JP5328697B2 - Two-stage compressor and heat pump device - Google Patents

Two-stage compressor and heat pump device Download PDF

Info

Publication number
JP5328697B2
JP5328697B2 JP2010045535A JP2010045535A JP5328697B2 JP 5328697 B2 JP5328697 B2 JP 5328697B2 JP 2010045535 A JP2010045535 A JP 2010045535A JP 2010045535 A JP2010045535 A JP 2010045535A JP 5328697 B2 JP5328697 B2 JP 5328697B2
Authority
JP
Japan
Prior art keywords
stage
low
stage discharge
refrigerant
discharge valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010045535A
Other languages
Japanese (ja)
Other versions
JP2011179436A (en
Inventor
篤義 深谷
谷  真男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010045535A priority Critical patent/JP5328697B2/en
Priority to KR1020110011799A priority patent/KR101250084B1/en
Priority to CN2011100439621A priority patent/CN102192150B/en
Priority to CZ2011-98A priority patent/CZ306343B6/en
Publication of JP2011179436A publication Critical patent/JP2011179436A/en
Application granted granted Critical
Publication of JP5328697B2 publication Critical patent/JP5328697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

この発明は、2つの圧縮部を有する二段圧縮機、及び二段圧縮機を備えるヒートポンプ装置に関する。   The present invention relates to a two-stage compressor having two compression sections, and a heat pump device including the two-stage compressor.

ロータリ式の圧縮機では、圧縮部は、冷媒を圧縮室に吸入して圧縮し、吐出口から吐出空間へ吐出する。一般に、吐出口には、圧縮室内の圧力と吐出空間の圧力との圧力差によって開く吐出弁が設けられている。特に、板状の弁の一端が固定され、圧縮室内の圧力が吐出空間の圧力よりも高くなった場合に、圧縮室側から弁が押され、たわんで開くリード弁が、吐出弁として設けられているものが多い。   In the rotary compressor, the compressor sucks the refrigerant into the compression chamber and compresses it, and discharges it from the discharge port to the discharge space. Generally, the discharge port is provided with a discharge valve that opens due to a pressure difference between the pressure in the compression chamber and the pressure in the discharge space. In particular, when one end of the plate-shaped valve is fixed and the pressure in the compression chamber becomes higher than the pressure in the discharge space, a reed valve that is pushed from the compression chamber side and opens flexibly is provided as a discharge valve. There are many things.

ここで、吐出口の開口面積や、リード弁がたわむ量であるリフト量は、ロータリ式の圧縮機の効率化を図る上で重要な要素である。
ロータリ式の圧縮機では、吐出口の開口面積が小さいと、圧縮した冷媒が吐出しきれず、再圧縮されてしまい、損失が発生する。一方、吐出口の開口面積が大きいと、冷媒を吐出する際、冷媒が吐出口部分に溜まってしまう。吐出口部分に溜まった冷媒は再圧縮され、損失が発生する。
また、ロータリ式の圧縮機では、リード弁のリフト量が小さいと、圧縮した冷媒を吐出する際、リード弁が抵抗となり、損失が発生する。一方、リード弁のリフト量が大きいと、リード弁が閉じるのが遅いため、一旦吐出された冷媒を吐出口から再吸入してしまう。再吸入された冷媒は再圧縮され、損失が発生する。また、リフト量が大きいと、弁が閉じる際に弁が大きな衝撃を受け、破損してしまう虞がある。
Here, the opening area of the discharge port and the lift amount, which is the amount of deflection of the reed valve, are important factors for increasing the efficiency of the rotary compressor.
In a rotary compressor, if the opening area of the discharge port is small, the compressed refrigerant cannot be discharged completely and is recompressed, resulting in loss. On the other hand, when the opening area of the discharge port is large, the refrigerant accumulates in the discharge port portion when the refrigerant is discharged. The refrigerant accumulated in the discharge port is recompressed and a loss occurs.
In a rotary compressor, if the lift amount of the reed valve is small, the reed valve becomes a resistance when the compressed refrigerant is discharged, and loss occurs. On the other hand, if the reed valve lift is large, the reed valve closes slowly, so that the refrigerant once discharged is re-inhaled from the discharge port. The re-inhaled refrigerant is re-compressed and loss occurs. Further, if the lift amount is large, the valve may receive a large impact when the valve is closed and may be damaged.

二段圧縮機は、直列に接続された2つの圧縮部(低段圧縮部と高段圧縮部)を備える。ここで、高段圧縮部の排除容積は、低段圧縮部の排除容積よりも小さい。そのため、低段圧縮部に設けられた吐出口の開口面積及びリード弁のリフト量と、高段圧縮部に設けられた吐出口の開口面積及びリード弁のリフト量とが同じである場合、低段圧縮部の方が冷媒の体積流量が多いので、低段圧縮部で損失が発生する。
そこで、ロータリ式の二段圧縮機では、低段圧縮部に設けられた吐出口の開口面積及びリード弁のリフト量と、高段圧縮部に設けられた吐出口の開口面積及びリード弁のリフト量との比を適切に設定する必要がある。この比を適切に設定することにより、圧縮機の効率を改善することができる。
The two-stage compressor includes two compression units (a low-stage compression unit and a high-stage compression unit) connected in series. Here, the exclusion volume of the high-stage compression unit is smaller than the exclusion volume of the low-stage compression unit. Therefore, if the opening area of the discharge port provided in the low-stage compression unit and the lift amount of the reed valve are the same as the opening area of the discharge port provided in the high-stage compression unit and the lift amount of the reed valve, Since the stage compression unit has a larger volume flow rate of the refrigerant, loss occurs in the low stage compression unit.
Therefore, in the rotary type two-stage compressor, the opening area of the discharge port provided in the low-stage compression unit and the lift amount of the reed valve, the opening area of the discharge port provided in the high-stage compression unit, and the lift of the reed valve It is necessary to set the ratio with the quantity appropriately. By setting this ratio appropriately, the efficiency of the compressor can be improved.

特許文献1には、低段圧縮部の吐出口の面積S1と高段圧縮部の吐出口の面積S2との比S2/S1を、低段圧縮部の押しのけ量V1と高段圧縮部の押しのけ量V2との比V2/V1の0.55〜0.85倍に設定するとの記載がある。   In Patent Document 1, the ratio S2 / S1 between the area S1 of the discharge port of the low-stage compression unit and the area S2 of the discharge port of the high-stage compression unit is set as the displacement V1 of the low-stage compression unit and the displacement of the high-stage compression unit. There is a description that the ratio is set to 0.55 to 0.85 times the ratio V2 / V1 to the amount V2.

特許文献2には、低段圧縮部の吐出口に設けられたリード弁のリフト量H1と、高段圧縮部の吐出口に設けられたリード弁のリフト量H2とをH1>H2に設定するとの記載がある。   In Patent Document 2, when the lift amount H1 of the reed valve provided at the discharge port of the low-stage compression unit and the lift amount H2 of the reed valve provided at the discharge port of the high-stage compression unit are set as H1> H2. Is described.

特開2003−293973号公報JP 2003-29397 A 特開2008−291650号公報JP 2008-291650 A

特許文献1や特許文献2には、低段圧縮部と高段圧縮部とにおける吐出口の面積とリード弁のリフト量との一方の設定についてのみ記載されている。しかし、吐出口の面積とリード弁のリフト量との一方のみを適切に設定したとしても、他方が適切に設定されていなければ、圧縮機の効率をよくすることはできない。
この発明は、低段圧縮部における吐出口の面積及びリード弁のリフト量と、高段圧縮部における吐出口の面積とリード弁のリフト量とを適切に設定することで、圧縮機の効率をよくすることを目的とする。
Patent Literature 1 and Patent Literature 2 describe only one setting of the discharge port area and the reed valve lift amount in the low-stage compression section and the high-stage compression section. However, even if only one of the area of the discharge port and the lift amount of the reed valve is set appropriately, the efficiency of the compressor cannot be improved unless the other is set appropriately.
The present invention improves the efficiency of the compressor by appropriately setting the discharge port area and the reed valve lift amount in the low-stage compression unit, and the discharge port area and reed valve lift amount in the high-stage compression unit. The purpose is to improve.

この発明に係る二段圧縮機は、
冷媒を低段圧縮室へ吸入し、吸入した冷媒を圧縮して低段吐出口から吐出する低段圧縮部と、
前記低段圧縮部が圧縮した冷媒が前記低段吐出口から吐出される低段吐出空間を形成する低段吐出部と、
前記低段吐出部が形成する前記低段吐出空間へ吐出された冷媒を中間連結流路を介して高段圧縮室へ吸入し、吸入した冷媒を圧縮して高段吐出口から吐出する高段圧縮部と、
前記高段圧縮部が圧縮した冷媒が前記高段吐出口から吐出される高段吐出空間を形成する高段吐出部と、
前記低段圧縮部の前記低段吐出口に設けられ、前記低段圧縮室における冷媒の圧力が前記低段吐出空間における冷媒の圧力よりも高くなった場合に、前記低段吐出口の開口を塞いだ状態から前記低段吐出空間側へたわんで開く低段吐出弁と、
前記高段圧縮部の前記高段吐出口に設けられ、前記高段圧縮室における冷媒の圧力が前記高段吐出空間における冷媒の圧力よりも高くなった場合に、前記高段吐出口の開口を塞いだ状態から前記高段吐出空間側へたわんで開く高段吐出弁とを備え、
前記低段吐出口の開口面積は、前記高段吐出口の開口面積より大きく、前記高段吐出口の開口面積の2.25倍以下であり、
前記低段吐出弁がたわんで開いた場合における前記低段吐出口の重心位置と前記低段吐出弁との間の前記低段吐出弁がたわむ方向の距離である前記低段吐出弁のリフト量は、前記高段吐出弁がたわんで開いた場合における前記高段吐出口の重心位置と前記高段吐出弁との間の前記高段吐出弁がたわむ方向の距離である前記高段吐出弁のリフト量の0.47倍以上2.1倍以下である
ことを特徴とする。
The two-stage compressor according to the present invention is
A low-stage compression section that sucks the refrigerant into the low-stage compression chamber, compresses the drawn refrigerant, and discharges the refrigerant from the low-stage discharge port;
A low-stage discharge section that forms a low-stage discharge space in which the refrigerant compressed by the low-stage compression section is discharged from the low-stage discharge port;
A high stage that sucks the refrigerant discharged into the low-stage discharge space formed by the low-stage discharge part into the high-stage compression chamber via the intermediate connection flow path, compresses the sucked refrigerant, and discharges it from the high-stage discharge port. A compression section;
A high-stage discharge section that forms a high-stage discharge space in which the refrigerant compressed by the high-stage compression section is discharged from the high-stage discharge port;
When the pressure of the refrigerant in the low-stage compression chamber is higher than the pressure of the refrigerant in the low-stage discharge space, provided at the low-stage discharge port of the low-stage compression section, the opening of the low-stage discharge port is opened. A low-stage discharge valve that bends and opens from the closed state toward the low-stage discharge space,
When the pressure of the refrigerant in the high stage compression chamber is higher than the pressure of the refrigerant in the high stage discharge space, the opening of the high stage discharge port is provided at the high stage discharge port of the high stage compression unit. A high-stage discharge valve that opens and bends from the closed state to the high-stage discharge space side;
The opening area of the low-stage outlet is larger than the opening area of the high-stage outlet, and is 2.25 times or less the opening area of the high-stage outlet.
The lift amount of the low stage discharge valve, which is the distance in the direction in which the low stage discharge valve bends between the position of the center of gravity of the low stage discharge port and the low stage discharge valve when the low stage discharge valve is bent open Is the distance in the direction of deflection of the high-stage discharge valve between the position of the center of gravity of the high-stage discharge port and the high-stage discharge valve when the high-stage discharge valve is bent open. The lift amount is 0.47 times to 2.1 times the lift amount.

この発明に係る二段圧縮機は、低段圧縮部における吐出口の面積及びリード弁のリフト量と、高段圧縮部における吐出口の面積とリード弁のリフト量とを適切に設定した。これにより、圧縮機の効率をよくすることができる。   In the two-stage compressor according to the present invention, the area of the discharge port and the lift amount of the reed valve in the low-stage compression unit, and the area of the discharge port and the reed valve in the high-stage compression unit are appropriately set. Thereby, the efficiency of a compressor can be improved.

実施の形態1に係る二段圧縮機100の平面図。1 is a plan view of a two-stage compressor 100 according to Embodiment 1. FIG. 図1におけるA−A’断面図。FIG. 2 is a cross-sectional view taken along line A-A ′ in FIG. 1. 図2における圧縮機構部3及び圧縮機構部3の周囲の拡大図。FIG. 3 is an enlarged view of the compression mechanism unit 3 and the periphery of the compression mechanism unit 3 in FIG. 2. 図1におけるB−B’断面図。B-B 'sectional drawing in FIG. 図2におけるC−C’断面図。C-C 'sectional drawing in FIG. 図2におけるD−D’断面図。D-D 'sectional drawing in FIG. 低段吐出弁17が開いた状態における低段吐出口16付近を示す図。The figure which shows the low stage discharge port 16 vicinity in the state which the low stage discharge valve 17 opened. 低段吐出弁17が閉じた状態における低段吐出口16付近を示す図。The figure which shows the low stage discharge port 16 vicinity in the state which the low stage discharge valve 17 closed. 高段吐出弁37が開いた状態における高段吐出口36付近を示す図。The figure which shows the high stage discharge port 36 vicinity in the state which the high stage discharge valve 37 opened. 高段吐出弁37が閉じた状態における高段吐出口36付近を示す図。The figure which shows the high stage discharge port 36 vicinity in the state which the high stage discharge valve 37 closed. 回転数30rpsの場合における開口面積及びリフト量と、COP変化率との関係を示す図。The figure which shows the relationship between the opening area and lift amount in the case of rotation speed 30rps, and a COP change rate. 回転数60rpsの場合における開口面積及びリフト量と、COP変化率との関係を示す図。The figure which shows the relationship between the opening area and lift amount in the case of rotation speed 60rps, and a COP change rate. 回転数90rpsの場合における開口面積及びリフト量と、COP変化率との関係を示す図。The figure which shows the relationship between the opening area and lift amount in the case of rotation speed 90rps, and a COP change rate. 評価結果を示す図。The figure which shows an evaluation result. 比S1/S2と比H1/H2とを最適値に設定した場合におけるCOPの変化率を示す図。The figure which shows the change rate of COP when ratio S1 / S2 and ratio H1 / H2 are set to the optimal value. インジェクション回路を有するヒートポンプ装置の回路構成の一例を示す図。The figure which shows an example of the circuit structure of the heat pump apparatus which has an injection circuit. 図16に示すヒートポンプ装置101の冷媒の状態についてのモリエル線図。The Mollier diagram about the state of the refrigerant | coolant of the heat pump apparatus 101 shown in FIG.

実施の形態1.
実施の形態1では、高段圧縮部をバイパスするバイパス口を有する二段圧縮機100について説明する。
Embodiment 1 FIG.
In the first embodiment, a two-stage compressor 100 having a bypass port that bypasses the high-stage compression unit will be described.

図1は、実施の形態1に係る二段圧縮機100の平面図である。
図2は、図1におけるA−A’断面図である。なお、図2では、中間連結管51部分についてはa−a’断面を示している。
図3は、図2における圧縮機構部3及び圧縮機構部3の周囲の拡大図である。
図4は、図1におけるB−B’断面図である。
図5は、図2におけるC−C’断面図である。
図6は、図2におけるD−D’断面図である。
FIG. 1 is a plan view of a two-stage compressor 100 according to the first embodiment.
FIG. 2 is a cross-sectional view taken along the line AA ′ in FIG. In FIG. 2, the aa ′ cross section is shown for the intermediate connecting pipe 51 portion.
FIG. 3 is an enlarged view of the compression mechanism unit 3 and the periphery of the compression mechanism unit 3 in FIG. 2.
4 is a cross-sectional view taken along the line BB ′ in FIG.
5 is a cross-sectional view taken along the line CC ′ in FIG.
6 is a cross-sectional view taken along the line DD ′ in FIG.

まず、二段圧縮機100の構成について説明する。
図2に示すように、二段圧縮機100は、密閉容器1の内部に、電動機2と、低段圧縮部10と高段圧縮部30との2つの圧縮部を備える圧縮機構部3と、クランクシャフト4とを備える。また、密閉容器1の上部には、吐出管5が嵌入される。さらに、密閉容器1の下部は、潤滑油貯蔵部6を形成し、潤滑油が封入される。
また、二段圧縮機100は、密閉容器1の外部に、吸入マフラ7を備える。吸入マフラ7は、吸入管8により密閉容器1内の圧縮機構部3の低段圧縮部10と接続される。
First, the configuration of the two-stage compressor 100 will be described.
As shown in FIG. 2, the two-stage compressor 100 includes an electric motor 2, a compression mechanism unit 3 including two compression units, a low-stage compression unit 10 and a high-stage compression unit 30, inside the hermetic container 1, A crankshaft 4. A discharge pipe 5 is inserted into the upper part of the sealed container 1. Furthermore, the lower part of the airtight container 1 forms the lubricating oil storage part 6, and lubricating oil is enclosed.
The two-stage compressor 100 includes a suction muffler 7 outside the sealed container 1. The suction muffler 7 is connected to the lower stage compression unit 10 of the compression mechanism unit 3 in the hermetic container 1 by a suction pipe 8.

図3に示すように、圧縮機構部3の低段圧縮部10は、低段シリンダ11と、低段シリンダ11の上側を閉塞する低段フレーム14と、低段シリンダ11の下側を閉塞する中間仕切板50とにより低段圧縮室15を形成する。低段圧縮室15内には、低段ローリングピストン12が設けられる。また、低段圧縮室15の低段吸入口21には、吸入管8が接続されている。
同様に、高段圧縮部30は、高段シリンダ31と、高段シリンダ31の下側を閉塞する高段フレーム34と、高段シリンダ31の上側を閉塞する中間仕切板50とにより、低段圧縮室15よりも容積の小さい高段圧縮室35を形成する。高段圧縮室35内には、高段ローリングピストン32が設けられる。
つまり、二段圧縮機100は、ロータリ型の二段圧縮機である。
As shown in FIG. 3, the low-stage compression unit 10 of the compression mechanism unit 3 closes the low-stage cylinder 11, the low-stage frame 14 that closes the upper side of the low-stage cylinder 11, and the lower side of the low-stage cylinder 11. A low-stage compression chamber 15 is formed by the intermediate partition plate 50. A low-stage rolling piston 12 is provided in the low-stage compression chamber 15. A suction pipe 8 is connected to the low stage suction port 21 of the low stage compression chamber 15.
Similarly, the high stage compression unit 30 includes a high stage cylinder 31, a high stage frame 34 that closes the lower side of the high stage cylinder 31, and an intermediate partition plate 50 that closes the upper side of the high stage cylinder 31. A high-stage compression chamber 35 having a smaller volume than the compression chamber 15 is formed. A high-stage rolling piston 32 is provided in the high-stage compression chamber 35.
That is, the two-stage compressor 100 is a rotary two-stage compressor.

また、圧縮機構部3は、低段フレーム14との間に低段吐出空間20を形成する低段カバー19(低段吐出部)と、高段フレーム34との間に高段吐出空間40を形成する高段カバー39(高段吐出部)とを備える。また、低段カバー19の中間流出口22と高段シリンダ31の高段吸入口41とを接続する中間連結管51が設けられ、低段吐出空間20と高段圧縮室35とが連通している。   Further, the compression mechanism unit 3 forms a high-stage discharge space 40 between the low-stage cover 19 (low-stage discharge part) that forms the low-stage discharge space 20 between the low-stage frame 14 and the high-stage frame 34. A high-stage cover 39 (high-stage discharge part) to be formed is provided. Further, an intermediate connecting pipe 51 that connects the intermediate outlet 22 of the low stage cover 19 and the high stage suction port 41 of the high stage cylinder 31 is provided, and the low stage discharge space 20 and the high stage compression chamber 35 communicate with each other. Yes.

低段フレーム14には、低段圧縮室15と低段吐出空間20とを連通する低段吐出口16が形成されている。低段吐出口16には、低段吐出弁17と低段弁押え18とがリベット28(図5参照)により取り付けられたリード弁が設けられている。同様に、高段フレーム34には、高段圧縮室35と高段吐出空間40とを連通する高段吐出口36が形成されている。高段吐出口36には、高段吐出弁37と高段弁押え38とがリベット48(図6参照)により取り付けられたリード弁が設けられている。
また、低段カバー19には、低段吐出空間20と密閉容器1の内部空間である吐出圧空間53とを連通するバイパス口23が設けられている。バイパス口23には、バイパス弁24とバイパス弁押え25とがリベットにより取り付けられたリード弁が設けられている。
A low-stage discharge port 16 that connects the low-stage compression chamber 15 and the low-stage discharge space 20 is formed in the low-stage frame 14. The low-stage discharge port 16 is provided with a reed valve in which a low-stage discharge valve 17 and a low-stage valve presser 18 are attached by rivets 28 (see FIG. 5). Similarly, a high-stage discharge port 36 that connects the high-stage compression chamber 35 and the high-stage discharge space 40 is formed in the high-stage frame 34. The high stage discharge port 36 is provided with a reed valve to which a high stage discharge valve 37 and a high stage valve presser 38 are attached by a rivet 48 (see FIG. 6).
Further, the low-stage cover 19 is provided with a bypass port 23 that communicates the low-stage discharge space 20 and the discharge pressure space 53 that is the internal space of the sealed container 1. The bypass port 23 is provided with a reed valve in which a bypass valve 24 and a bypass valve presser 25 are attached by rivets.

また、高段フレーム34と、高段シリンダ31と、中間仕切板50と、低段シリンダ11と、低段フレーム14と、低段カバー19とを貫通し、高段吐出空間40と吐出圧空間53とを連通する吐出流路52が設けられている。   The high stage frame 34, the high stage cylinder 31, the intermediate partition plate 50, the low stage cylinder 11, the low stage frame 14, and the low stage cover 19 are penetrated, and the high stage discharge space 40 and the discharge pressure space are passed through. A discharge passage 52 that communicates with 53 is provided.

さらに、図4に示すように、低段カバー19には、インジェクタ60が設けられる。インジェクタ60には、インジェクションパイプ61が接続される。   Further, as shown in FIG. 4, the low-stage cover 19 is provided with an injector 60. An injection pipe 61 is connected to the injector 60.

次に、二段圧縮機100の動作について説明する。
電力が供給されると、電動機2が動作する。電動機2と圧縮機構部3とは、クランクシャフト4により接続されており、電動機2で発生した動力がクランクシャフト4を介して圧縮機構部3へ伝達される。そして、クランクシャフト4により、低段ローリングピストン12と高段ローリングピストン32とがそれぞれ低段圧縮室15と高段圧縮室35との内部で偏芯回転する。低段ローリングピストン12と高段ローリングピストン32とが偏芯回転することにより、低段圧縮部10と高段圧縮部30とで冷媒が圧縮される。
Next, the operation of the two-stage compressor 100 will be described.
When electric power is supplied, the electric motor 2 operates. The electric motor 2 and the compression mechanism unit 3 are connected by a crankshaft 4, and power generated by the electric motor 2 is transmitted to the compression mechanism unit 3 through the crankshaft 4. Then, the crankshaft 4 causes the low stage rolling piston 12 and the high stage rolling piston 32 to rotate eccentrically inside the low stage compression chamber 15 and the high stage compression chamber 35, respectively. As the low stage rolling piston 12 and the high stage rolling piston 32 rotate eccentrically, the low stage compression unit 10 and the high stage compression unit 30 compress the refrigerant.

次に、二段圧縮機100における冷媒の流れを説明する。
まず、外部から低圧の冷媒が吸入マフラ7へ流入する。吸入マフラ7へ流入した低圧の冷媒は、吸入管8を介して低段圧縮室15へ吸入される。低段圧縮室15へ吸入された低圧の冷媒は、低段圧縮室15内で中間圧まで圧縮される。冷媒が中間圧まで圧縮されると、低段圧縮室15内の冷媒と低段吐出空間20内の冷媒との圧力差により低段吐出弁17が低段吐出空間20側へたわんで開き、低段圧縮室15内の冷媒が低段吐出口16から低段吐出空間20へ吐出する。ここで、中間圧は、低段圧縮室15の吸入室の容積と高段圧縮室35の吸入室の容積との比から決定される圧力である。
低段吐出空間20へ吐出した中間圧の冷媒は、中間連結管51を介して高段圧縮室35へ吸入される。高段圧縮室35へ吸入された中間圧の冷媒は、高段圧縮室35内で吐出圧まで圧縮される。冷媒が吐出圧まで圧縮されると、高段圧縮室35内の冷媒と高段吐出空間40内の冷媒との圧力差により高段吐出弁37が高段吐出空間40側へたわんで開き、高段圧縮室35内の冷媒が高段吐出口36から高段吐出空間40へ吐出する。
高段吐出空間40へ吐出した吐出圧の冷媒は、吐出流路52を介して低段圧縮部10の上方の吐出圧空間53へ吐出される。そして、吐出圧空間53へ吐出された吐出圧の冷媒は、吐出管5から外部へ吐出される。
なお、二段圧縮機100を備えるヒートポンプ装置においてインジェクション運転がされている場合には、図4に示すインジェクションパイプ61からインジェクタ60を介して、インジェクション冷媒が低段吐出空間20へ注入される。インジェクション冷媒は、低段圧縮室15から吐出された中間圧の冷媒と低段吐出空間20で混合され、高段圧縮部30で圧縮される。
Next, the refrigerant flow in the two-stage compressor 100 will be described.
First, a low-pressure refrigerant flows into the suction muffler 7 from the outside. The low-pressure refrigerant flowing into the suction muffler 7 is sucked into the low-stage compression chamber 15 through the suction pipe 8. The low-pressure refrigerant sucked into the low stage compression chamber 15 is compressed to an intermediate pressure in the low stage compression chamber 15. When the refrigerant is compressed to an intermediate pressure, the low-stage discharge valve 17 is bent and opened to the low-stage discharge space 20 side due to the pressure difference between the refrigerant in the low-stage compression chamber 15 and the refrigerant in the low-stage discharge space 20. The refrigerant in the stage compression chamber 15 is discharged from the low stage discharge port 16 to the low stage discharge space 20. Here, the intermediate pressure is a pressure determined from the ratio between the volume of the suction chamber of the low-stage compression chamber 15 and the volume of the suction chamber of the high-stage compression chamber 35.
The intermediate pressure refrigerant discharged to the low stage discharge space 20 is sucked into the high stage compression chamber 35 through the intermediate connecting pipe 51. The intermediate-pressure refrigerant sucked into the high-stage compression chamber 35 is compressed to the discharge pressure in the high-stage compression chamber 35. When the refrigerant is compressed to the discharge pressure, the high stage discharge valve 37 bends and opens to the high stage discharge space 40 due to the pressure difference between the refrigerant in the high stage compression chamber 35 and the refrigerant in the high stage discharge space 40. The refrigerant in the stage compression chamber 35 is discharged from the high stage discharge port 36 to the high stage discharge space 40.
The refrigerant having the discharge pressure discharged to the high stage discharge space 40 is discharged to the discharge pressure space 53 above the low stage compression unit 10 via the discharge flow path 52. The refrigerant having the discharge pressure discharged into the discharge pressure space 53 is discharged from the discharge pipe 5 to the outside.
In addition, when the injection operation is performed in the heat pump apparatus including the two-stage compressor 100, the injection refrigerant is injected into the low-stage discharge space 20 from the injection pipe 61 illustrated in FIG. The injection refrigerant is mixed with the intermediate-pressure refrigerant discharged from the low-stage compression chamber 15 in the low-stage discharge space 20 and compressed by the high-stage compression unit 30.

ヒートポンプ装置101の負荷が小さい場合等に、低段圧縮部10による圧縮だけで、吐出圧となってしまう過圧縮状態となる場合がある。つまり、上述した冷媒の中間圧が必要な吐出圧より高い圧力となってしまう場合がある。
この場合、低段吐出空間20の冷媒と、吐出圧空間53の冷媒との圧力差により、バイパス弁24が開き、低段吐出空間20の冷媒がバイパス口23から吐出圧空間53へ吐出される。つまり、低段圧縮部10から低段吐出空間20へ吐出された冷媒が、高段圧縮部30で圧縮されることなく、バイパスして吐出圧空間53へ吐出される。
過圧縮状態では、低段圧縮部10による圧縮だけで吐出圧となっているため、高段圧縮部30による圧縮は無駄であり、高段圧縮部30で圧縮を行うと効率が悪化する。しかし、二段圧縮機100では、過圧縮状態になった場合に、低段圧縮部10で圧縮した冷媒を高段圧縮部30をバイパスして吐出させる。そのため、過圧縮状態が発生した場合における損失(過圧縮損失)を抑制できる。
When the load of the heat pump device 101 is small, an overcompressed state that becomes a discharge pressure may occur only by the compression by the low-stage compression unit 10. That is, the intermediate pressure of the refrigerant described above may be higher than the required discharge pressure.
In this case, the bypass valve 24 is opened by the pressure difference between the refrigerant in the low-stage discharge space 20 and the refrigerant in the discharge pressure space 53, and the refrigerant in the low-stage discharge space 20 is discharged from the bypass port 23 to the discharge pressure space 53. . That is, the refrigerant discharged from the low stage compression unit 10 to the low stage discharge space 20 is bypassed and discharged to the discharge pressure space 53 without being compressed by the high stage compression unit 30.
In the overcompressed state, only the compression by the low-stage compression unit 10 results in the discharge pressure. Therefore, the compression by the high-stage compression unit 30 is useless, and if the high-stage compression unit 30 performs compression, the efficiency deteriorates. However, in the two-stage compressor 100, the refrigerant compressed by the low-stage compression unit 10 is discharged by bypassing the high-stage compression unit 30 when the over-compression state occurs. Therefore, loss (overcompression loss) when an overcompressed state occurs can be suppressed.

低段吐出口16及び低段吐出口16に設けられたリード弁と、高段吐出口36及び高段吐出口36に設けられたリード弁とについて説明する。
図7は、低段吐出弁17が開いた状態における低段吐出口16付近を示す図である。図8は、低段吐出弁17が閉じた状態における低段吐出口16付近を示す図である。
図9は、高段吐出弁37が開いた状態における高段吐出口36付近を示す図である。図10は、高段吐出弁37が閉じた状態における高段吐出口36付近を示す図である。
The reed valve provided in the low stage discharge port 16 and the low stage discharge port 16 and the reed valve provided in the high stage discharge port 36 and the high stage discharge port 36 will be described.
FIG. 7 is a view showing the vicinity of the low-stage discharge port 16 in a state where the low-stage discharge valve 17 is open. FIG. 8 is a view showing the vicinity of the low stage discharge port 16 in a state where the low stage discharge valve 17 is closed.
FIG. 9 is a view showing the vicinity of the high stage discharge port 36 in a state where the high stage discharge valve 37 is open. FIG. 10 is a view showing the vicinity of the high stage discharge port 36 in a state where the high stage discharge valve 37 is closed.

図7,図8に示すように、低段吐出弁17と低段弁押え18とは、一端がリベット28により低段フレーム14に固定されている。そして、低段吐出弁17と低段弁押え18とは、他端側が低段吐出口16の低段吐出空間20側を覆うように設けられている。
低段弁押え18は、予め低段吐出空間20側へ所定量たわんで固定されている。一方、低段吐出弁17は、上述したように、低段圧縮室15内の冷媒と低段吐出空間20内の冷媒との圧力差により、たわんで低段吐出口16を開閉する。低段吐出弁17がたわむ大きさであるリフト量は、低段弁押え18により制限される。つまり、低段吐出弁17のリフト量は、低段弁押え18により設定される。
ここで、低段弁押え18により決定される低段吐出弁17のリフト量はH1である。また、低段吐出口16は円形であり、その半径はD1である。つまり、低段吐出口16の開口面積は、D1×π(=S1)である。
また、低段吐出弁17のリフト量とは、低段吐出弁17がたわんで開いた状態における低段吐出口16の中心と低段吐出弁17との間の距離であって、低段吐出弁17がたわむ方向であるシャフト4の回転軸方向の距離である(図7参照)。つまり、低段吐出弁17のリフト量は、低段吐出弁17が閉じた状態における低段吐出弁17と低段弁押え18との間の低段吐出口16の中心線の長さである(図8参照)。
なお、低段吐出弁17のリフト量は、低段吐出口16が円形でない場合には、低段吐出口16の重心と低段吐出弁17との間の距離である。
As shown in FIGS. 7 and 8, one end of the low stage discharge valve 17 and the low stage valve presser 18 is fixed to the low stage frame 14 by a rivet 28. The low-stage discharge valve 17 and the low-stage valve presser 18 are provided so that the other end covers the low-stage discharge space 20 side of the low-stage discharge port 16.
The low stage valve presser 18 is fixed in advance to the low stage discharge space 20 side with a predetermined amount of deflection. On the other hand, as described above, the low stage discharge valve 17 bends and opens and closes the low stage discharge port 16 due to the pressure difference between the refrigerant in the low stage compression chamber 15 and the refrigerant in the low stage discharge space 20. The lift amount, which is the size that the low stage discharge valve 17 bends, is limited by the low stage valve presser 18. That is, the lift amount of the low stage discharge valve 17 is set by the low stage valve presser 18.
Here, the lift amount of the low stage discharge valve 17 determined by the low stage valve presser 18 is H1. Moreover, the low stage discharge port 16 is circular, and the radius is D1. That is, the opening area of the low stage discharge port 16 is D1 2 × π (= S1).
The lift amount of the low-stage discharge valve 17 is a distance between the center of the low-stage discharge port 16 and the low-stage discharge valve 17 in a state where the low-stage discharge valve 17 is bent and opened. This is the distance in the rotational axis direction of the shaft 4 that is the direction in which the valve 17 bends (see FIG. 7). That is, the lift amount of the low-stage discharge valve 17 is the length of the center line of the low-stage discharge port 16 between the low-stage discharge valve 17 and the low-stage valve presser 18 when the low-stage discharge valve 17 is closed. (See FIG. 8).
The lift amount of the low stage discharge valve 17 is the distance between the center of gravity of the low stage discharge port 16 and the low stage discharge valve 17 when the low stage discharge port 16 is not circular.

図9,10に示すように、高段吐出弁37と高段弁押え38とは、一端がリベット48により高段フレーム34に固定されている。そして、高段吐出弁37と高段弁押え38とは、他端側が高段吐出口36の高段吐出空間40側を覆うように設けられている。
高段弁押え38は、予め高段吐出空間40側へ所定量たわんで固定されている。一方、高段吐出弁37は、上述したように、高段圧縮室35内の冷媒と高段吐出空間40内の冷媒との圧力差により、たわんで高段吐出口36を開閉する。高段吐出弁37がたわむ大きさであるリフト量は、高段弁押え38により制限される。つまり、高段吐出弁37のリフト量は、高段弁押え38により設定される。
ここで、高段弁押え38により決定される高段吐出弁37のリフト量はH2である。また、高段吐出口36は円形であり、その半径はD2である。つまり、高段吐出口36の開口面積は、D2×π(=S2)である。
また、高段吐出弁37のリフト量とは、高段吐出弁37がたわんで開いた状態における高段吐出口36の中心と高段吐出弁37との間の距離であって、高段吐出弁37がたわむ方向であるシャフト4の回転軸方向の距離である(図9参照)。つまり、高段吐出弁37のリフト量は、高段吐出弁37が閉じた状態における高段吐出弁37と高段弁押え38との間の高段吐出口36の中心線の長さである(図10参照)。
なお、高段吐出弁37のリフト量は、高段吐出口36が円形でない場合には、高段吐出口36の重心と高段吐出弁37との間の距離である。
As shown in FIGS. 9 and 10, one end of the high stage discharge valve 37 and the high stage valve presser 38 is fixed to the high stage frame 34 by a rivet 48. The high stage discharge valve 37 and the high stage valve presser 38 are provided so that the other end side covers the high stage discharge space 40 side of the high stage discharge port 36.
The high stage valve presser 38 is fixed in advance by a predetermined amount to the high stage discharge space 40 side. On the other hand, the high stage discharge valve 37 bends and opens and closes the high stage discharge port 36 due to the pressure difference between the refrigerant in the high stage compression chamber 35 and the refrigerant in the high stage discharge space 40 as described above. The lift amount, which is the size that the high stage discharge valve 37 bends, is limited by the high stage valve presser 38. That is, the lift amount of the high stage discharge valve 37 is set by the high stage valve presser 38.
Here, the lift amount of the high stage discharge valve 37 determined by the high stage valve presser 38 is H2. Moreover, the high stage discharge port 36 is circular, and the radius is D2. That is, the opening area of the high stage discharge port 36 is D2 2 × π (= S2).
The lift amount of the high-stage discharge valve 37 is a distance between the center of the high-stage discharge port 36 and the high-stage discharge valve 37 when the high-stage discharge valve 37 is bent and opened. This is the distance in the rotational axis direction of the shaft 4 that is the direction in which the valve 37 bends (see FIG. 9). That is, the lift amount of the high stage discharge valve 37 is the length of the center line of the high stage discharge port 36 between the high stage discharge valve 37 and the high stage valve presser 38 in a state where the high stage discharge valve 37 is closed. (See FIG. 10).
The lift amount of the high stage discharge valve 37 is a distance between the center of gravity of the high stage discharge port 36 and the high stage discharge valve 37 when the high stage discharge port 36 is not circular.

図11から図13は、低段吐出口16と高段吐出口36との開口面積、及び、低段吐出弁17と高段吐出弁37とのリフト量と、圧縮機のCOP(Coefficient Of Performance)変化率との関係を示す図である。
具体的には、図11から図13は、低段吐出弁17のリフト量H1と、高段吐出弁37のリフト量H2との比H1/H2が1の場合(H1=H2)と、比H1/H2が2の場合(H1=2×H2)とについて、低段吐出口16の開口面積S1と高段吐出口36の開口面積S2との比S1/S2を変化させた場合におけるCOP変化率を表す。特に、図11から図13は、それぞれ二段圧縮機100の回転数を30rps、60rps、90rpsとした場合を示す。
なお、図11から図13において、各プロットは評価点を表し、各線は各評価点から最小二乗法により得られたものである。また、COPの変化率は、比H1/H2が1で、比S1/S2が1の場合のCOPを基準値(100%)とした場合の変化率を示す。
また、ここでは、インジェクションパイプ61から冷媒を注入するインジェクション運転を行っていない場合について示している。
11 to 13 show the opening area of the low stage discharge port 16 and the high stage discharge port 36, the lift amount of the low stage discharge valve 17 and the high stage discharge valve 37, and the COP (Coefficient Of Performance) of the compressor. ) It is a diagram showing the relationship with the rate of change.
Specifically, FIG. 11 to FIG. 13 show the ratio when the ratio H1 / H2 between the lift amount H1 of the low stage discharge valve 17 and the lift amount H2 of the high stage discharge valve 37 is 1 (H1 = H2). COP change when the ratio S1 / S2 between the opening area S1 of the low stage discharge port 16 and the opening area S2 of the high stage discharge port 36 is changed when H1 / H2 is 2 (H1 = 2 × H2). Represents a rate. In particular, FIGS. 11 to 13 show cases where the rotational speed of the two-stage compressor 100 is 30 rps, 60 rps, and 90 rps, respectively.
In FIGS. 11 to 13, each plot represents an evaluation point, and each line is obtained from each evaluation point by the least square method. Further, the change rate of the COP indicates a change rate when the COP when the ratio H1 / H2 is 1 and the ratio S1 / S2 is 1 is defined as a reference value (100%).
Here, a case where the injection operation of injecting the refrigerant from the injection pipe 61 is not performed is shown.

図11から図13から分かるように、二段圧縮機100の回転数が少ない場合を除き、リフト量の比H1/H2を1とすると、吐出口の開口面積の比S1/S2をどれだけ変更したとしても、COPを基準値よりも大きく改善することはできない。つまり、低段吐出弁17のリフト量H1と高段吐出弁37のリフト量H2とを同じにして、低段吐出口16の開口面積S1を高段吐出口36の開口面積S2よりどれだけ大きくしても、COPを基準値よりも大きく改善することはできない。
これは、低段吐出口16の開口面積S1を大きくすれば、低段圧縮部10内の冷媒は吐出され易くなり損失が小さくなるが、一方で低段吐出口16部分に溜まり再圧縮される冷媒量が多くなり損失が大きくなるためである。
一方、吐出口の開口面積の比S1/S2を1とした場合、リフト量の比H1/H2をどれだけ変更したとしても、COPを基準値よりも大きく改善することはできない。つまり、低段吐出口16の開口面積S1と高段吐出口36の開口面積S2とを同じにして、低段吐出弁17のリフト量H1を高段吐出弁37のリフト量H2よりどれだけ大きくしても、COPを基準値よりも大きく改善することはできない。
これは、低段吐出弁17のリフト量H1を大きくすれば、低段圧縮部10内の冷媒は吐出され易くなり損失が小さくなるが、一方で低段吐出弁17のリフト量H1が大きいと、低段吐出弁17が閉じるのが遅くなり、再吸入し再圧縮される冷媒量が多くなり損失が大きくなるためである。
つまり、リフト量の比H1/H2と、吐出口の開口面積の比S1/S2とをバランスよく設定することが必要である。
As can be seen from FIG. 11 to FIG. 13, except for the case where the number of rotations of the two-stage compressor 100 is small, if the lift amount ratio H1 / H2 is 1, how much the discharge port opening area ratio S1 / S2 is changed. Even if it does, COP cannot be improved largely from a reference value. That is, the lift amount H1 of the low-stage discharge valve 17 and the lift amount H2 of the high-stage discharge valve 37 are the same, and the opening area S1 of the low-stage discharge port 16 is larger than the opening area S2 of the high-stage discharge port 36. Even so, the COP cannot be greatly improved from the reference value.
This is because if the opening area S1 of the low-stage discharge port 16 is increased, the refrigerant in the low-stage compression unit 10 is easily discharged and the loss is reduced, but on the other hand, it accumulates in the low-stage discharge port 16 and is recompressed. This is because the amount of refrigerant increases and loss increases.
On the other hand, when the ratio S1 / S2 of the opening area of the discharge port is 1, no matter how much the lift ratio H1 / H2 is changed, the COP cannot be improved more than the reference value. That is, the opening area S1 of the low stage discharge port 16 and the opening area S2 of the high stage discharge port 36 are made the same, and the lift amount H1 of the low stage discharge valve 17 is larger than the lift amount H2 of the high stage discharge valve 37. Even so, the COP cannot be greatly improved from the reference value.
This is because if the lift amount H1 of the low-stage discharge valve 17 is increased, the refrigerant in the low-stage compression unit 10 is easily discharged and the loss is reduced. On the other hand, if the lift amount H1 of the low-stage discharge valve 17 is large, This is because the closing of the low-stage discharge valve 17 is delayed, the amount of refrigerant that is re-inhaled and re-compressed increases, and the loss increases.
That is, it is necessary to set the lift ratio H1 / H2 and the opening area ratio S1 / S2 in a well-balanced manner.

ここで、図11から図13から分かるように、リフト量の比H1/H2を2とした場合、吐出口の開口面積の比S1/S2が2以下の範囲では概ねの場合において、リフト量の比H1/H2を1とした場合よりもCOPが高い。特に、二段圧縮機100の回転数が多い60rpsや90rpsの場合には、比H1/H2が2の場合は、比H1/H2が1の場合よりもCOPが高い。
また、比H1/H2が2の場合、比S1/S2が1と1.5との中間の値(1.2〜1.3程度)である場合に、最もCOPが高い。
Here, as can be seen from FIGS. 11 to 13, when the lift amount ratio H1 / H2 is 2, the lift amount ratio S1 / S2 is generally in the range where the ratio S1 / S2 of the discharge opening is 2 or less. The COP is higher than when the ratio H1 / H2 is 1. In particular, when the rotation speed of the two-stage compressor 100 is 60 rps or 90 rps, the COP is higher when the ratio H1 / H2 is 2 than when the ratio H1 / H2 is 1.
Further, when the ratio H1 / H2 is 2, when the ratio S1 / S2 is an intermediate value between 1 and 1.5 (about 1.2 to 1.3), the COP is the highest.

このような評価を繰り返した結果、図14に示す評価結果が得られた。
図14に示すように、基準値よりもCOPが高くなるのは、比S1/S2が1より大きく2.25以下であり、比H1/H2が1より大きく2.1以下の場合であった。また、よりCOPが高くなるのは、比S1/S2が1より大きく1.8以下であり、比H1/H2が1.5以上2.1以下の場合であった。さらに、よりCOPが高くなるのは、比S1/S2が1より大きく1.3以下であり、比H1/H2が1.9以上2.1以下の場合であった。特に、比S1/S2が1.235であり、比H1/H2が2.074の場合に最もCOPが高くなる最適値であった。
As a result of repeating such evaluation, the evaluation result shown in FIG. 14 was obtained.
As shown in FIG. 14, the COP is higher than the reference value when the ratio S1 / S2 is greater than 1 and less than or equal to 2.25, and the ratio H1 / H2 is greater than 1 and less than or equal to 2.1. . Further, the COP was higher when the ratio S1 / S2 was greater than 1 and 1.8 or less, and the ratio H1 / H2 was 1.5 or more and 2.1 or less. Furthermore, the COP was higher when the ratio S1 / S2 was greater than 1 and 1.3 or less, and the ratio H1 / H2 was 1.9 or more and 2.1 or less. In particular, when the ratio S1 / S2 was 1.235 and the ratio H1 / H2 was 2.074, the COP was the optimum value that was the highest.

図15は、比S1/S2と比H1/H2とを最適値である1.235と2.074とに設定した場合におけるCOPの変化率を示す図である。なお、図15では、COPの変化率は、比H1/H2が1で、比S1/S2が1の場合のCOPを基準値(100%)とした場合の変化率を示す。
図15に示すように、比S1/S2と比H1/H2とを最適値とした場合、概ね二段圧縮機100の回転数が多くなるほど、基準値に比べCOPが高くなる。したがって、負荷が大きく、二段圧縮機100を高速回転させなければならない場合に、特に二段圧縮機100は効率がよいということができる。
FIG. 15 is a diagram showing the change rate of COP when the ratio S1 / S2 and the ratio H1 / H2 are set to the optimum values of 1.235 and 2.074. In FIG. 15, the change rate of COP indicates the change rate when the ratio H1 / H2 is 1 and the ratio S1 / S2 is 1, and the COP is the reference value (100%).
As shown in FIG. 15, when the ratio S1 / S2 and the ratio H1 / H2 are optimum values, the COP becomes higher than the reference value as the rotational speed of the two-stage compressor 100 increases. Therefore, it can be said that the two-stage compressor 100 is particularly efficient when the load is large and the two-stage compressor 100 must be rotated at a high speed.

また、インジェクション運転を行う場合には、比S1/S2を上記の値に設定しつつ、比H1/H2が0.47以上1未満とした場合にCOPが高くなる。これは、インジェクションパイプ61から冷媒が注入されることにより、低段圧縮部10側の体積流量よりも、高段圧縮部30側の体積流量が多くなる場合があるため、高段吐出口36からの吐出量を多くする必要があることによる。
なお、二段圧縮機100のように、インジェクション運転可能な圧縮機の場合、インジェクション運転をする場合と、インジェクション運転をしない場合とのどちらの場合に効率がよくなるように比H1/H2を設定するかは、その二段圧縮機100がどの程度インジェクション運転をするかによって決定すればよい。もちろん、インジェクション運転するか否かの制御に応じて、低段弁押え18や高段弁押え38のたわみ量を制御可能にしてリフト量H1,H2を変更可能にしてもよい。
Further, when performing the injection operation, the COP increases when the ratio H1 / H2 is set to 0.47 or more and less than 1 while the ratio S1 / S2 is set to the above value. This is because when the refrigerant is injected from the injection pipe 61, the volume flow rate on the high stage compression unit 30 side may be larger than the volume flow rate on the low stage compression unit 10 side. This is because it is necessary to increase the discharge amount.
Note that, in the case of a compressor capable of injection operation, such as the two-stage compressor 100, the ratio H1 / H2 is set so as to improve the efficiency when either the injection operation is performed or when the injection operation is not performed. This may be determined depending on how much the two-stage compressor 100 performs the injection operation. Of course, the amount of deflection of the low-stage valve presser 18 and the high-stage valve presser 38 may be made controllable so that the lift amounts H1 and H2 can be changed according to whether or not the injection operation is performed.

次に、二段圧縮機100を備えるヒートポンプ装置101について説明する。
図16は、インジェクション回路を有するヒートポンプ装置の回路構成の一例を示す図である。図17は、図16に示すヒートポンプ装置101の冷媒の状態についてのモリエル線図である。図17において、横軸は比エンタルピ、縦軸は冷媒圧力を示す。
Next, the heat pump apparatus 101 including the two-stage compressor 100 will be described.
FIG. 16 is a diagram illustrating an example of a circuit configuration of a heat pump apparatus having an injection circuit. FIG. 17 is a Mollier diagram of the refrigerant state of the heat pump apparatus 101 shown in FIG. In FIG. 17, the horizontal axis represents specific enthalpy and the vertical axis represents refrigerant pressure.

ヒートポンプ装置101は、二段圧縮機100、熱交換器71、第1膨張弁72、レシーバー78、第3膨張弁74、熱交換器76を配管により順次接続した主冷媒回路を備える。また、ヒートポンプ装置101は、レシーバー78と第3膨張弁74との間から、二段圧縮機100のインジェクションパイプ61までを配管により接続し、配管の途中に第2膨張弁75を備えるインジェクション回路を備える。また、ヒートポンプ装置101は、主冷媒回路における冷媒とインジェクション回路における冷媒とを熱交換させる内部熱交換器73を備える。さらに、ヒートポンプ装置101は、冷媒の流れる向きを変更する四方弁77を備える。   The heat pump device 101 includes a main refrigerant circuit in which a two-stage compressor 100, a heat exchanger 71, a first expansion valve 72, a receiver 78, a third expansion valve 74, and a heat exchanger 76 are sequentially connected by piping. In addition, the heat pump apparatus 101 connects an injection circuit including a second expansion valve 75 in the middle of the pipe by connecting the pipe between the receiver 78 and the third expansion valve 74 to the injection pipe 61 of the two-stage compressor 100. Prepare. The heat pump device 101 includes an internal heat exchanger 73 that exchanges heat between the refrigerant in the main refrigerant circuit and the refrigerant in the injection circuit. Furthermore, the heat pump device 101 includes a four-way valve 77 that changes the direction in which the refrigerant flows.

まず、ヒートポンプ装置101の暖房運転時の動作について説明する。暖房運転時には、四方弁77は実線方向に設定される。なお、この暖房運転とは、空調で使われる暖房だけでなく、水に熱を与えて温水を作る給湯も含む。
二段圧縮機100で高温高圧となった気相冷媒(図17の点1)は、二段圧縮機100の吐出管5から吐出され、凝縮器であり放熱器となる熱交換器71で熱交換されて液化する(図17の点2)。このとき、冷媒から放熱された熱により空気や水などが温められ、暖房や給湯がされる。
熱交換器71で液化された液相冷媒は、第1膨張弁72(減圧機構)で減圧され、気液二相状態になる(図17の点3)。第1膨張弁72で気液二相状態になった冷媒は、レシーバー78で二段圧縮機100へ吸入される冷媒と熱交換され、冷却されて液化される(図17の点4)。レシーバー78で液化された液相冷媒は、内部熱交換器73、第3膨張弁74側の主冷媒回路と、第2膨張弁75側のインジェクション回路とに分岐して流れる。
主冷媒回路を流れる液相冷媒は、第2膨張弁75で減圧され気液二相状態となったインジェクション回路を流れる冷媒と内部熱交換器73で熱交換されて、さらに冷却される(図17の点5)。内部熱交換器73で冷却された液相冷媒は、第3膨張弁74(減圧機構)で減圧されて気液二相状態になる(図17の点6)。第3膨張弁74で気液二相状態になった冷媒は、蒸発器となる熱交換器76で熱交換され、加熱される(図17の点7)。そして、熱交換器76で加熱された冷媒は、レシーバー78でさらに加熱され(図17の点8)、吸入管8から二段圧縮機100に吸入される。
一方、インジェクション回路を流れる冷媒は、上述したように、第2膨張弁75(減圧機構)で減圧されて(図17の点9)、内部熱交換器73で熱交換される(図17の点10)。内部熱交換器73で熱交換された気液二相状態の冷媒(インジェクション冷媒)は、気液二相状態のまま二段圧縮機100のインジェクションパイプ61から低段吐出空間20へ流入する。
二段圧縮機100内では、主冷媒回路を流れ吸入管8から吸入された冷媒(図17の点8)が、低段圧縮部10で中間圧まで圧縮、加熱される(図17の点11)。中間圧まで圧縮、加熱された低段吐出空間20へ吐出された冷媒(図17の点11)と、インジェクション冷媒(図17の点8)とが合流して、温度が低下する(図17の点12)。そして、温度が低下した冷媒(図17の点12)が、さらに高段圧縮部30で圧縮、加熱され高温高圧となり、吐出流路52から吐出圧空間53へ吐出される(図17の点1)。
First, the operation | movement at the time of the heating operation of the heat pump apparatus 101 is demonstrated. During the heating operation, the four-way valve 77 is set in the solid line direction. The heating operation includes not only heating used for air conditioning, but also hot water supply that heats water to make hot water.
The gas-phase refrigerant (point 1 in FIG. 17) that has become high-temperature and high-pressure in the two-stage compressor 100 is discharged from the discharge pipe 5 of the two-stage compressor 100 and is heated by the heat exchanger 71 that is a condenser and a radiator. It is exchanged and liquefied (point 2 in FIG. 17). At this time, air or water is warmed by heat radiated from the refrigerant, and heating or hot water is supplied.
The liquid-phase refrigerant liquefied by the heat exchanger 71 is depressurized by the first expansion valve 72 (decompression mechanism) and becomes a gas-liquid two-phase state (point 3 in FIG. 17). The refrigerant in the gas-liquid two-phase state by the first expansion valve 72 is heat-exchanged with the refrigerant sucked into the two-stage compressor 100 by the receiver 78, cooled and liquefied (point 4 in FIG. 17). The liquid-phase refrigerant liquefied by the receiver 78 branches and flows into the internal heat exchanger 73, the main refrigerant circuit on the third expansion valve 74 side, and the injection circuit on the second expansion valve 75 side.
The liquid-phase refrigerant flowing through the main refrigerant circuit is heat-exchanged by the internal heat exchanger 73 with the refrigerant flowing through the injection circuit that has been decompressed by the second expansion valve 75 and is in a gas-liquid two-phase state, and is further cooled (FIG. 17). Point 5). The liquid-phase refrigerant cooled by the internal heat exchanger 73 is decompressed by the third expansion valve 74 (decompression mechanism) and becomes a gas-liquid two-phase state (point 6 in FIG. 17). The refrigerant in the gas-liquid two-phase state by the third expansion valve 74 is heat-exchanged and heated by the heat exchanger 76 serving as an evaporator (point 7 in FIG. 17). Then, the refrigerant heated by the heat exchanger 76 is further heated by the receiver 78 (point 8 in FIG. 17), and is sucked into the two-stage compressor 100 from the suction pipe 8.
On the other hand, as described above, the refrigerant flowing through the injection circuit is decompressed by the second expansion valve 75 (decompression mechanism) (point 9 in FIG. 17) and is heat-exchanged by the internal heat exchanger 73 (point in FIG. 17). 10). The gas-liquid two-phase refrigerant (injection refrigerant) heat-exchanged by the internal heat exchanger 73 flows into the low-stage discharge space 20 from the injection pipe 61 of the two-stage compressor 100 in the gas-liquid two-phase state.
In the two-stage compressor 100, the refrigerant (point 8 in FIG. 17) flowing through the main refrigerant circuit and sucked from the suction pipe 8 is compressed and heated to an intermediate pressure by the low-stage compressor 10 (point 11 in FIG. 17). ). The refrigerant (point 11 in FIG. 17) discharged into the low-stage discharge space 20 compressed and heated to the intermediate pressure and the injection refrigerant (point 8 in FIG. 17) merge to lower the temperature (in FIG. 17). Point 12). And the refrigerant | coolant (point 12 of FIG. 17) in which temperature fell is further compressed and heated by the high stage compression part 30, becomes high temperature high pressure, and is discharged to the discharge pressure space 53 from the discharge flow path 52 (point 1 of FIG. 17). ).

なお、インジェクション運転を行わない場合には、第2膨張弁75の開度を全閉にする。つまり、インジェクション運転を行う場合には、第2膨張弁75の開度が所定の開度よりも大きくなっているが、インジェクション運転を行わない際には、第2膨張弁75の開度を所定の開度より小さくする。これにより、二段圧縮機100のインジェクションパイプ61へ冷媒が流入しない。つまり、熱交換器71、第1膨張弁72、レシーバー78を通過した冷媒の全てを吸入管8から二段圧縮機100へ吸入させる。
ここで、第2膨張弁75の開度は、制御部により電子制御により制御される。なお、制御部とは、例えば、マイクロコンピュータ等である。
When the injection operation is not performed, the opening of the second expansion valve 75 is fully closed. That is, when the injection operation is performed, the opening degree of the second expansion valve 75 is larger than the predetermined opening degree. However, when the injection operation is not performed, the opening degree of the second expansion valve 75 is predetermined. The opening is smaller than. Thereby, the refrigerant does not flow into the injection pipe 61 of the two-stage compressor 100. That is, all the refrigerant that has passed through the heat exchanger 71, the first expansion valve 72, and the receiver 78 is sucked into the two-stage compressor 100 from the suction pipe 8.
Here, the opening degree of the second expansion valve 75 is controlled by electronic control by the control unit. The control unit is, for example, a microcomputer.

次に、ヒートポンプ装置101の冷房運転時の動作について説明する。冷房運転時には、四方弁77は破線方向に設定される。
二段圧縮機100で高温高圧となった気相冷媒(図17の点1)は、二段圧縮機100の吐出管5から吐出され、凝縮器であり放熱器となる熱交換器76で熱交換されて液化する(図17の点2)。熱交換器76で液化された液相冷媒は、第3膨張弁74で減圧され、気液二相状態になる(図17の点3)。第3膨張弁74で気液二相状態になった冷媒は、内部熱交換器73で熱交換され、冷却され液化される(図17の点4)。内部熱交換器73では、第3膨張弁74で気液二相状態になった冷媒と、内部熱交換器73で液化された液相冷媒を第2膨張弁75で減圧させて気液二相状態になった冷媒(図17の点9)とを熱交換させている。内部熱交換器73で熱交換された液相冷媒(図17の点4)は、レシーバー78側の主冷媒回路と、内部熱交換器73側のインジェクション回路とに分岐して流れる。
主冷媒回路を流れる液相冷媒は、レシーバー78で二段圧縮機100に吸入される冷媒と熱交換されて、さらに冷却される(図17の点5)。レシーバー78で冷却された液相冷媒は、第1膨張弁72で減圧されて気液二相状態になる(図17の点6)。第1膨張弁72で気液二相状態になった冷媒は、蒸発器となる熱交換器71で熱交換され、加熱される(図17の点7)。このとき、冷媒が吸熱することにより空気や水などが冷やされ、冷房されたり、冷水や氷を作ったり、冷凍がされる。
そして、熱交換器71で加熱された冷媒は、レシーバー78でさらに加熱され(図17の点8)、吸入管8から二段圧縮機100に吸入される。
一方、インジェクション回路を流れる冷媒は、上述したように、第2膨張弁75で減圧されて(図17の点9)、内部熱交換器73で熱交換される(図17の点10)。内部熱交換器73で熱交換された気液二相状態の冷媒(インジェクション冷媒)は、気液二相状態のまま二段圧縮機100のインジェクションパイプ61から低段吐出空間20へ流入する。
二段圧縮機100内での圧縮動作については、暖房運転時と同様である。
Next, the operation | movement at the time of the cooling operation of the heat pump apparatus 101 is demonstrated. During the cooling operation, the four-way valve 77 is set in a broken line direction.
The gas-phase refrigerant (point 1 in FIG. 17) that has become high temperature and high pressure in the two-stage compressor 100 is discharged from the discharge pipe 5 of the two-stage compressor 100 and is heated by the heat exchanger 76 that is a condenser and a radiator. It is exchanged and liquefied (point 2 in FIG. 17). The liquid phase refrigerant liquefied by the heat exchanger 76 is depressurized by the third expansion valve 74 and becomes a gas-liquid two-phase state (point 3 in FIG. 17). The refrigerant in the gas-liquid two-phase state by the third expansion valve 74 is heat-exchanged by the internal heat exchanger 73, cooled and liquefied (point 4 in FIG. 17). In the internal heat exchanger 73, the refrigerant that has become a gas-liquid two-phase state by the third expansion valve 74 and the liquid-phase refrigerant that has been liquefied by the internal heat exchanger 73 are decompressed by the second expansion valve 75, and the gas-liquid two-phase Heat is exchanged with the refrigerant in the state (point 9 in FIG. 17). The liquid refrigerant (point 4 in FIG. 17) heat-exchanged by the internal heat exchanger 73 branches and flows into the main refrigerant circuit on the receiver 78 side and the injection circuit on the internal heat exchanger 73 side.
The liquid-phase refrigerant flowing through the main refrigerant circuit is heat-exchanged with the refrigerant sucked into the two-stage compressor 100 by the receiver 78 and further cooled (point 5 in FIG. 17). The liquid-phase refrigerant cooled by the receiver 78 is decompressed by the first expansion valve 72 and becomes a gas-liquid two-phase state (point 6 in FIG. 17). The refrigerant in the gas-liquid two-phase state by the first expansion valve 72 is heat-exchanged and heated by the heat exchanger 71 serving as an evaporator (point 7 in FIG. 17). At this time, the refrigerant absorbs heat, thereby cooling the air, water, etc., cooling, making cold water or ice, or freezing.
The refrigerant heated by the heat exchanger 71 is further heated by the receiver 78 (point 8 in FIG. 17), and is sucked into the two-stage compressor 100 from the suction pipe 8.
On the other hand, as described above, the refrigerant flowing through the injection circuit is decompressed by the second expansion valve 75 (point 9 in FIG. 17) and heat-exchanged by the internal heat exchanger 73 (point 10 in FIG. 17). The gas-liquid two-phase refrigerant (injection refrigerant) heat-exchanged by the internal heat exchanger 73 flows into the low-stage discharge space 20 from the injection pipe 61 of the two-stage compressor 100 in the gas-liquid two-phase state.
The compression operation in the two-stage compressor 100 is the same as in the heating operation.

なお、インジェクション運転を行わない際には、暖房運転時と同様に、第2膨張弁75の開度を全閉にして、二段圧縮機100のインジェクションパイプ61へ冷媒が流入しないようにする。   When the injection operation is not performed, the opening of the second expansion valve 75 is fully closed so that the refrigerant does not flow into the injection pipe 61 of the two-stage compressor 100 as in the heating operation.

また、熱交換器71は、上述したとおり、高温高圧となった気相冷媒又は低温低圧となった液相冷媒と水等の液体との熱交換を行う熱交換器であってもよい。また、熱交換器71は、高温高圧となった気相冷媒又は低温低圧となった液相冷媒と空気等の気体との熱交換を行う熱交換器であってもよい。つまり、図16で説明したヒートポンプ装置101は、空調装置であってもよいし、給湯装置であってもよいし、冷凍装置や冷蔵装置であってもよい。   Further, as described above, the heat exchanger 71 may be a heat exchanger that performs heat exchange between a gas phase refrigerant that has become high temperature and pressure or a liquid phase refrigerant that has become low temperature and low pressure and a liquid such as water. Moreover, the heat exchanger 71 may be a heat exchanger that performs heat exchange between a gas-phase refrigerant that has become high temperature and pressure or a liquid-phase refrigerant that has become low temperature and low pressure and a gas such as air. That is, the heat pump apparatus 101 described in FIG. 16 may be an air conditioner, a hot water supply apparatus, a refrigeration apparatus, or a refrigeration apparatus.

ここで、インジェクション運転をするのは、負荷の高いときである。負荷とは、熱交換器71において主冷媒回路を流れる冷媒と熱交換される流体の温度を所定の温度にするのに必要な熱量である必要負荷である。必要負荷は、外気温や圧縮機の回転数等を指標として計ることができる。ここでは、図示されていない必要負荷検出部が、外気温や圧縮機の回転数等を検出して、必要負荷を検出しているものとする。
例えば、暖房運転の場合であれば、外気温が所定の温度(例えば、2℃)以下の場合や、圧縮機の回転数が所定の周波数(例えば、60Hz)以上の場合に、インジェクション運転する。これにより、低外気温時における暖房能力を高くすることができ、暖房や給湯性能のよいヒートポンプ装置が得られる。インジェクション運転の必要がないこの他のような場合には、暖房運転時であっても、第2膨張弁75の開度を全閉にして、インジェクション運転を行わない。
Here, the injection operation is performed when the load is high. The load is a necessary load that is an amount of heat necessary to bring the temperature of the fluid that exchanges heat with the refrigerant flowing through the main refrigerant circuit in the heat exchanger 71 to a predetermined temperature. The required load can be measured by using the outside air temperature, the rotational speed of the compressor, or the like as an index. Here, it is assumed that a required load detection unit (not shown) detects the required load by detecting the outside air temperature, the rotational speed of the compressor, and the like.
For example, in the case of heating operation, the injection operation is performed when the outside air temperature is equal to or lower than a predetermined temperature (for example, 2 ° C.) or when the rotational speed of the compressor is equal to or higher than a predetermined frequency (for example, 60 Hz). Thereby, the heating capability at the time of low outside temperature can be made high, and the heat pump apparatus with a good heating and hot water supply performance is obtained. In other cases where the injection operation is not necessary, the opening of the second expansion valve 75 is fully closed and the injection operation is not performed even during the heating operation.

二段圧縮機100は、比S1/S2と比H1/H2とを上記のように設定することにより、効率がよい。したがって、二段圧縮機100を備えるヒートポンプ装置も効率がよい。   The two-stage compressor 100 is efficient by setting the ratio S1 / S2 and the ratio H1 / H2 as described above. Therefore, the heat pump device including the two-stage compressor 100 is also efficient.

1 密閉容器、2 電動機、2a 固定子、2b 回転子、3 圧縮機構部、4 クランクシャフト、5 吐出管、6 潤滑油貯蔵部、7 吸入マフラ、8 吸入管、10 低段圧縮部、11 低段シリンダ、12 低段ローリングピストン、13 低段ベーン、14 低段フレーム、15 低段圧縮室、16 低段吐出口、17 低段吐出弁、18 低段弁押え、19 低段カバー、20 低段吐出空間、21 低段吸入口、22 中間流出口、23 バイパス口、24 バイパス弁、25 バイパス弁押え、26 低段背圧室、27 バネ、28,29 リベット、30 高段圧縮部、31 高段シリンダ、32 高段ローリングピストン、33 高段ベーン、34 高段フレーム、35 高段圧縮室、36 高段吐出口、37 高段吐出弁、38 高段弁押え、39 高段カバー、40 高段吐出空間、41 高段吸入口、42 高段吸入流路、46 高段背圧室、49 リベット、50 中間仕切板、51 中間連結管、52 吐出流路、53 吐出圧空間、54 四方弁、55 圧力導入路、60 インジェクタ、61 インジェクションパイプ、71 熱交換器、72 第1膨張弁、73 内部熱交換器、74 第3膨張弁、75 第2膨張弁、76 熱交換器、77 四方弁、78 レシーバー、100 二段圧縮機、101 ヒートポンプ装置。   DESCRIPTION OF SYMBOLS 1 Airtight container, 2 Electric motor, 2a Stator, 2b Rotor, 3 Compression mechanism part, 4 Crankshaft, 5 Discharge pipe, 6 Lubricating oil storage part, 7 Intake muffler, 8 Intake pipe, 10 Low stage compression part, 11 Low Stage cylinder, 12 Low stage rolling piston, 13 Low stage vane, 14 Low stage frame, 15 Low stage compression chamber, 16 Low stage discharge port, 17 Low stage discharge valve, 18 Low stage valve presser, 19 Low stage cover, 20 Low Stage discharge space, 21 Low stage suction port, 22 Intermediate outlet, 23 Bypass port, 24 Bypass valve, 25 Bypass valve presser, 26 Low stage back pressure chamber, 27 Spring, 28, 29 Rivet, 30 High stage compression section, 31 High stage cylinder, 32 High stage rolling piston, 33 High stage vane, 34 High stage frame, 35 High stage compression chamber, 36 High stage discharge port, 37 High stage discharge valve, 38 High stage valve presser, 3 9 High stage cover, 40 High stage discharge space, 41 High stage suction port, 42 High stage suction flow path, 46 High stage back pressure chamber, 49 Rivet, 50 Intermediate partition plate, 51 Intermediate connection pipe, 52 Discharge flow path, 53 Discharge pressure space, 54 four-way valve, 55 pressure introduction path, 60 injector, 61 injection pipe, 71 heat exchanger, 72 first expansion valve, 73 internal heat exchanger, 74 third expansion valve, 75 second expansion valve, 76 Heat exchanger, 77 four-way valve, 78 receiver, 100 two-stage compressor, 101 heat pump device.

Claims (8)

冷媒を低段圧縮室へ吸入し、吸入した冷媒を圧縮して低段吐出口から吐出する低段圧縮部と、
前記低段圧縮部が圧縮した冷媒が前記低段吐出口から吐出される低段吐出空間を形成する低段吐出部と、
前記低段吐出部が形成する前記低段吐出空間へ吐出された冷媒を中間連結流路を介して高段圧縮室へ吸入し、吸入した冷媒を圧縮して高段吐出口から吐出する高段圧縮部と、
前記高段圧縮部が圧縮した冷媒が前記高段吐出口から吐出される高段吐出空間を形成する高段吐出部と、
前記低段圧縮部の前記低段吐出口に設けられ、前記低段圧縮室における冷媒の圧力が前記低段吐出空間における冷媒の圧力よりも高くなった場合に、前記低段吐出口の開口を塞いだ状態から前記低段吐出空間側へたわんで開く低段吐出弁と、
前記高段圧縮部の前記高段吐出口に設けられ、前記高段圧縮室における冷媒の圧力が前記高段吐出空間における冷媒の圧力よりも高くなった場合に、前記高段吐出口の開口を塞いだ状態から前記高段吐出空間側へたわんで開く高段吐出弁とを備え、
前記低段吐出口の開口面積は、前記高段吐出口の開口面積より大きく、前記高段吐出口の開口面積の2.25倍以下であり、
前記低段吐出弁がたわんで開いた場合における前記低段吐出口の重心位置と前記低段吐出弁との間の前記低段吐出弁がたわむ方向の距離である前記低段吐出弁のリフト量は、前記高段吐出弁がたわんで開いた場合における前記高段吐出口の重心位置と前記高段吐出弁との間の前記高段吐出弁がたわむ方向の距離である前記高段吐出弁のリフト量の0.47倍以上2.1倍以下である
ことを特徴とする二段圧縮機。
A low-stage compression section that sucks the refrigerant into the low-stage compression chamber, compresses the drawn refrigerant, and discharges the refrigerant from the low-stage discharge port;
A low-stage discharge section that forms a low-stage discharge space in which the refrigerant compressed by the low-stage compression section is discharged from the low-stage discharge port;
A high stage that sucks the refrigerant discharged into the low-stage discharge space formed by the low-stage discharge part into the high-stage compression chamber via the intermediate connection flow path, compresses the sucked refrigerant, and discharges it from the high-stage discharge port. A compression section;
A high-stage discharge section that forms a high-stage discharge space in which the refrigerant compressed by the high-stage compression section is discharged from the high-stage discharge port;
When the pressure of the refrigerant in the low-stage compression chamber is higher than the pressure of the refrigerant in the low-stage discharge space, provided at the low-stage discharge port of the low-stage compression section, the opening of the low-stage discharge port is opened. A low-stage discharge valve that bends and opens from the closed state toward the low-stage discharge space,
When the pressure of the refrigerant in the high stage compression chamber is higher than the pressure of the refrigerant in the high stage discharge space, the opening of the high stage discharge port is provided at the high stage discharge port of the high stage compression unit. A high-stage discharge valve that opens and bends from the closed state to the high-stage discharge space side;
The opening area of the low-stage outlet is larger than the opening area of the high-stage outlet, and is 2.25 times or less the opening area of the high-stage outlet.
The lift amount of the low stage discharge valve, which is the distance in the direction in which the low stage discharge valve bends between the position of the center of gravity of the low stage discharge port and the low stage discharge valve when the low stage discharge valve is bent open Is the distance in the direction of deflection of the high-stage discharge valve between the position of the center of gravity of the high-stage discharge port and the high-stage discharge valve when the high-stage discharge valve is bent open. A two-stage compressor having a lift amount of 0.47 times or more and 2.1 times or less.
前記低段吐出弁のリフト量は、前記高段吐出弁のリフト量より大きく、前記高段吐出弁のリフト量の2.1倍以下である
ことを特徴とする請求項1に記載の二段圧縮機。
2. The two-stage according to claim 1, wherein a lift amount of the low-stage discharge valve is larger than a lift amount of the high-stage discharge valve and is 2.1 times or less of a lift amount of the high-stage discharge valve. Compressor.
前記低段吐出口の開口面積は、前記高段吐出口の開口面積の1.8倍以下であり、
前記低段吐出弁のリフト量は、前記高段吐出弁のリフト量の1.5倍以上である
ことを特徴とする請求項2に記載の二段圧縮機。
The opening area of the low stage outlet is 1.8 times or less the opening area of the high stage outlet,
The two-stage compressor according to claim 2, wherein the lift amount of the low-stage discharge valve is 1.5 times or more the lift amount of the high-stage discharge valve.
前記低段吐出口の開口面積は、前記高段吐出口の開口面積の1.3倍以下であり、
前記低段吐出弁のリフト量は、前記高段吐出弁のリフト量の1.9倍以上である
ことを特徴とする請求項3に記載の二段圧縮機。
The opening area of the low stage outlet is 1.3 times or less the opening area of the high stage outlet,
The two-stage compressor according to claim 3, wherein a lift amount of the low-stage discharge valve is 1.9 times or more a lift amount of the high-stage discharge valve.
前記低段吐出口の開口面積は、前記高段吐出口の開口面積の1.235倍であり、
前記低段吐出弁のリフト量は、前記高段吐出弁のリフト量の2.074倍である
ことを特徴とする請求項4に記載の二段圧縮機。
The opening area of the low stage outlet is 1.235 times the opening area of the high stage outlet,
5. The two-stage compressor according to claim 4, wherein the lift amount of the low-stage discharge valve is 2.074 times the lift amount of the high-stage discharge valve.
前記二段圧縮機は、さらに、
前記低段吐出部又は前記中間連結流路に接続され、外部から冷媒が注入されるインジェクションパイプを備え、
前記低段吐出弁のリフト量は、前記高段吐出弁のリフト量より小さく、前記高段吐出弁のリフト量の0.47倍以上である
ことを特徴とする請求項1に記載の二段圧縮機。
The two-stage compressor further includes:
An injection pipe connected to the low-stage discharge part or the intermediate connection flow path and into which refrigerant is injected from the outside,
2. The two-stage according to claim 1, wherein the lift amount of the low-stage discharge valve is smaller than the lift amount of the high-stage discharge valve and is 0.47 times or more the lift amount of the high-stage discharge valve. Compressor.
圧縮機と、放熱器と、第1膨張機構と、蒸発器とが配管により順次接続されたヒートポンプ装置であり、
前記圧縮機は、
冷媒を低段圧縮室へ吸入し、吸入した冷媒を圧縮して低段吐出口から吐出する低段圧縮部と、
前記低段圧縮部が圧縮した冷媒が前記低段吐出口から吐出される低段吐出空間を形成する低段吐出部と、
前記低段吐出部が形成する前記低段吐出空間へ吐出された冷媒を中間連結流路を介して高段圧縮室へ吸入し、吸入した冷媒を圧縮して高段吐出口から吐出する高段圧縮部と、
前記高段圧縮部が圧縮した冷媒が前記高段吐出口から吐出される高段吐出空間を形成する高段吐出部と、
前記低段圧縮部の前記低段吐出口に設けられ、前記低段圧縮室における冷媒の圧力が前記低段吐出空間における冷媒の圧力よりも高くなった場合に、前記低段吐出空間側へたわんで開く低段吐出弁と、
前記高段圧縮部の前記高段吐出口に設けられ、前記高段圧縮室における冷媒の圧力が前記高段吐出空間における冷媒の圧力よりも高くなった場合に、前記低段吐出空間側へたわんで開く高段吐出弁とを備え、
前記低段吐出口の開口面積は、前記高段吐出口の開口面積より大きく、前記高段吐出口の開口面積の2.25倍以下であり、
前記低段吐出弁がたわむ高さであるリフト量は、前記高段吐出弁がたわむ高さであるリフト量の0.47倍以上2.1倍以下である
ことを特徴とするヒートポンプ装置。
A heat pump device in which a compressor, a radiator, a first expansion mechanism, and an evaporator are sequentially connected by piping;
The compressor is
A low-stage compression section that sucks the refrigerant into the low-stage compression chamber, compresses the drawn refrigerant, and discharges the refrigerant from the low-stage discharge port;
A low-stage discharge section that forms a low-stage discharge space in which the refrigerant compressed by the low-stage compression section is discharged from the low-stage discharge port;
A high stage that sucks the refrigerant discharged into the low-stage discharge space formed by the low-stage discharge part into the high-stage compression chamber via the intermediate connection flow path, compresses the sucked refrigerant, and discharges it from the high-stage discharge port. A compression section;
A high-stage discharge section that forms a high-stage discharge space in which the refrigerant compressed by the high-stage compression section is discharged from the high-stage discharge port;
When the pressure of the refrigerant in the low-stage compression chamber is higher than the pressure of the refrigerant in the low-stage discharge space, provided at the low-stage discharge port of the low-stage compression section, it bends toward the low-stage discharge space. A low-stage discharge valve that opens at
When the pressure of the refrigerant in the high-stage compression chamber is higher than the pressure of the refrigerant in the high-stage discharge space, provided at the high-stage discharge port of the high-stage compression section, it bends toward the low-stage discharge space. With a high-stage discharge valve that opens at
The opening area of the low-stage outlet is larger than the opening area of the high-stage outlet, and is 2.25 times or less the opening area of the high-stage outlet.
A heat pump device characterized in that a lift amount that is a height at which the low-stage discharge valve is bent is 0.47 times or more and 2.1 times or less than a lift amount that is a height at which the high-stage discharge valve is bent.
前記ヒートポンプ装置は、さらに、
前記放熱器と前記第1膨張機構との間と、前記圧縮機の前記低段吐出部又は前記中間連結流路に接続されたインジェクションパイプとを繋ぎ、第2膨張機構が設けられたインジェクション回路とを備え、
前記低段吐出弁のリフト量は、前記高段吐出弁のリフト量より小さく、前記高段吐出弁のリフト量の0.47倍以上である
ことを特徴とする請求項7に記載のヒートポンプ装置。
The heat pump device further includes:
An injection circuit provided between the radiator and the first expansion mechanism and an injection pipe connected to the low-stage discharge part of the compressor or the intermediate connection flow path and provided with a second expansion mechanism; With
8. The heat pump device according to claim 7, wherein the lift amount of the low stage discharge valve is smaller than the lift amount of the high stage discharge valve and is 0.47 times or more the lift amount of the high stage discharge valve. .
JP2010045535A 2010-03-02 2010-03-02 Two-stage compressor and heat pump device Active JP5328697B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010045535A JP5328697B2 (en) 2010-03-02 2010-03-02 Two-stage compressor and heat pump device
KR1020110011799A KR101250084B1 (en) 2010-03-02 2011-02-10 Two-stage compressor and heat pump apparatus
CN2011100439621A CN102192150B (en) 2010-03-02 2011-02-23 Two-stage compressor and heat pump device
CZ2011-98A CZ306343B6 (en) 2010-03-02 2011-02-25 Two-stage compressor and heat pump apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045535A JP5328697B2 (en) 2010-03-02 2010-03-02 Two-stage compressor and heat pump device

Publications (2)

Publication Number Publication Date
JP2011179436A JP2011179436A (en) 2011-09-15
JP5328697B2 true JP5328697B2 (en) 2013-10-30

Family

ID=44600842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045535A Active JP5328697B2 (en) 2010-03-02 2010-03-02 Two-stage compressor and heat pump device

Country Status (4)

Country Link
JP (1) JP5328697B2 (en)
KR (1) KR101250084B1 (en)
CN (1) CN102192150B (en)
CZ (1) CZ306343B6 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140912A1 (en) * 2012-03-23 2013-09-26 東芝キヤリア株式会社 Rotating compressor and freeze-cycle apparatus
JP5429353B1 (en) * 2012-07-25 2014-02-26 ダイキン工業株式会社 Compressor
CN103671116B (en) * 2012-09-25 2016-10-05 珠海格力节能环保制冷技术研究中心有限公司 Dual-level enthalpy adding compressor
CN103807175B (en) * 2012-11-13 2016-11-16 珠海格力节能环保制冷技术研究中心有限公司 Birotor two-stage enthalpy-increasing compressor, air-conditioner and Teat pump boiler
CN105298840B (en) * 2015-11-23 2017-07-11 珠海格力节能环保制冷技术研究中心有限公司 Multi-cylinder Dual-level enthalpy adding compressor and air-conditioner, Teat pump boiler and control method
CN107327402B (en) * 2017-08-21 2021-05-07 西安庆安制冷设备股份有限公司 Rolling piston compressor and compression structure thereof
JP7108222B1 (en) * 2021-09-30 2022-07-28 ダイキン工業株式会社 Compressors and refrigeration equipment

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057990U (en) * 1991-07-11 1993-02-02 日産自動車株式会社 Air conditioning compressor
JP2699723B2 (en) * 1991-11-12 1998-01-19 松下電器産業株式会社 Two-stage compression refrigeration system with check valve device
JPH1162863A (en) * 1997-08-19 1999-03-05 Sanyo Electric Co Ltd Compressor
JPH11230072A (en) * 1998-02-06 1999-08-24 Sanyo Electric Co Ltd Compressor
JP2002098081A (en) * 2000-09-27 2002-04-05 Sanyo Electric Co Ltd Multistage compression type compressor
JP3863799B2 (en) 2002-04-01 2006-12-27 三洋電機株式会社 Multi-stage rotary compressor
CN1318760C (en) * 2002-03-13 2007-05-30 三洋电机株式会社 Multi-stage compressive rotary compressor and refrigerant return device
JP4024067B2 (en) * 2002-04-03 2007-12-19 三洋電機株式会社 Horizontal multi-stage rotary compressor
JP2006177225A (en) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc Rotary compressor
JP4265577B2 (en) * 2005-06-30 2009-05-20 日立アプライアンス株式会社 Two stage screw compressor
JP2008175110A (en) * 2007-01-17 2008-07-31 Daikin Ind Ltd Compressor
JP4790664B2 (en) 2007-05-22 2011-10-12 日立アプライアンス株式会社 Rotary type two-stage compressor and air conditioner

Also Published As

Publication number Publication date
CZ201198A3 (en) 2012-04-18
CN102192150B (en) 2013-12-04
CZ306343B6 (en) 2016-12-14
KR20110099630A (en) 2011-09-08
CN102192150A (en) 2011-09-21
KR101250084B1 (en) 2013-04-02
JP2011179436A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5306478B2 (en) Heat pump device, two-stage compressor, and operation method of heat pump device
JP5328697B2 (en) Two-stage compressor and heat pump device
US7914267B2 (en) Multistage compressor for a CO2 cycle that includes a rotary compressing mechanism and a scroll compressing mechanism
EP2578886B1 (en) Scroll compressor and air conditioner including the same
US20090007590A1 (en) Refrigeration System
JP2006242557A (en) Refrigerating device
EP2551613B1 (en) Refrigeration cycle apparatus and method for operating same
JPWO2013030896A1 (en) Refrigeration cycle equipment
KR20150018200A (en) Compressor and air conditioner including the same
US9574561B2 (en) Scroll compressor and air conditioner including a scroll compressor
JP5659908B2 (en) Heat pump equipment
JPH02230995A (en) Compressor for heat pump and operating method thereof
US9958189B2 (en) Air conditioner
JP5659909B2 (en) Heat pump equipment
WO2013027237A1 (en) Two-stage compressor, and heat pump device
JP2006284058A (en) Air conditioner and its control method
JPH0730962B2 (en) Two-stage compression refrigeration cycle
KR102032282B1 (en) Scroll Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130723

R150 Certificate of patent or registration of utility model

Ref document number: 5328697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250