JP2005147562A - Two-stage compression type rotary compressor, and car air conditioner and heat pump type hot water supply apparatus using it - Google Patents

Two-stage compression type rotary compressor, and car air conditioner and heat pump type hot water supply apparatus using it Download PDF

Info

Publication number
JP2005147562A
JP2005147562A JP2003387349A JP2003387349A JP2005147562A JP 2005147562 A JP2005147562 A JP 2005147562A JP 2003387349 A JP2003387349 A JP 2003387349A JP 2003387349 A JP2003387349 A JP 2003387349A JP 2005147562 A JP2005147562 A JP 2005147562A
Authority
JP
Japan
Prior art keywords
stage compression
pressure
compression element
low
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003387349A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ebara
俊行 江原
Hiroyuki Matsumori
裕之 松森
Takashi Sato
孝 佐藤
Masaru Matsuura
大 松浦
Takayasu Saito
隆泰 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003387349A priority Critical patent/JP2005147562A/en
Priority to AT04021471T priority patent/ATE472059T1/en
Priority to AT08011548T priority patent/ATE478261T1/en
Priority to AT08011547T priority patent/ATE529641T1/en
Priority to EP08011547A priority patent/EP1972787B1/en
Priority to DE602004027781T priority patent/DE602004027781D1/en
Priority to EP08011548A priority patent/EP1972786B1/en
Priority to EP04021471A priority patent/EP1520990B1/en
Priority to DE602004028767T priority patent/DE602004028767D1/en
Priority to US10/945,925 priority patent/US7462021B2/en
Priority to CN2007101696960A priority patent/CN101201050B/en
Priority to CNB2004100921582A priority patent/CN100430603C/en
Publication of JP2005147562A publication Critical patent/JP2005147562A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Abstract

<P>PROBLEM TO BE SOLVED: To provide two-stage compression type rotary compressor avoiding reduction of durability and reliability of the compressor caused by an excessive high and low pressure difference of a high stage side compressor, by a simple control means. <P>SOLUTION: This rotary compressor has: a rotary compression mechanism part 10 making a high stage side compression element 20 suck discharge gas from a low stage side compression element 40; an electric motor 3 driving the rotary compression mechanism part 10; an intermediate pressure type sealed vessel 2 storing the electric motor 3 and the rotary compression mechanism part 10; and a pressure control valve 70 stored in a housing constituting the rotary compression mechanism part 10. The pressure control valve 70 introduces a gas refrigerant inside the sealed vessel 2 into a cylinder 21 of the high stage side compression element 20 when a discharge pressure of the low stage side compression element 40 decreases to a prescribed value or below, and shuts off the introduction of the gas refrigerant inside the sealed vessel 2 into the cylinder 21 when the discharge pressure of the low stage side compression element 40 is increased over the prescribed value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、低段側圧縮要素から吐出されたガス冷媒を高段側圧縮要素に吸引して圧縮する回転式圧縮機構部を備えた2段圧縮式ロータリ圧縮機並びにこれを用いたカーエアコン及びヒートポンプ式給湯装置に関するものである。   The present invention relates to a two-stage compression rotary compressor having a rotary compression mechanism that sucks and compresses a gas refrigerant discharged from a low-stage compression element into a high-stage compression element, and a car air conditioner using the same The present invention relates to a heat pump type hot water supply apparatus.

従来この種の2段圧縮式ロータリ圧縮機、特に、圧縮要素等を内蔵した密閉容器内に低段側圧縮用の吐出ガスを充満させるように構成した中間圧力ドーム型の2段圧縮式ロータリ圧縮機では、次のように構成されていた。すなわち、低段側圧縮要素では、吸入ポートからガス冷媒をシリンダに吸入し、ローラとベーンの動作により中間圧力まで圧縮する1段目の圧縮を行い、この中間圧力の吐出ガス冷媒を吐出ポート及び吐出消音室を経て密閉容器内に吐出していた。また、高段側圧縮要素では、密閉容器内の中間圧力のガス冷媒を吸入ポートからシリンダに吸入し、ローラとベーンの動作により高圧側圧力まで圧縮する2段目の圧縮を行い、高温高圧のガス冷媒として吐出ポート及び吐出消音室等を経て吐出管から外部の冷媒回路内へ吐出していた。   Conventionally, this type of two-stage compression rotary compressor, in particular, an intermediate pressure dome type two-stage compression rotary compressor configured to fill a discharge container for compression on the lower stage side into a sealed container containing a compression element or the like. The machine was configured as follows. That is, in the low-stage compression element, gas refrigerant is sucked into the cylinder from the suction port, compression is performed to the intermediate pressure by the operation of the roller and the vane, and the discharge gas refrigerant of this intermediate pressure is discharged to the discharge port and It discharged into the airtight container through the discharge silencer chamber. In the high-stage compression element, the intermediate-pressure gas refrigerant in the hermetic container is sucked into the cylinder from the suction port, and is compressed to the high-pressure side pressure by the operation of the roller and the vane. Gas refrigerant was discharged from the discharge pipe into the external refrigerant circuit through the discharge port and the discharge silencer chamber.

また、低段側圧縮要素及び高段側圧縮要素の吐出消音室には、シリンダ内で圧縮されて、吐出消音室に吐出された冷媒の逆流を防ぐための吐出弁が設けられており、この吐出弁により吐出ポートが開閉自在に閉塞されていた。
特開2003−74997号公報 特開平10−141270号公報
In addition, the discharge silencer chambers of the low-stage compression element and the high-stage compression element are provided with discharge valves for preventing the reverse flow of the refrigerant compressed in the cylinder and discharged into the discharge silencer chamber. The discharge port was closed by the discharge valve so that it could be opened and closed.
JP 2003-74997 A Japanese Patent Laid-Open No. 10-141270

ここで、高低圧差の大きい冷媒、例えば二酸化炭素(CO)を用いた2段圧縮式ロータリ圧縮機を用いたヒートポンプ式冷凍装置(例えば、ヒートポンプ式給湯装置)の場合、1段目(低段側)の吸気容積と2段目(高段側)の吸気容積とが一定でその割合が概略2:1の場合、1段目の圧縮比はほぼ2となり、一般的には、図9のような特性を示す。このような装置では、外気温度+10℃以上の領域において、高段側圧縮要素の吐出圧力(すなわち、高圧側圧力)HPは略12MPaG以上、高段側圧縮要素の吸入圧力、すなわち低段側圧縮要素の吐出圧力は、中間圧力MPであって8MPaG以上であり、低段側圧縮要素の吸入圧力(すなわち低圧側圧力)LPは4MPaG以上となっていた。したがって、二酸化炭素(CO)を冷媒として用いた2段圧縮式ロータリ圧縮機における高段側圧縮要素の高低圧力差(高段側圧縮要素の吐出圧力HPと高段側圧縮要素の吸入圧力MPの差)は4MPaGとなり、低段側、高段側とも同等な圧力差なる。しかし、この種2段圧縮式ロータリ圧縮機では、圧縮比がほぼ一定のため、外気温度が低くなる程低段側圧縮要素の吐出圧力MPがより一層低くなるため、高段側圧縮要素の高低圧力差がさらに大きくなっていた。 Here, in the case of a heat pump refrigeration apparatus (for example, a heat pump hot water supply apparatus) using a two-stage compression rotary compressor using a refrigerant having a large high-low pressure difference, such as carbon dioxide (CO 2 ), the first stage (low stage 9) and the second stage (higher stage) intake volume are constant and the ratio is approximately 2: 1, the compression ratio of the first stage is approximately 2, and in general, It shows such characteristics. In such an apparatus, the discharge pressure (that is, the high pressure side pressure) HP of the high stage side compression element is approximately 12 MPaG or more in the region where the outside air temperature is + 10 ° C. or higher, and the suction pressure of the high stage side compression element, that is, the low stage side compression The discharge pressure of the element was an intermediate pressure MP, which was 8 MPaG or more, and the suction pressure (ie, the low pressure side pressure) LP of the low-stage compression element was 4 MPaG or more. Therefore, the high-low pressure difference (the discharge pressure HP of the high-stage compression element and the suction pressure MP of the high-stage compression element) of the high-stage compression element in the two-stage compression rotary compressor using carbon dioxide (CO 2 ) as the refrigerant. Difference) is 4 MPaG, and the pressure difference is the same on both the low and high stages. However, in this type of two-stage compression rotary compressor, since the compression ratio is substantially constant, the lower the outside air temperature, the lower the discharge pressure MP of the low-stage compression element. The pressure difference was even greater.

また、高段側圧縮要素の高低圧力差が大きくなると、高段側圧縮要素の吐出ポートを開閉する吐出弁の内外における圧力差が過大となり、吐出弁が破損してしまうなど、高段側圧縮要素における構成部品の耐久性及び信頼性が低下するという問題があった。   Also, if the high-low pressure difference of the high-stage compression element increases, the pressure difference between the inside and outside of the discharge valve that opens and closes the discharge port of the high-stage compression element becomes excessive, and the discharge valve is damaged. There was a problem that the durability and reliability of the component parts in the element were lowered.

このような問題に対し、従来より高温の給湯を可能とするために二酸化炭素を冷媒とし、2段圧縮式ロータリ圧縮機を応用したヒートポンプ式給湯装置が用いられている。この従来の2段圧縮式ロータリ圧縮機を利用したヒートポンプ式給湯装置では、例えば、給湯運転時に、高圧側熱交換器で冷却された高圧ガス冷媒を低段側圧縮要素の吐出側にバイパスするバイパス回路を設け、このバイパス回路中に電磁開閉弁及びキャピラリーチューブ、3方弁などを設けていた。そして、圧力検知手段により、高圧側圧力HPと中間圧力MPとの圧力差が大きくなったことを検知したときに、電磁開閉弁を開放し、高圧ガスを低段側圧縮要素の吐出側にバイパスすることにより、低段側の吸気容積と高段側の吸気容積の割合を変化させて中間圧力を上昇させるように構成していた。   In order to solve such a problem, a heat pump type hot water supply apparatus using carbon dioxide as a refrigerant and applying a two-stage compression rotary compressor has been used in order to enable hot water supply at a higher temperature than before. In the conventional heat pump hot water supply apparatus using the two-stage compression rotary compressor, for example, a bypass that bypasses the high-pressure gas refrigerant cooled by the high-pressure side heat exchanger to the discharge side of the low-stage compression element during hot water supply operation. A circuit was provided, and an electromagnetic opening / closing valve, a capillary tube, a three-way valve, and the like were provided in the bypass circuit. When the pressure detecting means detects that the pressure difference between the high pressure side pressure HP and the intermediate pressure MP has increased, the electromagnetic on-off valve is opened and the high pressure gas is bypassed to the discharge side of the low stage compression element. Thus, the intermediate pressure is increased by changing the ratio between the intake volume on the low stage side and the intake volume on the high stage side.

しかしながら、上記従来技術のものでは、圧力検知手段、バイパス回路、電磁開閉弁などを冷媒回路に必要としていたため、冷媒回路が煩雑になり、冷凍装置応用製品である給湯装置が大型化し、コスト上昇の原因となっていた。   However, in the above prior art, the pressure detection means, bypass circuit, electromagnetic on-off valve, etc. are required for the refrigerant circuit, so the refrigerant circuit becomes complicated, the hot water supply device, which is a product applied to the refrigeration apparatus, becomes larger, and the cost increases. It was the cause.

本発明は、このような従来技術の課題を解決するためになされたものであり、簡易な制御手段により、高段側圧縮機の高低圧力差が過大となることによる圧縮機の耐久性、信頼性の低下を回避した2段圧縮式ロータリ圧縮機を提供することを目的とする。   The present invention has been made in order to solve the above-described problems of the prior art, and the durability and reliability of the compressor due to an excessively high and low pressure difference between the high-stage compressor and the simple control means. It aims at providing the two-stage compression type rotary compressor which avoided the fall of property.

本発明は、上記課題を解決するものであって、低段側圧縮要素及び高段側圧縮要素からなり、低段側圧縮要素からの吐出ガスを高段側圧縮要素に吸入させるようにした回転式圧縮機構部と、回転式圧縮機構部を駆動する電動機と、電動機及び回転式圧縮機構部を収納し、内部が低段側圧縮要素の吐出ガス冷媒により満たされる密閉容器と、回転式圧縮機構部を構成するハウジング内に収納された圧力制御弁とを備え、この圧力制御弁は、低段側圧縮要素の吐出圧力が所定値以下に低下したときに、密閉容器内のガス冷媒を高段側圧縮要素のシリンダ内に導入し、低段側圧縮要素の吐出圧力が所定値を超えて上昇したときに前記密閉容器内のガス冷媒のシリンダ内への導入を遮断するように構成されてなることを特徴とする。   The present invention solves the above-described problem, and includes a low-stage side compression element and a high-stage side compression element, and a rotation in which discharge gas from the low-stage side compression element is sucked into the high-stage side compression element. Type compression mechanism unit, electric motor that drives the rotary type compression mechanism unit, a sealed container that houses the electric motor and the rotary type compression mechanism unit, and is filled with the discharge gas refrigerant of the low-stage compression element, and the rotary type compression mechanism And a pressure control valve housed in a housing constituting the portion, and this pressure control valve causes the gas refrigerant in the hermetic container to flow into a high stage when the discharge pressure of the low stage side compression element drops below a predetermined value. Introduced into the cylinder of the side compression element, and configured to block the introduction of the gas refrigerant in the sealed container into the cylinder when the discharge pressure of the low stage side compression element rises above a predetermined value. It is characterized by that.

また、前記圧力制御弁は、ピストンとピストンを摺動自在に収納するシリンダとを備え、さらに、前記ピストンには低圧側圧力及びスプリングの弾性力の合力と密閉容器内のガス冷媒圧力とを対向的に作用させ、低段側圧縮要素の吐出圧力が所定値以下に低下したときに、前記合力によりピストンをシリンダ内の一方向に移動させて密閉容器内のガス冷媒を高段側圧縮要素のシリンダ内に導入可能とし、低段側圧縮要素の吐出圧力が所定値を超えて上昇したときに、前記合力に抗して密閉容器内のガス冷媒圧力によりピストンを他方向側に移動させて前記密閉容器内のガス冷媒のシリンダ内への導入を遮断するように構成されてなるものとしてもよい。   The pressure control valve includes a piston and a cylinder that slidably accommodates the piston, and the piston is opposed to the resultant pressure of the low pressure side pressure and the elastic force of the spring and the gas refrigerant pressure in the sealed container. When the discharge pressure of the low-stage side compression element drops below a predetermined value, the piston is moved in one direction in the cylinder by the resultant force, and the gas refrigerant in the sealed container is moved to the high-stage side compression element. When the discharge pressure of the low-stage compression element rises above a predetermined value, the piston is moved in the other direction by the gas refrigerant pressure in the sealed container against the resultant force when the discharge pressure of the low-stage compression element rises above a predetermined value. It is good also as what is comprised so that introduction | transduction to the cylinder of the gas refrigerant in an airtight container may be interrupted | blocked.

また、本発明に係るカーエアコンは、上記2段圧縮式ロータリ圧縮機から構成されるとともにとともに冷媒として炭酸ガスを用いたことを特徴とする。   In addition, a car air conditioner according to the present invention includes the above-described two-stage compression rotary compressor and uses carbon dioxide as a refrigerant.

また、本発明に係るヒートポンプ式給湯装置は、上記2段圧縮式ロータリ圧縮機を用いるとともに冷媒として炭酸ガスを用いたことを特徴とする。   Moreover, the heat pump type hot water supply apparatus according to the present invention is characterized by using the above-mentioned two-stage compression rotary compressor and using carbon dioxide gas as a refrigerant.

本発明に係る2段圧縮式ロータリ圧縮機は、密閉容器内を圧力を中間圧とすることで、低段側圧縮要素の吐出圧力が所定値以下に低下したときに、密閉容器内のガス冷媒を高段側圧縮要素のシリンダ内に導入し、低段側圧縮要素の吐出圧力が所定値を超えて上昇したときに前記密閉容器内のガス冷媒のシリンダ内への導入を遮断する圧力制御弁を、回転式圧縮機構部を構成するハウジング内に収納しているので、この2段圧縮式ロータリ圧縮機を用いた冷凍装置では、従来のようにバイパス回路や、電磁開閉弁や、圧力検知装置を必要とせず、この2段圧縮式ロータリ圧縮機を用いた冷凍装置を簡略化及び小型化することができる。なお、上記構成において電動機を回転制御可能とすれば能力調整を行うことも可能となる。   The two-stage compression rotary compressor according to the present invention has a gas refrigerant in the hermetic container when the discharge pressure of the low-stage compression element is reduced to a predetermined value or less by setting the pressure in the hermetic container to an intermediate pressure. Is introduced into the cylinder of the high-stage compression element, and when the discharge pressure of the low-stage compression element rises above a predetermined value, the pressure control valve that shuts off the introduction of the gas refrigerant in the sealed container into the cylinder Is housed in the housing constituting the rotary compression mechanism, so that in the refrigeration apparatus using the two-stage compression rotary compressor, a bypass circuit, an electromagnetic on-off valve, a pressure detection device, and the like are used. Therefore, the refrigeration apparatus using the two-stage compression rotary compressor can be simplified and miniaturized. In the above configuration, if the electric motor can be controlled to rotate, it is possible to adjust the capacity.

また、この圧力制御弁をピストンとピストンを摺動自在に収納するシリンダとを備えた構成とするとともに、前記ピストンには低圧側圧力及びスプリングの弾性力の合力と密閉容器内のガス冷媒圧力とを対向的に作用させ、低段側圧縮要素の吐出圧力が所定値以下に低下したときに、前記合力によりピストンをシリンダ内の一方向に移動させて密閉容器内のガス冷媒を高段側圧縮要素のシリンダ内に導入可能とし、低段側圧縮要素の吐出圧力が所定値を超えて上昇したときに、前記合力に抗して密閉容器内のガス冷媒圧力によりピストンを他方向側に移動させて前記密閉容器内のガス冷媒のシリンダ内への導入を遮断するように,圧力制御弁を構成すると、圧力制御弁の駆動機構としてはスプリングを用いるだけであるので、圧力制御弁の構造を簡素化することができる。   The pressure control valve includes a piston and a cylinder that slidably accommodates the piston, and the piston includes a low pressure side pressure and a resultant force of a spring and a gas refrigerant pressure in a sealed container. When the discharge pressure of the low-stage compression element drops below a predetermined value, the piston is moved in one direction in the cylinder by the resultant force to compress the gas refrigerant in the hermetic container on the high-stage side. When the discharge pressure of the low-stage compression element rises above a predetermined value, the piston is moved in the other direction by the gas refrigerant pressure in the sealed container against the resultant force. If the pressure control valve is configured to block the introduction of the gas refrigerant in the sealed container into the cylinder, only a spring is used as the drive mechanism of the pressure control valve. It is possible to simplify the.

また、本発明に係るカーエアコンは、冷媒ガスとして炭酸ガスを用いるとともに、上述の2段圧縮式ロータリ圧縮機を用いているので、広範囲の外気温度の変化に耐えて暖房運転を可能とする。   In addition, the car air conditioner according to the present invention uses carbon dioxide as the refrigerant gas and uses the above-described two-stage compression rotary compressor, so that it can withstand a wide range of outside air temperature and perform heating operation.

また、本発明に係る給湯エアオンは、冷媒ガスとして炭酸ガスを用いるとともに、上述の2段圧縮式ロータリ圧縮機を用いているので、高温の給湯を可能とするとともに、広範囲の外気温度の変化に耐えて給湯運転を可能とする。   In addition, the hot water supply air-on according to the present invention uses carbon dioxide gas as the refrigerant gas and uses the above-described two-stage compression rotary compressor, so that hot water supply can be performed and a wide range of outside air temperature can be changed. Withstand the heat supply operation.

次に、図1〜図8に基づき本発明の実施例を詳述する。図1は本発明を具体化した2段圧縮式ロータリ圧縮機、すなわち、高段側圧縮要素及び低段側圧縮要素を備えた中間圧力ドーム型の2段圧縮式ロータリ圧縮機の縦断面図を示している。   Next, an embodiment of the present invention will be described in detail with reference to FIGS. FIG. 1 is a longitudinal sectional view of a two-stage compression rotary compressor embodying the present invention, that is, an intermediate pressure dome type two-stage compression rotary compressor having a high-stage compression element and a low-stage compression element. Show.

本実施例に係る2段圧縮式ロータリ圧縮機1は、図1に示すように、鋼板からなる円筒状の密閉容器2、この密閉容器2の内部空間の上側に配置された電動機3、電動機3の下側に配置され、回転式圧縮機構部10、回転式圧縮機構部10を構成するハウジング内に収納されている圧力制御弁70などから構成されている。   As shown in FIG. 1, a two-stage compression rotary compressor 1 according to the present embodiment includes a cylindrical sealed container 2 made of a steel plate, an electric motor 3 disposed above the internal space of the sealed container 2, and an electric motor 3. The rotary compression mechanism unit 10 is arranged below the rotary compression mechanism unit 10 and the pressure control valve 70 housed in the housing constituting the rotary compression mechanism unit 10.

密閉容器2は、電動機3の回転式圧縮機構部10を収納する容器本体2aと、この容器本体2aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)2bとで構成され、底部をオイル溜めとしている。また、エンドキャップ2bの上面中心には円形の取付孔2dが形成されており、この取付孔2dには、電動機3に電力を供給するためのターミナル(配線を省略)5が取り付けられている。   The hermetic container 2 includes a container body 2a that houses the rotary compression mechanism 10 of the electric motor 3, and a substantially bowl-shaped end cap (lid body) 2b that closes the upper opening of the container body 2a. Oil reservoir. A circular attachment hole 2d is formed at the center of the upper surface of the end cap 2b, and a terminal (wiring is omitted) 5 for supplying electric power to the motor 3 is attached to the attachment hole 2d.

電動機3は、密閉容器2の上部空間の内周面に沿って環状に取り付けられたステータ6と、ステータ6の内側に若干の間隔を設けて挿入設置されたロータ7とからなるものであって、回転数制御可能に構成されている。   The electric motor 3 includes a stator 6 that is annularly attached along the inner peripheral surface of the upper space of the hermetic container 2, and a rotor 7 that is inserted inside the stator 6 with a slight space therebetween. The rotation speed can be controlled.

ステータ6は、ドーナッツ状の電磁鋼板を積層した積層体6aと、この積層体6aの歯部に直巻き(集中巻き)方式により巻装されたステータコイル6bを有している。また、ロータ7もステータ6と同様に電磁鋼板の積層体7aで形成され、この積層体7a内に永久磁石MGを挿入して構成されている。そして、ロータ7は、電動機3の中心を通り鉛直方向に延びる回転軸4に固定されている。   The stator 6 includes a laminated body 6a in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 6b wound around the teeth of the laminated body 6a by a direct winding (concentrated winding) method. Similarly to the stator 6, the rotor 7 is also formed by a laminated body 7a of electromagnetic steel plates, and a permanent magnet MG is inserted into the laminated body 7a. The rotor 7 is fixed to a rotating shaft 4 that extends in the vertical direction through the center of the electric motor 3.

回転式圧縮機構部10は、電動機3の回転軸4により駆動される高段側圧縮要素20及び低段側圧縮要素40からなる。前記高段側圧縮要素20及び低段側圧縮要素40は、中間仕切板60、中間仕切板60の上下に配置された上下シリンダ21、41、この上下シリンダ21、41内を180度の位相差を有して回転軸4に設けた上下偏心部22、42、この上下偏心部22、42に嵌合されて偏心回転する上下ローラ23、43(図4、図5参照)、この上下ローラ23、43に当接して上下シリンダ21、41内をそれぞれ低圧室側と高圧室側に区画する上下ベーン24、44(図4、図5参照)、上シリンダ21の上側の開口面及び下シリンダ41の下側の開口面を閉塞して回転軸4の軸受を兼用する支持部材としての上下支持部材25、45などから構成されている。
なお、中間仕切板60、シリンダ21、シリンダ41、上支持部材25及び下支持部材45は、本発明にいう回転式圧縮機構部10のハウジングを構成する。
The rotary compression mechanism 10 includes a high-stage compression element 20 and a low-stage compression element 40 that are driven by the rotation shaft 4 of the electric motor 3. The high-stage compression element 20 and the low-stage compression element 40 include an intermediate partition plate 60, upper and lower cylinders 21 and 41 disposed above and below the intermediate partition plate 60, and a phase difference of 180 degrees in the upper and lower cylinders 21 and 41. The upper and lower eccentric parts 22, 42 provided on the rotary shaft 4, the upper and lower rollers 23, 43 (see FIGS. 4 and 5) that are fitted to the upper and lower eccentric parts 22, 42 and rotate eccentrically, and the upper and lower rollers 23 , 43 and upper and lower vanes 24, 44 (see FIGS. 4 and 5) for dividing the upper and lower cylinders 21, 41 into a low pressure chamber side and a high pressure chamber side, respectively, an upper opening surface of the upper cylinder 21 and a lower cylinder 41 It comprises upper and lower support members 25 and 45 as a support member that closes the lower opening surface and also serves as a bearing for the rotating shaft 4.
The intermediate partition plate 60, the cylinder 21, the cylinder 41, the upper support member 25, and the lower support member 45 constitute a housing of the rotary compression mechanism unit 10 referred to in the present invention.

上下支持部材25、45には、吸入ポート26、46(図4、図5参照)と上下シリンダ21、41の内部とをそれぞれ連通する吸入通路26a、46aと、凹陥した吐出消音室27、47とが形成されている。なお、吐出消音室27、47は、吐出ポート29、49に連通している。また、これら両吐出消音室27、47の開口部はそれぞれカバーにより閉塞されている。すなわち、吐出消音室27は上カバー28にて閉塞され、吐出消音室47は下カバー48にて閉塞されている。   The upper and lower support members 25 and 45 include suction passages 26a and 46a that communicate the suction ports 26 and 46 (see FIGS. 4 and 5) with the inside of the upper and lower cylinders 21 and 41, and recessed discharge silencer chambers 27 and 47, respectively. And are formed. The discharge silencer chambers 27 and 47 communicate with the discharge ports 29 and 49. Further, the openings of both the discharge silencing chambers 27 and 47 are respectively closed by covers. That is, the discharge silencing chamber 27 is closed by the upper cover 28, and the discharge silencing chamber 47 is closed by the lower cover 48.

また、上支持部材25の中央には上軸受24aが起立形成され、下支持部材45の中央には下軸受44aが貫通形成されている。そして、前述の回転軸4が上支持部材25の上軸受24aと下支持部材45の下軸受44aとにより支持されている。   Further, an upper bearing 24 a is formed upright at the center of the upper support member 25, and a lower bearing 44 a is formed through the center of the lower support member 45. The rotating shaft 4 described above is supported by the upper bearing 24 a of the upper support member 25 and the lower bearing 44 a of the lower support member 45.

また、上カバー28は、吐出消音室27の上面開口部を閉塞することにより、密閉容器2内を吐出消音室27側と電動機3側とに仕切っている。上カバー28は、図3に示すように、前記上支持部材25の上軸受24aが貫通する孔が形成された略ドーナッツ状の円形鋼板から構成されており、周辺部が主ボルト67により、上から上支持部材25に固定されている。主ボルト67の先端は下支持部材45に螺合している。なお、上支持部材25の上部には、図3に示すように、吐出消音室27内に位置する状態で、吐出ポート29を開閉する高段側圧縮要素20の吐出弁30が設けられている。   Further, the upper cover 28 closes the upper opening of the discharge silencer chamber 27 to partition the inside of the sealed container 2 into the discharge silencer chamber 27 side and the motor 3 side. As shown in FIG. 3, the upper cover 28 is formed of a substantially donut-shaped circular steel plate in which a hole through which the upper bearing 24 a of the upper support member 25 is formed, and a peripheral portion is formed by a main bolt 67. To the upper support member 25. The front end of the main bolt 67 is screwed into the lower support member 45. As shown in FIG. 3, the upper support member 25 is provided with a discharge valve 30 of the high-stage compression element 20 that opens and closes the discharge port 29 while being positioned in the discharge silencer chamber 27. .

下カバー48は、ドーナッツ状の円形鋼板から構成され、周辺部の主ボルト65によって下から下支持部材45に固定されている。なお、主ボルト65の先端は上支持部材25に螺合している。
下支持部材45の下面には、図2に示すように、吐出消音室47内に位置する状態で、吐出ポート49を開閉する低段側圧縮要素40の吐出弁50が設けられている。
The lower cover 48 is made of a donut-shaped circular steel plate, and is fixed to the lower support member 45 from below by main bolts 65 at the periphery. Note that the tip of the main bolt 65 is screwed into the upper support member 25.
As shown in FIG. 2, the lower support member 45 is provided with a discharge valve 50 of the low-stage compression element 40 that opens and closes the discharge port 49 while being positioned in the discharge silencer chamber 47.

吐出弁30、50は、縦長金属板などの弾性部材にて構成されている。また、吐出弁30、50は、一端側において図示しないネジで固定され、他端側において吐出ポート29、49に弾性的に当接して閉鎖するように、上支持部材25又は下支持部材45にねじ止めされている。   The discharge valves 30 and 50 are made of an elastic member such as a vertically long metal plate. Further, the discharge valves 30 and 50 are fixed to the upper support member 25 or the lower support member 45 so as to be closed by elastically contacting the discharge ports 29 and 49 on the other end side with screws not shown on one end side. It is screwed.

また、吐出消音室47と密閉容器2内における上カバー28の電動機3側とは、上下シリンダ21、41や中間仕切板60を貫通する孔である図示しない連通路にて連通されている。そして、この図示しない連通路の上端には中間吐出管66が立設されており、この中間吐出管66から密閉容器2内に中間圧力の冷媒が吐出されるように構成されている。   Further, the discharge silencer chamber 47 and the upper cover 28 in the sealed container 2 are communicated with each other through a communication passage (not shown) that is a hole penetrating the upper and lower cylinders 21 and 41 and the intermediate partition plate 60. An intermediate discharge pipe 66 is erected at the upper end of the communication passage (not shown), and is configured such that intermediate pressure refrigerant is discharged from the intermediate discharge pipe 66 into the sealed container 2.

低段側圧縮要素40の吸入配管51は、図1に示すように、下支持部材45の吸入通路46aに連通して取り付けられている。また、高段側圧縮要素20の吸入配管31は、図示しないが一端において上カバー28上側の密閉容器2内に連通され、他端において高段側圧縮要素20の吸入通路26aに連通している。また、高段側圧縮要素の吐出配管32は、高段側圧縮要素20の吐出消音室27から取り出されるように取り付けられている。   As shown in FIG. 1, the suction pipe 51 of the low-stage compression element 40 is attached in communication with the suction passage 46 a of the lower support member 45. Further, although not shown, the suction pipe 31 of the high-stage compression element 20 communicates with the closed container 2 above the upper cover 28 at one end and communicates with the suction passage 26a of the high-stage compression element 20 at the other end. . Further, the discharge pipe 32 of the high stage side compression element is attached so as to be taken out from the discharge silencer chamber 27 of the high stage side compression element 20.

圧力制御弁70は、前述の中間仕切板60、シリンダ21、シリンダ41、上支持部材25、下支持部材45などからなる回転式圧縮機構部10のハウジング中に設けられている。この圧力制御弁70は、シリンダ71、上下2個のピストン72、73、ロッド74、連通路76、77、78などから構成されている。
シリンダ71は、図1、図6及び図7から理解できるように、回転式圧縮機構部10の下シリンダ41から上支持部材25の上面に貫通し、上面が密閉容器2内に開口されている。ピストン72、73は、シリンダ71内に摺動自在に収納され、上ピストンの上面にはシリンダ上面の開口部(図3参照)から導入される密閉容器内のガス冷媒による中間圧力が作用するように構成されている。スプリング75は、下ピストン73の下方に配置され、ピストン73の下方から上方に所定の力で押し上げるように設定されている。連通路76は、シリンダ71内のスプリング75の配置部を低段側圧縮要素40の吸入通路46aに連通されている。
The pressure control valve 70 is provided in the housing of the rotary compression mechanism unit 10 including the above-described intermediate partition plate 60, cylinder 21, cylinder 41, upper support member 25, lower support member 45, and the like. The pressure control valve 70 includes a cylinder 71, two upper and lower pistons 72, 73, a rod 74, communication passages 76, 77, 78, and the like.
As can be understood from FIGS. 1, 6, and 7, the cylinder 71 penetrates from the lower cylinder 41 of the rotary compression mechanism 10 to the upper surface of the upper support member 25, and the upper surface is opened into the sealed container 2. . The pistons 72 and 73 are slidably accommodated in the cylinder 71, and an intermediate pressure by the gas refrigerant in the sealed container introduced from the opening (see FIG. 3) on the upper surface of the cylinder acts on the upper surface of the upper piston. It is configured. The spring 75 is disposed below the lower piston 73 and is set to be pushed up from below the piston 73 with a predetermined force. The communication passage 76 communicates the arrangement portion of the spring 75 in the cylinder 71 with the suction passage 46 a of the low-stage compression element 40.

このように構成されていることにより、ピストン72、73に対し、下方からはスプリング75の弾性力及び低段側圧縮要素側40の吸入冷媒による低圧圧力の合力が作用し、上方からは密閉容器2内のガス冷媒による中間圧力が作用するように構成されている。そして、スプリング75は、中間圧力が所定圧力に低下したときにピストン72、73を上方所定位置に押し上げ、中間圧力が所定圧力を超えて上昇するときにピストン72、73を下方所定位置に押し上げるように弾性力が設定されている。   With this configuration, the pistons 72 and 73 are subjected to the elastic force of the spring 75 and the low pressure pressure resulting from the suction refrigerant on the low-stage compression element side 40 from below, and from above the sealed container It is comprised so that the intermediate pressure by the gas refrigerant in 2 may act. The spring 75 pushes up the pistons 72 and 73 to a predetermined upper position when the intermediate pressure drops to a predetermined pressure, and pushes the pistons 72 and 73 downward to a predetermined position when the intermediate pressure rises beyond the predetermined pressure. The elastic force is set.

連通路77は、図6及び図7に示すように、ピストン73、74が所定上方位置に移動したときに密閉容器2内とシリンダ71内の両ピストン73、74間部分とを連通し、ピストン73、74が所定下方位置に移動したときに、シリンダ71内における上ピストン72の上面位置に開口するように形成されている。   As shown in FIGS. 6 and 7, the communication passage 77 communicates the inside of the sealed container 2 and the portion between both pistons 73 and 74 in the cylinder 71 when the pistons 73 and 74 move to a predetermined upper position. When 73 and 74 move to a predetermined lower position, they are formed so as to open to the upper surface position of the upper piston 72 in the cylinder 71.

連通路78は、図6及び図7に示すように、ピストン73、74が所定上方位置に移動したときに、高段側圧縮要素20のシリンダ内圧縮室21aとシリンダ71内の両ピストン73、74間部分とを連通し、ピストン73、74が下方所定位置に移動したときに、上ピストン72の側面によりシリンダ71内への開口部が閉鎖されるように形成されている。   6 and 7, when the pistons 73 and 74 are moved to a predetermined upper position, the communication passage 78 has a compression chamber 21a in the cylinder of the high-stage compression element 20 and both pistons 73 in the cylinder 71. The portion between 74 is communicated, and the opening into the cylinder 71 is closed by the side surface of the upper piston 72 when the pistons 73, 74 move downward to a predetermined position.

例えば、2段圧縮式ロータリ圧縮機1がヒートポンプ式給湯装置に用いられており、2段圧縮式ロータリ圧縮機1が図8に示す圧力特性線図を示すものとする。この場合、外気温度が−10℃のとき、2段圧縮式ロータリ圧縮機1においては、中間圧力が略5MPaG、吐出圧力が略12MPaG、低圧圧力が2MPaGとなり、ピストン72、73が上方所定位置に移動してパワーセーブ運転されるように、スプリング75の弾性力が設定される。   For example, it is assumed that the two-stage compression rotary compressor 1 is used in a heat pump type hot water supply apparatus, and the two-stage compression rotary compressor 1 shows a pressure characteristic diagram shown in FIG. In this case, when the outside air temperature is −10 ° C., in the two-stage compression rotary compressor 1, the intermediate pressure is about 5 MPaG, the discharge pressure is about 12 MPaG, and the low pressure is 2 MPaG, and the pistons 72 and 73 are in the upper predetermined positions. The elastic force of the spring 75 is set so as to move and perform a power saving operation.

また、連通路78の圧縮室21aへの開口位置は、図5に示すように、低段側圧縮要素40における圧縮室21a内における吸入ポート26から吐出ポート29に至る適宜の位置に設定される。なお、この位置により後述するパワーセーブ運転時における高段側圧縮要素における圧縮冷媒量が設定される。   Further, the opening position of the communication passage 78 to the compression chamber 21a is set to an appropriate position from the suction port 26 to the discharge port 29 in the compression chamber 21a of the low-stage compression element 40, as shown in FIG. . Note that the position sets the amount of compressed refrigerant in the higher stage compression element at the time of power saving operation described later.

また、この2段圧縮式ロータリ圧縮機1において、冷媒としては、地球環境にやさしく、可燃性及び毒性等を考慮して、自然冷媒である前記二酸化炭素(CO2)が使用されている。また、潤滑油としては、鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油等の既存のものが使用されている。   In the two-stage compression rotary compressor 1, the carbon dioxide (CO 2), which is a natural refrigerant, is used as the refrigerant in consideration of the earth environment and flammability and toxicity. Further, as the lubricating oil, existing ones such as mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil and the like are used.

以上のように構成された本実施例に係る2段圧縮式ロータリ圧縮機1の動作を説明する。先ず基本的な運転態様について説明する。
ターミナル5及び図示されない配線を介して電動機3のステータコイル6bに通電される。ステータコイル6bに通電されると、電動機3が起動してロータ7が回転する。ロータ7の回転により回転軸4と一体に設けられた高段側圧縮要素20及び低段側圧縮要素40における上下偏心部22、42が回転し、上下偏心部22、42に嵌合されている上下ローラ23、43が上下シリンダ21、41内を偏心回転する。
The operation of the two-stage compression rotary compressor 1 according to this embodiment configured as described above will be described. First, the basic operation mode will be described.
The stator coil 6b of the electric motor 3 is energized through the terminal 5 and a wiring (not shown). When the stator coil 6b is energized, the electric motor 3 is activated and the rotor 7 is rotated. The upper and lower eccentric parts 22 and 42 of the high stage compression element 20 and the low stage compression element 40 provided integrally with the rotary shaft 4 are rotated by the rotation of the rotor 7 and are fitted to the upper and lower eccentric parts 22 and 42. The upper and lower rollers 23 and 43 eccentrically rotate in the upper and lower cylinders 21 and 41.

これにより、低段側圧縮要素40においては、外部に接続されている冷媒回路内の冷媒が吸入配管51及び下支持部材45に形成された吸入通路46aを経由し、さらに、図4の下シリンダ41の下面図に示す吸入ポート46を経由して下シリンダ41の圧縮室41aにおける低圧室側に吸入される。圧縮室41aに吸入された低圧(LP)冷媒は、下ローラ43と下ベーン44の動作により圧縮されて中間圧力(MP)となり下シリンダ41の高圧室側より吐出ポート49、下支持部材45に形成された吐出消音室47に吐出される。
吐出消音室47に吐出された中間圧力のガス冷媒は、図示しない連通路を経て中間吐出管66から密閉容器2内に吐出される。これにより密閉容器2内は中間圧力となる。
Thereby, in the low-stage compression element 40, the refrigerant in the refrigerant circuit connected to the outside passes through the suction pipe 51 and the suction passage 46a formed in the lower support member 45, and further, the lower cylinder in FIG. The air is sucked into the low pressure chamber side of the compression chamber 41a of the lower cylinder 41 via the suction port 46 shown in the bottom view of 41. The low-pressure (LP) refrigerant sucked into the compression chamber 41a is compressed by the operation of the lower roller 43 and the lower vane 44 to become an intermediate pressure (MP), from the high-pressure chamber side of the lower cylinder 41 to the discharge port 49 and the lower support member 45. It is discharged into the formed discharge silencer chamber 47.
The intermediate-pressure gas refrigerant discharged to the discharge silencer chamber 47 is discharged from the intermediate discharge pipe 66 into the sealed container 2 through a communication path (not shown). Thereby, the inside of the sealed container 2 becomes an intermediate pressure.

密閉容器2内の中間圧力のガス冷媒は、吸入配管31を通って高段側圧縮要素20に吸入されて、2段目の圧縮作用が行われる。すなわち、中間圧力のガス冷媒は、上支持部材25に形成された吸入通路26aを経由し、図5の上シリンダ21の上面図に示す吸入ポート26から上シリンダ21の圧縮室21aにおける低圧室側に吸入される。吸入された中間圧力のガス冷媒は、上ローラ23と上ベーン24の動作により2段目の圧縮が行われて高温高圧(HP)のガス冷媒となり、高圧室側から吐出ポート29を通って吐出される。高段側圧縮要素20における吐出冷媒は、上支持部材25に形成された吐出消音室27から吐出配管32を介して2段圧縮式ロータリ圧縮機1の外部に設けられた図示しない冷媒回路内を循環して再び低段側圧縮要素40側に吸入される。   The intermediate-pressure gas refrigerant in the hermetic container 2 is sucked into the high-stage compression element 20 through the suction pipe 31, and the second-stage compression action is performed. That is, the intermediate-pressure gas refrigerant passes through the suction passage 26a formed in the upper support member 25 and passes through the suction port 26 shown in the top view of the upper cylinder 21 in FIG. 5 to the low pressure chamber side in the compression chamber 21a of the upper cylinder 21. Inhaled. The suctioned intermediate-pressure gas refrigerant is compressed in the second stage by the operation of the upper roller 23 and the upper vane 24 to become a high-temperature high-pressure (HP) gas refrigerant, and is discharged from the high-pressure chamber side through the discharge port 29. Is done. The refrigerant discharged from the high-stage compression element 20 passes through a refrigerant circuit (not shown) provided outside the two-stage compression rotary compressor 1 through a discharge pipe 32 from a discharge silencer chamber 27 formed in the upper support member 25. It circulates and is again sucked into the lower stage compression element 40 side.

本実施例に係る2段圧縮式ロータリ圧縮機1は、ヒートポンプ式給湯装置に利用され、給湯運転時において図8に例示される運転特性を有する場合には、外気温度が−10℃を超えている場合に上記基本的な運転態様で運転が行われる。図8の運転特性では、外気温度が−10℃以上の場合、高圧側圧力HPが12MPaG以上、中間圧力MPが5MPaG以上、低圧側圧力LPが4MPaG以上となり、高段側圧縮要素20の高低圧力差が7MPaG以下となる。そこで、2段圧縮式ロータリ圧縮機1では、中間圧力が所定値(この場合5MPaG)以上の場合に、ピストン72、73に対し上方から下方に作用する密閉容器2内の中間圧力(MP)がピストン72、73に対し下方から上方に作用するスプリング75の弾性力と連通路76から導かれる低圧側圧力との合力よりも大きくなるように設定されている。
このように設定されていることにより、2段圧縮式ロータリ圧縮機1は、外気温度が−10℃以上(すなわち、中間圧力が5MPaG以上)の場合に、ピストン72、73が下方所定位置に位置することになり、連通路78が閉鎖される。したがって、この状態では、密閉容器2内と高段側圧縮要素20における圧縮室21a内とが連通路77及び連通路78を介して直接連通されることがなく上記の基本的態様の運転が行われる。
The two-stage compression rotary compressor 1 according to the present embodiment is used in a heat pump type hot water supply device, and has the operating characteristics illustrated in FIG. 8 during hot water supply operation, the outside air temperature exceeds −10 ° C. If it is, the operation is performed in the above basic operation mode. 8, when the outside air temperature is −10 ° C. or higher, the high pressure side pressure HP is 12 MPaG or higher, the intermediate pressure MP is 5 MPaG or higher, and the low pressure side pressure LP is 4 MPaG or higher. The difference is 7 MPaG or less. Therefore, in the two-stage compression rotary compressor 1, when the intermediate pressure is equal to or higher than a predetermined value (in this case, 5 MPaG), the intermediate pressure (MP) in the sealed container 2 acting on the pistons 72 and 73 downward from above is reduced. It is set to be larger than the resultant force of the elastic force of the spring 75 acting on the pistons 72 and 73 from the lower side to the upper side and the low pressure side pressure guided from the communication path 76.
By setting in this way, the two-stage compression rotary compressor 1 has the pistons 72 and 73 positioned at predetermined positions when the outside air temperature is −10 ° C. or higher (that is, the intermediate pressure is 5 MPaG or higher). As a result, the communication passage 78 is closed. Therefore, in this state, the inside of the sealed container 2 and the inside of the compression chamber 21a of the high-stage compression element 20 are not directly communicated with each other via the communication passage 77 and the communication passage 78, and the operation of the above basic mode is performed. Is called.

ところが、外気温度が−10℃以下(すなわち、中間圧力が5MPaG以下)になると、ピストン73の下面に作用する前述の合力がピストン72の上面に作用する密閉容器2の中間圧力より大きくなり、ピストン72、73が上方所定位置に移動する。この結果、密閉容器2内と高段側圧縮要素20の圧縮室21aとが連通路77、シリンダ71及び連通路78を介し直接連通される。   However, when the outside air temperature is −10 ° C. or lower (that is, the intermediate pressure is 5 MPaG or lower), the resultant force acting on the lower surface of the piston 73 becomes larger than the intermediate pressure of the sealed container 2 acting on the upper surface of the piston 72, 72 and 73 move upward to a predetermined position. As a result, the inside of the sealed container 2 and the compression chamber 21a of the high-stage compression element 20 are directly communicated with each other via the communication path 77, the cylinder 71, and the communication path 78.

したがって、高段側圧縮要素20においては、上ローラ23とシリンダ21との接触点が吸入ポート26を超えても連通路78の開口部78a(図5参照)を超えるまでは、接触点の回転前方側で圧縮作用が行われないことになる。これは、シリンダボリュウームを実質的に減少させること意味する。したがって、高段側圧縮要素20における吸気量が減少し、中間圧力が図8における従来の点線に対し上方の実線に移動する。これにより、高段側圧縮要素20における高低圧力差を従来の特性より減少させることができる。これをパワーセーブ運転と称する。   Therefore, in the high-stage compression element 20, the contact point rotates until the contact point between the upper roller 23 and the cylinder 21 exceeds the opening 78 a (see FIG. 5) of the communication path 78 even if it exceeds the suction port 26. The compression action is not performed on the front side. This means that the cylinder volume is substantially reduced. Therefore, the intake air amount in the high stage side compression element 20 decreases, and the intermediate pressure moves to the solid line above the conventional dotted line in FIG. Thereby, the high-low pressure difference in the high stage side compression element 20 can be reduced from the conventional characteristic. This is called power saving operation.

本実施例に係る2段圧縮式ロータリ圧縮機は、以上の如く、パワーセーブ運転を行うための圧力制御弁70が回転式圧縮機構部10を構成するハウジング内に収納されているので、2段圧縮式ロータリ圧縮機1を用いた冷凍装置では、従来のように冷媒回路注にバイパス回路や、電磁開閉弁や、圧力検知装置を必要とせず、装置が簡略化される。   In the two-stage compression rotary compressor according to the present embodiment, as described above, the pressure control valve 70 for performing the power saving operation is housed in the housing constituting the rotary compression mechanism section 10, so In the refrigeration apparatus using the compression rotary compressor 1, a bypass circuit, an electromagnetic on-off valve, and a pressure detection device are not required for the refrigerant circuit Note as in the conventional case, and the device is simplified.

また、この圧力制御弁70は、シリンダ71内に摺動自在に収納されるピストン72、73に対し、スプリング75の弾性力及び低圧側圧力の合力と密閉容器2内のガス冷媒圧力とを対向的に作用させ、低段側圧縮要素40の吐出圧力が所定値以下に低下したときに、中間圧力に抗して前記合力によりピストン72、73をシリンダ71内の一方向(この場合上方所定位置)に移動させて密閉容器2内のガス冷媒を高段側圧縮要素20のシリンダ21内に導入可能とし、低段側圧縮要素40の吐出圧力が所定値を超えて上昇したときに、前記合力に抗して密閉容器2内のガス冷媒によりピストン72、73を他方向側(この場合下方所定位置)に移動させて密閉容器2内のガス冷媒がシリンダ21内へ導入されるのを遮断するように構成されているので、駆動機構としてはスプリング75が用いられるだけであり、圧力調整手段の構造を簡素化することができる。
なお、本実施例においては、電動機3が回転数制御可能に構成されているので、この電動機3の回転数を制御することにより2段圧縮式ロータリ圧縮機1の能力を制御することができる。また、このように電動機3の回転数を制御して圧縮能力を制御すると中間圧力も変化するが、このような場合にも前述の圧力制御弁70が作動し、中間圧力を調整することができる。
The pressure control valve 70 opposes the resultant force of the spring 75 and the low pressure side pressure to the gas refrigerant pressure in the sealed container 2 with respect to the pistons 72 and 73 slidably housed in the cylinder 71. When the discharge pressure of the low-stage compression element 40 drops below a predetermined value, the pistons 72 and 73 are moved in one direction within the cylinder 71 (in this case, the upper predetermined position in this case) against the intermediate pressure. ), The gas refrigerant in the hermetic container 2 can be introduced into the cylinder 21 of the high-stage compression element 20, and the resultant force is increased when the discharge pressure of the low-stage compression element 40 rises above a predetermined value. Against this, the piston 72, 73 is moved to the other direction side (in this case, a predetermined position downward) by the gas refrigerant in the sealed container 2 to block the introduction of the gas refrigerant in the sealed container 2 into the cylinder 21. Configured as Because there, as the drive mechanism is only the spring 75 is used, it is possible to simplify the structure of the pressure regulating means.
In the present embodiment, since the electric motor 3 is configured to be capable of controlling the rotational speed, the ability of the two-stage compression rotary compressor 1 can be controlled by controlling the rotational speed of the electric motor 3. Further, when the compression capacity is controlled by controlling the number of revolutions of the electric motor 3 in this way, the intermediate pressure also changes. In such a case, the above-described pressure control valve 70 is operated and the intermediate pressure can be adjusted. .

したがって、本実施例の2段圧縮式ロータリ圧縮機1をカークーラやヒートポンプ式給湯装置に用いた場合には広範囲に変化する外気温度の下で安全に運転することが可能となる。   Therefore, when the two-stage compression type rotary compressor 1 of the present embodiment is used for a car cooler or a heat pump type hot water supply device, it is possible to operate safely under a wide range of outside air temperatures.

本発明の実施例に係る2段圧縮式ロータリ圧縮機の縦断面図である。1 is a longitudinal sectional view of a two-stage compression rotary compressor according to an embodiment of the present invention. 同2段圧縮式ロータリ圧縮機の下支持部材の下面図である。It is a bottom view of the lower support member of the same two-stage compression rotary compressor. 同2段圧縮式ロータリ圧縮機の上支持部材及び上カバーの上面図である。It is a top view of the upper support member and upper cover of the same two-stage compression rotary compressor. 同2段圧縮式ロータリ圧縮機の下シリンダの下面図である。It is a bottom view of the lower cylinder of the same two-stage compression rotary compressor. 同2段圧縮式ロータリ圧縮機の上シリンダの上面図である。It is a top view of the upper cylinder of the same two-stage compression rotary compressor. 同2段圧縮式ロータリ圧縮機における圧力制御弁の模式構造図であり、中間圧力が所定値より低いときの状態を示す。It is a schematic structure diagram of a pressure control valve in the same two-stage compression rotary compressor, and shows a state when the intermediate pressure is lower than a predetermined value. 同2段圧縮式ロータリ圧縮機における圧力制御弁の模式構造図であり、中間圧力が所定値を超えたときの状態を示す。It is a schematic structure diagram of a pressure control valve in the same two-stage compression rotary compressor, and shows a state when the intermediate pressure exceeds a predetermined value. 同2段圧縮式ロータリ圧縮機の圧力制御弁による中間圧力制御の説明図である。It is explanatory drawing of the intermediate pressure control by the pressure control valve of the 2 stage | paragraph compression type rotary compressor. 2段圧縮式ロータリ圧縮機をヒートポンプ式給湯装置に応用した場合における外気温度と高圧・低圧・中間圧力との関係を示す一般特性線図である。It is a general characteristic diagram which shows the relationship between external temperature and high pressure, low pressure, and intermediate pressure at the time of applying a two-stage compression type rotary compressor to a heat pump type hot water supply apparatus.

符号の説明Explanation of symbols

1 2段圧縮式ロータリ圧縮機
2 密閉容器
3 電動機
10 回転式圧縮機構部
20 高段側圧縮要素
21 上シリンダ
21a 圧縮室
40 低段側圧縮要素
46 吸入ポート
46a 吸入通路
70 圧力制御弁
71 シリンダ
73 上ピストン
73 下ピストン
74 ロッド
75 スプリング
76 連通路
77 連通路
78 連通路
78a 開口部
DESCRIPTION OF SYMBOLS 1 Two-stage compression type rotary compressor 2 Sealed container 3 Electric motor 10 Rotary compression mechanism part 20 High stage side compression element 21 Upper cylinder 21a Compression chamber 40 Low stage side compression element 46 Suction port 46a Suction passage 70 Pressure control valve 71 Cylinder 73 Upper piston 73 Lower piston 74 Rod 75 Spring 76 Communication path 77 Communication path 78 Communication path 78a Opening

Claims (4)

低段側圧縮要素及び高段側圧縮要素からなり、低段側圧縮要素からの吐出ガスを高段側圧縮要素に吸入させるようにした回転式圧縮機構部と、回転式圧縮機構部を駆動する電動機と、電動機及び回転式圧縮機構部を収納し、内部が低段側圧縮要素の吐出ガス冷媒により満たされる密閉容器と、回転式圧縮機構部を構成するハウジング内に収納された圧力制御弁とを備え、この圧力制御弁は、低段側圧縮要素の吐出圧力が所定値以下に低下したときに、密閉容器内のガス冷媒を高段側圧縮要素のシリンダ内に導入し、低段側圧縮要素の吐出圧力が所定値を超えて上昇したときに前記密閉容器内のガス冷媒のシリンダ内への導入を遮断するように構成されてなることを特徴とする2段圧縮式ロータリ圧縮機。 A rotary compression mechanism unit that includes a low-stage compression element and a high-stage compression element, and that discharges gas discharged from the low-stage compression element to the high-stage compression element, and drives the rotary compression mechanism unit An electric motor, a hermetic container that houses the electric motor and the rotary compression mechanism, and is filled with a discharge gas refrigerant of a low-stage compression element, and a pressure control valve that is housed in a housing constituting the rotary compression mechanism This pressure control valve introduces the gas refrigerant in the hermetic container into the cylinder of the high-stage compression element when the discharge pressure of the low-stage compression element drops below a predetermined value, and compresses the low-stage compression A two-stage compression rotary compressor characterized by being configured to block introduction of gas refrigerant in the sealed container into the cylinder when the discharge pressure of the element rises above a predetermined value. 前記圧力制御弁は、ピストンとピストンを摺動自在に収納するシリンダとを備え、さらに、前記ピストンには低圧側圧力及びスプリングの弾性力の合力と密閉容器内のガス冷媒圧力とを対向的に作用させ、低段側圧縮要素の吐出圧力が所定値以下に低下したときに、前記合力によりピストンをシリンダ内の一方向に移動させて密閉容器内のガス冷媒を高段側圧縮要素のシリンダ内に導入可能とし、低段側圧縮要素の吐出圧力が所定値を超えて上昇したときに、前記合力に抗して密閉容器内のガス冷媒圧力によりピストンを他方向側に移動させて前記密閉容器内のガス冷媒のシリンダ内への導入を遮断するように構成されてなることを特徴とする請求項1記載の2段圧縮式ロータリ圧縮機。 The pressure control valve includes a piston and a cylinder that slidably accommodates the piston, and the piston is configured to oppose a low pressure side pressure and a resultant force of the elastic force of the spring and a gas refrigerant pressure in the sealed container. When the discharge pressure of the low-stage compression element is reduced to a predetermined value or less, the piston is moved in one direction in the cylinder by the resultant force, and the gas refrigerant in the sealed container is moved into the cylinder of the high-stage compression element. When the discharge pressure of the low-stage compression element rises above a predetermined value, the piston is moved in the other direction by the gas refrigerant pressure in the sealed container against the resultant force, and the sealed container 2. The two-stage compression rotary compressor according to claim 1, wherein the two-stage compression rotary compressor is configured to block introduction of the gas refrigerant into the cylinder. 請求項1又は2記載の2段圧縮式ロータリ圧縮機から構成されるとともにとともに冷媒として炭酸ガスを用いたことを特徴とするカーエアコン。 A car air conditioner comprising the two-stage compression rotary compressor according to claim 1 or 2 and using carbon dioxide as a refrigerant. 請求項1又は2記載の2段圧縮式ロータリ圧縮機を用いるとともに冷媒として炭酸ガスを用いたことを特徴とするヒートポンプ式給湯装置。 A heat pump type hot water supply apparatus using the two-stage compression type rotary compressor according to claim 1 or 2 and using carbon dioxide as a refrigerant.
JP2003387349A 2003-09-30 2003-11-18 Two-stage compression type rotary compressor, and car air conditioner and heat pump type hot water supply apparatus using it Pending JP2005147562A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2003387349A JP2005147562A (en) 2003-11-18 2003-11-18 Two-stage compression type rotary compressor, and car air conditioner and heat pump type hot water supply apparatus using it
AT04021471T ATE472059T1 (en) 2003-09-30 2004-09-09 ROTARY COMPRESSOR
AT08011548T ATE478261T1 (en) 2003-09-30 2004-09-09 ROTARY COMPRESSOR, AIR CONDITIONER FOR A VEHICLE AND WATER HEATER INCLUDING THE COMPRESSOR
AT08011547T ATE529641T1 (en) 2003-09-30 2004-09-09 ROTARY COMPRESSOR WITH SILENCER
EP08011547A EP1972787B1 (en) 2003-09-30 2004-09-09 Rotary compressor with noise silencing chamber.
DE602004027781T DE602004027781D1 (en) 2003-09-30 2004-09-09 rotary compressors
EP08011548A EP1972786B1 (en) 2003-09-30 2004-09-09 Rotary compressor, car air conditioner and water heater including the compressor
EP04021471A EP1520990B1 (en) 2003-09-30 2004-09-09 Rotary compressor
DE602004028767T DE602004028767D1 (en) 2003-09-30 2004-09-09 Rotary compressor, air conditioning for a vehicle and water heaters including the compressor
US10/945,925 US7462021B2 (en) 2003-09-30 2004-09-22 Rotary compressor, and car air conditioner and heat pump type water heater using the compressor
CN2007101696960A CN101201050B (en) 2003-09-30 2004-09-30 Rotary compressor, and car air conditioner and heat pump type water heater using the compressor
CNB2004100921582A CN100430603C (en) 2003-09-30 2004-09-30 Rotary compressor, and car air conditioner and heat pump type water heater using the compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387349A JP2005147562A (en) 2003-11-18 2003-11-18 Two-stage compression type rotary compressor, and car air conditioner and heat pump type hot water supply apparatus using it

Publications (1)

Publication Number Publication Date
JP2005147562A true JP2005147562A (en) 2005-06-09

Family

ID=34694720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387349A Pending JP2005147562A (en) 2003-09-30 2003-11-18 Two-stage compression type rotary compressor, and car air conditioner and heat pump type hot water supply apparatus using it

Country Status (1)

Country Link
JP (1) JP2005147562A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023993A (en) * 2005-07-21 2007-02-01 Daikin Ind Ltd Two-stage compressor
JP2008151018A (en) * 2006-12-18 2008-07-03 Mitsubishi Electric Corp Rotary type two-stage compressor
JP2017172343A (en) * 2016-03-18 2017-09-28 日立ジョンソンコントロールズ空調株式会社 Rotary compressor
CN108386360A (en) * 2018-05-10 2018-08-10 天津商业大学 Compressor with rolling rotor of the twin-tub with second vapor injection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023993A (en) * 2005-07-21 2007-02-01 Daikin Ind Ltd Two-stage compressor
JP2008151018A (en) * 2006-12-18 2008-07-03 Mitsubishi Electric Corp Rotary type two-stage compressor
JP2017172343A (en) * 2016-03-18 2017-09-28 日立ジョンソンコントロールズ空調株式会社 Rotary compressor
CN108386360A (en) * 2018-05-10 2018-08-10 天津商业大学 Compressor with rolling rotor of the twin-tub with second vapor injection

Similar Documents

Publication Publication Date Title
KR20080066904A (en) Multi-stage compression type rotary compressor
KR20030074372A (en) Multistage rotary compressor and refrigerant circuit system using the same
EP1486742B1 (en) Refrigerant cycle apparatus
JP2017150466A (en) High pressure compressor and refrigeration cycle device having the same
JP2004108334A (en) Refrigerant circuit device
JP2004116957A (en) Refrigerant cycle system
JP4289975B2 (en) Multi-stage rotary compressor
JP2005147562A (en) Two-stage compression type rotary compressor, and car air conditioner and heat pump type hot water supply apparatus using it
JP3983115B2 (en) Refrigerant circuit using CO2 refrigerant
JP3762693B2 (en) Multi-stage rotary compressor
JP2006022723A (en) Compression system and refrigerating apparatus using the same
JP3895976B2 (en) Multistage rotary compressor
US20180209422A1 (en) Scroll compressor
JP4278402B2 (en) Refrigerant cycle equipment
JP4766872B2 (en) Multi-cylinder rotary compressor
JP2004251492A (en) Refrigerant cycle device
JP2006022766A (en) Multi-cylinder rotary compressor
JP4404708B2 (en) Compression system and refrigeration system using the same
JP2003201982A (en) Rotary compressor
JP2004251514A (en) Refrigerant cycle device
JP3863799B2 (en) Multi-stage rotary compressor
JP2004308489A (en) Refrigerant cycle apparatus
JP2003269804A (en) Refrigerant circuit device
JP2003293972A (en) Rotary compressor
JP2004309012A (en) Refrigerant cycle device