JP2018188986A - Internal intermediate pressure-type two-stage compression compressor - Google Patents

Internal intermediate pressure-type two-stage compression compressor Download PDF

Info

Publication number
JP2018188986A
JP2018188986A JP2017089843A JP2017089843A JP2018188986A JP 2018188986 A JP2018188986 A JP 2018188986A JP 2017089843 A JP2017089843 A JP 2017089843A JP 2017089843 A JP2017089843 A JP 2017089843A JP 2018188986 A JP2018188986 A JP 2018188986A
Authority
JP
Japan
Prior art keywords
compression
compression mechanism
stage
internal
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017089843A
Other languages
Japanese (ja)
Inventor
松崎 章
Akira Matsuzaki
章 松崎
佐藤 孝
Takashi Sato
孝 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017089843A priority Critical patent/JP2018188986A/en
Priority to CN201880027972.6A priority patent/CN110573741A/en
Priority to PCT/JP2018/016541 priority patent/WO2018199061A1/en
Priority to EP18790603.7A priority patent/EP3617514B1/en
Publication of JP2018188986A publication Critical patent/JP2018188986A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0238Hermetic compressors with oil distribution channels
    • F04B39/0246Hermetic compressors with oil distribution channels in the rotating shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Abstract

PROBLEM TO BE SOLVED: To provide an internal intermediate pressure-type two-stage compression compressor capable of preventing a lubricant from flowing more than it is set to a compression chamber of a high stage side.SOLUTION: A compressor has a first compression mechanism portion 30A performing low-stage compression of first stage, and a second compression mechanism portion 30B performing high-stage compression of second stage, as a compression mechanism portion 30, a lubricant supply passage 36 is formed on an intake passage 35B of the second compression mechanism portion 30B, a refrigerant gas compressed by the first compression mechanism portion 30A is discharged into a sealed container 10, the refrigerant gas is compressed by the second compression mechanism portion 30B and discharged to the outside of the sealed container 10, the lubricant is supplied from the lubricant supply passage 36 to a second compression chamber 34B of the second compression mechanism portion 30B by differential pressure between a case internal pressure of the sealed container 10 and a suction pressure in the intake passage 35B of the second compression mechanism portion 30B, and a sealed space 106 is not formed among a vane 33, a cylinder 31B and the piston 32B in swirling the piston 32B from the top dead center to a position of the intake passage 35B.SELECTED DRAWING: Figure 3

Description

本発明は、冷媒として特に二酸化炭素を用いる場合に適した内部中圧型2段圧縮コンプレッサに関するものである。   The present invention relates to an internal / intermediate pressure two-stage compression compressor particularly suitable when carbon dioxide is used as a refrigerant.

特許文献1は内部中圧型2段圧縮コンプレッサを開示している。
特許文献1では、中間仕切板に貫通孔を形成することで、密閉容器内底部のオイル溜めから汲み上げられてシャフト内給油通路を上昇し、シャフト内給油通路から出たオイルは、中間仕切板の貫通孔に入り、そこを通って高段側シリンダの低圧室側(吸込側)に供給される。
高段側シリンダの低圧室の内部圧力(吸入圧力)は、吸入過程においては吸入圧損により中間仕切板の内周縁側の圧力よりも低下する。この圧力差により、オイルはシャフト内給油通路から中間仕切板の貫通孔を経て高段側シリンダ内の低圧室にオイルがインジェクションされ、給油がされる。
Patent Document 1 discloses an internal medium pressure type two-stage compression compressor.
In Patent Document 1, by forming a through hole in the intermediate partition plate, the oil is pumped up from the oil sump at the bottom of the sealed container and rises in the oil supply passage in the shaft. It enters the through hole and passes through the through hole, and is supplied to the low pressure chamber side (suction side) of the high stage side cylinder.
The internal pressure (suction pressure) in the low pressure chamber of the high-stage side cylinder is lower than the pressure on the inner peripheral edge side of the intermediate partition plate due to suction pressure loss during the suction process. Due to this pressure difference, the oil is injected from the oil supply passage in the shaft through the through hole of the intermediate partition plate into the low pressure chamber in the high-stage cylinder and supplied.

特開2004−293333号公報JP 2004-293333 A

図4(a)は特許文献1で開示されているような内部中圧型2段圧縮コンプレッサの高段側の圧縮機構部の要部平面図である。
図4(b)は図4(a)の更に要部拡大平面図である。
圧縮機構部100は、シリンダ101と、シリンダ101内に配置されるピストン102と、シリンダ101内を仕切るベーン103とを有している。
図4では、圧縮機構部100の吸入通路104に給油通路105を形成している。
図4(b)に示すように、ピストン102が上死点から吸入通路104の位置まで旋回する際に、ベーン103とシリンダ101とピストン102との間に閉鎖空間106が形成される。
閉鎖空間106は負圧状態となっており、ピストン102が吸入通路104の位置に旋回し、閉鎖空間106が吸入通路104と連通すると、吸入通路104内の吸入圧は閉鎖空間106によって降下する。
その結果、密閉容器内のケース内圧と吸入圧との差圧は大きくなり、給油通路105からは設定以上の潤滑油が圧縮室内に流れ込み、高段側の圧縮室からの潤滑油の吐出量が増えてしまう。
そして、内部中圧型2段圧縮コンプレッサでは、冷媒が高段側の圧縮機構部から密閉容器外へ直接吐出されるため、密閉容器内に冷媒を吐出して潤滑油を密閉容器内で分離・回収する内部高圧型2段圧縮コンプレッサと比較してOCR(潤滑油循環比率)が高く、圧縮機体積効率と冷凍サイクル効率を低下させてしまう。
FIG. 4A is a plan view of the main part of the compression mechanism section on the high stage side of the internal medium pressure type two-stage compression compressor as disclosed in Patent Document 1. FIG.
FIG. 4B is a further enlarged plan view of the main part of FIG.
The compression mechanism unit 100 includes a cylinder 101, a piston 102 disposed in the cylinder 101, and a vane 103 that partitions the cylinder 101.
In FIG. 4, an oil supply passage 105 is formed in the suction passage 104 of the compression mechanism unit 100.
As shown in FIG. 4B, a closed space 106 is formed between the vane 103, the cylinder 101, and the piston 102 when the piston 102 turns from the top dead center to the position of the suction passage 104.
The closed space 106 is in a negative pressure state. When the piston 102 rotates to the position of the suction passage 104 and the closed space 106 communicates with the suction passage 104, the suction pressure in the suction passage 104 is lowered by the closed space 106.
As a result, the pressure difference between the case internal pressure and the suction pressure in the sealed container is increased, and the lubricating oil exceeding the set value flows into the compression chamber from the oil supply passage 105, and the discharge amount of the lubricating oil from the high-stage compression chamber is reduced. It will increase.
In the internal medium pressure type two-stage compression compressor, since the refrigerant is directly discharged from the high-stage compression mechanism part to the outside of the sealed container, the refrigerant is discharged into the sealed container and the lubricating oil is separated and collected in the sealed container. Compared with the internal high pressure type two-stage compression compressor, the OCR (lubricating oil circulation ratio) is high, and the compressor volumetric efficiency and the refrigeration cycle efficiency are lowered.

そこで本発明は、潤滑油が高段側の圧縮室に設定以上に流れ込むことを防止できる内部中圧型2段圧縮コンプレッサを提供することを目的とする。   Accordingly, an object of the present invention is to provide an internal / intermediate pressure two-stage compression compressor that can prevent the lubricating oil from flowing into the high-stage side compression chamber beyond the set value.

請求項1記載の本発明の内部中圧型2段圧縮コンプレッサは、密閉容器内に電動機部と圧縮機構部とを備え、前記電動機部と前記圧縮機構部とはシャフトによって連結され、前記圧縮機構部は、シリンダと、前記シリンダ内に配置されるピストンと、前記シリンダ内を仕切るベーンとを有し、前記圧縮機構部として、1段目の低段圧縮を行う第1圧縮機構部と、2段目の高段圧縮を行う第2圧縮機構部とを有し、前記第2圧縮機構部の吸入通路に給油通路を形成し、前記第1圧縮機構部で圧縮した冷媒ガスを前記密閉容器内に吐出し、前記冷媒ガスを前記第2圧縮機構部で圧縮して前記密閉容器外に吐出し、前記密閉容器内のケース内圧と前記第2圧縮機構部の前記吸入通路内の吸入圧との差圧によって、前記給油通路から前記第2圧縮機構部の第2圧縮室に給油を行う内部中圧型2段圧縮コンプレッサであって、前記ピストンが上死点から前記吸入通路の位置まで旋回する際に、前記ベーンと前記シリンダと前記ピストンとの間に閉鎖空間を形成しないことを特徴とする。
請求項2記載の本発明の内部中圧型2段圧縮コンプレッサは、請求項1に記載の内部中圧型2段圧縮コンプレッサにおいて、前記吸入通路の前記ベーン側に位置するベーン側壁面に圧力連絡溝を形成したことを特徴とする。
請求項3記載の本発明の内部中圧型2段圧縮コンプレッサは、請求項2に記載の内部中圧型2段圧縮コンプレッサにおいて、前記圧力連絡溝を、前記シャフトの中心軸に平行な仮想中心軸を中心とした円弧面で形成したことを特徴とする。
請求項4記載の本発明の内部中圧型2段圧縮コンプレッサは、請求項3に記載の内部中圧型2段圧縮コンプレッサにおいて、前記円弧面を、前記シリンダの一方の端面から他方の端面までに渡って形成したことを特徴とする。
請求項5記載の本発明の内部中圧型2段圧縮コンプレッサは、請求項3又は請求項4に記載の内部中圧型2段圧縮コンプレッサにおいて、前記仮想中心軸を中心として前記円弧面と同一曲率の曲面を前記ベーン側壁面に対向する反ベーン側壁面に形成したことを特徴とする。
請求項6記載の本発明の内部中圧型2段圧縮コンプレッサは、請求項1から請求項5のいずれか1項に記載の内部中圧型2段圧縮コンプレッサにおいて、前記第1圧縮機構部の低段圧縮排除容積に対する前記第2圧縮機構部の高段圧縮排除容積の排除容積比を70%〜100%としたことを特徴とする。
請求項7記載の本発明の内部中圧型2段圧縮コンプレッサは、請求項1から請求項6のいずれか1項に記載の内部中圧型2段圧縮コンプレッサにおいて、前記シャフトの下端にはオイルピックアップを有し、前記シャフトには、前記オイルピックアップで吸い上げられる潤滑油が通るシャフト内給油通路を形成し、前記第1圧縮機構部と前記第1圧縮機構部との間には中間仕切板を有し、前記中間仕切板には、前記シャフト内給油通路の前記潤滑油を前記給油通路に導く中間仕切板内給油通路を形成したことを特徴とする。
請求項8記載の本発明の内部中圧型2段圧縮コンプレッサは、請求項1から請求項7のいずれか1項に記載の内部中圧型2段圧縮コンプレッサにおいて、前記圧縮機構部で圧縮する冷媒として二酸化炭素を用いたことを特徴とする。
The internal medium pressure type two-stage compression compressor according to the first aspect of the present invention includes an electric motor part and a compression mechanism part in a sealed container, and the electric motor part and the compression mechanism part are connected by a shaft, and the compression mechanism part Includes a cylinder, a piston disposed in the cylinder, and a vane that partitions the cylinder, and the compression mechanism includes a first compression mechanism that performs first-stage low-stage compression, and two stages. A second compression mechanism that performs high-stage compression of the eyes, an oil supply passage is formed in the suction passage of the second compression mechanism, and the refrigerant gas compressed by the first compression mechanism is placed in the sealed container The refrigerant gas is compressed by the second compression mechanism and discharged outside the sealed container, and the difference between the case internal pressure in the sealed container and the suction pressure in the suction passage of the second compression mechanism The second compression mechanism from the oil supply passage by pressure An internal medium pressure type two-stage compression compressor for refueling the second compression chamber, when the piston is swung from top dead center to the position of the suction passage, between the vane, the cylinder and the piston. A closed space is not formed.
According to a second aspect of the present invention, there is provided the internal intermediate pressure type two-stage compression compressor according to the first aspect of the present invention, wherein the pressure communication groove is provided on a vane side wall surface located on the vane side of the suction passage. It is formed.
The internal medium pressure type two-stage compression compressor according to claim 3 of the present invention is the internal medium pressure type two stage compression compressor according to claim 2, wherein the pressure communication groove is provided with a virtual central axis parallel to the central axis of the shaft. It is characterized by being formed with a circular arc surface at the center.
According to a fourth aspect of the present invention, there is provided the internal intermediate pressure type two-stage compression compressor according to the third aspect of the present invention, wherein the arc surface extends from one end surface of the cylinder to the other end surface. It is characterized by being formed.
The internal medium pressure type two-stage compression compressor of the present invention according to claim 5 is the internal medium pressure type two stage compression compressor according to claim 3 or 4, wherein the same curvature as that of the arc surface about the virtual central axis. A curved surface is formed on an anti-vane side wall surface facing the vane side wall surface.
The internal medium pressure type two-stage compression compressor according to the present invention described in claim 6 is the internal medium pressure type two stage compression compressor according to any one of claims 1 to 5, wherein the low stage of the first compression mechanism section is provided. The exclusion volume ratio of the high-stage compression exclusion volume of the second compression mechanism section to the compression exclusion volume is 70% to 100%.
The internal medium pressure type two-stage compression compressor of the present invention according to claim 7 is the internal medium pressure type two stage compression compressor according to any one of claims 1 to 6, wherein an oil pickup is provided at a lower end of the shaft. The shaft includes an in-shaft oil supply passage through which lubricating oil sucked up by the oil pickup passes, and an intermediate partition plate is provided between the first compression mechanism portion and the first compression mechanism portion. The intermediate partition plate is formed with an intermediate partition plate oil supply passage for guiding the lubricating oil in the shaft oil supply passage to the oil supply passage.
The internal medium pressure type two-stage compression compressor of the present invention according to claim 8 is the internal medium pressure type two stage compression compressor according to any one of claims 1 to 7, wherein the refrigerant is compressed by the compression mechanism section. It is characterized by using carbon dioxide.

本発明によれば、潤滑油が第2圧縮室に設定以上に流れ込むことを防止でき、第2圧縮室からの潤滑油の吐出量を抑制することができる。   According to the present invention, it is possible to prevent the lubricating oil from flowing into the second compression chamber beyond the set value, and to suppress the discharge amount of the lubricating oil from the second compression chamber.

本発明の一実施例による内部中圧型2段圧縮コンプレッサの断面図1 is a cross-sectional view of an internal medium pressure type two-stage compression compressor according to an embodiment of the present invention. 図1の要部拡大断面図1 is an enlarged cross-sectional view of the main part of FIG. 同内部中圧型2段圧縮コンプレッサの高段側の圧縮機構部の要部平面図Top view of the main part of the compression mechanism on the high stage side of the internal medium pressure type two-stage compression compressor 従来の内部中圧型2段圧縮コンプレッサの高段側の圧縮機構部の要部平面図The principal part top view of the compression mechanism part of the high stage side of the conventional internal pressure type two-stage compression compressor

本発明の第1の実施の形態による内部中圧型2段圧縮コンプレッサは、ピストンが上死点から吸入通路の位置まで旋回する際に、ベーンとシリンダとピストンとの間に閉鎖空間を形成しないものである。本実施の形態によれば、閉鎖空間によって生じる吸入圧低下を無くすことで、潤滑油が第2圧縮室に設定以上に流れ込むことを防止でき、第2圧縮室からの潤滑油の吐出量を抑制することができる。   The internal medium pressure type two-stage compression compressor according to the first embodiment of the present invention does not form a closed space between the vane, the cylinder and the piston when the piston turns from the top dead center to the position of the suction passage. It is. According to the present embodiment, by eliminating the suction pressure drop caused by the closed space, it is possible to prevent the lubricating oil from flowing into the second compression chamber beyond the set value, and to suppress the discharge amount of the lubricating oil from the second compression chamber. can do.

本発明の第2の実施の形態は、第1の実施の形態による内部中圧型2段圧縮コンプレッサにおいて、吸入通路のベーン側に位置するベーン側壁面に圧力連絡溝を形成したものである。本実施の形態によれば、圧力連絡溝を形成することで、ピストンが上死点から吸入通路の位置まで旋回する際に形成される、ベーンとシリンダとピストンとの間での閉鎖空間を無くすことができる。   In the second embodiment of the present invention, in the internal medium pressure type two-stage compression compressor according to the first embodiment, a pressure communication groove is formed on a vane side wall surface located on the vane side of the suction passage. According to the present embodiment, by forming the pressure communication groove, the closed space between the vane, the cylinder and the piston, which is formed when the piston turns from the top dead center to the position of the suction passage, is eliminated. be able to.

本発明の第3の実施の形態は、第2の実施の形態による内部中圧型2段圧縮コンプレッサにおいて、圧力連絡溝を、シャフトの中心軸に平行な仮想中心軸を中心とした円弧面で形成したものである。本実施の形態によれば、ベーン及びベーン溝の面圧を抑制して、圧力連絡溝を形成することができる。   According to a third embodiment of the present invention, in the internal intermediate pressure type two-stage compression compressor according to the second embodiment, the pressure communication groove is formed by an arc surface centered on a virtual central axis parallel to the central axis of the shaft. It is a thing. According to the present embodiment, the pressure communication groove can be formed while suppressing the surface pressure of the vane and the vane groove.

本発明の第4の実施の形態は、第3の実施の形態による内部中圧型2段圧縮コンプレッサにおいて、円弧面を、シリンダの一方の端面から他方の端面までに渡って形成したものである。本実施の形態によれば、回転切削加工によって圧力連絡溝を形成できる。   According to a fourth embodiment of the present invention, in the internal intermediate pressure type two-stage compression compressor according to the third embodiment, an arc surface is formed from one end surface of the cylinder to the other end surface. According to the present embodiment, the pressure communication groove can be formed by rotary cutting.

本発明の第5の実施の形態は、第3又は第4の実施の形態による内部中圧型2段圧縮コンプレッサにおいて、仮想中心軸を中心として円弧面と同一曲率の曲面をベーン側壁面に対向する反ベーン側壁面に形成したものである。本実施の形態によれば、圧力連絡溝の形成と同時に排除容積調整用空間を形成できる。   According to a fifth embodiment of the present invention, in the internal medium pressure type two-stage compression compressor according to the third or fourth embodiment, a curved surface having the same curvature as the arc surface is opposed to the vane side wall surface with the virtual central axis as the center. It is formed on the anti-vane side wall surface. According to the present embodiment, it is possible to form the excluded volume adjusting space simultaneously with the formation of the pressure communication groove.

本発明の第6の実施の形態は、第1から第5のいずれかの実施の形態による内部中圧型2段圧縮コンプレッサにおいて、第1圧縮機構部の低段圧縮排除容積に対する第2圧縮機構部の高段圧縮排除容積の排除容積比を70%〜100%としたものである。本実施の形態によれば、密閉容器からのオイル吐出量の低減効果を期待できる。   According to a sixth embodiment of the present invention, in the internal intermediate pressure type two-stage compression compressor according to any one of the first to fifth embodiments, the second compression mechanism section with respect to the low-stage compression exclusion volume of the first compression mechanism section. The exclusion volume ratio of the high-stage compression exclusion volume is 70% to 100%. According to the present embodiment, an effect of reducing the amount of oil discharged from the sealed container can be expected.

本発明の第7の実施の形態は、第1から第6のいずれかの実施の形態による内部中圧型2段圧縮コンプレッサにおいて、シャフトの下端にはオイルピックアップを有し、シャフトには、オイルピックアップで吸い上げられる潤滑油が通るシャフト内給油通路を形成し、第1圧縮機構部と第1圧縮機構部との間には中間仕切板を有し、中間仕切板には、シャフト内給油通路の潤滑油を給油通路に導く中間仕切板内給油通路を形成したものである。本実施の形態によれば、冷媒吸入時の圧力降下を利用して、密閉容器内の潤滑油を第2圧縮機構部の吸入通路に供給できる。   According to a seventh embodiment of the present invention, in the internal intermediate pressure type two-stage compression compressor according to any one of the first to sixth embodiments, an oil pickup is provided at the lower end of the shaft, and the oil pickup is provided at the shaft. An oil supply passage in the shaft through which the lubricating oil sucked up in the passage passes is formed, an intermediate partition plate is provided between the first compression mechanism portion and the first compression mechanism portion, and the intermediate partition plate includes a lubricant for the oil supply passage in the shaft. An oil supply passage in the intermediate partition that guides oil to the oil supply passage is formed. According to the present embodiment, it is possible to supply the lubricating oil in the hermetic container to the suction passage of the second compression mechanism portion using the pressure drop during refrigerant suction.

本発明の第8の実施の形態は、第1から第7のいずれかの実施の形態による内部中圧型2段圧縮コンプレッサにおいて、圧縮機構部で圧縮する冷媒として二酸化炭素を用いたものである。本実施の形態によれば、冷媒圧力が高く吸込と吐出との圧力差が大きい二酸化炭素を冷媒に用いた場合でも、密閉容器の内圧を中圧としているため、密閉容器を薄肉化でき、小型軽量化を図れ、1段あたりの差圧を低減しているため、体積効率が向上する。   The eighth embodiment of the present invention uses carbon dioxide as a refrigerant to be compressed by the compression mechanism in the internal intermediate pressure type two-stage compression compressor according to any one of the first to seventh embodiments. According to the present embodiment, even when carbon dioxide having a high refrigerant pressure and a large pressure difference between suction and discharge is used for the refrigerant, since the internal pressure of the sealed container is set to an intermediate pressure, the sealed container can be thinned and reduced in size. Since the weight can be reduced and the differential pressure per stage is reduced, the volume efficiency is improved.

以下、本発明の一実施例について図面を参照しながら説明する。
図1は本実施例による内部中圧型2段圧縮コンプレッサの断面図、図2は図1の要部拡大断面図である。
本実施例による内部中圧型2段圧縮コンプレッサは、密閉容器10内に電動機部20と圧縮機構部30とを備えている。電動機部20と圧縮機構部30とはシャフト40によって連結されている。
電動機部20は、密閉容器10内面に固定される固定子21と、固定子21内で回転する回転子22とから構成される。
本実施例による内部中圧型2段圧縮コンプレッサは、圧縮機構部30として、1段目の低段圧縮を行う第1圧縮機構部30Aと、2段目の高段圧縮を行う第2圧縮機構部30Bとを有している。
第1圧縮機構部30Aは、第1シリンダ31Aと、第1シリンダ31A内に配置される第1ピストン32Aと、第1シリンダ31A内を仕切るベーン(図示せず)とを有し、第1ピストン32Aが第1シリンダ31A内で公転運動することで、低圧の冷媒ガスを吸入して圧縮する。
第1圧縮機構部30Aと同様に、第2圧縮機構部30Bは、第2シリンダ31Bと、第2シリンダ31B内に配置される第2ピストン32Bと、第2シリンダ31B内を仕切るベーン33(図3参照)とを有し、第2ピストン32Bが第2シリンダ31B内で公転運動することで、中圧の冷媒ガスを吸入して圧縮する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of an internal medium pressure type two-stage compression compressor according to this embodiment, and FIG. 2 is an enlarged cross-sectional view of a main part of FIG.
The internal intermediate pressure type two-stage compression compressor according to this embodiment includes an electric motor unit 20 and a compression mechanism unit 30 in a hermetic container 10. The electric motor unit 20 and the compression mechanism unit 30 are connected by a shaft 40.
The electric motor unit 20 includes a stator 21 that is fixed to the inner surface of the sealed container 10 and a rotor 22 that rotates within the stator 21.
The internal intermediate pressure type two-stage compression compressor according to the present embodiment includes, as the compression mechanism section 30, a first compression mechanism section 30A that performs first-stage low-stage compression and a second compression mechanism section that performs second-stage high-stage compression. 30B.
The first compression mechanism 30A includes a first cylinder 31A, a first piston 32A disposed in the first cylinder 31A, and a vane (not shown) that partitions the first cylinder 31A. 32A revolves in the first cylinder 31A, and sucks and compresses the low-pressure refrigerant gas.
Similar to the first compression mechanism section 30A, the second compression mechanism section 30B includes a second cylinder 31B, a second piston 32B disposed in the second cylinder 31B, and a vane 33 that partitions the second cylinder 31B (see FIG. 3), and the second piston 32B revolves in the second cylinder 31B to suck and compress the medium-pressure refrigerant gas.

第1シリンダ31Aの一方の面には下軸受51を配置し、第1シリンダ31Aの他方の面には中間仕切板52を配置している。
また、第2シリンダ31Bの一方の面には中間仕切板52を配置し、第2シリンダ31Bの他方の面には上軸受53を配置している。
すなわち、中間仕切板52は第1シリンダ31Aと第2シリンダ31Bとを仕切る。中間仕切板52は、シャフト40の径よりも大きな開口部を有する。
シャフト40は、回転子22を取り付けて下軸受51で支持される主軸部41と、第1ピストン32Aを取り付ける第1偏芯部42と、第2ピストン32Bを取り付ける第2偏芯部43と、下軸受51で支持される副軸部44とで構成される。
第1偏芯部42と第2偏芯部43とは180度の位相差を持って形成され、第1偏芯部42と第2偏芯部43との間には、連結軸部45を形成している。
A lower bearing 51 is disposed on one surface of the first cylinder 31A, and an intermediate partition plate 52 is disposed on the other surface of the first cylinder 31A.
An intermediate partition plate 52 is disposed on one surface of the second cylinder 31B, and an upper bearing 53 is disposed on the other surface of the second cylinder 31B.
That is, the intermediate partition plate 52 partitions the first cylinder 31A and the second cylinder 31B. The intermediate partition plate 52 has an opening that is larger than the diameter of the shaft 40.
The shaft 40 includes a main shaft portion 41 to which the rotor 22 is attached and supported by the lower bearing 51, a first eccentric portion 42 to which the first piston 32A is attached, a second eccentric portion 43 to which the second piston 32B is attached, The secondary shaft portion 44 is supported by the lower bearing 51.
The first eccentric part 42 and the second eccentric part 43 are formed with a phase difference of 180 degrees, and a connecting shaft part 45 is provided between the first eccentric part 42 and the second eccentric part 43. Forming.

第1圧縮室34Aは、下軸受51と中間仕切板52との間で、第1シリンダ31A内周面と第1ピストン32A外周面との間に形成される。また、第2圧縮室34Bは、中間仕切板52と上軸受53との間で、第2シリンダ31B内周面と第2ピストン32B外周面との間に形成される。
第1圧縮機構部30Aの低段圧縮排除容積に対する第2圧縮機構部30Bの高段圧縮排除容積の排除容積比を70%〜100%としている。
密閉容器10内の底部にはオイル溜め11が形成され、シャフト40の下端部にはオイルピックアップ12を設けている。
また、シャフト40の内部には、軸方向にシャフト内給油通路46を形成している。シャフト内給油通路46には、圧縮機構部30の摺動面にオイルを供給するための連通路47が形成されている。
連通路47は、第1偏芯部42及び第2偏芯部43に形成している。
第2圧縮機構部30Bの吸入通路35Bには給油通路36を形成している。
中間仕切板52には、シャフト内給油通路46の潤滑油を給油通路36に導く中間仕切板内給油通路60を形成している。
中間仕切板内給油通路60は、中間仕切板52の内周面52aから外周面52bに至る第1通路61と、第1通路61に一端が開口し、給油通路36に他端が開口する第2通路62とで構成される。
The first compression chamber 34A is formed between the lower bearing 51 and the intermediate partition plate 52 between the inner peripheral surface of the first cylinder 31A and the outer peripheral surface of the first piston 32A. The second compression chamber 34B is formed between the intermediate partition plate 52 and the upper bearing 53 between the inner peripheral surface of the second cylinder 31B and the outer peripheral surface of the second piston 32B.
The exclusion volume ratio of the high-stage compression exclusion volume of the second compression mechanism section 30B to the low-stage compression exclusion volume of the first compression mechanism section 30A is 70% to 100%.
An oil sump 11 is formed at the bottom of the sealed container 10, and an oil pickup 12 is provided at the lower end of the shaft 40.
Further, an in-shaft oil supply passage 46 is formed in the shaft 40 in the axial direction. The in-shaft oil supply passage 46 is formed with a communication passage 47 for supplying oil to the sliding surface of the compression mechanism 30.
The communication passage 47 is formed in the first eccentric portion 42 and the second eccentric portion 43.
An oil supply passage 36 is formed in the suction passage 35B of the second compression mechanism portion 30B.
The intermediate partition plate 52 is formed with an intermediate partition plate oil supply passage 60 that guides the lubricating oil in the shaft oil supply passage 46 to the oil supply passage 36.
The intermediate partition plate oil supply passage 60 includes a first passage 61 extending from the inner peripheral surface 52 a to the outer peripheral surface 52 b of the intermediate partition plate 52, one end opening in the first passage 61, and the other end opening in the oil supply passage 36. And two passages 62.

密閉容器10の側面には、第1吸入管13Aと第2吸入管13Bとが接続され、密閉容器10には、中間圧吐出管14と吐出管(図示せず)とが接続されている。中間圧吐出管14は、中間圧吐出ポート15に接続されている。
第1吸入管13Aは第1圧縮機構部30Aの吸入通路35Aに、第2吸入管13Bは第2圧縮機構部30Bの吸入通路35Bに、それぞれ接続されている。
吸入通路35Aは第1圧縮室34Aに繋がり、吸入通路35Bは第2圧縮室34Bに繋がっている。
中間圧吐出管14は、中圧冷媒ガスを冷却するインタークーラ16に接続され、インタークーラ16は、第2吸入管13Bに接続される。
下軸受51の下部にはカップマフラー71を設け、上軸受53の上部には上部カバー72を設けている。下軸受51とカップマフラー71との間には第1消音室81が形成され、上軸受53と上部カバー72との間には第2消音室82が形成される。
第1消音室81には第1圧縮室34Aで圧縮された中圧冷媒ガスが吐出され、第2消音室82には第2圧縮室34Bで圧縮された高圧冷媒ガスが吐出される。
A first suction pipe 13A and a second suction pipe 13B are connected to the side surface of the sealed container 10, and an intermediate pressure discharge pipe 14 and a discharge pipe (not shown) are connected to the sealed container 10. The intermediate pressure discharge pipe 14 is connected to the intermediate pressure discharge port 15.
The first suction pipe 13A is connected to the suction passage 35A of the first compression mechanism section 30A, and the second suction pipe 13B is connected to the suction passage 35B of the second compression mechanism section 30B.
The suction passage 35A is connected to the first compression chamber 34A, and the suction passage 35B is connected to the second compression chamber 34B.
The intermediate pressure discharge pipe 14 is connected to an intercooler 16 that cools the medium pressure refrigerant gas, and the intercooler 16 is connected to the second suction pipe 13B.
A cup muffler 71 is provided below the lower bearing 51, and an upper cover 72 is provided above the upper bearing 53. A first silencing chamber 81 is formed between the lower bearing 51 and the cup muffler 71, and a second silencing chamber 82 is formed between the upper bearing 53 and the upper cover 72.
Medium pressure refrigerant gas compressed in the first compression chamber 34A is discharged into the first silencing chamber 81, and high pressure refrigerant gas compressed in the second compression chamber 34B is discharged into the second silencing chamber 82.

シャフト40の回転によって、第1ピストン32A及び第2ピストン32Bは、第1圧縮室34A及び第2圧縮室34B内で公転運動を行う。
第1ピストン32Aの公転運動によって、第1吸入管13Aから吸入通路35Aを通って第1圧縮室34Aに吸入されたガス冷媒は、第1圧縮室34Aで圧縮された後に第1消音室81に吐出される。
第1消音室81に吐出された中圧冷媒ガスは、下軸受51、第1シリンダ31A、中間仕切板52、第2シリンダ31B、及び上軸受53に形成した冷媒通路(図示せず)を通って密閉容器10内に吐出される。
密閉容器10に吐出された中圧冷媒ガスは、中間圧吐出ポート15から中間圧吐出管14に導かれ、更にインタークーラ16で冷却された後に第2吸入管13Bに導かれる。
第2ピストン32Bの公転運動によって、第2吸入管13Bから吸入通路35Bを通って第2圧縮室34Bに吸入されたガス冷媒は、第2圧縮室34Bで圧縮された後に第2消音室82に吐出される。
第2消音室82に吐出された高圧冷媒ガスは、吐出管(図示せず)から密閉容器10外に吐出される。密閉容器10外に吐出された高圧冷媒ガスは、放熱器、減圧器、及び蒸発器を経由し、低圧冷媒ガスとなって第1吸入管13Aに導かれる。
Due to the rotation of the shaft 40, the first piston 32A and the second piston 32B revolve in the first compression chamber 34A and the second compression chamber 34B.
The gas refrigerant sucked into the first compression chamber 34A from the first suction pipe 13A through the suction passage 35A by the revolving motion of the first piston 32A is compressed in the first compression chamber 34A and then into the first silencing chamber 81. Discharged.
The medium pressure refrigerant gas discharged into the first silencing chamber 81 passes through a refrigerant passage (not shown) formed in the lower bearing 51, the first cylinder 31A, the intermediate partition plate 52, the second cylinder 31B, and the upper bearing 53. And discharged into the sealed container 10.
The medium-pressure refrigerant gas discharged to the sealed container 10 is guided from the intermediate pressure discharge port 15 to the intermediate pressure discharge pipe 14, further cooled by the intercooler 16, and then guided to the second suction pipe 13 </ b> B.
The gas refrigerant sucked into the second compression chamber 34B from the second suction pipe 13B through the suction passage 35B by the revolving motion of the second piston 32B is compressed in the second compression chamber 34B and then into the second silencer chamber 82. Discharged.
The high-pressure refrigerant gas discharged into the second silencing chamber 82 is discharged out of the sealed container 10 from a discharge pipe (not shown). The high-pressure refrigerant gas discharged to the outside of the sealed container 10 is led to the first suction pipe 13A as a low-pressure refrigerant gas via a radiator, a decompressor, and an evaporator.

また、シャフト40の回転によって、オイル溜め11から吸い上げた潤滑油は、連通路47から圧縮機構部30に供給され、圧縮機構部30の摺動面の潤滑を行う。
連通路47から供給される潤滑油の一部は、シャフト内給油通路46内の圧力、すなわち、密閉容器10内のケース内圧と、第2圧縮機構部30Bの吸入通路35B内の吸入圧との差圧によって、中間仕切板内給油通路60から給油通路36を経由して第2圧縮機構部30Bの第2圧縮室34Bに導かれる。
Further, the lubricating oil sucked up from the oil reservoir 11 by the rotation of the shaft 40 is supplied from the communication passage 47 to the compression mechanism unit 30 to lubricate the sliding surface of the compression mechanism unit 30.
Part of the lubricating oil supplied from the communication passage 47 is the pressure in the oil supply passage 46 in the shaft, that is, the case internal pressure in the sealed container 10 and the suction pressure in the suction passage 35B of the second compression mechanism portion 30B. Due to the differential pressure, the intermediate partition plate oil supply passage 60 is guided to the second compression chamber 34B of the second compression mechanism 30B through the oil supply passage 36.

図3(a)は本実施例による内部中圧型2段圧縮コンプレッサの高段側の圧縮機構部の要部平面図である。
図3(b)は図3(a)の更に要部拡大平面図である。
吸入通路35Bのベーン33側に位置するベーン側壁面35B1に圧力連絡溝91を形成している。
圧力連絡溝91は、シャフト40の中心軸に平行な仮想中心軸Xを中心とした円弧面で形成している。圧力連絡溝91は、第2シリンダ31Bの一方の端面から他方の端面までに渡って形成している。
また、仮想中心軸Xを中心として、圧力連絡溝91の円弧面と同一曲率の曲面をベーン側壁面35B1に対向する反ベーン側壁面35B2に形成することで、圧力連絡溝91の形成と同時に排除容積調整用空間92を形成できる。
このように、圧力連絡溝91を形成することで、第2ピストン32Bが上死点から吸入通路35Bの位置まで旋回する際に、ベーン33と第2シリンダ31Bと第2ピストン32Bとの間に閉鎖空間106(図4参照)が形成されない。
そして、図4に示す閉鎖空間106によって生じる吸入圧低下を無くすことで、潤滑油が第2圧縮室34Bに設定以上に流れ込むことを防止でき、第2圧縮室34Bからの潤滑油の吐出量を抑制することができる。
FIG. 3A is a plan view of the main part of the compression mechanism section on the high stage side of the internal intermediate pressure type two-stage compression compressor according to this embodiment.
FIG. 3B is a further enlarged plan view of the main part of FIG.
A pressure communication groove 91 is formed in the vane side wall surface 35B1 located on the vane 33 side of the suction passage 35B.
The pressure communication groove 91 is formed by an arc surface centered on a virtual central axis X that is parallel to the central axis of the shaft 40. The pressure communication groove 91 is formed from one end surface of the second cylinder 31B to the other end surface.
Further, a curved surface having the same curvature as the arc surface of the pressure communication groove 91 with the virtual central axis X as the center is formed on the anti-vane side wall surface 35B2 facing the vane side wall surface 35B1, thereby eliminating the pressure communication groove 91 at the same time. A volume adjusting space 92 can be formed.
Thus, by forming the pressure communication groove 91, when the second piston 32B is swung from the top dead center to the position of the suction passage 35B, it is between the vane 33, the second cylinder 31B, and the second piston 32B. The closed space 106 (see FIG. 4) is not formed.
Then, by eliminating the suction pressure drop caused by the closed space 106 shown in FIG. 4, it is possible to prevent the lubricating oil from flowing into the second compression chamber 34B beyond the set value, and to reduce the amount of lubricating oil discharged from the second compression chamber 34B. Can be suppressed.

また、本実施例によれば、圧力連絡溝91を、シャフト40の中心軸に平行な仮想中心軸Xを中心とした円弧面で形成することで、ベーン33及びベーン溝の面圧を抑制して、圧力連絡溝91を形成することができる。
また、本実施例によれば、圧力連絡溝91を、第2シリンダ31Bの一方の端面から他方の端面までに渡って形成することで、切削加工によって容易に形成できる。
また、本実施例によれば、第1圧縮機構部30Aの低段圧縮排除容積に対する第2圧縮機構部30Bの高段圧縮排除容積の排除容積比を70%〜100%とすることで、密閉容器10からのオイル吐出量の低減効果を期待できる。
なお、本実施例の内部中圧型2段圧縮コンプレッサは、冷媒として二酸化炭素を用いることができる。本実施例によれば、冷媒圧力が高く吸込と吐出との圧力差が大きい二酸化炭素を冷媒に用いた場合でも、密閉容器10の内圧を中圧としているため、密閉容器10を薄肉化でき、小型軽量化を図れ、1段あたりの差圧を低減しているため、体積効率が向上する。
Further, according to the present embodiment, the pressure communication groove 91 is formed by an arc surface centered on the virtual central axis X parallel to the central axis of the shaft 40, thereby suppressing the surface pressure of the vane 33 and the vane groove. Thus, the pressure communication groove 91 can be formed.
Further, according to this embodiment, the pressure communication groove 91 can be easily formed by cutting by forming the pressure communication groove 91 from one end surface to the other end surface of the second cylinder 31B.
In addition, according to the present embodiment, the exclusion volume ratio of the high-stage compression exclusion volume of the second compression mechanism part 30B to the low-stage compression exclusion volume of the first compression mechanism part 30A is set to 70% to 100%. The effect of reducing the amount of oil discharged from the container 10 can be expected.
In addition, the internal medium pressure type two-stage compression compressor of the present embodiment can use carbon dioxide as a refrigerant. According to the present embodiment, even when carbon dioxide having a high refrigerant pressure and a large pressure difference between suction and discharge is used as the refrigerant, since the internal pressure of the sealed container 10 is set to an intermediate pressure, the sealed container 10 can be thinned. Since the size and weight can be reduced and the differential pressure per stage is reduced, volume efficiency is improved.

本発明は、内部中圧型2段圧縮コンプレッサとして説明したが、3段以上の圧縮コンプレッサでも適用可能である。   Although the present invention has been described as an internal medium pressure type two-stage compression compressor, it can also be applied to a three-stage or more compression compressor.

10 密閉容器
11 オイル溜め
12 オイルピックアップ
13A 第1吸入管
13B 第2吸入管
14 中間圧吐出管
15 中間圧吐出ポート
16 インタークーラ
20 電動機部
21 固定子
22 回転子
30 圧縮機構部
30A 第1圧縮機構部
30B 第2圧縮機構部
31A 第1シリンダ
31B 第2シリンダ
32A 第1ピストン
32B 第2ピストン
33 ベーン
34A 第1圧縮室
34B 第2圧縮室
35A 吸入通路
35B 吸入通路
36 給油通路
40 シャフト
41 主軸部
42 第1偏芯部
43 第2偏芯部
44 副軸部
45 連結軸部
46 シャフト内給油通路
47 連通路
51 下軸受
52 中間仕切板
53 上軸受
60 中間仕切板内給油通路
61 第1通路
62 第2通路
71 カップマフラー
72 上部カバー
81 第1消音室
82 第2消音室
91 圧力連絡溝
92 排除容積調整用空間
106 閉鎖空間
DESCRIPTION OF SYMBOLS 10 Airtight container 11 Oil reservoir 12 Oil pick-up 13A 1st suction pipe 13B 2nd suction pipe 14 Intermediate pressure discharge pipe 15 Intermediate pressure discharge port 16 Intercooler 20 Electric motor part 21 Stator 22 Rotor 30 Compression mechanism part 30A 1st compression mechanism Part 30B second compression mechanism part 31A first cylinder 31B second cylinder 32A first piston 32B second piston 33 vane 34A first compression chamber 34B second compression chamber 35A suction passage 35B suction passage 36 oil supply passage 40 shaft 41 main shaft portion 42 First eccentric portion 43 Second eccentric portion 44 Sub shaft portion 45 Connecting shaft portion 46 In-shaft oil supply passage 47 Communication passage 51 Lower bearing 52 Intermediate partition plate 53 Upper bearing 60 Intermediate partition plate oil supply passage 61 First passage 62 First passage 62 2 passages 71 cup muffler 72 upper cover 81 first silencing chamber 82 Second silencing chamber 91 the pressure contact grooves 92 displacement volume adjusting space 106 closed space

Claims (8)

密閉容器内に電動機部と圧縮機構部とを備え、
前記電動機部と前記圧縮機構部とはシャフトによって連結され、
前記圧縮機構部は、シリンダと、前記シリンダ内に配置されるピストンと、前記シリンダ内を仕切るベーンとを有し、
前記圧縮機構部として、1段目の低段圧縮を行う第1圧縮機構部と、2段目の高段圧縮を行う第2圧縮機構部とを有し、
前記第2圧縮機構部の吸入通路に給油通路を形成し、
前記第1圧縮機構部で圧縮した冷媒ガスを前記密閉容器内に吐出し、前記冷媒ガスを前記第2圧縮機構部で圧縮して前記密閉容器外に吐出し、
前記密閉容器内のケース内圧と前記第2圧縮機構部の前記吸入通路内の吸入圧との差圧によって、前記給油通路から前記第2圧縮機構部の第2圧縮室に給油を行う内部中圧型2段圧縮コンプレッサであって、
前記ピストンが上死点から前記吸入通路の位置まで旋回する際に、前記ベーンと前記シリンダと前記ピストンとの間に閉鎖空間を形成しない
ことを特徴とする内部中圧型2段圧縮コンプレッサ。
An electric motor part and a compression mechanism part are provided in the sealed container,
The electric motor part and the compression mechanism part are connected by a shaft,
The compression mechanism section includes a cylinder, a piston disposed in the cylinder, and a vane that partitions the cylinder.
As the compression mechanism section, it has a first compression mechanism section that performs first-stage low-stage compression, and a second compression mechanism section that performs second-stage high-stage compression,
Forming an oil supply passage in the suction passage of the second compression mechanism;
The refrigerant gas compressed by the first compression mechanism is discharged into the sealed container, the refrigerant gas is compressed by the second compression mechanism and discharged outside the sealed container,
An internal intermediate pressure type that supplies oil from the oil supply passage to the second compression chamber of the second compression mechanism portion by a differential pressure between the case internal pressure in the sealed container and the suction pressure in the suction passage of the second compression mechanism portion. A two-stage compressor,
An internal / intermediate pressure two-stage compression compressor, wherein a closed space is not formed between the vane, the cylinder and the piston when the piston turns from the top dead center to the position of the suction passage.
前記吸入通路の前記ベーン側に位置するベーン側壁面に圧力連絡溝を形成した
ことを特徴とする請求項1に記載の内部中圧型2段圧縮コンプレッサ。
2. The internal / intermediate pressure type two-stage compression compressor according to claim 1, wherein a pressure communication groove is formed in a vane side wall surface located on the vane side of the suction passage.
前記圧力連絡溝を、前記シャフトの中心軸に平行な仮想中心軸を中心とした円弧面で形成した
ことを特徴とする請求項2に記載の内部中圧型2段圧縮コンプレッサ。
3. The internal / medium pressure type two-stage compression compressor according to claim 2, wherein the pressure communication groove is formed by a circular arc surface having a virtual central axis parallel to a central axis of the shaft.
前記円弧面を、前記シリンダの一方の端面から他方の端面までに渡って形成した
ことを特徴とする請求項3に記載の内部中圧型2段圧縮コンプレッサ。
The internal medium pressure type two-stage compression compressor according to claim 3, wherein the arc surface is formed from one end surface to the other end surface of the cylinder.
前記仮想中心軸を中心として前記円弧面と同一曲率の曲面を前記ベーン側壁面に対向する反ベーン側壁面に形成した
ことを特徴とする請求項3又は請求項4に記載の内部中圧型2段圧縮コンプレッサ。
5. The internal intermediate pressure type two-stage according to claim 3, wherein a curved surface having the same curvature as the circular arc surface is formed on an anti-vane side wall surface facing the vane side wall surface with the virtual central axis as a center. Compression compressor.
前記第1圧縮機構部の低段圧縮排除容積に対する前記第2圧縮機構部の高段圧縮排除容積の排除容積比を70%〜100%とした
ことを特徴とする請求項1から請求項5のいずれか1項に記載の内部中圧型2段圧縮コンプレッサ。
6. The exclusion volume ratio of the high-stage compression exclusion volume of the second compression mechanism section to the low-stage compression exclusion volume of the first compression mechanism section is 70% to 100%. The internal medium pressure type two-stage compression compressor according to any one of the above.
前記シャフトの下端にはオイルピックアップを有し、
前記シャフトには、前記オイルピックアップで吸い上げられる潤滑油が通るシャフト内給油通路を形成し、
前記第1圧縮機構部と前記第1圧縮機構部との間には中間仕切板を有し、
前記中間仕切板には、前記シャフト内給油通路の前記潤滑油を前記給油通路に導く中間仕切板内給油通路を形成した
ことを特徴とする請求項1から請求項6のいずれか1項に記載の内部中圧型2段圧縮コンプレッサ。
The lower end of the shaft has an oil pickup,
The shaft forms an oil supply passage in the shaft through which the lubricating oil sucked up by the oil pickup passes,
An intermediate partition plate is provided between the first compression mechanism part and the first compression mechanism part,
The intermediate partition plate is provided with an intermediate partition plate oil supply passage that guides the lubricating oil in the shaft oil supply passage to the oil supply passage. Internal medium pressure type two-stage compression compressor.
前記圧縮機構部で圧縮する冷媒として二酸化炭素を用いた
ことを特徴とする請求項1から請求項7のいずれか1項に記載の内部中圧型2段圧縮コンプレッサ。
The internal medium pressure type two-stage compression compressor according to any one of claims 1 to 7, wherein carbon dioxide is used as a refrigerant to be compressed by the compression mechanism section.
JP2017089843A 2017-04-28 2017-04-28 Internal intermediate pressure-type two-stage compression compressor Pending JP2018188986A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017089843A JP2018188986A (en) 2017-04-28 2017-04-28 Internal intermediate pressure-type two-stage compression compressor
CN201880027972.6A CN110573741A (en) 2017-04-28 2018-04-24 Internal medium pressure type two-stage compression compressor
PCT/JP2018/016541 WO2018199061A1 (en) 2017-04-28 2018-04-24 Internal medium pressure two-stage compression compressor
EP18790603.7A EP3617514B1 (en) 2017-04-28 2018-04-24 Internal medium pressure type two-stage compression compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017089843A JP2018188986A (en) 2017-04-28 2017-04-28 Internal intermediate pressure-type two-stage compression compressor

Publications (1)

Publication Number Publication Date
JP2018188986A true JP2018188986A (en) 2018-11-29

Family

ID=63918496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017089843A Pending JP2018188986A (en) 2017-04-28 2017-04-28 Internal intermediate pressure-type two-stage compression compressor

Country Status (4)

Country Link
EP (1) EP3617514B1 (en)
JP (1) JP2018188986A (en)
CN (1) CN110573741A (en)
WO (1) WO2018199061A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085363A (en) * 2019-11-27 2021-06-03 パナソニックIpマネジメント株式会社 Internal intermediate pressure-type multi-stage compression compressor
WO2023276494A1 (en) * 2021-06-28 2023-01-05 パナソニックIpマネジメント株式会社 Compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112983820A (en) * 2021-05-19 2021-06-18 广东美芝制冷设备有限公司 Compressor, refrigerating system and refrigerating equipment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692392A (en) * 1979-12-26 1981-07-27 Matsushita Electric Ind Co Ltd Rotary compressor
JPS57206790A (en) * 1981-06-15 1982-12-18 Mitsubishi Heavy Ind Ltd Rolling-piston type compressor
JPS6238575A (en) * 1985-08-13 1987-02-19 Seiko Epson Corp Flexible disc drive
JPS63146185U (en) * 1987-03-17 1988-09-27
JP3963740B2 (en) * 2002-03-04 2007-08-22 三洋電機株式会社 Rotary compressor
JP4136747B2 (en) 2003-03-25 2008-08-20 三洋電機株式会社 Rotary compressor
US7223082B2 (en) * 2003-03-25 2007-05-29 Sanyo Electric Co., Ltd. Rotary compressor
JP2012087665A (en) * 2010-10-19 2012-05-10 Panasonic Corp Rotary compressor
JP5870246B2 (en) * 2011-05-10 2016-02-24 パナソニックIpマネジメント株式会社 Rotary compressor
JP5586537B2 (en) * 2011-07-28 2014-09-10 三菱電機株式会社 Rotary two-stage compressor
JP2013185496A (en) * 2012-03-08 2013-09-19 Panasonic Corp Rotary compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085363A (en) * 2019-11-27 2021-06-03 パナソニックIpマネジメント株式会社 Internal intermediate pressure-type multi-stage compression compressor
JP7378044B2 (en) 2019-11-27 2023-11-13 パナソニックIpマネジメント株式会社 Internal medium pressure multistage compression compressor
WO2023276494A1 (en) * 2021-06-28 2023-01-05 パナソニックIpマネジメント株式会社 Compressor

Also Published As

Publication number Publication date
EP3617514A4 (en) 2020-03-04
WO2018199061A1 (en) 2018-11-01
CN110573741A (en) 2019-12-13
EP3617514B1 (en) 2023-02-22
EP3617514A1 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP6664118B2 (en) 2-cylinder hermetic compressor
US8888475B2 (en) Scroll compressor with oil supply across a sealing part
JP2014129793A (en) Scroll compressor
WO2018199061A1 (en) Internal medium pressure two-stage compression compressor
JP2007315261A (en) Hermetic compressor
CN103644119A (en) Oil recovery member, and motor mechanism and compressor using the same
US9115715B2 (en) Compressor with pressure reduction groove formed in eccentric part
JP5991958B2 (en) Rotary compressor
WO2016189598A1 (en) Scroll compressor
JP6134903B2 (en) Positive displacement compressor
JP7356044B2 (en) Screw compressor and refrigeration equipment
JP2012036862A (en) Hermetically-sealed compressor, and refrigerating cycle apparatus
JP5781355B2 (en) Hermetic rotary compressor
JP7378044B2 (en) Internal medium pressure multistage compression compressor
JP2014234785A (en) Scroll compressor
JP2019035391A (en) Compressor
JP2010223140A (en) Two-stage compression rotary compressor
CN110268164B (en) Rotary compressor
JP6643712B2 (en) 2-cylinder hermetic compressor
JP2017008819A (en) Rotary compressor
JP5556368B2 (en) Scroll compressor
JP6114911B2 (en) Scroll compressor
JP2011021502A (en) Compressor, air conditioner, and water heater
JP2019100285A (en) Hermetic compressor
JP2017008818A (en) Rotary compressor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210629