JP2008151018A - Rotary type two-stage compressor - Google Patents

Rotary type two-stage compressor Download PDF

Info

Publication number
JP2008151018A
JP2008151018A JP2006339301A JP2006339301A JP2008151018A JP 2008151018 A JP2008151018 A JP 2008151018A JP 2006339301 A JP2006339301 A JP 2006339301A JP 2006339301 A JP2006339301 A JP 2006339301A JP 2008151018 A JP2008151018 A JP 2008151018A
Authority
JP
Japan
Prior art keywords
stage
compression element
pressure
stage compression
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006339301A
Other languages
Japanese (ja)
Inventor
Hideaki Maeyama
英明 前山
Shinichi Takahashi
真一 高橋
Eiji Sakamoto
英司 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006339301A priority Critical patent/JP2008151018A/en
Publication of JP2008151018A publication Critical patent/JP2008151018A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary type two-stage compressor capable of securing reliability of a vane tip end slide part without using a means such as expensive coating on a vane even when it is used in a cold region where high differential pressure and high speed rotation are required. <P>SOLUTION: The rotary type two-stage compressor includes an electric element, and a low-stage compression element and high-stage compression element driven by the electric element through a rotation shaft in a tightly closed container, and the tightly closed container is held at an intermediate pressure. The rotary type two-stage compressor is provided with a high stage vane provided on the high-stage compression element, to which a discharge pressure is applied on a back surface, of which at least a tip end part is subjected to nitriding treatment, and which slides in a diameter direction. The rotary type two-stage compressor is mounted on a heat pump type water heater, and operates so that a differential pressure between a high pressure and the intermediate pressure of the high-stage compression element × the number of rotations (MPa rps) becomes not more than 630 when it operates in the cold region of which an external temperature is not higher than -10°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、密閉容器内に電動要素と、この電動要素により駆動される圧縮要素とを設けたロータリ式2段圧縮機に関するものである。   The present invention relates to a rotary two-stage compressor in which an electric element and a compression element driven by the electric element are provided in an airtight container.

近年、冷媒による地球環境破壊が問題視され、HFC冷媒(HFC134a、HFC125、HFC32、HFC143a等、及びこれらの混合冷媒)などの代替フロンやCO2、アンモニア、HC冷媒(ハイドロカーボン:イソブタン、プロパン、エタン等)などの自然冷媒が使用され始めている。   In recent years, the destruction of the global environment due to refrigerants has been regarded as a problem. Etc.) and other natural refrigerants are beginning to be used.

代替フロンや自然冷媒を用いたヒートポンプ式給湯機などの冷媒回路装置に適用する圧縮機、とりわけCO2冷媒用圧縮機では、作動圧力が高くなることから内部中間圧2段圧縮機が適用されているものがある(例えば、特許文献1参照)。
特開2003−89472号公報
In compressors applied to refrigerant circuit devices such as heat-pump water heaters using alternative chlorofluorocarbons or natural refrigerants, especially compressors for CO2 refrigerant, an internal intermediate pressure two-stage compressor is applied because the operating pressure increases. There are some (see, for example, Patent Document 1).
JP 2003-89472 A

しかしながら、前記特許文献1のような内部中間圧2段圧縮機では、2段圧縮方式を取ることにより、圧縮要素のベーン先端の摩耗耐力は広い範囲で確保することができるが、寒冷地対応においては、高圧縮比運転となり圧縮機の高段側の差圧が大きくなるため、高段側の圧縮要素のベーン先端摩耗耐力を確保し難くなるという課題がある。   However, in the internal intermediate pressure two-stage compressor as in Patent Document 1, the wear resistance at the vane tip of the compression element can be secured in a wide range by adopting the two-stage compression method. Has a problem that it becomes difficult to ensure the vane tip wear resistance of the compression element on the high stage side because the differential pressure on the high stage side of the compressor becomes large due to the high compression ratio operation.

この発明は、上記のような課題を解決するためになされたもので、高差圧、高速回転となる寒冷地用途においても、ベーンへの高価なコーティング等の手段を用いずにベーン先端摺動部の信頼性を確保できるロータリ式2段圧縮機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and even in cold districts where high differential pressure and high speed rotation are used, the vane tip slides without using an expensive coating means or the like on the vane. An object of the present invention is to provide a rotary two-stage compressor capable of ensuring the reliability of the part.

この発明に係るロータリ式2段圧縮機は、密閉容器内に電動要素と、この電動要素により回転軸を介して駆動される、低段圧縮要素と高段圧縮要素とを有し、密閉容器内が中間圧となるロータリ式2段圧縮機において、高段圧縮要素に設けられ、背面に吐出圧力が作用し、少なくとも先端部に窒化処理が施された、径方向に摺動する高段ベーンを備え、ロータリ式2段圧縮機がヒートポンプ式給湯機に搭載されて、外気温が−10℃以下の寒冷地において運転される場合に、高段圧縮要素の高圧と中間圧との差圧×回転数(MPa・rps)が630以下となるように運転することを特徴とする。   A rotary two-stage compressor according to the present invention includes an electric element in a sealed container, and a low-stage compression element and a high-stage compression element that are driven by the electric element via a rotating shaft. In the rotary type two-stage compressor in which the intermediate pressure becomes an intermediate pressure, a high-stage vane that is provided in a high-stage compression element, discharge pressure acts on the back surface, and at least the tip is subjected to nitriding treatment, slides in the radial direction. When the rotary two-stage compressor is installed in a heat pump water heater and is operated in a cold area where the outside air temperature is -10 ° C or lower, the differential pressure between the high pressure and the intermediate pressure of the high-stage compression element × rotation The operation is performed such that the number (MPa · rps) is 630 or less.

この発明に係るロータリ式2段圧縮機は、ヒートポンプ式給湯機に搭載されて、外気温が−10℃以下の寒冷地において運転される場合に、高段圧縮要素の高圧と中間圧との差圧×回転数(MPa・rps)が630以下となるように運転することにより、ベーンへの高価なコーティング等の手段を用いずにベーン先端摺動部の信頼性を確保できる。   The rotary type two-stage compressor according to the present invention is mounted on a heat pump type hot water heater and is operated in a cold region where the outside air temperature is -10 ° C. or lower, and the difference between the high pressure and the intermediate pressure of the high stage compression element. By operating so that the pressure x rotational speed (MPa · rps) is 630 or less, the reliability of the vane tip sliding portion can be secured without using expensive means such as coating on the vane.

実施の形態1.
図1乃至図11は実施の形態1を示す図で、図1はヒートポンプ式給湯機の給湯ユニット100の内部正面図、図2はヒートポンプ式給湯機の冷媒回路1及び水回路8を示す図、図3は圧縮機2の縦断面図、図4はヒートポンプ式給湯機の外気温と動作圧力との関係図、図5はヒートポンプ式給湯機の外気温と高段差圧及び低段差圧との関係図、図6はヒートポンプ式給湯機の外気温と回転数比との関係図、図7はヒートポンプ式給湯機の外気温と(高段差圧×回転数)との関係図、図8は高段圧縮要素12bの構成図、図9は高段圧縮要素12bに窒化ベーンを使用したときの高段ベーン19b先端摩耗速度を示す図、図10は高段ベーン19b先端摩耗速度と回転数との関係図、図11は圧縮機押しのけ量と給湯加熱能力との関係図である。
Embodiment 1 FIG.
1 to 11 are diagrams showing Embodiment 1, FIG. 1 is an internal front view of a hot water supply unit 100 of a heat pump type hot water heater, and FIG. 2 is a view showing a refrigerant circuit 1 and a water circuit 8 of the heat pump type hot water heater. 3 is a longitudinal sectional view of the compressor 2, FIG. 4 is a diagram showing the relationship between the outside air temperature and the operating pressure of the heat pump water heater, and FIG. 5 is the relationship between the outside temperature of the heat pump water heater and the high step pressure and low step pressure. Fig. 6 is a diagram showing the relationship between the outside temperature of the heat pump type water heater and the rotation speed ratio, Fig. 7 is a diagram showing the relationship between the outside temperature of the heat pump type water heater and (high step pressure x number of revolutions), and Fig. 8 is a high stage. FIG. 9 is a diagram showing the configuration of the compression element 12b, FIG. 9 is a diagram showing the tip wear rate of the high stage vane 19b when a nitride vane is used for the high stage compression element 12b, and FIG. Fig. 11 is a diagram of the relationship between compressor displacement and hot water heating capacity. .

本実施の形態は、ヒートポンプ式給湯機のロータリ式2段圧縮機10に関するものであるが、先ずヒートポンプ式給湯機について簡単に触れる。   The present embodiment relates to a rotary two-stage compressor 10 of a heat pump type hot water heater, but first, the heat pump type hot water heater will be briefly described.

図1にヒートポンプ式給湯機の給湯ユニット100の一実施例を示す。ガスクーラ3(温水用熱交換器)が、中間ベース28より下の、ヒートポンプ式給湯機の給湯ユニット100の下部に設置される。   FIG. 1 shows an embodiment of a hot water supply unit 100 of a heat pump type hot water heater. The gas cooler 3 (hot water heat exchanger) is installed below the intermediate base 28 in the lower part of the hot water supply unit 100 of the heat pump type hot water heater.

蒸発器5(空気用熱交換器)、及び送風機7(プロペラファン)を有する空気熱交換室24と、この空気熱交換室24の側部に設けられ、冷媒回路の圧縮機2、及びヒートポンプ式給湯機の給湯ユニット100の運転を制御する電気品26等を有する機械室27とを中間ベース28の上に設置している。   An air heat exchange chamber 24 having an evaporator 5 (air heat exchanger) and a blower 7 (propeller fan), a compressor 2 of a refrigerant circuit, and a heat pump type provided at a side of the air heat exchange chamber 24 A machine room 27 having an electrical appliance 26 and the like for controlling the operation of the hot water supply unit 100 of the water heater is installed on the intermediate base 28.

図2に示す冷媒回路1において、冷媒として臨界温度の低いCO冷媒を使用している。圧縮機2は、内蔵する同期電動機、誘導電動機等の電動機(図示せず)により駆動され、吸入冷媒を一般使用条件で臨界圧力以上まで圧縮し吐出する。ガスクーラ3は、圧縮機2より吐出された高圧のガス冷媒と、水回路8の給湯用水とを熱交換する。 In the refrigerant circuit 1 shown in FIG. 2, a CO 2 refrigerant having a low critical temperature is used as the refrigerant. The compressor 2 is driven by an electric motor (not shown) such as a built-in synchronous motor or induction motor, and compresses and discharges the suction refrigerant to a critical pressure or higher under general use conditions. The gas cooler 3 exchanges heat between the high-pressure gas refrigerant discharged from the compressor 2 and the hot water supply water in the water circuit 8.

ガスクーラ3を出た高圧低温の冷媒は、膨張弁4を通過して蒸発器5へ流入する。蒸発器5から流出した低圧冷媒は、圧縮機2へ戻る。   The high-pressure and low-temperature refrigerant that has exited the gas cooler 3 passes through the expansion valve 4 and flows into the evaporator 5. The low-pressure refrigerant that has flowed out of the evaporator 5 returns to the compressor 2.

水回路8では、水循環用のポンプ9が、貯湯タンク(図示せず)と接続され、貯湯タンクの底部からガスクーラ3(水配管側)を通った後、貯湯タンクの天部に向けて水を循環させる。   In the water circuit 8, a water circulation pump 9 is connected to a hot water storage tank (not shown), passes through the gas cooler 3 (water pipe side) from the bottom of the hot water storage tank, and then supplies water toward the top of the hot water storage tank. Circulate.

圧縮機2は、ロータリ式2段圧縮機である。その構成を図3により説明する。密閉容器10a内に、電動要素11と、この電動要素11で回転軸18を介して駆動される圧縮要素12を設ける。電動要素11が密閉容器10a内の上部に、圧縮要素12が密閉容器10a内の下部に位置する。   The compressor 2 is a rotary two-stage compressor. The configuration will be described with reference to FIG. An electric element 11 and a compression element 12 driven by the electric element 11 via a rotating shaft 18 are provided in the sealed container 10a. The electric element 11 is located in the upper part in the sealed container 10a, and the compression element 12 is located in the lower part in the sealed container 10a.

圧縮要素12は、低段圧縮要素12aと、高段圧縮要素12bとで構成され、低段圧縮要素12aと高段圧縮要素12bとの間は、中間仕切板17で仕切られている。   The compression element 12 includes a low-stage compression element 12a and a high-stage compression element 12b, and the low-stage compression element 12a and the high-stage compression element 12b are partitioned by an intermediate partition plate 17.

低段圧縮要素12aは、低段シリンダ13a、低段軸受14a、低段シリンダ13aの圧縮室に連通する低段吸入管15aなどを備える。   The low-stage compression element 12a includes a low-stage cylinder 13a, a low-stage bearing 14a, a low-stage suction pipe 15a that communicates with a compression chamber of the low-stage cylinder 13a, and the like.

低段圧縮要素12aでは、図示しない冷凍サイクルの低圧側に接続される低段吸入管15aから低圧の冷媒ガスを低段シリンダ13aに吸入し、回転式の圧縮機構部(公知のものであるから詳しい説明はしない)で圧縮し、密閉容器10a内に吐出する。従って、密閉容器10a内は中間圧になる。   In the low-stage compression element 12a, a low-pressure refrigerant gas is sucked into a low-stage cylinder 13a from a low-stage intake pipe 15a connected to a low-pressure side of a refrigeration cycle (not shown), and a rotary compression mechanism section (since it is a known one). Compressed and discharged into the sealed container 10a. Therefore, the inside of the sealed container 10a becomes an intermediate pressure.

中間圧の密閉容器1aから低段吐出管16aから一旦密閉容器10a外に出て、図示しない中間圧接続管を通って高段吸入管15bに入る。高段圧縮要素12bでは、低段圧縮要素12aと同じ回転式の圧縮機構により中間圧の冷媒ガスを高圧に圧縮し、高段吐出管16bから図示しない冷凍サイクルの高圧側に出る。   The intermediate-pressure sealed container 1a exits the sealed container 10a from the low-stage discharge pipe 16a, and enters the high-stage suction pipe 15b through an intermediate pressure connection pipe (not shown). In the high-stage compression element 12b, the intermediate-pressure refrigerant gas is compressed to a high pressure by the same rotary compression mechanism as the low-stage compression element 12a, and exits from the high-stage discharge pipe 16b to the high-pressure side of the refrigeration cycle (not shown).

図4はヒートポンプ式給湯機の外気温と動作圧力との関係図である。図4の中間圧は、高段圧縮要素12bと低段圧縮要素12aとのストロークボリューム比が0.65の場合である。図4に示すように、外気温が低くなると、高段圧縮要素12bでの高圧と中間圧との差圧が大きくなる傾向があることが解る。低段圧縮要素12aの吐出圧(中間圧)は、高段圧縮要素12bと低段圧縮要素12aとの行程容積比(ストロークボリューム比)で決定されるので、圧縮比が大きくなると高段圧縮要素12bの圧縮比が一方的に拡大される。   FIG. 4 is a relationship diagram between the outside air temperature and the operating pressure of the heat pump type hot water heater. The intermediate pressure in FIG. 4 is when the stroke volume ratio between the high-stage compression element 12b and the low-stage compression element 12a is 0.65. As shown in FIG. 4, it can be seen that when the outside air temperature decreases, the differential pressure between the high pressure and the intermediate pressure in the high-stage compression element 12b tends to increase. Since the discharge pressure (intermediate pressure) of the low-stage compression element 12a is determined by the stroke volume ratio (stroke volume ratio) between the high-stage compression element 12b and the low-stage compression element 12a, the high-stage compression element increases as the compression ratio increases. The compression ratio of 12b is unilaterally expanded.

図5に示すように、外気温が−10℃以下となる寒冷地用途では、高段圧縮要素12bの高圧と中間圧との差圧が大きくなり、例えば、6MPaを超える場合がある。   As shown in FIG. 5, in a cold district application where the outside air temperature is −10 ° C. or lower, the differential pressure between the high pressure and the intermediate pressure of the high-stage compression element 12 b increases, and may exceed 6 MPa, for example.

ヒートポンプ式給湯機では、給湯能力確保のため、外気温が低くなると、圧縮機2の回転数が高くなる傾向がある。図5は、外気温が20℃のときの回転数を基準として、外気温が変化したときの回転数比を示している。外気温が−10℃以下となる寒冷地用途では、回転数比が大きくなり、例えば、−10℃では、回転数比が1.5を超える。   In the heat pump type water heater, when the outside air temperature is lowered to ensure the hot water supply capacity, the rotational speed of the compressor 2 tends to increase. FIG. 5 shows the rotation speed ratio when the outside air temperature changes with the rotation speed when the outside air temperature is 20 ° C. as a reference. In cold district applications where the outside air temperature is −10 ° C. or lower, the rotational speed ratio becomes large. For example, at −10 ° C., the rotational speed ratio exceeds 1.5.

一般的に、機械部品の摺動の厳しさはPV値で表される。ここで、
P:面圧(圧縮要素で言えば、高圧と低圧との差圧で代表される)
V:摺動速度(圧縮機2の回転数増加に伴い大きくなる)
この他に温度も影響がある。−10℃以下となる寒冷地用途では、吐出温度は高温となり、条件的にさらに厳しくなる。
In general, the severity of sliding of machine parts is represented by a PV value. here,
P: Surface pressure (represented by the differential pressure between high pressure and low pressure in terms of compression elements)
V: sliding speed (increased as the number of rotations of the compressor 2 increases)
In addition, temperature has an effect. In a cold district application of −10 ° C. or lower, the discharge temperature becomes high, and the conditions become more severe.

機械部品の摺動の厳しさを表すPV値は、高段圧縮要素12bでは、高段差圧(高圧と中間圧との差)×回転数で代表される。図7は高段圧縮要素12bの高段差圧×回転数と外気温との関係図で、外気温が低くなるほど大きくなることを示している。特に、−10℃以下となる寒冷地用途では、急激に増大する。   In the high-stage compression element 12b, the PV value representing the severity of sliding of mechanical parts is represented by high step pressure (difference between high pressure and intermediate pressure) × rotational speed. FIG. 7 is a relationship diagram of the high step pressure of the high-stage compression element 12b × the number of revolutions and the outside air temperature, and shows that the outside air temperature increases as the outside air temperature decreases. In particular, in a cold district application at -10 ° C. or lower, it increases rapidly.

図8は高段圧縮要素12bの構成図である。高段シリンダ13b内には、回転軸18の偏心部に嵌合した高段ローリングピストン20bと、背面に吐出圧力が作用し、径方向に摺動する高段ベーン19bとを備え、それらにより圧縮室を形成している。この高段圧縮要素12bの摺動部の中で、最も厳しい摺動条件になる部分は、高段ベーン19bの背圧が吐出圧力であるため、高段ベーン19b先端と高段ローリングピストン20bとの接触部である。   FIG. 8 is a configuration diagram of the high-stage compression element 12b. The high-stage cylinder 13b is provided with a high-stage rolling piston 20b fitted to the eccentric portion of the rotary shaft 18 and a high-stage vane 19b that is slid radially in the discharge pressure acting on the back surface. Forming a chamber. Among the sliding portions of the high-stage compression element 12b, the most severe sliding condition is the discharge pressure of the back pressure of the high-stage vane 19b. Therefore, the tip of the high-stage vane 19b and the high-stage rolling piston 20b It is a contact part.

高段ベーン19bに窒化処理を行い、差圧(高圧と中間圧との差)×回転数(MPa・rps)と高段ベーン19b先端摩耗速度との関係を調べた。ここで、窒化処理とは、表面硬化熱処理の化学的表面硬化法で、鋼の表面から窒素を拡散侵入させ鋼の表面を硬くすることである。この窒化処理により高段ベーン19bの表面の硬さをマイクロビッカース硬さで1000〜1600とすることで、耐摩耗性が窒化未処理のものに比べて向上する。なおこの時の高段ベーン19b表面の窒化層は、0.02〜0.10mmである。   The high stage vane 19b was subjected to nitriding treatment, and the relationship between the differential pressure (difference between high pressure and intermediate pressure) × rotational speed (MPa · rps) and the high stage vane 19b tip wear rate was examined. Here, the nitriding treatment is a chemical surface hardening method of surface hardening heat treatment, in which nitrogen is diffused and penetrated from the steel surface to harden the steel surface. By this nitriding treatment, the hardness of the surface of the high stage vane 19b is set to 1000 to 1600 in terms of micro Vickers hardness, so that the wear resistance is improved as compared with the non-nitriding treatment. At this time, the nitride layer on the surface of the high stage vane 19b is 0.02 to 0.10 mm.

高段ベーン19bに窒化処理を行い、差圧(高圧と中間圧との差)×回転数(MPa・rps)と高段ベーン19b先端摩耗速度との関係を調べた結果を図9に示す。図9に示すように、差圧×回転数が630付近までは高段ベーン19b先端摩耗速度は大きな変化はないが、630付近を超えると急激に摩耗速度が増大することが解る。尚、高段ベーン19bに窒化処理は、少なくとも高段ベーン19bの先端に施せばよい。   FIG. 9 shows the result of nitriding the high stage vane 19b and examining the relationship between differential pressure (difference between high pressure and intermediate pressure) × rotational speed (MPa · rps) and tip wear rate of the high stage vane 19b. As shown in FIG. 9, the wear rate of the tip of the high stage vane 19b does not change greatly until the differential pressure × the number of rotations is around 630, but it is understood that the wear rate increases rapidly when the pressure exceeds about 630. Note that nitriding treatment may be performed on the high stage vane 19b at least at the tip of the high stage vane 19b.

差圧×回転数(MPa・rps)を630以下にする一つの方法が、外気温が−10℃以下となる条件において、圧縮機2の回転数を100rps以下にすることである。これは、図10に示すように、回転数が100rps付近より、急激に高段ベーン19b先端の摩耗が増加するからである。   One method of setting the differential pressure × the number of revolutions (MPa · rps) to 630 or less is to set the number of revolutions of the compressor 2 to 100 rps or less under conditions where the outside air temperature is −10 ° C. or less. This is because, as shown in FIG. 10, the wear at the tip of the high stage vane 19b increases abruptly when the rotational speed is around 100 rps.

図11は、回転数が100rpsでの圧縮機2の押しのけ量(cm)と、給湯加熱能力(KW)との関係を計算で求めた結果を示す。条件は、外気温が−20℃、体積効率85%で計算している。図11より、押しのけ量をV、加熱能力をQとすると、
押しのけ量V≒加熱能力Q×0.87 (1)
の関係があることが解る。
FIG. 11 shows the result of calculating the relationship between the displacement (cm 3 ) of the compressor 2 at a rotational speed of 100 rps and the hot water supply heating capacity (KW). Conditions are calculated with an outside air temperature of −20 ° C. and a volume efficiency of 85%. From FIG. 11, when the displacement is V and the heating capacity is Q,
Displacement amount V ≒ Heating capacity Q x 0.87 (1)
It is understood that there is a relationship.

外気温が−10℃以下となる条件において、圧縮機2の回転数を100rps以下にすると、高段ベーン19b先端の摩耗を抑制できるが、ヒートポンプ式給湯機の能力が低下するので、圧縮機2の押しのけ量Vを大きくする。押しのけ量Vと加熱能力Qとは、(1)式の関係があるので、
押しのけ量V>加熱能力Q×0.87 (2)
となるように設定する。これにより、圧縮機2の回転数を100rps以下にしても、ヒートポンプ式給湯機の外気温が−10℃以下の寒冷地条件での加熱能力Qを確保できる。
If the rotation speed of the compressor 2 is set to 100 rps or less under the condition that the outside air temperature is −10 ° C. or less, the wear of the tip of the high stage vane 19b can be suppressed, but the capacity of the heat pump type hot water heater is reduced. Increase the displacement V of. Since the displacement amount V and the heating capacity Q have the relationship of the formula (1),
Displacement amount V> Heating capacity Q × 0.87 (2)
Set to be. Thereby, even if it sets the rotation speed of the compressor 2 to 100 rps or less, the heating capability Q in the cold district conditions whose external temperature of a heat pump type hot water heater is -10 degrees C or less is securable.

ヒートポンプ式給湯機は電力を利用して沸き上げを行うので、通常、深夜電力を利用して深夜時間帯(23:00〜7:00)に沸き上げを行う。しかし、外気温が−10℃以下の寒冷地条件において、高段圧縮要素の高圧と中間圧との差圧×回転数(MPa・rps)を630以下で運転すると、この深夜時間帯で沸き上げが不十分の場合がある。この不足分は、深夜時間帯以外の運転で補う必要がある。また4:00〜6:00頃の未明から明け方にかけては外気温が極めて低いため、その時間帯の運転を避けるようにすれば、その避けた時間帯の分を補う必要もある。そこで、外気温が−10℃以下の寒冷地条件において、深夜時間帯(23:00〜7:00)以外の運転比率を20%以上とする。それにより、外気温が−10℃以下の寒冷地条件において、高段圧縮要素の高圧と中間圧との差圧×回転数(MPa・rps)を630以下で運転しても、沸き上げることができる。   Since a heat pump type hot water heater performs boiling using electric power, it is normally heated using late-night power during midnight hours (23: 00 to 7:00). However, when the outside air temperature is -10 ° C or less, if the differential pressure between the high pressure and the intermediate pressure of the high-stage compression element and the rotation speed (MPa rps) are operated at 630 or less, it is heated up in this midnight time zone. May be insufficient. This shortage needs to be compensated by driving outside midnight. Also, since the outside air temperature is extremely low from about 40:00 to 6:00 from early morning to dawn, it is necessary to compensate for the avoided time zone if operation is avoided in that time zone. Therefore, in cold district conditions where the outside air temperature is −10 ° C. or less, the operation ratio other than the late-night time zone (23: 0 to 7:00) is set to 20% or more. As a result, even if the outside temperature is −10 ° C. or less and the cold region is operated at a differential pressure between the high pressure of the high-stage compression element and the intermediate pressure × rotational speed (MPa · rps) at 630 or less, it can be heated up. it can.

以上のように、高段ベーン19bに窒化処理を行い、差圧(高圧と中間圧との差)×回転数(MPa・rps)を630以内となるように運転することにより、外気温が−10℃以下になる寒冷地においても、高価なコーティング等の手段を用いずに高段ベーン19b先端の摩耗を抑制できる。コーティングとは、例えば、物理蒸着法、化学蒸着法、又はプラズマ化学蒸着法によって形成された金属化合物、或いはアモルファスカーボンである。   As described above, nitriding treatment is performed on the high stage vane 19b, and the operation is performed so that the differential pressure (difference between the high pressure and the intermediate pressure) × the rotation speed (MPa · rps) is within 630. Even in a cold region where the temperature is 10 ° C. or lower, wear at the tip of the high-stage vane 19b can be suppressed without using expensive means such as coating. The coating is, for example, a metal compound formed by physical vapor deposition, chemical vapor deposition, or plasma chemical vapor deposition, or amorphous carbon.

実施の形態1を示す図で、ヒートポンプ式給湯機の給湯ユニット100の内部正面図。Fig. 5 shows the first embodiment, and is an internal front view of a hot water supply unit 100 of a heat pump type hot water heater. 実施の形態1を示す図で、ヒートポンプ式給湯機の冷媒回路1及び水回路8を示す図。FIG. 3 shows the first embodiment and shows the refrigerant circuit 1 and the water circuit 8 of the heat pump type hot water heater. 実施の形態1を示す図で、圧縮機2の縦断面図。FIG. 3 shows the first embodiment and is a longitudinal sectional view of the compressor 2. 実施の形態1を示す図で、ヒートポンプ式給湯機の外気温と動作圧力との関係図。It is a figure which shows Embodiment 1, and is a related figure of the external temperature and operating pressure of a heat pump type water heater. 実施の形態1を示す図で、ヒートポンプ式給湯機の外気温と高段差圧及び低段差圧との関係図。It is a figure which shows Embodiment 1, and is a related figure of the external temperature of a heat pump type water heater, high step pressure, and low step pressure. 実施の形態1を示す図で、ヒートポンプ式給湯機の外気温と回転数比との関係図。It is a figure which shows Embodiment 1, and is a related figure of the external temperature of a heat pump type water heater, and rotation speed ratio. 実施の形態1を示す図で、ヒートポンプ式給湯機の外気温と(高段差圧×回転数)との関係図。It is a figure which shows Embodiment 1, and is a related figure of the external temperature of a heat pump type water heater and (high step pressure x rotation speed). 実施の形態1を示す図で、高段圧縮要素12bの構成図。FIG. 5 shows the first embodiment and is a configuration diagram of a high-stage compression element 12b. 実施の形態1を示す図で、高段圧縮要素12bに窒化ベーンを使用したときの高段ベーン19b先端摩耗速度を示す図内部中間圧2段圧縮機1の縦断面図。The figure which shows Embodiment 1, The figure is a longitudinal cross-sectional view of the internal pressure two-stage compressor 1 showing the high-stage vane 19b tip wear rate when a nitride vane is used for the high-stage compression element 12b. 実施の形態1を示す図で、高段ベーン19b先端摩耗速度と回転数との関係図。FIG. 5 shows the first embodiment, and is a diagram showing the relationship between the high stage vane 19b tip wear speed and the rotational speed. 実施の形態1を示す図で、圧縮機押しのけ量と給湯加熱能力との関係図。Fig. 5 shows the first embodiment, and is a diagram showing the relationship between the amount of displacement of the compressor and the hot water supply heating capacity.

符号の説明Explanation of symbols

1 冷媒回路、2 圧縮機、3 ガスクーラ、4a 第1の膨張弁、4b 第2の膨張弁、5 蒸発器、6 内部熱交換器、7 送風機、8 水回路、9 ポンプ、10a 密閉容器、11 電動要素、12 圧縮要素、12a 低段圧縮要素、12b 高段圧縮要素、13a 低段シリンダ、13b 高段シリンダ、14a 低段軸受、14b 高段軸受、15a 低段吸入管、15b 高段吸入管、16a 低段吐出管、16b 高段吐出管、17 中間仕切板、18 回転軸、24 空気熱交換室、26 電気品、27 機械室、28 中間ベース、100 ヒートポンプ式給湯機の給湯ユニット。   DESCRIPTION OF SYMBOLS 1 Refrigerant circuit, 2 Compressor, 3 Gas cooler, 4a 1st expansion valve, 4b 2nd expansion valve, 5 Evaporator, 6 Internal heat exchanger, 7 Blower, 8 Water circuit, 9 Pump, 10a Airtight container, 11 Electric element, 12 compression element, 12a Low stage compression element, 12b High stage compression element, 13a Low stage cylinder, 13b High stage cylinder, 14a Low stage bearing, 14b High stage bearing, 15a Low stage suction pipe, 15b High stage suction pipe , 16a Low stage discharge pipe, 16b High stage discharge pipe, 17 Intermediate partition plate, 18 Rotating shaft, 24 Air heat exchange chamber, 26 Electrical equipment, 27 Machine room, 28 Intermediate base, 100 Hot water supply unit of heat pump type hot water heater.

Claims (4)

密閉容器内に電動要素と、この電動要素により回転軸を介して駆動される、低段圧縮要素と高段圧縮要素とを有し、前記密閉容器内が中間圧となるロータリ式2段圧縮機において、
前記高段圧縮要素に設けられ、背面に吐出圧力が作用し、少なくとも先端部に窒化処理が施された、径方向に摺動する高段ベーンを備え、
当該ロータリ式2段圧縮機がヒートポンプ式給湯機に搭載されて、外気温が−10℃以下の寒冷地において運転される場合に、前記高段圧縮要素の高圧と中間圧との差圧×回転数(MPa・rps)が630以下となるように運転することを特徴とするロータリ式2段圧縮機。
A rotary two-stage compressor having an electric element in a hermetic container and a low-stage compression element and a high-stage compression element driven by the electric element via a rotating shaft, wherein the inside of the hermetic container has an intermediate pressure In
A high-stage vane that is provided in the high-stage compression element, has a discharge pressure acting on the back surface, and is subjected to nitriding treatment at least at the tip, and slides in the radial direction,
When the rotary type two-stage compressor is mounted on a heat pump type water heater and is operated in a cold region where the outside air temperature is -10 ° C. or lower, the differential pressure between the high pressure and the intermediate pressure of the high-stage compression element × rotation A rotary two-stage compressor that is operated so that the number (MPa · rps) is 630 or less.
前記外気温が−10℃以下の条件において、回転数が100rps以下で運転することを特徴とする請求項1記載のロータリ式2段圧縮機。   2. The rotary two-stage compressor according to claim 1, wherein the rotary air compressor is operated at a rotation speed of 100 rps or less under a condition where the outside air temperature is −10 ° C. or less. 前記低段圧縮要素と前記高段圧縮要素との合計の押しのけ量V(cm)は、ヒートポンプ式給湯機の外気温が−10℃以下の寒冷地条件での加熱能力Q(KW)に対し、
押しのけ量V>加熱能力Q×0.87
となるように設定することを特徴とする請求項1又は請求項2記載のロータリ式2段圧縮機。
The total displacement V (cm 3 ) of the low-stage compression element and the high-stage compression element is relative to the heating capacity Q (KW) in a cold district condition where the outside temperature of the heat pump water heater is −10 ° C. or less. ,
Displacement amount V> Heating capacity Q × 0.87
The rotary two-stage compressor according to claim 1, wherein the rotary type two-stage compressor is set to be
前記外気温が−10℃以下の寒冷地条件において、深夜時間帯(23:00〜7:00)以外の運転比率を20%以上とすることを特徴とする請求項1又は請求項2記載のロータリ式2段圧縮機。   The operating ratio other than the midnight time zone (23: 0 to 7:00) is set to 20% or more in the cold region condition where the outside air temperature is -10 ° C or less. Rotary type two-stage compressor.
JP2006339301A 2006-12-18 2006-12-18 Rotary type two-stage compressor Pending JP2008151018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339301A JP2008151018A (en) 2006-12-18 2006-12-18 Rotary type two-stage compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339301A JP2008151018A (en) 2006-12-18 2006-12-18 Rotary type two-stage compressor

Publications (1)

Publication Number Publication Date
JP2008151018A true JP2008151018A (en) 2008-07-03

Family

ID=39653466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339301A Pending JP2008151018A (en) 2006-12-18 2006-12-18 Rotary type two-stage compressor

Country Status (1)

Country Link
JP (1) JP2008151018A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213784A (en) * 1985-07-12 1987-01-22 Hitachi Ltd Heat pump type room air conditioner
JP2001073976A (en) * 1999-08-31 2001-03-21 Sanyo Electric Co Ltd Internal intermediate pressure type two-stage compression type rotary compressor
JP2003148821A (en) * 2001-11-14 2003-05-21 Sanyo Electric Co Ltd Supercritical refrigerating cycle device and water heater
JP2004052796A (en) * 2002-07-16 2004-02-19 Nsk Ltd Needle retainer, needle bearing, and combination bearing thereof
JP2004174460A (en) * 2002-11-29 2004-06-24 Hitachi Zosen Corp Ocean bottom mud purification method and purifier
JP2005147562A (en) * 2003-11-18 2005-06-09 Sanyo Electric Co Ltd Two-stage compression type rotary compressor, and car air conditioner and heat pump type hot water supply apparatus using it
JP2006300013A (en) * 2005-04-25 2006-11-02 Matsushita Electric Ind Co Ltd Hermetic compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213784A (en) * 1985-07-12 1987-01-22 Hitachi Ltd Heat pump type room air conditioner
JP2001073976A (en) * 1999-08-31 2001-03-21 Sanyo Electric Co Ltd Internal intermediate pressure type two-stage compression type rotary compressor
JP2003148821A (en) * 2001-11-14 2003-05-21 Sanyo Electric Co Ltd Supercritical refrigerating cycle device and water heater
JP2004052796A (en) * 2002-07-16 2004-02-19 Nsk Ltd Needle retainer, needle bearing, and combination bearing thereof
JP2004174460A (en) * 2002-11-29 2004-06-24 Hitachi Zosen Corp Ocean bottom mud purification method and purifier
JP2005147562A (en) * 2003-11-18 2005-06-09 Sanyo Electric Co Ltd Two-stage compression type rotary compressor, and car air conditioner and heat pump type hot water supply apparatus using it
JP2006300013A (en) * 2005-04-25 2006-11-02 Matsushita Electric Ind Co Ltd Hermetic compressor

Similar Documents

Publication Publication Date Title
EP2578885B1 (en) Scroll compressor and air conditioner including the same
JP2009127902A (en) Refrigerating device and compressor
EP1795701B1 (en) Fluid machine
JP2008163894A (en) Multiple stage compressor
US20090007590A1 (en) Refrigeration System
JP6253278B2 (en) Refrigeration cycle
WO2004053298A1 (en) Volume expander and fluid machine
US8177533B2 (en) Scroll expander and refrigeration cycle apparatus
JP6298272B2 (en) Scroll compressor
JP4591350B2 (en) Refrigeration equipment
US9574561B2 (en) Scroll compressor and air conditioner including a scroll compressor
JP5328697B2 (en) Two-stage compressor and heat pump device
KR20010014817A (en) refrigerant compressor and refrigeration cooling apparatus using the same
JP2017194064A (en) Refrigeration cycle
JP2003254276A (en) Rotary compressor
JP2008151018A (en) Rotary type two-stage compressor
JP2009063247A (en) Refrigeration cycle device, and fluid machine using it
JP6896569B2 (en) Scroll compressor and its control method and air conditioner
EP2090745A1 (en) Fluid machinery
JP2008215747A (en) Air conditioner
WO2015114783A1 (en) Compressor and refrigeration cycle device
CN107642487B (en) Sector step for scroll compressor
JP2010084559A (en) Two-stage compressor
JP2007010257A (en) Heat pump device
JP2001065888A (en) Carbon dioxide refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102