 154 does not radiate heat, but initially the refrigerant absorbs heat. Then, the refrigerant discharged from the gas cooler 154 passes through the expansion valve 156 and reaches the evaporator 157. That is, the refrigerant having a relatively high intermediate pressure is supplied directly to the evaporator 157 without being depressurized, whereby the evaporator 157 is heated and defrosted.
[0040]
In this way, the intermediate pressure refrigerant gas discharged from the first rotary compression element 32 is taken out from the hermetic container 12 and the evaporator 157 is defrosted, so that it is discharged from the second rotary compression element 34. So as to prevent the reverse phenomenon of the pressure in the discharge (high pressure) and suction (intermediate pressure) of the second rotary compression element 34 that occurs when supplying the high-pressure refrigerant to the evaporator 157 without reducing the pressure. Become.
[0041]
In the embodiment, the rotary compressor 10 is used for the refrigerant circuit of the hot water supply device 153. However, the present invention is not limited to this, and the present invention is also effective when used for indoor heating.
[0042]
【The invention's effect】
As described above in detail, according to the present invention, an electric element and a first and a second rotary compression element driven by the electric element are provided in a sealed container, and the gas compressed by the first rotary compression element. In the rotary compressor that discharges the discharged intermediate pressure gas with the second rotary compression element, the first and second rotary compression elements are respectively configured. 2 cylinders, an intermediate partition plate that is interposed between these cylinders to partition each rotary compression element, a support member that closes an opening surface of each cylinder and has a bearing for the rotary shaft of the electric element, and a rotary shaft The oil supply groove for communicating the oil hole with the low pressure chamber in the second cylinder is formed in the second cylinder side surface of the intermediate partition plate, so that the intermediate pressure is obtained. Second time than in a sealed container Even in a situation where the pressure in the cylinder of the compression element becomes high, the oil is surely injected into the cylinder from the oil supply groove formed in the intermediate partition plate by using the suction pressure loss in the suction process in the second rotary compression element. Will be able to supply.
[0043]
As a result, the second rotary compression element can be reliably lubricated to ensure performance and improve reliability. In particular, since the oil supply groove can be formed only by grooving the surface on the second cylinder side of the intermediate partition plate, the structure can be simplified and the increase in production cost can be suppressed.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a rotary compressor according to an embodiment of the present invention.
2 is a cross-sectional view of an intermediate partition plate of the rotary compressor of FIG. 1. FIG.
3 is a plan view of an upper cylinder 38 of the rotary compressor of FIG. 1. FIG.
4 is a view showing pressure fluctuations in the upper cylinder of the rotary compressor of FIG. 1; FIG.
FIG. 5 is a diagram illustrating a refrigerant suction-compression stroke of an upper cylinder of the rotary compressor in FIG. 1;
6 is a refrigerant circuit diagram of a hot water supply apparatus to which the rotary compressor of FIG. 1 is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Rotary compressor 12 Airtight container 14 Electric element 16 Rotating shaft 18 Rotation compression mechanism part 32 1st rotation compression element 34 2nd rotation compression element 36 Intermediate partition plates 38 and 40 Cylinder 39 Discharge port 42 Eccentric part 44 Eccentric part 46 Roller 48 Roller 50 Vane 54 Upper support member 56 Lower support member 62 Discharge silencer chamber 64 Discharge silencer chamber 66 Upper cover 68 Lower cover 80 Oil holes 92, 94 Refrigerant introduction pipe 96 Refrigerant discharge pipe 131 Oil supply groove 153 Hot water supply device 154 Gas cooler 156 Expansion valve 157 evaporator

Claims (1)

密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素で圧縮されたガスを前記密閉容器内に吐出し、更にこの吐出された中間圧のガスを前記第2の回転圧縮要素で圧縮するロータリコンプレッサにおいて、
前記第1及び第2の回転圧縮要素をそれぞれ構成するための第1及び第2のシリンダと、
これらシリンダ間に介在して前記各回転圧縮要素を仕切る中間仕切板と、
前記各シリンダの開口面をそれぞれ閉塞し、前記電動要素の回転軸の軸受けを有する支持部材と、
前記回転軸に形成されたオイル孔とを備え、
該オイル孔と前記第2のシリンダ内の低圧室とを連通するための給油溝を、前記中間仕切板の前記第2のシリンダ側の面に形成したことを特徴とするロータリコンプレッサ。
An electric element and a first and a second rotary compression element driven by the electric element are provided in the sealed container, and the gas compressed by the first rotary compression element is discharged into the sealed container. In the rotary compressor for compressing the discharged intermediate pressure gas by the second rotary compression element,
First and second cylinders for configuring the first and second rotary compression elements, respectively;
An intermediate partition plate for partitioning the rotary compression elements interposed between the cylinders;
A support member that closes the opening surfaces of the cylinders and has a bearing for the rotating shaft of the electric element;
An oil hole formed in the rotating shaft,
A rotary compressor characterized in that an oil supply groove for communicating the oil hole and a low-pressure chamber in the second cylinder is formed on a surface of the intermediate partition plate on the second cylinder side.
JP2001327809A 2001-09-27 2001-10-25 Rotary compressor Expired - Fee Related JP3883837B2 (en)

Priority Applications (31)

Application Number Priority Date Filing Date Title
JP2001327809A JP3883837B2 (en) 2001-10-25 2001-10-25 Rotary compressor
US10/225,442 US7128540B2 (en) 2001-09-27 2002-08-22 Refrigeration system having a rotary compressor
EP06013467A EP1703129B1 (en) 2001-09-27 2002-09-10 Rotary vane compressor
ES06013470T ES2398245T3 (en) 2001-09-27 2002-09-10 Rotary vane compressor
EP04030238A EP1517036A3 (en) 2001-09-27 2002-09-10 A high pressure pump for an internal-combustion engine
ES06013467T ES2398363T3 (en) 2001-09-27 2002-09-10 Rotary vane compressor
EP04030239A EP1522733A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor with vane holding plug
EP06013470A EP1703132B1 (en) 2001-09-27 2002-09-10 Rotary vane compressor
ES06013468T ES2398963T3 (en) 2001-09-27 2002-09-10 Rotary vane compressor and defroster
EP02256240A EP1298324A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor with vane holding plug
EP06013471A EP1703133A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor
EP06013468A EP1703130B1 (en) 2001-09-27 2002-09-10 Rotary vane compressor and defroster
EP04030233A EP1517041A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor with vane holding plug
EP06013469A EP1703131A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor
KR1020020058289A KR20030028388A (en) 2001-09-27 2002-09-26 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
CNB2006100743724A CN100425842C (en) 2001-09-27 2002-09-26 Compressor
US10/747,288 US20040151603A1 (en) 2001-09-27 2003-12-30 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US10/747,285 US7174725B2 (en) 2001-09-27 2003-12-30 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US10/790,181 US7435062B2 (en) 2001-09-27 2004-03-02 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US10/790,085 US7435063B2 (en) 2001-09-27 2004-03-02 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US11/377,402 US7302803B2 (en) 2001-09-27 2006-03-17 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigerant unit
US11/896,347 US7837449B2 (en) 2001-09-27 2007-08-31 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigerant unit
US11/896,346 US7762792B2 (en) 2001-09-27 2007-08-31 Compressor
KR1020080067919A KR20080071961A (en) 2001-09-27 2008-07-14 Refrigeration unit
KR1020080067917A KR100892841B1 (en) 2001-09-27 2008-07-14 Defroster of refrigerant circuit
KR1020080067914A KR20080071959A (en) 2001-09-27 2008-07-14 Compressor
KR1020080067910A KR100892840B1 (en) 2001-09-27 2008-07-14 Compressor
KR1020080067907A KR100892839B1 (en) 2001-09-27 2008-07-14 Closed type electric compressor
KR1020080067905A KR100892838B1 (en) 2001-09-27 2008-07-14 Rotary compressor
KR1020080067904A KR100862822B1 (en) 2001-09-27 2008-07-14 Rotary compressor
KR1020080067906A KR20080071956A (en) 2001-09-27 2008-07-14 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001327809A JP3883837B2 (en) 2001-10-25 2001-10-25 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2003129977A JP2003129977A (en) 2003-05-08
JP3883837B2 true JP3883837B2 (en) 2007-02-21

Family

ID=19143976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001327809A Expired - Fee Related JP3883837B2 (en) 2001-09-27 2001-10-25 Rotary compressor

Country Status (1)

Country Link
JP (1) JP3883837B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100402872C (en) * 2005-07-21 2008-07-16 李玉斌 Crankshaft for three cylinder rotary compressor
CN101275787B (en) 2007-03-29 2010-06-02 三洋电机株式会社 Apparatus including freezing unit and projector including freezing unit
JP7228730B1 (en) 2022-06-10 2023-02-24 日立ジョンソンコントロールズ空調株式会社 Rotary compressor and air conditioner

Also Published As

Publication number Publication date
JP2003129977A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
EP1703129B1 (en) Rotary vane compressor
KR20030044867A (en) Multi-stage compression type rotary compressor manufacturing method
JP6605140B2 (en) Rotary compressor and refrigeration cycle apparatus
JP3728227B2 (en) Rotary compressor
JP3963740B2 (en) Rotary compressor
JP2006214445A (en) Rotary compressor
JP3883837B2 (en) Rotary compressor
JP2006022723A (en) Compression system and refrigerating apparatus using the same
JP3895976B2 (en) Multistage rotary compressor
JP4020622B2 (en) Rotary compressor
JP4020612B2 (en) Rotary compressor
JP3913507B2 (en) Rotary compressor
JP4236400B2 (en) Defroster for refrigerant circuit
JP4024056B2 (en) Rotary compressor
JP3935854B2 (en) Rotary compressor
JP3963695B2 (en) Manufacturing method of rotary compressor
JP2003201982A (en) Rotary compressor
JP3963703B2 (en) Electric compressor
JP3825670B2 (en) Electric compressor
JP4726444B2 (en) Multi-cylinder rotary compressor
JP3963691B2 (en) Hermetic electric compressor
JP3762690B2 (en) Rotary compressor
JP2006022766A (en) Multi-cylinder rotary compressor
JP3986283B2 (en) Rotary compressor
JP4401365B2 (en) Rotary compressor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

R151 Written notification of patent or utility model registration

Ref document number: 3883837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees