JP3963740B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP3963740B2
JP3963740B2 JP2002057047A JP2002057047A JP3963740B2 JP 3963740 B2 JP3963740 B2 JP 3963740B2 JP 2002057047 A JP2002057047 A JP 2002057047A JP 2002057047 A JP2002057047 A JP 2002057047A JP 3963740 B2 JP3963740 B2 JP 3963740B2
Authority
JP
Japan
Prior art keywords
cylinder
pressure chamber
back pressure
refrigerant
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002057047A
Other languages
Japanese (ja)
Other versions
JP2003254276A (en
Inventor
俊行 江原
兼三 松本
孝 佐藤
大 松浦
里  和哉
裕之 松森
隆泰 斎藤
晴久 山崎
昌也 只野
悟 今井
淳志 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002057047A priority Critical patent/JP3963740B2/en
Publication of JP2003254276A publication Critical patent/JP2003254276A/en
Application granted granted Critical
Publication of JP3963740B2 publication Critical patent/JP3963740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密閉容器内に電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮され、密閉容器内に吐出された中間圧のガスを第2の回転圧縮要素で圧縮するロータリコンプレッサに関するものである。
【0002】
【従来の技術】
従来よりこの種ロータリコンプレッサは、例えば特開平2−294587号公報に示されるように、密閉容器の下部に第1及び第2の回転圧縮要素、上部に電動要素が設けられ、シリンダとこのシリンダの下の開口面を閉塞する支持部材と電動要素の回転軸に一体形成された偏心部によりシリンダの内壁に沿って回転するローラと、このローラに先端部が当接してシリンダに設けられた溝内を往復摺動するベーンとから構成される第1の回転圧縮要素と、シリンダとこのシリンダの上の開口面を閉塞する支持部材と電動要素の回転軸に一体形成され前記第1の回転圧縮要素に設けた偏心部と180度対向して設けられた偏心部によりシリンダの内壁に沿って回転するローラと、このローラに先端部が当接してシリンダに設けられた溝内を往復摺動するベーンとで構成される第2の回転圧縮要素にて構成されている。
【0003】
そして、第1の回転圧縮要素の吸込ポートからガス(冷媒ガス)がシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となりシリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。密閉容器内に吐出された中間圧のガスは第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行なわれて高温高圧のガスとなり、高圧室側より吐出ポート、吐出消音室を経て吐出される。
【0004】
ロータリコンプレッサから吐出されたガスは冷媒回路の放熱器に流入し、放熱した後、膨張弁で絞られて蒸発器で吸熱し、ロータリコンプレッサの第1の回転圧縮要素に吸入されるサイクルを繰り返す。
【0005】
また、係るロータリコンプレッサに、高低圧差の大きい冷媒、例えば二酸化炭素(CO2)を冷媒として用いた場合、吐出冷媒圧力は高圧となる第2の回転圧縮要素で12MPaGに達し、一方、低段側となる第1の回転圧縮要素で8MPaG(中間圧)となる(第1の回転圧縮要素の吸込圧力は4MPa)。
【0006】
【発明が解決しようとする課題】
このようなロータリコンプレッサに取り付けられたベーンは、シリンダの半径方向に設けられた案内溝に移動自在に挿入されている。そして、このベーンをローラ側に押し付けるため、従来よりスプリングによる付勢力と背圧室からの背圧によってベーンをローラに押し付ける構造が取られているが、内部中間圧のロータリコンプレッサの第2の回転圧縮要素では、密閉容器内の中間圧よりもシリンダ内の圧力が高くなるため、密閉容器内の圧力をベーンの背圧とすることはできない。また、第2の回転圧縮要素の吐出消音室より、ベーン背圧を導く案もあるが、除霜時のバイパス運転時には、第2の回転圧縮要素の吐出圧が低下し、ベーンをローラに押し付けることができない。
【0007】
そこで、第2の回転圧縮要素においてはシリンダの高圧室側と背圧室とを連通させ、図16にも示すようにオーバーシュート圧P0はPd(第2の回転圧縮要素の吐出圧)以上となり、全ての条件でベーンをローラに押し付けることが可能となる。しかしながら、第2の回転圧縮要素の吐出圧でベーンをローラに押しつけると、ベーンとローラの接触圧が異常に高くなって回転ロスが発生し、入力ロスが増大してしまうと共に、接触圧が高いとベーンとローラの摩耗が早まり当該ベーンとローラの耐久性を損ねてしまう問題があった。
【0008】
また、シリンダ内にガスを吸い込んだ圧縮初期の段階ではシリンダ内の高圧室側の圧力も中間圧まで低下するため、背圧室に流入したガスがシリンダ内に逆流してしまう。そのため、第2の回転圧縮要素ではガスを圧縮する容積が背圧室の容積分拡大されて圧縮効率が低下してしまう問題があった。また、ベーンはバネ部材でも押しているので、背圧室の圧力変動がバネ部材の耐久性に悪影響を及ぼす問題もあった。
【0009】
本発明は、係る従来の技術的課題を解決するために成されたものであり、所謂内部中間圧型多段圧縮式のロータリコンプレッサにおいて、背圧室からシリンダ内へのガスの逆流を阻止し、第2の回転圧縮要素における圧縮効率の低下を防止することを目的とする。
【0010】
【課題を解決するための手段】
即ち、本発明のロータリコンプレッサでは、密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮されたガスを密閉容器内に吐出し、更にこの吐出された中間圧のガスを第2の回転圧縮要素で圧縮するものにおいて、第2の回転圧縮要素を構成するためのシリンダ及び電動要素の回転軸に形成された偏心部に嵌合されてシリンダ内で偏心回転するローラと、該ローラに当接してシリンダ内を低圧室側と高圧室側に区画するベーンと、ベーンに背圧を加えるための背圧室と、シリンダ内の高圧室側と背圧室とを連通する背圧通路と、該背圧通路に設けられ、シリンダ内の高圧室側から背圧室へのガスの流通を許容し、該背圧室からシリンダ内の高圧室側へのガスの流通を阻止する逆止弁とを備えており、例えば冷媒として二酸化炭素を用い、且つ、超臨界で運転される冷媒回路に用いられるので、背圧室に高圧を加えて第2の回転圧縮要素のベーンに背圧を加えながら、当該背圧室からシリンダ内にガスが逆流する不都合を解消することができるようになる。
【0011】
これにより、ロータリコンプレッサの第2の回転圧縮要素における圧縮効率の低下を防止することができるようになる。また、ベーンを押すためにバネ部材が設けられる場合には、当該バネ部材の信頼性も確保することができるようになるものである。
【0012】
特に、密閉容器内の中間圧の冷媒ガスをベーンの背圧に使用しているので、ベーンとローラの接触圧を低減することができて、回転ロスを少なくすることが可能となる。これにより、入力ロスの増大を抑えられるので、ベーンとローラの摩耗を減少させられてベーンとローラの耐久性を大幅に延長させることができるようになるものである。
【0013】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明のロータリコンプレッサの実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式のロータリコンプレッサ10の縦断面図、図2はロータリコンプレッサ10の正面図、図3ロータリコンプレッサ10の側面図、図4はロータリコンプレッサ10のもう一つの縦断面図、図5はロータリコンプレッサ10の更にもう一つの縦断面図、図6はロータリコンプレッサ10の電動要素14部分の平断面図、図7はロータリコンプレッサ10の回転圧縮機構部18の拡大断面図をそれぞれ示している。
【0014】
各図において、10は二酸化炭素(CO2)を冷媒として使用する内部中間圧型多段圧縮式のロータリコンプレッサで、このロータリコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)からなる回転圧縮機構部18にて構成されている。
【0015】
尚、実施例のロータリコンプレッサ10の高さ寸法は220mm(外径120mm)、電動要素14の高さ寸法は約80mm(外径110mm)、回転圧縮機構部18の高さ寸法は約70mm(外径110mm)で、電動要素14と回転圧縮機構部18との間隔は約5mmとなっている。また、第2の回転圧縮要素34の排除容積は第1の回転圧縮要素32の排除容積よりも小さく設定されている。
【0016】
密閉容器12は実施例では厚さ4.5mmの鋼板より構成され、底部をオイル溜とし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0017】
この場合、ターミナル20周囲のエンドキャップ12Bには、座押成形によって所定曲率の段差部12Cが環状に形成されている。また、ターミナル20は電気的端子139が貫通して取り付けられた円形のガラス部20Aと、このガラス部20Aの周囲に形成され、斜め外下方に鍔状に張り出した金属製の取付部20Bとから構成されている。取付部20Bの厚さ寸法は2.4±0.5mmとされている。そして、ターミナル20は、そのガラス部20Aを下側から取付孔12Dに挿入して上側に臨ませ、取付部20Bを取付孔12Dの周縁に当接させた状態でエンドキャップ12Bの取付孔12D周縁に取付部20Bを溶接することで、エンドキャップ12Bに固定されている。
【0018】
電動要素14は、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隙を設けて挿入配置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。
【0019】
ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している(図6)。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して構成されている。
【0020】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置されたシリンダ38、シリンダ40と、この上下シリンダ38、40内を180度の位相差を有して回転軸16に設けた上下偏心部42、44に嵌合されて偏心回転する上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画する後述する上下ベーン50(下側のベーンは図示せず)と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成される。
【0021】
上部支持部材54および下部支持部材56には、吸込ポート161、162にて上下シリンダ38、40の内部とそれぞれ連通する吸込通路58、60と、凹陥した吐出消音室62、64が形成されると共に、これら両吐出消音室62、64の開口部はそれぞれカバーにより閉塞される。即ち、吐出消音室62はカバーとしての上部カバー66、吐出消音室64はカバーとしての下部カバー68にて閉塞される。
【0022】
この場合、上部支持部材54の中央には軸受け54Aが起立形成されており、この軸受け54A内面には筒状のブッシュ122が装着されている。また、下部支持部材56の中央には軸受け56Aが貫通形成されており、この軸受け56A内面にも筒状のブッシュ123が装着されている。これらブッシュ122、123は後述する如き摺動性の良い材料にて構成されており、回転軸16はこれらブッシュ122、123を介して上部支持部材54の軸受け54Aと下部支持部材56の軸受け56Aに保持される。
【0023】
この場合、下部カバー68はドーナッツ状の円形鋼板から構成されており、周辺部の4箇所を主ボルト129・・・によって下から下部支持部材56に固定され、吐出ポート41にて第1の回転圧縮要素32の下シリンダ40内部と連通する吐出消音室64の下面開口部を閉塞する。この主ボルト129・・・の先端は上部支持部材54に螺合する。下部カバー68の内周縁は下部支持部材56の軸受け56A内面より内方に突出しており、これによって、ブッシュ123の下端面は下部カバー68によって保持され、脱落が防止されている(図9)。図10は下部支持部材56の下面を示しており、128は吐出消音室64内において吐出ポート41を開閉する第1の回転圧縮要素32の吐出弁である。
【0024】
ここで、下部支持部材56は鉄系の焼結材料(若しくは鋳物でも可)により構成されており、下部カバー68を取り付ける側の面(下面)は、平面度0.1mm以下に加工された後、スチーム処理が加えられている。このスチーム処理によって下部カバー68を取り付ける側の面は酸化鉄となるため、焼結材料内部の孔が塞がれてシール性が向上する。これにより、下部カバー68と下部支持部材56間にガスケットを介設する必要が無くなる。
【0025】
尚、吐出消音室64と密閉容器12内における上部カバー66の電動要素14側は、上下シリンダ38、40や中間仕切板36を貫通する孔である連通路63にて連通されている(図4)。この場合、連通路63の上端には中間吐出管121が立設されており、この中間吐出管121は上方の電動要素14のステータ22に巻装された相隣接するステータコイル28、28間の隙間に指向している(図6)。
【0026】
また、上部カバー66は吐出ポート39にて第2の回転圧縮要素34の上シリンダ38内部と連通する吐出消音室62の上面開口部を閉塞し、密閉容器12内を吐出消音室62と電動要素14側とに仕切る。この上部カバー66は図11に示す如く厚さ2mm以上10mm以下(実施例では最も望ましい6mmとされている)であって、前記上部支持部材54の軸受け54Aが貫通する孔が形成された略ドーナッツ状の円形鋼板から構成されており、上部支持部材54との間にビード付きのガスケット124(図12)を挟み込んだ状態で、当該ガスケット124を介して周辺部が4本の主ボルト78・・・により、上から上部支持部材54に固定されている。この主ボルト78・・・の先端は下部支持部材56に螺合する。
【0027】
上部カバー66を係る厚さ寸法とすることで、密閉容器12内よりも高圧となる吐出消音室62の圧力に十分に耐えながら、小型化を達成し、電動要素14との絶縁距離を確保することもできるようになる。更に、この上部カバー66の内周縁と軸受け54Aの外面間にはOリング126が設けられている(図12)。係るOリング126により軸受け54A側のシールを行なうことで、上部カバー66の内周縁で十分にシールを行ない、ガスリークを防ぐことができるようになり、吐出消音室62の容積拡大が図れると共に、Cリングにより上部カバー66の内周縁側を軸受け54Aに固定する必要も無くなる。ここで、図11において127は吐出消音室62内において吐出ポート39を開閉する第2の回転圧縮要素34の吐出弁である。
【0028】
次に、上シリンダ38の下側の開口面及び下シリンダ40の上側の開口面を閉塞する中間仕切板36内には、上シリンダ38内の吸込側に対応する位置に、図13、図14に示す如く外周面から内周面に至り、外周面と内周面とを連通して給油路を構成する貫通孔131が穿設されており、この貫通孔131の外周面側の封止材132を圧入して外周面側の開口を封止している。また、この貫通孔131の中途部には上側に延在する連通孔133が穿設されている。
【0029】
一方、上シリンダ38の吸込ポート161(吸込側)には中間仕切板36の連通孔133に連通する連通孔134が穿設されている(図15)。また、回転軸16内には図7に示す如く軸中心に鉛直方向のオイル孔80と、このオイル孔80に連通する横方向の給油孔82、84(回転軸16の上下偏心部42、44にも形成されている)が形成されており、中間仕切板36の貫通孔131の内周面側の開口は、これらの給油孔82、84を介してオイル孔80に連通している。
【0030】
後述する如く密閉容器12内は中間圧となるため、2段目で高圧となる上シリンダ38内にはオイルの供給が困難となるが、中間仕切板36を係る構成としたことにより、密閉容器12内の底部のオイル溜めから汲み上げられてオイル孔80を上昇し、給油孔82、84から出たオイルは、中間仕切板36の貫通孔131に入り、連通孔133、134から上シリンダ38の吸込側(吸込ポート161)に供給されるようになる。
【0031】
図16中Lは上シリンダ38の吸入側の圧力変動及び、吐出圧変動を示し、図中P1は中間仕切板36の内周面の圧力を示す。この図にL1で示す如く上シリンダ38の吸込側の圧力(吸入圧力)は、吸入過程においては吸入圧損により中間仕切板36の内周面側の圧力よりも低下する。この期間に中間仕切板36の貫通孔131、連通孔133から上シリンダ38の連通孔134を介して上シリンダ38内に給油が成されることになる。また、P0は、圧縮最高圧で吐出圧Pd以上の圧力となる。
【0032】
上述の如く上下シリンダ38、40、中間仕切板36、上下支持部材54、56及び上下カバー66、68はそれぞれ4本の主ボルト78・・・と主ボルト129・・・にて上下から締結されるが、更に、上下シリンダ38、40、中間仕切板36、上下支持部材54、56は、これら主ボルト78、129の外側に位置する補助ボルト136、136により締結される(図4)。この補助ボルト136は上部支持部材54側から挿入され、先端は下支持部材56に螺合している。
【0033】
また、この補助ボルト136は前述したベーン50の後述する案内溝70の近傍に位置している。このように補助ボルト136、136を追加して回転圧縮機構部18を一体化することで、内部が極めて高圧となることに対するシール性の確保が成されると共に、ベーン50の案内溝70の近傍を締め付けるので、後述する背圧室74からベーン50に加える高圧の背圧がリークする不都合も防止できるようになる。
【0034】
また、上シリンダ38内には前述したベーン50を収納する案内溝70と、この案内溝70の外側に位置してバネ部材としてのスプリング76を収納する収納部70Aが形成されており、この収納部70Aは案内溝70側と密閉容器12(容器本体12A)側に開口している(図8)。前記スプリング76はベーン50の外側端部に当接し、常時ベーン50をローラ46側に付勢する。そして、このスプリング76の密閉容器12側の収納部70A内には金属製のプラグ137が設けられ、スプリング76の抜け止めの役目を果たす。
【0035】
この場合、プラグ137の外寸は収納部70Aの内寸よりも小さく設定され、プラグ137は収納部70A内に隙間嵌めにより挿入される。また、プラグ137の周面には当該プラグ137と収納部70Aの内面間をシールするためのOリング138が取り付けられている。そして、上シリンダ38の外端、即ち、収納部70Aの外端と密閉容器12の容器本体12A間の間隔は、Oリング138からプラグ137の密閉容器12側の端部までの距離よりも小さく設定されている。係る寸法関係としたことにより、プラグ137を収納部70A内に圧入固定する場合の如く、上シリンダ38が変形して上部支持部材54との間のシール性が低下し、性能悪化を来す不都合を未然に回避することができるようになる。
【0036】
尚、プラグ137の外寸を収納部70Aの内寸よりも小さく設定して、プラグ137を収納部70A内に隙間嵌めした場合でも、上シリンダ38と密閉容器12間の間隔をOリング138からプラグ137の密閉容器12側の端部までの距離よりも小さく設定しているので、スプリング76側の高圧(ベーン50の背圧)によってプラグ137が収納部70Aから押し出される方向に移動しても、密閉容器12に当接して移動が阻止された時点で依然Oリング138は収納部70A内に位置してシールするので、プラグ137の機能には何ら問題は生じない。
【0037】
一方、第2の回転圧縮要素34のベーン50をローラ46に付勢する背圧を当該ベーン50に印加するための前述した背圧室74は、上シリンダ38内の案内溝70のローラ46と反対側に形成されている。この背圧室74は中間仕切板36と上部支持部材54間に渡って略円筒形状を呈して上シリンダ38内に貫通されている(図19)。この背圧室74はローラ46側の案内溝70とその反対側の収納部70A内に連通しており、後述する背圧通路72から上シリンダ38内の高圧室側の冷媒ガスを背圧室74に流入させて、案内溝70内のベーン50に背後から圧力(背圧)を加え、ベーン50をローラ46側に付勢する。
【0038】
前記背圧通路72は上シリンダ38に設けられている。この背圧通路72は内端が上シリンダ38内の高圧室側に開口すると共に、外端が背圧室74に開口し、上シリンダ38内の高圧室側と背圧室74とを連通している。この背圧通路72の途中には逆止弁88が設けられており、この逆止弁88は上シリンダ38内の高圧室側から背圧室74へのガスの流通のみを許容し、背圧室74から高圧室側への流通は阻止する(図19矢印)。
【0039】
ところで、逆止弁88を背圧通路72内に設けない場合、ローラ46が図19に破線で示す如き回転位置まで回転し、冷媒ガスを吸い込んだ段階の圧縮初期において、上シリンダ38内の高圧室側の圧力が略中間圧まで低くなると、背圧室74の圧力の方が高くなってしまうため、前回の圧縮時に背圧室74に流入した高圧の冷媒ガスは上シリンダ38内の高圧室側に逆流するようになる(図20矢印で示す)。背圧室74に流入した冷媒ガスが上シリンダ38内の高圧室側に逆流すると、その分ガスを圧縮する容積が拡大されるかたちとなるため、第2の回転圧縮要素34における圧縮効率が低下するが、本発明では係る逆流を阻止するので、圧縮効率の低下は防止される。
【0040】
また、図20の構造では背圧室74にガスが出入りする関係上、背圧室74は収納部70Aの圧力も大きく変動することになる。この圧力変動によりスプリング76も耐久性が低下するが、本発明では係る不都合も解消される。
【0041】
ところで、回転軸16と一体に180度の位相差を持って形成される上下偏心部42、44の相互間を連結する連結部90は、その断面形状を回転軸16の円形断面より断面積を大きくして剛性を持たせるために非円形状の例えばラグビーボール状とされている(図17)。即ち、回転軸16に設けた上下偏心部42、44を連結する連結部90の断面形状は上下偏心部42、44の偏心方向に直交する方向でその肉厚を大きくしている(図中ハッチングの部分)。
【0042】
これにより、回転軸16に一体に設けられた上下偏心部42、44を連結する連結部90の断面積が大きくし、断面2次モーメントを増加させて強度(剛性)を増し、耐久性と信頼性を向上させている。特に使用圧力の高い冷媒を2段圧縮する場合、高低圧の圧力差が大きいために回転軸16にかかる荷重も大きくなるが、連結部90の断面積を大きくしてその強度(剛性)を増し、回転軸16が弾性変形してしまうのを防止している。
【0043】
この場合、上側の偏心部42の中心をO1とし、下側の偏心部44の中心をO2とすると、偏心部42の偏心方向側の連結部90の面の円弧の中心はO1、偏心部44の偏心方向側の連結部90の面の円弧の中心はO2としている。これにより、回転軸16を切削加工機にチャックして上下偏心部42、44と連結部90を切削加工する際、偏心部42を加工した後、半径のみを変更して連結部90の一面を加工し、チャック位置を変更して連結部90の他面を加工し、半径のみを変更して偏心部44を加工すると云う作業が可能となる。これにより、回転軸16をチャックし直す回数が減少して生産性が著しく改善されるようになる。
【0044】
そして、この場合冷媒としては地球環境にやさしく、可燃性および毒性等を考慮して自然冷媒である炭酸ガスの一例としての前記二酸化炭素(CO2)を使用し、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油等既存のオイルが使用される。
【0045】
密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路58、60、吐出消音室62及び上部カバー66の上側(電動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。スリーブ141と142は上下に隣接すると共に、スリーブ143はスリーブ141の略対角線上にある。また、スリーブ144はスリーブ141と略90度ずれた位置にある。
【0046】
そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の吸込通路58に連通される。この冷媒導入管92は密閉容器12の上側を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0047】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60に連通される。この冷媒導入管94の他端はアキュムレータ146の下端に接続されている。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒吐出管96の一端は吐出消音室62に連通される。
【0048】
上記アキュムレータ146は吸込冷媒の気液分離を行なうタンクであり、密閉容器12の容器本体12Aの上部側面に溶接固定された密閉容器側のブラケット147にアキュムレータ側のブラケット148を介して取り付けられている。このブラケット148はブラケット147から上方に延在し、アキュムレータ146の上下方向の略中央部を保持しており、その状態でアキュムレータ146は密閉容器12の側方に沿うかたちで配置される。冷媒導入管92はスリーブ141から出た後、実施例では右方に屈曲した後、上昇しており、アキュムレータ146の下端はこの冷媒導入管92に近接するかたちとなる。そこで、アキュムレータ146の下端から降下する冷媒導入管94は、スリーブ141から見て冷媒導入管92の屈曲方向とは反対の左側を迂回してスリーブ142に至るように引き回されている(図3)。
【0049】
即ち、上部支持部材54と下部支持部材56の吸込通路58、60にそれぞれ連通する冷媒導入管92、94は密閉容器12から見て水平方向で反対の方向に屈曲されたかたちとされており、これにより、アキュムレータ146の上下寸法を拡大して容積を増やしても、各冷媒導入管92、94が相互に干渉しないように配慮されている。
【0050】
また、スリーブ141、143、144の外面周囲には配管接続用のカプラが係合可能な鍔部151が形成されており、スリーブ142の内面には配管接続用のネジ溝152が形成されている。これにより、スリーブ141、143、144にはロータリコンプレッサ10の製造工程における完成検査で気密試験を行なう場合に試験用配管のカプラを鍔部151に容易に接続できるようになると共に、スリーブ142にはネジ溝152を使用して試験用配管を容易にネジ止めできるようになる。特に、上下で隣接するスリーブ141と142は、一方のスリーブ141に鍔部151が、他方のスリーブ142にネジ溝152が形成されていることで、狭い空間で試験用配管を各スリーブ141、142に接続可能となる。
【0051】
そして、実施例のロータリコンプレッサ10は図18に示すような給湯装置153の冷媒回路に使用される。即ち、ロータリコンプレッサ10の冷媒吐出管96は水加熱用のガスクーラ154の入口に接続される。このガスクーラ154が給湯装置153の図示しない貯湯タンクに設けられる。ガスクーラ154を出た配管は減圧装置としての膨張弁156を経て蒸発器157の入口に至り、蒸発器157の出口は冷媒導入管94に接続される。また、冷媒導入管92の中途部からは図2、図3では図示していないが除霜回路を構成するデフロスト管158が分岐し、流路制御装置としての電磁弁159を介してガスクーラ154の入口に至る冷媒吐出管96に接続されている。尚、図18ではアキュムレータ146は省略されている。
【0052】
以上の構成で次に動作を説明する。尚、加熱運転では電磁弁159は閉じているものとする。ターミナル20および図示されない配線を介して電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0053】
これにより、冷媒導入管94および下部支持部材56に形成された吸込通路60を経由して、吸込ポート162から下シリンダ40の低圧室側に吸入された低圧(一段目吸入圧LP:4MPaG)の冷媒ガスは、ローラ48とベーンの動作により圧縮されて中間圧(MP1:8MPaG)となり下シリンダ40の高圧室側より吐出ポート41、下部支持部材56に形成された吐出消音室64から連通路63を経て中間吐出管121から密閉容器12内に吐出される。
【0054】
このとき、中間吐出管121は上方の電動要素14のステータ22に巻装された相隣接するステータコイル28、28間の隙間に指向しているので、未だ比較的温度の低い冷媒ガスを電動要素14方向に積極的に供給できるようになり、電動要素14の温度上昇が抑制されるようになる。また、これによって、密閉容器12内は中間圧(MP1)となる。
【0055】
そして、密閉容器12内の中間圧の冷媒ガスは、スリーブ144から出て(中間吐出圧は前記MP1)冷媒導入管92及び上部支持部材54に形成された吸込通路58を経由して吸込ポート161から上シリンダ38の低圧室側に吸入される(2段目吸入圧MP2)。この場合、冷媒ガスが吸込ポート161から上シリンダ38の低圧室側に吸入される段階では、背圧室74よりシリンダ38内の高圧室側の方が圧力が低くなるが、背圧通路72には逆止弁88を設けているので、背圧室74からシリンダ38内にガスが逆流しないので、背圧室74の背圧は低下せずベーン50に好適な背圧を加えることができる。
【0056】
また、密閉容器12内の中間圧の冷媒ガスをベーン50の背圧に使用しているので、ベーン50とローラ46の接触圧を低減させることができ、回転ロスを少なくすることが可能となる。これにより、入力ロスの増大を抑えられるので、ベーン50とローラ46の摩耗を減少させられてベーン50とローラ46の耐久性を大幅に延長させることができるようになる。
【0057】
シリンダ38内に吸入された中間圧の冷媒ガスは、ローラ46とベーン50の動作により2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり(2段目吐出圧HP:12MPaG)、高圧室側から吐出ポート39を通り上部支持部材54に形成された吐出消音室62、冷媒吐出管96を経由してガスクーラ154内に流入する。このときの冷媒温度は略+100℃まで上昇しており、係る高温高圧の冷媒ガスは放熱して、貯湯タンク内の水を加熱し、約+90℃の温水を生成する。
【0058】
一方、ガスクーラ154において冷媒自体は冷却され、ガスクーラ154を出る。そして、膨張弁156で減圧された後、蒸発器157に流入して蒸発し、アキュムレータ146(図18では示していない)を経て冷媒導入管94から第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0059】
特に、低外気温の環境ではこのような加熱運転で蒸発器157には着霜が成長する。その場合には電磁弁159を開放し、膨張弁156は全開状態として蒸発器157の除霜運転を実行する。これにより、密閉容器12内の中間圧の冷媒(第2の回転圧縮要素34から吐出された少量の高圧冷媒を含む)は、デフロスト管158を通ってガスクーラ154に至る。この冷媒の温度は+50〜+60℃程であり、ガスクーラ154では放熱せず、当初は逆に冷媒が熱を吸収するかたちとなる。そして、ガスクーラ154から出た冷媒は膨張弁156を通過し、蒸発器157に至るようになる。即ち、蒸発器157には略中間圧の比較的温度の高い冷媒が減圧されずに実質的に直接供給されるかたちとなり、これによって、蒸発器157は加熱され、除霜されることになる。
【0060】
ここで、第2の回転圧縮要素34から吐出された高圧冷媒を減圧せずに蒸発器157に供給して除霜した場合には、膨張弁156が全開のために第1の回転圧縮要素32の吸込圧力が上昇し、これにより、第1の回転圧縮要素32の吐出圧力(中間圧)が高くなる。この冷媒は第2の回転圧縮要素34を通って吐出されるが、膨張弁156が全開のために第2の回転圧縮要素34の吐出圧力が第1の回転圧縮要素32の吸込圧力と同様となってしまうために第2の回転圧縮要素34の吐出(高圧)と吸込(中間圧)で圧力の逆転現象が発生してしまう。しかしながら、上述の如く第1の回転圧縮要素32から吐出された中間圧の冷媒ガスを密閉容器12から取り出して蒸発器157の除霜を行なうようにしているので、係る高圧と中間圧の逆転現象を防止することができるようになる。
【0061】
このように、上シリンダ38に背圧通路72を設け、この背圧通路72を上シリンダ38内の高圧室側に開口すると共に背圧室74側に開口し、上シリンダ38内の高圧室側と背圧室74とを連通している。そして、背圧通路72の途中に逆止弁88を設けている。これによって、シリンダ38内にガスを吸い込んだ段階で背圧室74よりシリンダ38内の高圧室側の方が圧力が低くなった場合でも、背圧室74からシリンダ38内にガスが逆流してしまうのを防止することができるようになり、ロータリコンプレッサ10の圧縮効率の低下を防止することが可能となる。また、背圧室74の圧力変動によってベーン50を押すためのスプリング76の信頼性が低下することも防止できる。
【0062】
尚、実施例では背圧通路72を上シリンダ38内に形成したが、それに限らず、上支持部材54に形成して吐出消音室62と背圧室74とを連通し、上シリンダ38内の高圧室側の冷媒ガスを、吐出消音室62を介して背圧室74に導入するようにしてもよい。その場合にも逆止弁88を設け、吐出消音室62から背圧室74への冷媒ガスの流通のみを許容するようにする。係る構成によれば、上シリンダ38の構造を簡素化することができるようになる。
【0063】
尚、ロータリコンプレッサ10に冷媒として二酸化炭素(CO2)を用いたが、この冷媒に限らず、他の自然冷媒として炭化水素(HC)、アンモニア(NH3)などを用いても本発明は有効である。
【0064】
【発明の効果】
以上詳述した如く本発明によれば、密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮されたガスを密閉容器内に吐出し、更にこの吐出された中間圧のガスを第2の回転圧縮要素で圧縮するロータリコンプレッサにおいて、第2の回転圧縮要素を構成するためのシリンダ及び電動要素の回転軸に形成された偏心部に嵌合されてシリンダ内で偏心回転するローラと、該ローラに当接してシリンダ内を低圧室側と高圧室側に区画するベーンと、ベーンに背圧を加えるための背圧室と、シリンダ内の高圧室側と背圧室とを連通する背圧通路と、該背圧通路に設けられ、シリンダ内の高圧室側から背圧室へのガスの流通を許容し、該背圧室からシリンダ内の高圧室側へのガスの流通を阻止する逆止弁とを備えており、例えば冷媒に二酸化炭素を用い、且つ、超臨界で運転される冷媒回路に用いられるので、背圧室に高圧を加えて第2の回転圧縮要素のベーンに背圧を加えながら、当該背圧室からシリンダ内にガスが逆流する不都合を解消することができるようになる。
【0065】
これにより、ロータリコンプレッサの第2の回転圧縮要素における圧縮効率の低下を防止することができるようになる。また、ベーンを押すためにバネ部材が設けられる場合には、当該バネ部材の信頼性も確保することができるようになるものである。
【0066】
特に、密閉容器内の中間圧の冷媒ガスをベーンの背圧に使用しているので、ベーンとローラの接触圧を低減することができて、回転ロスを少なくすることが可能となる。これにより、入力ロスの増大を抑えられるので、ベーンとローラの摩耗を減少させられてベーンとローラの耐久性を大幅に延長させることができるようになるものである。
【図面の簡単な説明】
【図1】本発明の実施例のロータリコンプレッサの縦断面図である。
【図2】図1のロータリコンプレッサの正面図である。
【図3】図1のロータリコンプレッサの側面図である。
【図4】図1のロータリコンプレッサのもう一つの縦断面図である。
【図5】図1のロータリコンプレッサの更にもう一つの縦断面図である。
【図6】図1のロータリコンプレッサの電動要素部分の平断面図である。
【図7】図1のロータリコンプレッサの回転圧縮機構部の拡大断面図である。
【図8】図1のロータリコンプレッサの第2の回転圧縮要素のベーン部分の拡大断面図である。
【図9】図1のロータリコンプレッサの下部支持部材及び下部カバーの断面図である。
【図10】図1のロータリコンプレッサの下部支持部材の下面図である。
【図11】図1のロータリコンプレッサの上部支持部材及び上部カバーの上面図である。
【図12】図1のロータリコンプレッサの上部支持部材及び上カバーの断面図である。
【図13】図1のロータリコンプレッサの中間仕切板の上面図である。
【図14】図13A−A線断面図である。
【図15】図1のロータリコンプレッサの上シリンダの上面図である。
【図16】図1のロータリコンプレッサの上シリンダの吸入側の圧力変動とオーバーシュート(吐出圧変動)を示す図である。
【図17】図1のロータリコンプレッサの回転軸の連結部の形状を説明するための断面図である。
【図18】図1のロータリコンプレッサを適用した給湯装置の冷媒回路図である。
【図19】図1のロータリコンプレッサの上シリンダの背圧通路を示す図である。
【図20】背圧通路に逆止弁を設けない場合の図19に相当する図である。
【符号の説明】
10 ロータリコンプレッサ
12 密閉容器
14 電動要素
16 回転軸
18 回転圧縮機構部
20 ターミナル
32 第1の回転圧縮要素
34 第2の回転圧縮要素
36 中間仕切板
38、40 シリンダ
39、41 吐出ポート
42 偏心部
44 偏心部
46 ローラ
48 ローラ
50 ベーン
54 上部支持部材
56 下部支持部材
62 吐出消音室
64 吐出消音室
66 上部カバー
68 下部カバー
70 案内溝
70A 収納部
72 背圧通路
74 背圧室
76 スプリング
78、129 主ボルト
88 逆止弁
90 連結部
132 封止材
137 プラグ
138 Oリング
[0001]
BACKGROUND OF THE INVENTION
The present invention includes first and second rotary compression elements driven by an electric element in a sealed container, and compresses the intermediate pressure gas discharged by the first rotary compression element and discharged into the sealed container. The present invention relates to a rotary compressor that compresses with two rotary compression elements.
[0002]
[Prior art]
Conventionally, this type of rotary compressor is provided with first and second rotary compression elements at the lower part of the hermetic container and an electric element at the upper part as shown in, for example, Japanese Patent Laid-Open No. 2-294857. A roller that rotates along the inner wall of the cylinder by a support member that closes the lower opening surface and an eccentric part that is integrally formed with the rotating shaft of the electric element, and a groove that is provided in the cylinder with its tip abutting against this roller A first rotary compression element composed of a vane reciprocatingly sliding, a cylinder, a support member for closing an opening surface on the cylinder, and a rotary shaft of the electric element. The roller that rotates along the inner wall of the cylinder by the eccentric portion provided opposite to the eccentric portion provided in the cylinder, and the tip of the roller abuts on this roller to reciprocate in the groove provided in the cylinder. Is configured by the second rotary compression element consists of a moving vane.
[0003]
Gas (refrigerant gas) is sucked into the low-pressure chamber side of the cylinder from the suction port of the first rotary compression element, and is compressed by the operation of the roller and vane to become an intermediate pressure from the high-pressure chamber side of the cylinder. It is discharged into the sealed container through the chamber. The intermediate pressure gas discharged into the hermetic container is sucked into the low pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second stage compression is performed by the operation of the roller and the vane, and the high temperature and high pressure gas. Then, it is discharged from the high pressure chamber side through the discharge port and the discharge silencer chamber.
[0004]
The gas discharged from the rotary compressor flows into the radiator of the refrigerant circuit, radiates heat, is throttled by the expansion valve, absorbs heat by the evaporator, and repeats the cycle of being sucked into the first rotary compression element of the rotary compressor.
[0005]
Further, when a refrigerant having a large high-low pressure difference, such as carbon dioxide (CO2), is used for the rotary compressor, the discharged refrigerant pressure reaches 12 MPaG in the second rotary compression element having a high pressure, The first rotary compression element becomes 8 MPaG (intermediate pressure) (the suction pressure of the first rotary compression element is 4 MPa).
[0006]
[Problems to be solved by the invention]
The vane attached to such a rotary compressor is movably inserted in a guide groove provided in the radial direction of the cylinder. In order to press the vane toward the roller, a structure is conventionally used to press the vane against the roller by the biasing force of the spring and the back pressure from the back pressure chamber, but the second rotation of the internal intermediate pressure rotary compressor In the compression element, since the pressure in the cylinder is higher than the intermediate pressure in the sealed container, the pressure in the sealed container cannot be the vane back pressure. There is also a plan to guide the vane back pressure from the discharge silencer chamber of the second rotary compression element, but during the bypass operation at the time of defrosting, the discharge pressure of the second rotary compression element decreases and the vane is pressed against the roller. I can't.
[0007]
Therefore, in the second rotary compression element, the high pressure chamber side of the cylinder and the back pressure chamber are communicated, and as shown in FIG. 16, the overshoot pressure P0 is equal to or higher than Pd (discharge pressure of the second rotary compression element). The vane can be pressed against the roller under all conditions. However, if the vane is pressed against the roller by the discharge pressure of the second rotary compression element, the contact pressure between the vane and the roller becomes abnormally high, causing a rotation loss, increasing the input loss, and increasing the contact pressure. As a result, the vane and the roller are quickly worn and the durability of the vane and the roller is impaired.
[0008]
In addition, at the initial stage of compression when the gas is sucked into the cylinder, the pressure on the high pressure chamber side in the cylinder also decreases to an intermediate pressure, so that the gas flowing into the back pressure chamber flows back into the cylinder. Therefore, in the second rotary compression element, there is a problem that the volume for compressing the gas is enlarged by the volume of the back pressure chamber and the compression efficiency is lowered. Further, since the vane is also pushed by the spring member, there is a problem that the pressure fluctuation in the back pressure chamber adversely affects the durability of the spring member.
[0009]
The present invention has been made to solve the conventional technical problem, and in a so-called internal intermediate pressure type multistage compression rotary compressor, the back flow of gas from the back pressure chamber into the cylinder is prevented, It aims at preventing the fall of the compression efficiency in 2 rotary compression elements.
[0010]
[Means for Solving the Problems]
That is, in the rotary compressor of the present invention, an electric element and first and second rotary compression elements driven by the electric element are provided in an airtight container, and the gas compressed by the first rotary compression element is hermetically sealed. In the case of discharging into the container and further compressing the discharged intermediate-pressure gas with the second rotary compression element, the cylinder for forming the second rotary compression element and the rotating shaft of the electric element are formed. A roller fitted into the eccentric portion and rotated eccentrically in the cylinder; a vane that abuts against the roller and divides the inside of the cylinder into a low pressure chamber side and a high pressure chamber side; and a back pressure chamber for applying back pressure to the vane; A back pressure passage communicating the high pressure chamber side in the cylinder and the back pressure chamber; and a back pressure passage provided in the back pressure passage, allowing gas to flow from the high pressure chamber side to the back pressure chamber in the cylinder, and Block the flow of gas from the chamber to the high pressure chamber in the cylinder For example, carbon dioxide is used as a refrigerant, and the refrigerant circuit is operated in a supercritical state. Therefore, a high pressure is applied to the back pressure chamber and the back pressure is applied to the vanes of the second rotary compression element. As a result, it is possible to eliminate the disadvantage that the gas flows backward from the back pressure chamber into the cylinder.
[0011]
As a result, it is possible to prevent a reduction in compression efficiency in the second rotary compression element of the rotary compressor. Further, when a spring member is provided to push the vane, the reliability of the spring member can be ensured.
[0012]
In particular, since the intermediate pressure refrigerant gas in the sealed container is used for the back pressure of the vane, the contact pressure between the vane and the roller can be reduced, and the rotation loss can be reduced. As a result, an increase in input loss can be suppressed, so that the wear of the vanes and the rollers can be reduced, and the durability of the vanes and the rollers can be greatly extended.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) rotary rotary compressor 10 having first and second rotary compression elements 32 and 34 as an embodiment of the rotary compressor of the present invention. Fig. 3 is a front view of the rotary compressor 10, Fig. 3 is a side view of the rotary compressor 10, Fig. 4 is another longitudinal sectional view of the rotary compressor 10, Fig. 5 is yet another longitudinal sectional view of the rotary compressor 10, and Fig. 6 is a rotary compressor. FIG. 7 is an enlarged sectional view of the rotary compression mechanism portion 18 of the rotary compressor 10.
[0014]
In each figure, reference numeral 10 denotes an internal intermediate pressure multistage compression rotary compressor that uses carbon dioxide (CO2) as a refrigerant. The rotary compressor 10 includes a cylindrical sealed container 12 made of a steel plate and an internal space of the sealed container 12. Of the electric element 14 disposed on the upper side of the electric element 14 and the first rotary compression element 32 (first stage) and the second rotation which are arranged below the electric element 14 and are driven by the rotating shaft 16 of the electric element 14. The rotary compression mechanism 18 is composed of a compression element 34 (second stage).
[0015]
The height dimension of the rotary compressor 10 of the embodiment is 220 mm (outer diameter 120 mm), the height dimension of the electric element 14 is about 80 mm (outer diameter 110 mm), and the height dimension of the rotary compression mechanism 18 is about 70 mm (outside). The distance between the electric element 14 and the rotary compression mechanism 18 is about 5 mm. Further, the excluded volume of the second rotary compression element 34 is set smaller than the excluded volume of the first rotary compression element 32.
[0016]
In the embodiment, the sealed container 12 is made of a steel plate having a thickness of 4.5 mm, the bottom is an oil reservoir, the container body 12A that houses the electric element 14 and the rotary compression mechanism 18, and the upper opening of the container body 12A is closed. And a circular mounting hole 12D is formed in the center of the upper surface of the end cap 12B. The mounting element 12D has a power supply to the electric element 14. A terminal (wiring is omitted) 20 is attached.
[0017]
In this case, the end cap 12B around the terminal 20 is formed with a stepped portion 12C having a predetermined curvature in an annular shape by press-fitting. The terminal 20 includes a circular glass portion 20A through which the electrical terminal 139 is attached, and a metal attachment portion 20B formed around the glass portion 20A and projecting obliquely outward and downward in a bowl shape. It is configured. The thickness dimension of the mounting portion 20B is 2.4 ± 0.5 mm. And the terminal 20 inserts the glass part 20A into the mounting hole 12D from the lower side, faces the upper side, and attaches the mounting part 20B to the peripheral edge of the mounting hole 12D, and the peripheral edge of the mounting hole 12D of the end cap 12B. The attachment portion 20B is welded to the end cap 12B.
[0018]
The electric element 14 includes a stator 22 attached in an annular shape along the inner peripheral surface of the upper space of the hermetic container 12, and a rotor 24 inserted and arranged with a slight gap inside the stator 22. The rotor 24 is fixed to a rotating shaft 16 that passes through the center and extends in the vertical direction.
[0019]
The stator 22 includes a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method (FIG. 6). Similarly to the stator 22, the rotor 24 is also formed by a laminated body 30 of electromagnetic steel plates, and a permanent magnet MG is inserted into the laminated body 30.
[0020]
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, a cylinder 38 and a cylinder 40 disposed above and below the intermediate partition plate 36, and the inside of the upper and lower cylinders 38 and 40. The upper and lower rollers 46 and 48 are fitted to the upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 with a phase difference of 180 degrees and rotate eccentrically, and the upper and lower cylinders 38 are in contact with the upper and lower rollers 46 and 48. , 40 are divided into a low pressure chamber side and a high pressure chamber side, respectively, and upper and lower vanes 50 (lower vanes are not shown), an upper opening surface of the upper cylinder 38 and an opening surface of the lower cylinder 40 below. And an upper support member 54 and a lower support member 56 as support members that also serve as bearings for the rotary shaft 16.
[0021]
The upper support member 54 and the lower support member 56 are formed with suction passages 58 and 60 that communicate with the inside of the upper and lower cylinders 38 and 40 through suction ports 161 and 162, and recessed discharge silencer chambers 62 and 64, respectively. The openings of both the discharge silencing chambers 62 and 64 are respectively closed by covers. That is, the discharge silence chamber 62 is closed by an upper cover 66 as a cover, and the discharge silence chamber 64 is closed by a lower cover 68 as a cover.
[0022]
In this case, a bearing 54A is erected at the center of the upper support member 54, and a cylindrical bush 122 is mounted on the inner surface of the bearing 54A. A bearing 56A is formed through the center of the lower support member 56, and a cylindrical bushing 123 is mounted on the inner surface of the bearing 56A. The bushes 122 and 123 are made of a material having good slidability as will be described later, and the rotating shaft 16 is connected to the bearing 54A of the upper support member 54 and the bearing 56A of the lower support member 56 through the bushes 122 and 123. Retained.
[0023]
In this case, the lower cover 68 is constituted by a donut-shaped circular steel plate, and the four peripheral portions are fixed to the lower support member 56 from below by the main bolts 129... The lower surface opening of the discharge silencing chamber 64 communicating with the inside of the lower cylinder 40 of the compression element 32 is closed. The front ends of the main bolts 129 are screwed into the upper support member 54. The inner peripheral edge of the lower cover 68 protrudes inward from the inner surface of the bearing 56A of the lower support member 56, whereby the lower end surface of the bush 123 is held by the lower cover 68 and is prevented from falling off (FIG. 9). FIG. 10 shows the lower surface of the lower support member 56, and 128 is a discharge valve of the first rotary compression element 32 that opens and closes the discharge port 41 in the discharge silencing chamber 64.
[0024]
Here, the lower support member 56 is made of an iron-based sintered material (or can be cast), and the surface (lower surface) on which the lower cover 68 is attached is processed to have a flatness of 0.1 mm or less. Steam processing has been added. Since the surface on which the lower cover 68 is attached by this steam treatment is made of iron oxide, the hole inside the sintered material is blocked and the sealing performance is improved. This eliminates the need for a gasket between the lower cover 68 and the lower support member 56.
[0025]
In addition, the electric element 14 side of the upper cover 66 in the discharge silencer chamber 64 and the sealed container 12 is communicated with a communication passage 63 that is a hole penetrating the upper and lower cylinders 38 and 40 and the intermediate partition plate 36 (FIG. 4). ). In this case, an intermediate discharge pipe 121 is erected at the upper end of the communication path 63, and this intermediate discharge pipe 121 is between the adjacent stator coils 28, 28 wound around the stator 22 of the upper electric element 14. It is directed to the gap (FIG. 6).
[0026]
Further, the upper cover 66 closes the upper opening of the discharge silencer chamber 62 communicating with the inside of the upper cylinder 38 of the second rotary compression element 34 at the discharge port 39, and the discharge silencer chamber 62 and the electric element inside the sealed container 12. Divide into 14 sides. As shown in FIG. 11, the upper cover 66 has a thickness of 2 mm or more and 10 mm or less (6 mm is the most desirable in the embodiment), and a substantially donut having a hole through which the bearing 54A of the upper support member 54 is formed. In the state where a beaded gasket 124 (FIG. 12) is sandwiched between the upper support member 54 and the upper support member 54, the peripheral portion has four main bolts 78. The upper support member 54 is fixed from above. The front ends of the main bolts 78 are screwed into the lower support member 56.
[0027]
By setting the upper cover 66 to have such a thickness dimension, it is possible to achieve downsizing and secure an insulation distance from the electric element 14 while sufficiently withstanding the pressure of the discharge silencer chamber 62 that is higher than that in the sealed container 12. You can also do that. Further, an O-ring 126 is provided between the inner peripheral edge of the upper cover 66 and the outer surface of the bearing 54A (FIG. 12). By sealing the bearing 54A side with the O-ring 126, it is possible to sufficiently seal the inner periphery of the upper cover 66 and prevent gas leakage, and the volume of the discharge silencer chamber 62 can be increased. The ring eliminates the need to fix the inner peripheral edge of the upper cover 66 to the bearing 54A. Here, in FIG. 11, 127 is a discharge valve of the second rotary compression element 34 that opens and closes the discharge port 39 in the discharge silencer chamber 62.
[0028]
Next, in the intermediate partition plate 36 that closes the lower opening surface of the upper cylinder 38 and the upper opening surface of the lower cylinder 40, a position corresponding to the suction side in the upper cylinder 38 is shown in FIGS. 13 and 14. As shown in FIG. 1, a through hole 131 is formed from the outer peripheral surface to the inner peripheral surface, and the outer peripheral surface communicates with the inner peripheral surface to form an oil supply passage. A sealing material on the outer peripheral surface side of the through hole 131 is formed. 132 is press-fitted to seal the opening on the outer peripheral surface side. A communication hole 133 extending upward is formed in the middle of the through hole 131.
[0029]
On the other hand, a communication hole 134 communicating with the communication hole 133 of the intermediate partition plate 36 is formed in the suction port 161 (suction side) of the upper cylinder 38 (FIG. 15). Further, in the rotating shaft 16, as shown in FIG. 7, a vertical oil hole 80 at the center of the shaft and lateral oil supply holes 82 and 84 communicating with the oil hole 80 (upper and lower eccentric portions 42 and 44 of the rotating shaft 16). The opening on the inner peripheral surface side of the through hole 131 of the intermediate partition plate 36 communicates with the oil hole 80 via these oil supply holes 82 and 84.
[0030]
As will be described later, since the inside of the sealed container 12 is at an intermediate pressure, it is difficult to supply oil into the upper cylinder 38, which is at a high pressure in the second stage. The oil that has been pumped up from the oil sump at the bottom of 12 and raised through the oil hole 80 enters the through hole 131 of the intermediate partition plate 36 and passes through the communication holes 133 and 134 to the upper cylinder 38. It is supplied to the suction side (suction port 161).
[0031]
In FIG. 16, L indicates the pressure fluctuation and discharge pressure fluctuation on the suction side of the upper cylinder 38, and P1 in the figure indicates the pressure on the inner peripheral surface of the intermediate partition plate. As indicated by L1 in this figure, the suction side pressure (suction pressure) of the upper cylinder 38 is lower than the pressure on the inner peripheral surface side of the intermediate partition plate 36 due to suction pressure loss during the suction process. During this period, oil is supplied from the through hole 131 and the communication hole 133 of the intermediate partition plate 36 to the upper cylinder 38 through the communication hole 134 of the upper cylinder 38. P0 is a maximum compression pressure and a pressure equal to or higher than the discharge pressure Pd.
[0032]
As described above, the upper and lower cylinders 38 and 40, the intermediate partition plate 36, the upper and lower support members 54 and 56, and the upper and lower covers 66 and 68 are fastened from above and below by the four main bolts 78. However, the upper and lower cylinders 38, 40, the intermediate partition plate 36, and the upper and lower support members 54, 56 are fastened by auxiliary bolts 136, 136 positioned outside the main bolts 78, 129 (FIG. 4). The auxiliary bolt 136 is inserted from the upper support member 54 side, and the tip thereof is screwed to the lower support member 56.
[0033]
The auxiliary bolt 136 is positioned in the vicinity of the guide groove 70 described later of the vane 50 described later. Thus, by adding the auxiliary bolts 136 and 136 and integrating the rotary compression mechanism 18, the sealing performance against the extremely high pressure inside is ensured, and the vicinity of the guide groove 70 of the vane 50. Therefore, it is possible to prevent inconvenience that a high back pressure applied to the vane 50 from the back pressure chamber 74 described later leaks.
[0034]
The upper cylinder 38 is formed with a guide groove 70 for storing the vane 50 and a storage portion 70A for storing a spring 76 as a spring member located outside the guide groove 70. The portion 70A is open to the guide groove 70 side and the closed container 12 (container body 12A) side (FIG. 8). The spring 76 is in contact with the outer end of the vane 50 and constantly urges the vane 50 toward the roller 46. A metal plug 137 is provided in the housing portion 70A of the spring 76 on the closed container 12 side, and serves to prevent the spring 76 from coming off.
[0035]
In this case, the outer dimension of the plug 137 is set smaller than the inner dimension of the storage portion 70A, and the plug 137 is inserted into the storage portion 70A by a clearance fit. An O-ring 138 is attached to the peripheral surface of the plug 137 for sealing between the plug 137 and the inner surface of the storage portion 70A. The distance between the outer end of the upper cylinder 38, that is, the outer end of the storage portion 70A, and the container body 12A of the sealed container 12 is smaller than the distance from the O-ring 138 to the end of the plug 137 on the sealed container 12 side. Is set. Due to such a dimensional relationship, as in the case where the plug 137 is press-fitted and fixed in the housing portion 70A, the upper cylinder 38 is deformed and the sealing performance with the upper support member 54 is deteriorated, resulting in a deterioration in performance. Can be avoided in advance.
[0036]
Even when the outer dimension of the plug 137 is set to be smaller than the inner dimension of the storage portion 70A and the plug 137 is fitted into the storage portion 70A with a gap, the distance between the upper cylinder 38 and the sealed container 12 can be reduced from the O-ring 138. Since the distance to the end of the plug 137 on the closed container 12 side is set to be smaller, even if the plug 137 moves in the direction in which it is pushed out of the storage portion 70A due to the high pressure on the spring 76 side (back pressure of the vane 50). Since the O-ring 138 is still positioned and sealed in the storage portion 70A when the movement is prevented by contacting the sealed container 12, there is no problem with the function of the plug 137.
[0037]
On the other hand, the above-described back pressure chamber 74 for applying the back pressure for urging the vane 50 of the second rotary compression element 34 to the roller 46 is connected to the roller 46 of the guide groove 70 in the upper cylinder 38. It is formed on the opposite side. The back pressure chamber 74 has a substantially cylindrical shape extending between the intermediate partition plate 36 and the upper support member 54 and penetrates into the upper cylinder 38 (FIG. 19). The back pressure chamber 74 communicates with the guide groove 70 on the roller 46 side and in the storage portion 70A on the opposite side, and the refrigerant gas on the high pressure chamber side in the upper cylinder 38 is transferred from the back pressure passage 72 described later to the back pressure chamber. 74, the pressure (back pressure) is applied from behind to the vane 50 in the guide groove 70, and the vane 50 is urged toward the roller 46 side.
[0038]
The back pressure passage 72 is provided in the upper cylinder 38. The back pressure passage 72 has an inner end that opens to the high pressure chamber side in the upper cylinder 38 and an outer end that opens to the back pressure chamber 74 so that the high pressure chamber side in the upper cylinder 38 communicates with the back pressure chamber 74. ing. A check valve 88 is provided in the middle of the back pressure passage 72, and the check valve 88 allows only gas to flow from the high pressure chamber side in the upper cylinder 38 to the back pressure chamber 74. The flow from the chamber 74 to the high pressure chamber side is blocked (arrow in FIG. 19).
[0039]
By the way, when the check valve 88 is not provided in the back pressure passage 72, the high pressure in the upper cylinder 38 at the initial stage of compression at the stage where the roller 46 rotates to the rotational position shown by the broken line in FIG. When the pressure on the chamber side decreases to a substantially intermediate pressure, the pressure in the back pressure chamber 74 becomes higher, so that the high-pressure refrigerant gas that has flowed into the back pressure chamber 74 during the previous compression is the high pressure chamber in the upper cylinder 38. It will flow back to the side (indicated by an arrow in FIG. 20). When the refrigerant gas that has flowed into the back pressure chamber 74 flows back to the high pressure chamber side in the upper cylinder 38, the volume for compressing the gas is increased accordingly, and the compression efficiency of the second rotary compression element 34 is reduced. However, in the present invention, the backflow is prevented, so that the reduction in compression efficiency is prevented.
[0040]
Further, in the structure of FIG. 20, the gas in and out of the back pressure chamber 74 greatly changes the pressure in the storage portion 70 </ b> A. Due to this pressure fluctuation, the durability of the spring 76 also decreases, but the disadvantages of the present invention are also eliminated.
[0041]
By the way, the connecting portion 90 that connects the upper and lower eccentric portions 42 and 44 formed integrally with the rotating shaft 16 with a phase difference of 180 degrees has a cross-sectional shape that is larger than the circular cross section of the rotating shaft 16. In order to enlarge and give rigidity, it is made into a non-circular shape such as a rugby ball (FIG. 17). That is, the cross-sectional shape of the connecting portion 90 that connects the upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 is increased in thickness in the direction perpendicular to the eccentric direction of the upper and lower eccentric portions 42 and 44 (hatching in the figure). Part).
[0042]
As a result, the cross-sectional area of the connecting portion 90 that connects the upper and lower eccentric portions 42 and 44 provided integrally with the rotating shaft 16 is increased, the second moment is increased, and the strength (rigidity) is increased. Improves sex. In particular, when a refrigerant having a high working pressure is compressed in two stages, the load applied to the rotary shaft 16 increases due to the large pressure difference between the high and low pressures. The rotation shaft 16 is prevented from being elastically deformed.
[0043]
In this case, if the center of the upper eccentric portion 42 is O1, and the center of the lower eccentric portion 44 is O2, the center of the arc of the surface of the connecting portion 90 on the eccentric direction side of the eccentric portion 42 is O1, and the eccentric portion 44. The center of the arc of the surface of the connecting portion 90 on the eccentric direction side is O2. Thus, when the rotary shaft 16 is chucked to the cutting machine to cut the upper and lower eccentric portions 42 and 44 and the connecting portion 90, after machining the eccentric portion 42, only the radius is changed and one surface of the connecting portion 90 is changed. It is possible to perform an operation of machining, changing the chuck position, machining the other surface of the connecting portion 90, and machining the eccentric portion 44 by changing only the radius. As a result, the number of times of rechucking the rotating shaft 16 is reduced and the productivity is remarkably improved.
[0044]
In this case, the refrigerant is environmentally friendly, uses carbon dioxide (CO2) as an example of carbon dioxide, which is a natural refrigerant in consideration of flammability and toxicity, and the oil as the lubricating oil is, for example, a mineral Existing oils such as oil (mineral oil), alkylbenzene oil, ether oil and ester oil are used.
[0045]
On the side surface of the container main body 12A of the sealed container 12, the suction passages 58, 60 of the upper support member 54 and the lower support member 56, the upper side of the discharge silencer chamber 62, and the upper cover 66 (position substantially corresponding to the lower end of the electric element 14). The sleeves 141, 142, 143, and 144 are fixed by welding at positions corresponding to. The sleeves 141 and 142 are adjacent to each other vertically, and the sleeve 143 is substantially diagonal to the sleeve 141. Further, the sleeve 144 is located at a position shifted by approximately 90 degrees from the sleeve 141.
[0046]
One end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the upper cylinder 38 is inserted and connected into the sleeve 141, and one end of the refrigerant introduction pipe 92 is communicated with the suction passage 58 of the upper cylinder 38. The refrigerant introduction pipe 92 passes through the upper side of the sealed container 12 to reach the sleeve 144, and the other end is inserted and connected into the sleeve 144 to communicate with the sealed container 12.
[0047]
Also, one end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected into the sleeve 142, and one end of the refrigerant introduction pipe 94 is communicated with the suction passage 60 of the lower cylinder 40. The other end of the refrigerant introduction tube 94 is connected to the lower end of the accumulator 146. A refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant discharge pipe 96 is communicated with the discharge silencer chamber 62.
[0048]
The accumulator 146 is a tank that performs gas-liquid separation of the suction refrigerant, and is attached to a bracket 147 on the hermetic container side welded to the upper side surface of the container body 12A of the hermetic container 12 via a bracket 148 on the accumulator side. . The bracket 148 extends upward from the bracket 147 and holds a substantially central portion of the accumulator 146 in the vertical direction. In this state, the accumulator 146 is arranged along the side of the sealed container 12. The refrigerant introduction pipe 92 rises after exiting from the sleeve 141, bent in the right direction in the embodiment, and then rises, and the lower end of the accumulator 146 becomes close to the refrigerant introduction pipe 92. Therefore, the refrigerant introduction pipe 94 descending from the lower end of the accumulator 146 is routed around the left side opposite to the bending direction of the refrigerant introduction pipe 92 when viewed from the sleeve 141 so as to reach the sleeve 142 (FIG. 3). ).
[0049]
That is, the refrigerant introduction pipes 92 and 94 respectively communicating with the suction passages 58 and 60 of the upper support member 54 and the lower support member 56 are bent in opposite directions in the horizontal direction when viewed from the sealed container 12. Thereby, even if the vertical dimension of the accumulator 146 is enlarged to increase the volume, consideration is given so that the refrigerant introduction pipes 92 and 94 do not interfere with each other.
[0050]
Further, a flange 151 that can be engaged with a coupler for pipe connection is formed around the outer surfaces of the sleeves 141, 143, and 144, and a thread groove 152 for pipe connection is formed on the inner surface of the sleeve 142. . As a result, the sleeves 141, 143, and 144 can be easily connected to the flanges 151 of the test pipe couplers when the airtight test is performed in the final inspection in the manufacturing process of the rotary compressor 10. It becomes possible to easily screw the test pipe using the screw groove 152. In particular, the sleeves 141 and 142 that are adjacent in the vertical direction are formed with a flange 151 on one sleeve 141 and a thread groove 152 on the other sleeve 142, so that the test pipes can be connected to the sleeves 141 and 142 in a narrow space. Can be connected.
[0051]
And the rotary compressor 10 of an Example is used for the refrigerant circuit of the hot-water supply apparatus 153 as shown in FIG. That is, the refrigerant discharge pipe 96 of the rotary compressor 10 is connected to the inlet of the gas cooler 154 for water heating. This gas cooler 154 is provided in a hot water storage tank (not shown) of the hot water supply device 153. The pipe exiting the gas cooler 154 reaches the inlet of the evaporator 157 through an expansion valve 156 as a decompression device, and the outlet of the evaporator 157 is connected to the refrigerant introduction pipe 94. Further, although not shown in FIGS. 2 and 3, a defrost pipe 158 constituting a defrosting circuit branches off from the middle of the refrigerant introduction pipe 92, and the gas cooler 154 is connected via an electromagnetic valve 159 as a flow path control device. It is connected to a refrigerant discharge pipe 96 that reaches the inlet. In FIG. 18, the accumulator 146 is omitted.
[0052]
Next, the operation of the above configuration will be described. In the heating operation, the solenoid valve 159 is closed. When the stator coil 28 of the electric element 14 is energized through the terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotary shaft 16 rotate eccentrically in the upper and lower cylinders 38 and 40.
[0053]
Thus, the low pressure (first stage suction pressure LP: 4 MPaG) sucked from the suction port 162 to the low pressure chamber side of the lower cylinder 40 through the refrigerant introduction pipe 94 and the suction passage 60 formed in the lower support member 56. The refrigerant gas is compressed by the operation of the roller 48 and the vane to become an intermediate pressure (MP1: 8 MPaG), and from the high pressure chamber side of the lower cylinder 40 to the discharge port 41 and the discharge silencer chamber 64 formed in the lower support member 56, the communication path 63. Then, the liquid is discharged from the intermediate discharge pipe 121 into the sealed container 12.
[0054]
At this time, since the intermediate discharge pipe 121 is directed to the gap between the adjacent stator coils 28 and 28 wound around the stator 22 of the upper electric element 14, the refrigerant gas still having a relatively low temperature is supplied to the electric element. It becomes possible to actively supply in the 14 directions, and the temperature rise of the electric element 14 is suppressed. Moreover, the inside of the airtight container 12 becomes intermediate pressure (MP1) by this.
[0055]
Then, the intermediate pressure refrigerant gas in the sealed container 12 exits from the sleeve 144 (intermediate discharge pressure is MP1), and the suction port 161 passes through the refrigerant introduction pipe 92 and the suction passage 58 formed in the upper support member 54. To the low pressure chamber side of the upper cylinder 38 (second-stage suction pressure MP2). In this case, at the stage where the refrigerant gas is sucked into the low pressure chamber side of the upper cylinder 38 from the suction port 161, the pressure on the high pressure chamber side in the cylinder 38 is lower than the back pressure chamber 74. Since the check valve 88 is provided, gas does not flow back from the back pressure chamber 74 into the cylinder 38, so that the back pressure in the back pressure chamber 74 does not decrease and a suitable back pressure can be applied to the vane 50.
[0056]
In addition, since the intermediate pressure refrigerant gas in the sealed container 12 is used for the back pressure of the vane 50, the contact pressure between the vane 50 and the roller 46 can be reduced, and the rotation loss can be reduced. . As a result, an increase in input loss can be suppressed, so that wear of the vane 50 and the roller 46 can be reduced and the durability of the vane 50 and the roller 46 can be greatly extended.
[0057]
The intermediate-pressure refrigerant gas sucked into the cylinder 38 is compressed at the second stage by the operation of the roller 46 and the vane 50 to become a high-temperature / high-pressure refrigerant gas (second-stage discharge pressure HP: 12 MPaG). From the side, the gas flows into the gas cooler 154 through the discharge port 39, the discharge silencer chamber 62 formed in the upper support member 54, and the refrigerant discharge pipe 96. The refrigerant temperature at this time has risen to approximately + 100 ° C., and the high-temperature and high-pressure refrigerant gas dissipates heat to heat the water in the hot water storage tank and generate hot water of about + 90 ° C.
[0058]
On the other hand, the refrigerant itself is cooled in the gas cooler 154 and exits the gas cooler 154. Then, after the pressure is reduced by the expansion valve 156, the refrigerant flows into the evaporator 157 to evaporate, and is sucked into the first rotary compression element 32 from the refrigerant introduction pipe 94 through the accumulator 146 (not shown in FIG. 18). repeat.
[0059]
In particular, in an environment of low outside air temperature, frost forms on the evaporator 157 by such heating operation. In that case, the electromagnetic valve 159 is opened, the expansion valve 156 is fully opened, and the defrosting operation of the evaporator 157 is executed. As a result, the intermediate-pressure refrigerant in the sealed container 12 (including a small amount of high-pressure refrigerant discharged from the second rotary compression element 34) reaches the gas cooler 154 through the defrost pipe 158. The temperature of this refrigerant is about +50 to + 60 ° C., and the gas cooler 154 does not radiate heat, but initially the refrigerant absorbs heat. Then, the refrigerant discharged from the gas cooler 154 passes through the expansion valve 156 and reaches the evaporator 157. That is, the refrigerant having a relatively high intermediate pressure is supplied directly to the evaporator 157 without being depressurized, whereby the evaporator 157 is heated and defrosted.
[0060]
Here, when the high-pressure refrigerant discharged from the second rotary compression element 34 is supplied to the evaporator 157 without depressurization and defrosted, the first rotary compression element 32 is opened to fully open the expansion valve 156. As a result, the suction pressure of the first rotary compression element 32 increases (the intermediate pressure). Although this refrigerant is discharged through the second rotary compression element 34, the discharge pressure of the second rotary compression element 34 is the same as the suction pressure of the first rotary compression element 32 because the expansion valve 156 is fully open. As a result, a pressure reversal phenomenon occurs between the discharge (high pressure) and the suction (intermediate pressure) of the second rotary compression element 34. However, since the intermediate-pressure refrigerant gas discharged from the first rotary compression element 32 is taken out from the sealed container 12 as described above and the evaporator 157 is defrosted, the high pressure and the intermediate pressure are reversed. Can be prevented.
[0061]
As described above, the back pressure passage 72 is provided in the upper cylinder 38, the back pressure passage 72 is opened to the high pressure chamber side in the top cylinder 38 and the back pressure chamber 74 is opened, and the high pressure chamber side in the top cylinder 38 is opened. And the back pressure chamber 74 are communicated with each other. A check valve 88 is provided in the middle of the back pressure passage 72. Accordingly, even when the pressure in the high pressure chamber side in the cylinder 38 becomes lower than that in the back pressure chamber 74 at the stage where the gas is sucked into the cylinder 38, the gas flows backward from the back pressure chamber 74 into the cylinder 38. It becomes possible to prevent the deterioration of the compression efficiency of the rotary compressor 10. Further, it is possible to prevent the reliability of the spring 76 for pushing the vane 50 from being lowered due to the pressure fluctuation of the back pressure chamber 74.
[0062]
In the embodiment, the back pressure passage 72 is formed in the upper cylinder 38. However, the back pressure passage 72 is not limited to this, and is formed in the upper support member 54 so that the discharge silencing chamber 62 and the back pressure chamber 74 communicate with each other. The refrigerant gas on the high pressure chamber side may be introduced into the back pressure chamber 74 via the discharge silencer chamber 62. Also in this case, a check valve 88 is provided to allow only the refrigerant gas to flow from the discharge muffler chamber 62 to the back pressure chamber 74. According to such a configuration, the structure of the upper cylinder 38 can be simplified.
[0063]
Although carbon dioxide (CO 2) is used as the refrigerant in the rotary compressor 10, the present invention is not limited to this refrigerant, and the present invention is effective when other natural refrigerants such as hydrocarbon (HC) and ammonia (NH 3) are used. .
[0064]
【The invention's effect】
As described above in detail, according to the present invention, an electric element and first and second rotary compression elements driven by the electric element are provided in a sealed container, and the gas compressed by the first rotary compression element. In the rotary compressor for discharging the discharged intermediate pressure gas into the sealed container and compressing the discharged intermediate pressure gas with the second rotary compression element, the rotary shaft of the cylinder and the electric element for constituting the second rotary compression element A roller that is fitted into the formed eccentric part and rotates eccentrically in the cylinder, a vane that abuts against the roller and divides the cylinder into a low pressure chamber side and a high pressure chamber side, and a back for applying back pressure to the vane A pressure chamber, a back pressure passage communicating the high pressure chamber side in the cylinder and the back pressure chamber, and a back pressure passage provided in the back pressure passage, allowing gas flow from the high pressure chamber side in the cylinder to the back pressure chamber, Flow of gas from the back pressure chamber to the high pressure chamber side in the cylinder For example, carbon dioxide is used as a refrigerant, and the refrigerant circuit is operated in a supercritical state. Therefore, a high pressure is applied to the back pressure chamber so that the vane of the second rotary compression element is used. While the back pressure is applied to the cylinder, it is possible to eliminate the disadvantage that the gas flows backward from the back pressure chamber into the cylinder.
[0065]
As a result, it is possible to prevent a reduction in compression efficiency in the second rotary compression element of the rotary compressor. Further, when a spring member is provided to push the vane, the reliability of the spring member can be ensured.
[0066]
In particular, since the intermediate pressure refrigerant gas in the sealed container is used for the back pressure of the vane, the contact pressure between the vane and the roller can be reduced, and the rotation loss can be reduced. As a result, an increase in input loss can be suppressed, so that the wear of the vanes and the rollers can be reduced, and the durability of the vanes and the rollers can be greatly extended.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a rotary compressor according to an embodiment of the present invention.
2 is a front view of the rotary compressor of FIG. 1. FIG.
3 is a side view of the rotary compressor of FIG. 1. FIG.
4 is another longitudinal sectional view of the rotary compressor of FIG. 1. FIG.
FIG. 5 is still another longitudinal sectional view of the rotary compressor of FIG. 1;
6 is a plan sectional view of an electric element portion of the rotary compressor of FIG. 1;
7 is an enlarged cross-sectional view of a rotary compression mechanism portion of the rotary compressor of FIG.
8 is an enlarged cross-sectional view of a vane portion of a second rotary compression element of the rotary compressor of FIG. 1. FIG.
9 is a cross-sectional view of a lower support member and a lower cover of the rotary compressor of FIG.
10 is a bottom view of a lower support member of the rotary compressor of FIG. 1. FIG.
11 is a top view of an upper support member and an upper cover of the rotary compressor of FIG. 1. FIG.
12 is a cross-sectional view of an upper support member and an upper cover of the rotary compressor of FIG. 1. FIG.
13 is a top view of an intermediate partition plate of the rotary compressor of FIG. 1. FIG.
FIG. 14 is a cross-sectional view taken along line AA in FIG.
15 is a top view of an upper cylinder of the rotary compressor of FIG. 1. FIG.
16 is a diagram showing pressure fluctuation and overshoot (discharge pressure fluctuation) on the suction side of the upper cylinder of the rotary compressor of FIG. 1; FIG.
17 is a cross-sectional view for explaining the shape of a connecting portion of a rotary shaft of the rotary compressor in FIG. 1. FIG.
18 is a refrigerant circuit diagram of a hot water supply apparatus to which the rotary compressor of FIG. 1 is applied.
19 is a view showing a back pressure passage of an upper cylinder of the rotary compressor in FIG. 1. FIG.
20 is a view corresponding to FIG. 19 when a check valve is not provided in the back pressure passage.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Rotary compressor 12 Sealed container 14 Electric element 16 Rotating shaft 18 Rotation compression mechanism part 20 Terminal 32 1st rotation compression element 34 2nd rotation compression element 36 Intermediate partition plates 38, 40 Cylinders 39, 41 Discharge port 42 Eccentric part 44 Eccentric portion 46 Roller 48 Roller 50 Vane 54 Upper support member 56 Lower support member 62 Discharge silencer chamber 64 Discharge silencer chamber 66 Upper cover 68 Lower cover 70 Guide groove 70A Storage portion 72 Back pressure passage 74 Back pressure chamber 76 Spring 78, 129 Main Bolt 88 Check valve 90 Connecting part 132 Sealing material 137 Plug 138 O-ring

Claims (2)

密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素で圧縮されたガスを前記密閉容器内に吐出し、更にこの吐出された中間圧のガスを前記第2の回転圧縮要素で圧縮するロータリコンプレッサにおいて、
前記第2の回転圧縮要素を構成するためのシリンダ及び前記電動要素の回転軸に形成された偏心部に嵌合されて前記シリンダ内で偏心回転するローラと、
該ローラに当接して前記シリンダ内を低圧室側と高圧室側に区画するベーンと、
前記ベーンに背圧を加えるための背圧室と、
前記シリンダ内の高圧室側と前記背圧室とを連通する背圧通路と、
該背圧通路に設けられ、前記シリンダ内の高圧室側から前記背圧室へのガスの流通を許容し、該背圧室から前記シリンダ内の高圧室側へのガスの流通を阻止する逆止弁とを備えたことを特徴とするロータリコンプレッサ。
An electric element and a first and a second rotary compression element driven by the electric element are provided in the sealed container, and the gas compressed by the first rotary compression element is discharged into the sealed container. In the rotary compressor for compressing the discharged intermediate pressure gas by the second rotary compression element,
A cylinder for constituting the second rotary compression element, and a roller that is fitted into an eccentric portion formed on a rotary shaft of the electric element and rotates eccentrically in the cylinder;
A vane that abuts the roller and divides the cylinder into a low pressure chamber side and a high pressure chamber side;
A back pressure chamber for applying back pressure to the vane;
A back pressure passage communicating the high pressure chamber side in the cylinder and the back pressure chamber;
A reverse pressure passage provided in the back pressure passage to allow gas to flow from the high pressure chamber side in the cylinder to the back pressure chamber and to prevent gas flow from the back pressure chamber to the high pressure chamber side in the cylinder. A rotary compressor comprising a stop valve.
冷媒として二酸化炭素を用い、且つ、冷媒は超臨界で運転される冷媒回路に用いられることを特徴とする請求項1のロータリコンプレッサ。2. The rotary compressor according to claim 1, wherein carbon dioxide is used as a refrigerant, and the refrigerant is used in a refrigerant circuit operated in a supercritical state.
JP2002057047A 2002-03-04 2002-03-04 Rotary compressor Expired - Fee Related JP3963740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002057047A JP3963740B2 (en) 2002-03-04 2002-03-04 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002057047A JP3963740B2 (en) 2002-03-04 2002-03-04 Rotary compressor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2006099244A Division JP2006183673A (en) 2006-03-31 2006-03-31 Rotary compressor
JP2006099243A Division JP2006214445A (en) 2006-03-31 2006-03-31 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2003254276A JP2003254276A (en) 2003-09-10
JP3963740B2 true JP3963740B2 (en) 2007-08-22

Family

ID=28667411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002057047A Expired - Fee Related JP3963740B2 (en) 2002-03-04 2002-03-04 Rotary compressor

Country Status (1)

Country Link
JP (1) JP3963740B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107237754A (en) * 2017-08-07 2017-10-10 珠海格力电器股份有限公司 Rotor compressor with air supplementing structure and compression method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200619505A (en) 2004-12-13 2006-06-16 Sanyo Electric Co Multicylindrical rotary compressor, compression system, and freezing device using the compression system
JP2008524515A (en) * 2005-02-23 2008-07-10 エルジー エレクトロニクス インコーポレイティド Variable capacity rotary compressor
ES2549673T3 (en) 2005-02-23 2015-10-30 Lg Electronics, Inc. Rotary compressor of variable capacity type and cooling system that has the same
CN101839240A (en) * 2009-03-20 2010-09-22 上海日立电器有限公司 Rotor compressor with flexibly-changed blade backpressure
CN101839239A (en) * 2009-03-20 2010-09-22 上海日立电器有限公司 Digital rotor type compressor
CN102588284B (en) * 2012-03-31 2014-10-29 松下·万宝(广州)压缩机有限公司 Rotary compressor
JP2018188986A (en) * 2017-04-28 2018-11-29 パナソニックIpマネジメント株式会社 Internal intermediate pressure-type two-stage compression compressor
CN107989793A (en) * 2017-12-25 2018-05-04 珠海格力电器股份有限公司 Cylinder assembly and compressor comprising same
CN111412139B (en) * 2019-10-30 2021-12-31 广东美芝制冷设备有限公司 Rotary compressor and refrigeration cycle device with same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107237754A (en) * 2017-08-07 2017-10-10 珠海格力电器股份有限公司 Rotor compressor with air supplementing structure and compression method
WO2019029264A1 (en) * 2017-08-07 2019-02-14 格力电器(武汉)有限公司 Rotor compressor having air supply structure and compression method
CN107237754B (en) * 2017-08-07 2019-12-17 珠海格力电器股份有限公司 Rotor compressor with air supplementing structure and compression method

Also Published As

Publication number Publication date
JP2003254276A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP3728227B2 (en) Rotary compressor
JP3963740B2 (en) Rotary compressor
JP2006214445A (en) Rotary compressor
JP4024056B2 (en) Rotary compressor
JP4020612B2 (en) Rotary compressor
JP3895976B2 (en) Multistage rotary compressor
JP4236400B2 (en) Defroster for refrigerant circuit
JP4401365B2 (en) Rotary compressor
JP2005098663A (en) Transient critical refrigerant cycle device
JP3913507B2 (en) Rotary compressor
JP3963695B2 (en) Manufacturing method of rotary compressor
JP3883837B2 (en) Rotary compressor
JP2003201982A (en) Rotary compressor
JP4401364B2 (en) Rotary compressor
JP3986283B2 (en) Rotary compressor
JP3762690B2 (en) Rotary compressor
JP3963703B2 (en) Electric compressor
JP3963691B2 (en) Hermetic electric compressor
JP4726444B2 (en) Multi-cylinder rotary compressor
JP4020622B2 (en) Rotary compressor
JP2006183673A (en) Rotary compressor
JP2006022766A (en) Multi-cylinder rotary compressor
JP3825670B2 (en) Electric compressor
JP2003201981A (en) Rotary compressor
JP4169620B2 (en) Refrigerant cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070522

LAPS Cancellation because of no payment of annual fees