JP3935854B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP3935854B2
JP3935854B2 JP2003083080A JP2003083080A JP3935854B2 JP 3935854 B2 JP3935854 B2 JP 3935854B2 JP 2003083080 A JP2003083080 A JP 2003083080A JP 2003083080 A JP2003083080 A JP 2003083080A JP 3935854 B2 JP3935854 B2 JP 3935854B2
Authority
JP
Japan
Prior art keywords
cylinder
oil
rotary compression
rotary
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003083080A
Other languages
Japanese (ja)
Other versions
JP2004293330A (en
Inventor
里  和哉
兼三 松本
賢太郎 山口
明文 富宇加
啓真 青木
緑 二川目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003083080A priority Critical patent/JP3935854B2/en
Priority to US10/770,129 priority patent/US7223082B2/en
Priority to TW093102919A priority patent/TWI325924B/en
Priority to ES04250819T priority patent/ES2387193T3/en
Priority to EP04250819A priority patent/EP1462656B1/en
Priority to CNB2004100066433A priority patent/CN100510418C/en
Priority to MYPI20041042A priority patent/MY140951A/en
Priority to KR1020040020226A priority patent/KR20040084798A/en
Publication of JP2004293330A publication Critical patent/JP2004293330A/en
Application granted granted Critical
Publication of JP3935854B2 publication Critical patent/JP3935854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Description

【0001】
【発明の属する技術分野】
本発明は、密閉容器内に駆動要素と、この駆動要素にて駆動される第1及び第2の回転圧縮要素を設け、第1の回転圧縮要素で圧縮されたガスを密閉容器内に吐出し、更にこの吐出された中間圧のガスを第2の回転圧縮要素で圧縮するロータリコンプレッサに関するものである。
【0002】
【従来の技術】
従来のこの種ロータリコンプレッサ、特に、内部中間圧型多段(二段)圧縮式のロータリコンプレッサは、密閉容器内に駆動要素と、この駆動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1及び第2の回転圧縮要素は、シリンダとこれらシリンダ間に介在された中間仕切板と、各シリンダ内を180度の位相差を有して回転軸に設けた偏心部に嵌合されて偏心回転するローラと、このローラに当接して各シリンダ内をそれぞれ低圧室側と高圧室側に区画するベーンと、各シリンダの開口面を閉塞して回転軸の軸受けを兼用する支持部材としての支持部材にて構成される。
【0003】
そして、第1の回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となりシリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。そして、この密閉容器内の中間圧の冷媒ガスは第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経て外部の放熱器などに流入する構成とされている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特許第2507047号公報
【0005】
係るロータリコンプレッサに、高低圧差の大きい冷媒、例えば二酸化炭素(CO2)を冷媒として用いた場合、冷媒圧力は高圧となる第2の回転圧縮要素で12MPaGに達し、一方、低段側となる第1の回転圧縮要素で8MPaG(中間圧)となる。
【0006】
【発明が解決しようとする課題】
このような内部中間圧型多段圧縮式のロータリコンプレッサでは、底部がオイル溜めとなる密閉容器内の圧力(中間圧)よりも第2の回転圧縮要素のシリンダ内の圧力(高圧)の方が高くなるため、回転軸のオイル孔から圧力差を利用してシリンダ内にオイルを供給することが極めて困難となり、吸入冷媒に溶け込んだオイルのみによって専ら潤滑されるかたちとなって給油量が不足してしまう。
【0007】
このため、中間仕切板と第2の回転圧縮要素のシリンダに回転軸のオイル孔とシリンダの吸込ポートを連通する細孔を形成して、第2の回転圧縮要素へのオイル供給を行うものもあるが、中間仕切板とシリンダとに細孔を加工形成しなければ成らず、生産コストがかかるという問題が生じていた。
【0008】
本発明は、係る従来技術の課題を解決するために成されたものであり、内部中間圧型多段圧縮式のロータリコンプレッサにおいて、高圧となる第2の回転圧縮要素のシリンダ内への給油を低コストで円滑、且つ、確実に行うことを目的とする。
【0009】
【課題を解決するための手段】
即ち、本発明のロータリコンプレッサは、第1及び第2の回転圧縮要素をそれぞれ構成するための第1及び第2のシリンダと、これらシリンダ間に介在して各回転圧縮要素を仕切る中間仕切板と、各シリンダの開口面をそれぞれ閉塞し、駆動要素の回転軸の軸受けを有する支持部材と、回転軸に形成されたオイル孔とを備え、オイル孔と第2のシリンダ内の低圧室とを連通する給油孔を、中間仕切板内に形成したので、中間圧となる密閉容器内よりも第2の回転圧縮要素のシリンダ内の圧力が高くなる状況であっても、第2の回転圧縮要素における吸入過程での吸入圧損を利用して、中間仕切板に形成した給油孔からシリンダ内に確実にオイルを供給することができるようになる。
【0010】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明のロータリコンプレッサの実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式のロータリコンプレッサ10の縦断面図を示している。
【0011】
この図において、10は二酸化炭素(CO2)を冷媒として使用する内部中間圧型多段(2段)圧縮式のロータリコンプレッサで、このロータリコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された駆動要素14及びこの駆動要素14の下側に配置され、駆動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)からなる回転圧縮機構部18にて構成されている。
【0012】
密閉容器12は、底部をオイル溜とし、駆動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面には駆動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0013】
駆動要素14は、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隙を設けて挿入配置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。
【0014】
ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して構成されている。
【0015】
前記回転圧縮機構部18は、第1及び第2の回転圧縮要素32、34をぞれぞれ構成するための下シリンダ(第1のシリンダ)40及び上シリンダ(第2のシリンダ)38と、これら上下シリンダ38、40内にそれぞれ設けられ、上下シリンダ38、40内を180度の位相差を有して回転軸16に設けられた上下偏心部42、44に嵌合されて偏心回転する上下ローラ46、48と、上下シリンダ38、40及びローラ46、48の間に介在して第1及び第2の回転圧縮要素32、34を仕切る中間仕切板36と、ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室LR(図5(f))側と高圧室HR(図5(f))側に区画するベーン50(下側は図示せず)と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成される。
【0016】
上部支持部材54および下部支持部材56には、吸込ポート161、162にて上下シリンダ38、40の内部とそれぞれ連通する吸込通路58、60と、一部を凹陥させ、この凹陥部を上部カバー66、下部カバー68にて閉塞することにより形成される吐出消音室62、64とが設けられている。また、上部支持部材54及び下部支持部材56の中央にはそれぞれ軸受け54A、56Aが起立形成されており、回転軸16を支持固定している。
【0017】
この場合、下部カバー68はドーナッツ状の円形鋼板から構成されており、周辺部の4カ所を主ボルト129・・・によって下から下部支持部材56に固定され、図示しない吐出ポートにて第1の回転圧縮要素32の下シリンダ40内部と連通する吐出消音室64の下面開口部を閉塞する。この主ボルト129・・・の先端は上部支持部材54に螺合する。
【0018】
尚、吐出消音室64と密閉容器12内における上部カバー66の駆動要素14側は、上下シリンダ38、40や中間仕切板36を貫通する図示しない連通路にて連通されている。この場合、連通路の上端には中間吐出管121が立設されており、この中間吐出管121は上方の駆動要素14のステータ22に巻装された相隣接するステータコイル28、28間の隙間に指向している。
【0019】
また、上部カバー66は吐出ポート39にて第2の回転圧縮要素34の上シリンダ38内部と連通する吐出消音室62の上面開口部を閉塞し、密閉容器12内の上部カバー66の上方には所定間隔を存して駆動要素14が設けられている。この上部カバー66は周辺部が4本の主ボルト78・・・により、上から上部支持部材54に固定されている。この主ボルト78・・・の先端は下部支持部材56に螺合する。
【0020】
図3は第2の回転圧縮要素34の上シリンダ38の平面図を示している。上シリンダ38内には収納室70が形成され、この収納室70内に前記ベーン50が収納されてローラ46に当接している。そして、このベーン50の一側(図3では向かって右側)前記吐出ポート39が形成され、ベーン50を挟んで反対側の他側(左側)に前記吸込ポート161が形成されている。そして、ベーン50は上シリンダ38とローラ46間に構成される圧縮室を低圧室LR側と高圧室HR側とに区画し、前記吸込ポート161は低圧室LRに、吐出ポート39は高圧室HRに対応する。
【0021】
一方、上シリンダ38の下側の開口面及び下シリンダ40の上側の開口面を閉塞する中間仕切板36は略ドーナッツ形状を呈しており、当該中間仕切板36には、後述するオイル孔80と上シリンダ38の低圧室LRとを連通する給油孔131が形成されている。即ち、給油孔131は中間仕切板36の上面(上シリンダ38側の面)の上シリンダ38の低圧室LRと中間仕切板36の内周面とを連通する孔であり、上面は上シリンダ38の低圧室LRにて開口している。この給油孔131は図3における上シリンダ38のベーン50がローラ46に当接する位置から吸込ポート161のベーン50とは反対側の縁部までの範囲α内の下側に対応するように形成されている。また、給油孔131の上端部分は上シリンダ38内の低圧室LR側(吸込側)に連通している。
【0022】
一方、回転軸16内には軸中心に鉛直方向の前述したオイル孔80と、このオイル孔80に連通する横方向の給油孔82、84(上下偏心部42、44にも形成されている)が形成されており、中間仕切板36の給油孔131の内周面側の開口は、これらの給油孔82、84を介してオイル孔80に連通している。これにより、給油孔131はオイル孔80と上シリンダ38内の低圧室LRとを連通する。
【0023】
後述する如く密閉容器12内は中間圧となるため、2段目で高圧となる上シリンダ38内にはオイルの供給が困難となるが、中間仕切板36に係る給油孔131を形成としたことにより、密閉容器12内底部のオイル溜めから汲み上げられてオイル孔80を上昇し、給油孔82、84から出たオイルは、中間仕切板36の給油孔131に入り、そこを通って上シリンダ38の低圧室LR側(吸込側)に供給されるようになる。
【0024】
図4は上シリンダ38内の圧力変動を示し、図中P1は中間仕切板36の内周面側の圧力を示す。この図にLPで示す如く上シリンダ38の低圧室LRの内部圧力(吸入圧力)は、吸入過程においては吸入圧損により中間仕切板36の内周面側の圧力P1よりも低下する。この期間に回転軸16のオイル孔80から中間仕切板36の給油孔131を経て上シリンダ38内の低圧室LRにオイルがインジェクションされ、給油が成されることになる。
【0025】
ここで、図5の(a)〜(l)は係る第2の回転圧縮要素34の上シリンダ38における冷媒の吸込−圧縮行程を説明する図である。回転軸16の偏心部42は各図において反時計回りに回転するものとすると、図5の(a)〜(b)ではローラ46によって吸込ポート161が閉じられている。(c)において吸込ポート161が開き、冷媒の吸込が始まる(反対側では冷媒の吐出も行われている)。そして、(c)〜(e)まで冷媒の吸込が続けられる。この区間では給油孔131はローラ46で塞がれている。
【0026】
そして、(f)で初めて給油孔131がローラ46の下側に現れ、上シリンダ38内のベーン50とローラ46で囲まれた低圧室LR内にオイルが吸い込まれて給油が始まる(図4の供給区間の始まり)。以後(g)〜(i)まで冷媒の吸込のオイルの吸込が行われる。そして、(j)で給油孔131の上側がローラ46で塞がれるまで給油が行われ、ここで給油は停止する(図4の供給区間の終わり)。以後の(k)〜(l)〜(a)〜(b)まで冷媒の吸込が行われ、以後圧縮されて吐出ポート39から吐出されることになる。
【0027】
そして、この場合冷媒としては地球環境にやさしく、可燃性および毒性等を考慮して自然冷媒である前記二酸化炭素(CO2)を使用し、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、PAG(ポリアルキレングリコール)、アルキルベンゼン油、エーテル油、エステル油等既存のオイルが使用される。
【0028】
密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路58、60、吐出消音室62及び上部カバー66の上側(駆動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。スリーブ141と142は上下に隣接すると共に、スリーブ143はスリーブ141の略対角線上にある。また、スリーブ144はスリーブ141と略90度ずれた位置にある。
【0029】
そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の吸込通路58に連通される。この冷媒導入管92は密閉容器12の上側を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0030】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60に連通される。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒吐出管96の一端は吐出消音室62に連通される。
【0031】
以上の構成で次に動作を説明する。ターミナル20および図示されない配線を介して駆動要素14のステータコイル28に通電されると、駆動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を前述の如く偏心回転する。
【0032】
これにより、冷媒導入管94および下部支持部材56に形成された吸込通路60を経由して吸込ポート162から下シリンダ40の低圧室側に吸入された低圧(4MPaG程度)の冷媒ガスは、ローラ48と図示しないベーンの動作により圧縮されて中間圧(8MPaG程度)となり下シリンダ40の高圧室側より図示しない吐出ポート、下部支持部材56に形成された吐出消音室64から図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。
【0033】
このとき、中間吐出管121は上方の駆動要素14のステータ22に巻装された相隣接するステータコイル28、28間の隙間に指向しているので、未だ比較的温度の低い冷媒ガスを駆動要素14方向に積極的に供給できるようになり、駆動要素14の温度上昇が抑制されるようになる。また、これによって、密閉容器12内は中間圧となる。
【0034】
そして、密閉容器12内の中間圧の冷媒ガスは、スリーブ144から出て冷媒導入管92及び上部支持部材54に形成された吸込通路58を経由して吸込ポート161から上シリンダ38の低圧室LR側に吸入される。吸入された中間圧の冷媒ガスは、ローラ46とベーン50の動作により図5で説明したような2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり(圧力は12MPaG程度)、高圧室HR側から吐出ポート39を通り上部支持部材54に形成された吐出消音室62、冷媒吐出管96を経由してコンプレッサ10の外部の放熱器等に吐出される。
【0035】
ここで、コンプレッサ10の第2の回転圧縮要素34の上シリンダ38内には前述の如く給油孔131からオイルが確実に供給されるため、第2の回転圧縮要素34に給油量が不足するといった不都合を回避することができる。
【0036】
これにより、第2の回転圧縮要素34の潤滑を確実に行い、性能の確保と信頼性の向上を図ることができるようなる。特に、給油孔131は中間仕切板36にオイル孔80と連通する横方向の孔と上シリンダ38の低圧室LRと連通する縦孔を形成するのみで構成できるので、従来のように中間仕切板と第2の回転圧縮要素のシリンダとに孔を形成するものより、構造を簡素化でき、生産コストの高騰も抑制することができるようになる。
【0037】
また、第2の回転圧縮要素34への給油構造を、中間仕切板36の上面(上シリンダ38側の面)に内周面から上シリンダ38の半径方向に溝を形成して、当該溝の外径部が上シリンダ38の低圧室LR側と連通するようなものとした場合には、ローラ46の位置により、溝と上シリンダ38の低圧室LRとが連通される面積が異なるため、シリンダ38内に供給されるオイルの給油量を調整することが非常に困難となる。
【0038】
しかしながら、本発明の如く上シリンダ38の低圧室LRと給油孔131により連通することで、孔の径や上シリンダ38の低圧室LRと連通する位置を調節することで、上シリンダ38内への給油量を自在に調整することができる。上シリンダ38の低圧室LRと連通する位置を調節する場合、連通する位置をより回転軸16側(中心部側)にすれば、ローラ46の回転により、給油孔131と上シリンダ38の低圧室LRが連通する時間が短くなるので、オイル供給量を少なくでき、より回転軸16とは反対側にすれば、ローラ46の回転により、給油孔131と上シリンダ38の低圧室LRが連通する時間が長くなるので、オイル供給量を増やすことができるようになる。
【0039】
これらにより、第2の回転圧縮要素34へのオイル供給を低コストで円滑、且つ、より確実に行うことができるようになり、ロータリコンプレッサ10の信頼性の向上をより一層図ることができるようになる。
【0040】
【発明の効果】
以上詳述した如く本発明のロータリコンプレッサによれば、第1及び第2の回転圧縮要素をそれぞれ構成するための第1及び第2のシリンダと、これらシリンダ間に介在して各回転圧縮要素を仕切る中間仕切板と、各シリンダの開口面をそれぞれ閉塞し、駆動要素の回転軸の軸受けを有する支持部材と、回転軸に形成されたオイル孔とを備え、オイル孔と第2のシリンダ内の低圧室とを連通する給油孔を、中間仕切板内に形成したので、中間圧となる密閉容器内よりも第2の回転圧縮要素のシリンダ内の圧力が高くなる状況であっても、第2の回転圧縮要素における吸入過程での吸入圧損を利用して、中間仕切板に形成した給油孔からシリンダ内に確実にオイルを供給することができるようになる。
【0041】
これにより、第2の回転圧縮要素の潤滑を確実に行い、性能の確保と信頼性の向上を図ることができるようなる。特に、給油孔は中間仕切板に孔を形成するのみで構成できるので、構造を簡素化し、生産コストの高騰も抑制することができるようになる。
【図面の簡単な説明】
【図1】本発明の実施例のロータリコンプレッサの縦断面図である。
【図2】図1のロータリコンプレッサの中間仕切板の断面図である。
【図3】図1のロータリコンプレッサの上シリンダ38の平面図である。
【図4】図1のロータリコンプレッサの上シリンダ内の圧力変動を示す図である。
【図5】図1のロータリコンプレッサの上シリンダの冷媒の吸込−圧縮行程を説明する図である。
【符号の説明】
10 ロータリコンプレッサ
12 密閉容器
14 駆動要素
16 回転軸
18 回転圧縮機構部
32 第1の回転圧縮要素
34 第2の回転圧縮要素
36 中間仕切板
38、40 シリンダ
39 吐出ポート
42 偏心部
44 偏心部
46 ローラ
48 ローラ
50 ベーン
54 上部支持部材
56 下部支持部材
62 吐出消音室
64 吐出消音室
66 上部カバー
68 下部カバー
80 オイル孔
92、94 冷媒導入管
96 冷媒吐出管
131 給油孔
[0001]
BACKGROUND OF THE INVENTION
In the present invention, a driving element and first and second rotary compression elements driven by the driving element are provided in a sealed container, and gas compressed by the first rotary compression element is discharged into the sealed container. Further, the present invention relates to a rotary compressor that compresses the discharged intermediate-pressure gas by a second rotary compression element.
[0002]
[Prior art]
A conventional rotary compressor of this type, in particular, an internal intermediate pressure multistage (two-stage) compression rotary compressor, includes a drive element in a hermetic container and first and second rotary compression elements driven by the drive element. The first and second rotary compression elements are fitted to a cylinder, an intermediate partition plate interposed between the cylinders, and an eccentric portion provided on the rotary shaft with a phase difference of 180 degrees inside each cylinder. A roller that rotates eccentrically, a vane that abuts on the roller and divides the inside of each cylinder into a low-pressure chamber side and a high-pressure chamber side, and a support member that closes the opening surface of each cylinder and also serves as a bearing for the rotating shaft It is comprised with the supporting member as.
[0003]
Then, the refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the first rotary compression element and is compressed by the operation of the roller and the vane to become an intermediate pressure from the high pressure chamber side of the cylinder through the discharge port and the discharge silencer chamber. It is discharged into a closed container. The intermediate-pressure refrigerant gas in the sealed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second stage compression is performed by the operation of the roller and the vane, so The refrigerant gas is configured to flow into the external radiator from the high-pressure chamber side through the discharge port and the discharge silencer chamber (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent No. 25007047 [0005]
When a refrigerant having a large high-low pressure difference, such as carbon dioxide (CO 2 ), is used for the rotary compressor, the refrigerant pressure reaches 12 MPaG in the second rotary compression element having a high pressure, while the second compressor on the low stage side. One rotary compression element results in 8 MPaG (intermediate pressure).
[0006]
[Problems to be solved by the invention]
In such an internal intermediate pressure type multi-stage compression rotary compressor, the pressure (high pressure) in the cylinder of the second rotary compression element is higher than the pressure (intermediate pressure) in the sealed container whose bottom is an oil reservoir. For this reason, it becomes extremely difficult to supply oil into the cylinder using the pressure difference from the oil hole of the rotating shaft, and the amount of oil supply becomes insufficient because only the oil dissolved in the suction refrigerant is lubricated. .
[0007]
For this reason, the intermediate partition plate and the cylinder of the second rotary compression element are formed with pores communicating with the oil hole of the rotary shaft and the suction port of the cylinder to supply oil to the second rotary compression element. However, there has been a problem in that the production cost is increased because fine holes must be formed in the intermediate partition plate and the cylinder.
[0008]
The present invention has been made to solve the problems of the prior art, and in an internal intermediate pressure type multi-stage compression rotary compressor, it is possible to reduce the cost of supplying oil into the cylinder of the second rotary compression element having a high pressure. The purpose is to be smooth and reliable.
[0009]
[Means for Solving the Problems]
That is, the rotary compressor of the present invention includes first and second cylinders for constituting the first and second rotary compression elements, and an intermediate partition plate that is interposed between the cylinders and partitions the rotary compression elements. And a support member having a bearing for the rotating shaft of the drive element, and an oil hole formed in the rotating shaft, each having an opening surface of each cylinder closed, and the oil hole communicating with the low pressure chamber in the second cylinder Since the oil supply hole to be formed is formed in the intermediate partition plate, even in a situation where the pressure in the cylinder of the second rotary compression element is higher than in the sealed container that becomes the intermediate pressure, the second rotary compression element By using the suction pressure loss during the suction process, oil can be reliably supplied into the cylinder from the oil supply hole formed in the intermediate partition plate.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor 10 having first and second rotary compression elements 32 and 34 as an embodiment of the rotary compressor of the present invention. .
[0011]
In this figure, 10 is an internal intermediate pressure type multi-stage (two-stage) rotary compressor that uses carbon dioxide (CO 2 ) as a refrigerant. The rotary compressor 10 includes a cylindrical sealed container 12 made of a steel plate, A drive element 14 disposed and housed above the internal space of the container 12 and a first rotary compression element 32 (first stage) disposed below the drive element 14 and driven by the rotating shaft 16 of the drive element 14. And a rotary compression mechanism section 18 including a second rotary compression element 34 (second stage).
[0012]
The sealed container 12 has an oil reservoir at the bottom, a container main body 12A that houses the drive element 14 and the rotary compression mechanism 18, and a substantially bowl-shaped end cap (lid) 12B that closes the upper opening of the container main body 12A. A terminal (wiring is omitted) 20 for supplying power to the drive element 14 is attached to the upper surface of the end cap 12B.
[0013]
The drive element 14 includes a stator 22 that is annularly attached along the inner peripheral surface of the upper space of the hermetic container 12, and a rotor 24 that is inserted and arranged with a slight gap inside the stator 22. The rotor 24 is fixed to a rotating shaft 16 that passes through the center and extends in the vertical direction.
[0014]
The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method. Similarly to the stator 22, the rotor 24 is also formed by a laminated body 30 of electromagnetic steel plates, and a permanent magnet MG is inserted into the laminated body 30.
[0015]
The rotary compression mechanism 18 includes a lower cylinder (first cylinder) 40 and an upper cylinder (second cylinder) 38 for configuring the first and second rotary compression elements 32 and 34, respectively. The upper and lower cylinders provided in the upper and lower cylinders 38 and 40, respectively, are fitted in the upper and lower eccentric parts 42 and 44 provided on the rotary shaft 16 with a phase difference of 180 degrees in the upper and lower cylinders 38 and 40. The rollers 46 and 48 are in contact with the rollers 46 and 48 and the intermediate partition plate 36 which is interposed between the upper and lower cylinders 38 and 40 and the rollers 46 and 48 and partitions the first and second rotary compression elements 32 and 34. The upper and lower cylinders 38 and 40 are divided into a low pressure chamber LR (FIG. 5 (f)) side and a high pressure chamber HR (FIG. 5 (f)) side, respectively. Upper opening surface and lower cylinder 4 Constituted by upper support member 54 and lower support member 56 as a supporting member that also serves as a lower bearing occluded by the rotary shaft 16 of the opening surface of the.
[0016]
The upper support member 54 and the lower support member 56 are partially recessed with suction passages 58 and 60 that communicate with the inside of the upper and lower cylinders 38 and 40 at the suction ports 161 and 162, respectively. Discharge silencing chambers 62 and 64 formed by closing with the lower cover 68 are provided. Further, bearings 54A and 56A are erected at the centers of the upper support member 54 and the lower support member 56, respectively, and support and fix the rotary shaft 16.
[0017]
In this case, the lower cover 68 is made of a donut-shaped circular steel plate, and is fixed to the lower support member 56 from below by main bolts 129... The lower surface opening of the discharge silencing chamber 64 communicating with the inside of the lower cylinder 40 of the rotary compression element 32 is closed. The front ends of the main bolts 129 are screwed into the upper support member 54.
[0018]
The discharge silencer chamber 64 and the drive element 14 side of the upper cover 66 in the sealed container 12 are communicated with each other through a communication path (not shown) that penetrates the upper and lower cylinders 38 and 40 and the intermediate partition plate 36. In this case, an intermediate discharge pipe 121 is erected at the upper end of the communication path, and this intermediate discharge pipe 121 is a gap between adjacent stator coils 28, 28 wound around the stator 22 of the upper drive element 14. Oriented to.
[0019]
The upper cover 66 closes the upper opening of the discharge silencing chamber 62 communicating with the inside of the upper cylinder 38 of the second rotary compression element 34 at the discharge port 39, and is located above the upper cover 66 in the sealed container 12. Drive elements 14 are provided at a predetermined interval. The upper cover 66 is fixed to the upper support member 54 from above by four main bolts 78. The front ends of the main bolts 78 are screwed into the lower support member 56.
[0020]
FIG. 3 shows a plan view of the upper cylinder 38 of the second rotary compression element 34. A storage chamber 70 is formed in the upper cylinder 38, and the vane 50 is stored in the storage chamber 70 and is in contact with the roller 46. The discharge port 39 is formed on one side (right side in FIG. 3) of the vane 50, and the suction port 161 is formed on the other side (left side) opposite to the vane 50. The vane 50 partitions a compression chamber formed between the upper cylinder 38 and the roller 46 into a low pressure chamber LR side and a high pressure chamber HR side, the suction port 161 is a low pressure chamber LR, and the discharge port 39 is a high pressure chamber HR. Corresponding to
[0021]
On the other hand, the intermediate partition plate 36 that closes the lower opening surface of the upper cylinder 38 and the upper opening surface of the lower cylinder 40 has a substantially donut shape. An oil supply hole 131 that communicates with the low pressure chamber LR of the upper cylinder 38 is formed. That is, the oil supply hole 131 is a hole that communicates the low pressure chamber LR of the upper cylinder 38 and the inner peripheral surface of the intermediate partition plate 36 on the upper surface (surface on the upper cylinder 38 side) of the intermediate partition plate 36. The low pressure chamber LR is opened. The oil supply hole 131 is formed so as to correspond to the lower side in the range α from the position where the vane 50 of the upper cylinder 38 contacts the roller 46 in FIG. 3 to the edge of the suction port 161 opposite to the vane 50. ing. Further, the upper end portion of the oil supply hole 131 communicates with the low pressure chamber LR side (suction side) in the upper cylinder 38.
[0022]
On the other hand, in the rotating shaft 16, the above-described oil hole 80 in the vertical direction around the shaft center and the lateral oil supply holes 82 and 84 communicating with the oil hole 80 (also formed in the upper and lower eccentric portions 42 and 44). The opening on the inner peripheral surface side of the oil supply hole 131 of the intermediate partition plate 36 communicates with the oil hole 80 through these oil supply holes 82 and 84. As a result, the oil supply hole 131 allows the oil hole 80 to communicate with the low pressure chamber LR in the upper cylinder 38.
[0023]
As will be described later, since the inside of the sealed container 12 is at an intermediate pressure, it is difficult to supply oil into the upper cylinder 38 that is at a high pressure in the second stage, but the oil supply hole 131 related to the intermediate partition plate 36 is formed. As a result, the oil hole 80 is pumped up from the oil sump at the bottom of the sealed container 12 and rises through the oil holes 80, 84. The oil enters the oil holes 131 of the intermediate partition plate 36 and passes through the upper cylinder 38. Is supplied to the low pressure chamber LR side (suction side).
[0024]
4 shows the pressure fluctuation in the upper cylinder 38, and P1 in the figure shows the pressure on the inner peripheral surface side of the intermediate partition plate 36. FIG. As indicated by LP in this figure, the internal pressure (suction pressure) of the low pressure chamber LR of the upper cylinder 38 is lower than the pressure P1 on the inner peripheral surface side of the intermediate partition plate 36 due to suction pressure loss during the suction process. During this period, oil is injected from the oil hole 80 of the rotating shaft 16 through the oil supply hole 131 of the intermediate partition plate 36 into the low pressure chamber LR in the upper cylinder 38, and oil supply is performed.
[0025]
Here, (a) to (l) in FIG. 5 are views for explaining the refrigerant suction-compression process in the upper cylinder 38 of the second rotary compression element 34. Assuming that the eccentric portion 42 of the rotating shaft 16 rotates counterclockwise in each figure, the suction port 161 is closed by the roller 46 in FIGS. In (c), the suction port 161 is opened, and the suction of the refrigerant starts (the refrigerant is also discharged on the opposite side). Then, the refrigerant is continuously sucked from (c) to (e). In this section, the oil supply hole 131 is closed by the roller 46.
[0026]
Then, for the first time in (f), the oil supply hole 131 appears on the lower side of the roller 46, and the oil is sucked into the low pressure chamber LR surrounded by the vane 50 and the roller 46 in the upper cylinder 38 to start the oil supply (FIG. 4). The beginning of the supply section). Thereafter, the refrigerant suction is performed from (g) to (i). Then, in (j), the oil supply is performed until the upper side of the oil supply hole 131 is closed by the roller 46, and the oil supply is stopped (the end of the supply section in FIG. 4). Thereafter, the refrigerant is sucked from (k) to (l) to (a) to (b), and then compressed and discharged from the discharge port 39.
[0027]
In this case, the refrigerant is environmentally friendly and uses the carbon dioxide (CO 2 ), which is a natural refrigerant in consideration of flammability and toxicity, and the oil as the lubricating oil is, for example, mineral oil (mineral oil) Existing oils such as PAG (polyalkylene glycol), alkylbenzene oil, ether oil and ester oil are used.
[0028]
On the side surface of the container main body 12A of the sealed container 12, the suction passages 58, 60 of the upper support member 54 and the lower support member 56, the upper side of the discharge silencer chamber 62, and the upper cover 66 (position substantially corresponding to the lower end of the drive element 14). The sleeves 141, 142, 143, and 144 are fixed by welding at positions corresponding to. The sleeves 141 and 142 are adjacent to each other vertically, and the sleeve 143 is substantially diagonal to the sleeve 141. Further, the sleeve 144 is located at a position shifted by approximately 90 degrees from the sleeve 141.
[0029]
One end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the upper cylinder 38 is inserted and connected into the sleeve 141, and one end of the refrigerant introduction pipe 92 is communicated with the suction passage 58 of the upper cylinder 38. The refrigerant introduction pipe 92 passes through the upper side of the sealed container 12 to reach the sleeve 144, and the other end is inserted and connected into the sleeve 144 to communicate with the sealed container 12.
[0030]
Also, one end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected into the sleeve 142, and one end of the refrigerant introduction pipe 94 is communicated with the suction passage 60 of the lower cylinder 40. A refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant discharge pipe 96 is communicated with the discharge silencer chamber 62.
[0031]
Next, the operation of the above configuration will be described. When the stator coil 28 of the drive element 14 is energized through the terminal 20 and a wiring (not shown), the drive element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotary shaft 16 are eccentrically rotated in the upper and lower cylinders 38 and 40 as described above.
[0032]
Thus, the low-pressure (about 4 MPaG) refrigerant gas sucked from the suction port 162 to the low-pressure chamber side of the lower cylinder 40 via the refrigerant introduction pipe 94 and the suction passage 60 formed in the lower support member 56 is transferred to the roller 48. And compressed to an intermediate pressure (about 8 MPaG) by the operation of the vane (not shown) from the high pressure chamber side of the lower cylinder 40 to the middle through a discharge port (not shown) and a discharge silencer chamber 64 formed in the lower support member 56 via a communication path (not shown). It is discharged from the discharge pipe 121 into the sealed container 12.
[0033]
At this time, since the intermediate discharge pipe 121 is directed to the gap between the adjacent stator coils 28 and 28 wound around the stator 22 of the upper drive element 14, the refrigerant gas still having a relatively low temperature is used as the drive element. It becomes possible to actively supply in the 14 directions, and the temperature rise of the drive element 14 is suppressed. Moreover, the inside of the airtight container 12 becomes an intermediate pressure by this.
[0034]
Then, the intermediate-pressure refrigerant gas in the sealed container 12 exits from the sleeve 144, passes through the refrigerant introduction pipe 92 and the suction passage 58 formed in the upper support member 54, and passes from the suction port 161 to the low pressure chamber LR of the upper cylinder 38. Inhaled to the side. The suctioned intermediate pressure refrigerant gas is compressed in the second stage as described with reference to FIG. 5 by the operation of the roller 46 and the vane 50 to become a high temperature and high pressure refrigerant gas (pressure is about 12 MPaG), and the high pressure chamber HR. From the side, it passes through the discharge port 39 and is discharged to a radiator or the like outside the compressor 10 via a discharge silencer chamber 62 and a refrigerant discharge pipe 96 formed in the upper support member 54.
[0035]
Here, since the oil is reliably supplied into the upper cylinder 38 of the second rotary compression element 34 of the compressor 10 from the oil supply hole 131 as described above, the amount of oil supply to the second rotary compression element 34 is insufficient. Inconvenience can be avoided.
[0036]
Accordingly, the second rotary compression element 34 can be reliably lubricated, and performance can be ensured and reliability can be improved. In particular, the oil supply hole 131 can be configured by only forming a horizontal hole communicating with the oil hole 80 in the intermediate partition plate 36 and a vertical hole communicating with the low pressure chamber LR of the upper cylinder 38. And the cylinder of the second rotary compression element, the structure can be simplified and the increase in production cost can be suppressed.
[0037]
In addition, an oil supply structure for the second rotary compression element 34 is formed by forming a groove in the radial direction of the upper cylinder 38 from the inner peripheral surface on the upper surface (the surface on the upper cylinder 38 side) of the intermediate partition plate 36. When the outer diameter portion communicates with the low pressure chamber LR side of the upper cylinder 38, the area where the groove communicates with the low pressure chamber LR of the upper cylinder 38 differs depending on the position of the roller 46. It is very difficult to adjust the amount of oil supplied into the oil 38.
[0038]
However, by communicating with the low pressure chamber LR of the upper cylinder 38 via the oil supply hole 131 as in the present invention, the diameter of the hole and the position of the upper cylinder 38 communicating with the low pressure chamber LR are adjusted, so The amount of oil supply can be adjusted freely. When adjusting the position of the upper cylinder 38 that communicates with the low pressure chamber LR, if the communication position is closer to the rotating shaft 16 side (center side), the rotation of the roller 46 causes the oil supply hole 131 and the low pressure chamber of the upper cylinder 38 to move. Since the time required for communication with the LR is shortened, the amount of oil supply can be reduced, and when the roller 46 is further rotated, the time required for the oil supply hole 131 and the low pressure chamber LR of the upper cylinder 38 to communicate with each other due to the rotation of the roller 46. Since the oil becomes longer, the oil supply amount can be increased.
[0039]
As a result, the oil supply to the second rotary compression element 34 can be smoothly and more reliably performed at low cost, and the reliability of the rotary compressor 10 can be further improved. Become.
[0040]
【The invention's effect】
As described above in detail, according to the rotary compressor of the present invention, the first and second cylinders for constituting the first and second rotary compression elements, and the rotary compression elements interposed between these cylinders, respectively. An intermediate partition plate for partitioning, a support member that closes an opening surface of each cylinder, has a bearing for the rotating shaft of the drive element, and an oil hole formed in the rotating shaft, and includes an oil hole and a second cylinder Since the oil supply hole that communicates with the low-pressure chamber is formed in the intermediate partition plate, even if the pressure in the cylinder of the second rotary compression element is higher than that in the sealed container that becomes the intermediate pressure, the second By using the suction pressure loss in the suction process of the rotary compression element, oil can be reliably supplied into the cylinder from the oil supply hole formed in the intermediate partition plate.
[0041]
As a result, the second rotary compression element can be reliably lubricated to ensure performance and improve reliability. In particular, since the oil supply hole can be configured only by forming a hole in the intermediate partition plate, the structure can be simplified and the increase in production cost can be suppressed.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a rotary compressor according to an embodiment of the present invention.
2 is a cross-sectional view of an intermediate partition plate of the rotary compressor of FIG. 1. FIG.
3 is a plan view of an upper cylinder 38 of the rotary compressor of FIG. 1. FIG.
4 is a view showing pressure fluctuations in the upper cylinder of the rotary compressor of FIG. 1; FIG.
FIG. 5 is a diagram illustrating a refrigerant suction-compression stroke of an upper cylinder of the rotary compressor in FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Rotary compressor 12 Sealed container 14 Drive element 16 Rotating shaft 18 Rotation compression mechanism part 32 First rotation compression element 34 Second rotation compression element 36 Intermediate partition plates 38 and 40 Cylinder 39 Discharge port 42 Eccentric part 44 Eccentric part 46 Roller 48 Roller 50 Vane 54 Upper support member 56 Lower support member 62 Discharge silencer chamber 64 Discharge silencer chamber 66 Upper cover 68 Lower cover 80 Oil holes 92, 94 Refrigerant introduction pipe 96 Refrigerant discharge pipe 131 Refueling hole

Claims (1)

密閉容器内に駆動要素と、該駆動要素にて駆動される第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素で圧縮されたガスを前記密閉容器内に吐出し、更にこの吐出された中間圧のガスを前記第2の回転圧縮要素で圧縮するロータリコンプレッサにおいて、
前記第1及び第2の回転圧縮要素をそれぞれ構成するための第1及び第2のシリンダと、
これらシリンダ間に介在して前記各回転圧縮要素を仕切る中間仕切板と、
前記各シリンダの開口面をそれぞれ閉塞し、前記駆動要素の回転軸の軸受けを有する支持部材と、
前記回転軸に形成されたオイル孔とを備え、
前記オイル孔と第2のシリンダ内の低圧室とを連通する給油孔を、前記中間仕切板内に形成したことを特徴とするロータリコンプレッサ。
A sealed element is provided with a drive element and first and second rotary compression elements driven by the drive element, and the gas compressed by the first rotary compression element is discharged into the sealed container. In the rotary compressor for compressing the discharged intermediate pressure gas by the second rotary compression element,
First and second cylinders for configuring the first and second rotary compression elements, respectively;
An intermediate partition plate for partitioning the rotary compression elements interposed between the cylinders;
A support member that closes the opening surface of each cylinder, and has a bearing for the rotation shaft of the drive element;
An oil hole formed in the rotating shaft,
A rotary compressor characterized in that an oil supply hole for communicating the oil hole with a low pressure chamber in a second cylinder is formed in the intermediate partition plate.
JP2003083080A 2003-03-25 2003-03-25 Rotary compressor Expired - Fee Related JP3935854B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003083080A JP3935854B2 (en) 2003-03-25 2003-03-25 Rotary compressor
US10/770,129 US7223082B2 (en) 2003-03-25 2004-02-03 Rotary compressor
TW093102919A TWI325924B (en) 2003-03-25 2004-02-09 Rotary compressor
EP04250819A EP1462656B1 (en) 2003-03-25 2004-02-16 Rotary piston compressor
ES04250819T ES2387193T3 (en) 2003-03-25 2004-02-16 Rotary piston compressor
CNB2004100066433A CN100510418C (en) 2003-03-25 2004-02-25 Rotary compressor
MYPI20041042A MY140951A (en) 2003-03-25 2004-03-24 Rotary compressor
KR1020040020226A KR20040084798A (en) 2003-03-25 2004-03-25 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083080A JP3935854B2 (en) 2003-03-25 2003-03-25 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2004293330A JP2004293330A (en) 2004-10-21
JP3935854B2 true JP3935854B2 (en) 2007-06-27

Family

ID=33398655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083080A Expired - Fee Related JP3935854B2 (en) 2003-03-25 2003-03-25 Rotary compressor

Country Status (1)

Country Link
JP (1) JP3935854B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159008A (en) * 2011-01-31 2012-08-23 Sanyo Electric Co Ltd Machining hole structure of metal member, and refrigerating cycle device formed by using the machining hole structure
JP2015068262A (en) * 2013-09-30 2015-04-13 パナソニックIpマネジメント株式会社 Rotary compressor
JP2018031263A (en) * 2016-08-22 2018-03-01 日立ジョンソンコントロールズ空調株式会社 Rotary Compressor
EP3779200A4 (en) * 2018-03-29 2021-05-19 Panasonic Intellectual Property Management Co., Ltd. Rotary compressor

Also Published As

Publication number Publication date
JP2004293330A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
US8858205B2 (en) Compressor having an inlet port formed to overlap with a roller and a cylinder-type rotor for compressing a refrigerant
EP1462656B1 (en) Rotary piston compressor
JP2007064045A (en) Hermetic electric compressor
JP2003269356A (en) Horizontal type rotary compressor
JP2001073945A (en) Hermetic electric compressor
JP3935854B2 (en) Rotary compressor
JP4289975B2 (en) Multi-stage rotary compressor
WO2011125652A1 (en) Rotary compressor
JP3935855B2 (en) Rotary compressor
US9181947B2 (en) Compressor
JP2004027970A (en) Multistage compression type rotary compressor
JP2015068262A (en) Rotary compressor
JP4136747B2 (en) Rotary compressor
JP4118109B2 (en) Rotary compressor
JP3883837B2 (en) Rotary compressor
JP4225793B2 (en) Horizontal type compressor
JP4024067B2 (en) Horizontal multi-stage rotary compressor
JP4093801B2 (en) Horizontal rotary compressor
JP3913507B2 (en) Rotary compressor
JP2004092469A (en) Rotary compressor
WO2012117598A1 (en) Rotary compressor
JP2009057840A (en) Method of manufacturing rotary compressor
JP4063568B2 (en) Horizontal multistage compression rotary compressor
JP4100969B2 (en) Rotary compressor
JP2004293380A (en) Horizontal rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees