JP4024067B2 - Horizontal multi-stage rotary compressor - Google Patents

Horizontal multi-stage rotary compressor Download PDF

Info

Publication number
JP4024067B2
JP4024067B2 JP2002100914A JP2002100914A JP4024067B2 JP 4024067 B2 JP4024067 B2 JP 4024067B2 JP 2002100914 A JP2002100914 A JP 2002100914A JP 2002100914 A JP2002100914 A JP 2002100914A JP 4024067 B2 JP4024067 B2 JP 4024067B2
Authority
JP
Japan
Prior art keywords
rotary compression
baffle plate
rotary
oil
sealed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002100914A
Other languages
Japanese (ja)
Other versions
JP2003293974A (en
Inventor
俊行 江原
兼三 松本
孝 佐藤
大 松浦
里  和哉
裕之 松森
隆泰 斎藤
晴久 山崎
昌也 只野
悟 今井
淳志 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002100914A priority Critical patent/JP4024067B2/en
Publication of JP2003293974A publication Critical patent/JP2003293974A/en
Application granted granted Critical
Publication of JP4024067B2 publication Critical patent/JP4024067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Description

【0001】
【発明の属する技術分野】
本発明は、第1の回転圧縮要素で圧縮されて密閉容器内に吐出された冷媒ガスを第2の回転圧縮要素に吸引し、圧縮して吐出する横型多段圧縮式ロータリコンプレッサに関するものである。
【0002】
【従来の技術】
CO2を冷媒として使用し、第1の回転圧縮要素と第2の回転圧縮要素から成る回転圧縮機構部を備える多段圧縮式ロータリコンプレッサ、特に内部中間圧型の多段圧縮式ロータリコンプレッサは、通常縦型の密閉容器内上部に電動要素を配置し、下部に当該電動要素の回転軸で駆動される回転圧縮機構部を配置して構成されている。そして、第1の回転圧縮要素の吸込ポートからCO2冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となり、シリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。
【0003】
この密閉容器内の中間圧の冷媒ガスは第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経て、コンプレッサ外部の放熱器に流入する構成とされていた。
【0004】
また、係る縦型のロータリコンプレッサでは、回転圧縮機構部の下方に位置する密閉容器内底部がオイル溜めとされており、回転軸下端に構成された給油手段としてのオイルポンプによりオイル溜めからオイルが吸引され、回転圧縮機構部に供給されて回転圧縮機構部や回転軸の摺動部の摩耗等を防いでいた。
【0005】
【発明が解決しようとする課題】
ところで、このような多段圧縮式ロータリコンプレッサを横型として用いた場合、第1の回転圧縮要素にて圧縮された冷媒ガスと共に密閉容器内に吐出されたオイルは回転圧縮機構部側だけで無く、電動要素側の密閉容器底部にも溜まるようになる。そのため、回転軸の回転圧縮機構部側の端部に構成されるオイルポンプによるオイルの吸引が円滑に行えなくなる問題が生じる。
【0006】
また、2段目となる第2の回転圧縮要素に吸い込まれる冷媒ガスは密閉容器内にあるため、この第2の回転圧縮要素に吸い込まれる冷媒ガスとオイルを良好に分離しないと、第2の回転圧縮要素から外部に大量のオイルが吐出されて密閉容器内におけるオイル不足が発生する原因となる。
【0007】
本発明は、係る技術的課題を解決するために成されたものであり、所謂内部中間圧型の多段圧縮式ロータリコンプレッサを横型として用いる場合に、摺動部へのオイルの供給を円滑に行えるようにすることを目的とする。
【0008】
【課題を解決するための手段】
即ち、請求項1の発明は横型の密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の回転圧縮要素から成る回転圧縮機構部とを備え、前記第1の回転圧縮要素で圧縮された冷媒ガスを前記密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを前記第2の回転圧縮要素で圧縮する横型多段圧縮式ロータリコンプレッサであって、前記密閉容器内を前記電動要素側と回転圧縮機構部側とに区画して前記電動要素側の圧力を前記回転圧縮機構部側の圧力より高くして前記密閉容器内の前記回転圧縮機構部側のオイルレベルを前記電動要素側のオイルレベルより高くする差圧を構成するためのバッフル板と、該バッフル板の前記回転圧縮機構部側に設けられ、前記密閉容器内に封入されたオイルを前記回転圧縮機構部に供給するためにオイル吸上パイプの開口を前記オイル中に開口させた給油手段と、前記バッフル板に設けられ、前記密閉容器内の冷媒ガスを前記第2の回転圧縮要素に吸い込ませるための吸気通路とを備え前記第1の回転圧縮要素で圧縮された冷媒ガスを前記バッフル板の前記電動要素側に吐出させると共に、当該バッフル板を前記回転圧縮機構部と間隔を存して設けたものである。
【0010】
請求項2の発明では横型の密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の回転圧縮要素から成る回転圧縮機構部とを備え、前記第1の回転圧縮要素で圧縮された冷媒ガスを前記密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを前記第2の回転圧縮要素で圧縮する横型多段圧縮式ロータリコンプレッサであって、前記密閉容器内を前記電動要素側と回転圧縮機構部側とに区画して前記電動要素側の圧力を前記回転圧縮機構部側の圧力より高くして前記密閉容器内の前記回転圧縮機構部側のオイルレベルを前記電動要素側のオイルレベルより高くする差圧を構成するためのバッフル板と、該バッフル板の前記回転圧縮機構部側に設けられ、前記密閉容器内に封入されたオイルを前記回転圧縮機構部に供給するためにオイル吸上パイプの開口を前記オイル中に開口させた給油手段と、前記バッフル板に設けられ、前記密閉容器内の冷媒ガスを前記第2の回転圧縮要素に吸い込ませるための吸気通路とを備え、前記第1の回転圧縮要素で圧縮された冷媒ガスを前記バッフル板の前記電動要素側に吐出させると共に、前記バッフル板は、前記第2の回転圧縮要素の吐出消音室を構成するためのカバーを兼ね、前記吸気通路の前記バッフル板への取付箇所以外の部分は当該バッフル板から離間しているものである。
【0011】
請求項3の発明では上記の各発明に加えて、吸気通路の吸込口をバッフル板の回転圧縮機構部側に開口することを特徴とするものである。
【0012】
請求項4の発明では上記の各発明に加えて、前記吸気通路をバッフル板の電動要素側に設けられることを特徴とするものである。
【0013】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の横型多段圧縮式ロータリコンプレッサの実施例としての第1及び第2の回転圧縮要素32、34を備えた内部中間圧型の横型多段(2段)圧縮式ロータリコンプレッサ10の縦断側面図、図2は図1のロータリコンプレッサ10の平断面図をそれぞれ示している。
【0014】
各図において、実施例のロータリコンプレッサ10は二酸化炭素(CO2)を冷媒とする内部中間圧型の横型多段圧縮式ロータリコンプレッサで、このロータリコンプレッサ10は両端が密閉された横長円筒状の密閉容器12を備え、この密閉容器12の底部をオイル溜めとしている。この密閉容器12内には電動要素14と、電動要素14の回転軸16により駆動される第1の回転圧縮要素32及び第2の回転圧縮要素34からなる回転圧縮機構部18が収納されている。
【0015】
密閉容器12の電動要素14側の端部には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル20が取り付けられている。
【0016】
電動要素14は密閉容器12の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り密閉容器12の軸心方向に延在する回転軸16に固定されている。
【0017】
回転軸16の回転圧縮機構部18側の端部には給油手段としてのオイルポンプ101が形成されている。このオイルポンプ101は、密閉容器12内の底部に形成されたオイル溜めから潤滑油としてのオイルを吸い上げて回転圧縮機構部18の摺動部に供給して摩耗を防止するために設けられており、このオイルポンプ101からは密閉容器12の底部に向かってオイル吸上パイプ101Aが降下し、オイル溜にて開口している。
【0018】
また、前記ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。そして、前記ロータ22もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0019】
前記第1の回転圧縮要素32と第2の回転圧縮要素34は第1及び第2のシリンダ38、40により構成され、これらシリンダ38、40間には中間仕切板36が狭持されている。即ち、回転圧縮機構部18は、第1の回転圧縮要素32及び第2の回転圧縮要素34と、中間仕切板36とから構成されている。また、第1及び第2の回転圧縮要素32、34は、それぞれ中間仕切板36の両側(図1では左右)に配置された第1及び第2のシリンダ38、40と、180度の異相差を有して回転軸16に設けられた第1及び第2の偏心部42、44に嵌合され、第1及び第2のシリンダ38、40内を偏心回転する第1及び第2のローラ46、48と、これらローラ46、48にそれぞれ当接してシリンダ38、40内をそれぞれ低圧室側と高圧室側とに区画する第1及び第2のベーン50、52と、シリンダ38の電動要素14側の開口面とシリンダ40の電動要素14とは反対側の開口面をそれぞれ閉塞して回転軸16の軸受けを兼用する支持部材54、56とから構成されている。
【0020】
ベーン50、52の外側(図1では下側)には、ベーン50、52の外側端部に当接して、常時ベーン50、52をローラ46、48側に付勢するスプリング74、76が設けられている。更に、スプリング74、76の密閉容器12側には金属製のプラグ130、132が設けられ、スプリング74、76の抜け止めの役目を果たす。また、第1のベーン50には図示しない背圧室が構成され、この背圧室にはシリンダ38内の高圧室側の圧力が背圧として印加される。
【0021】
また、支持部材54、56には、吸込ポート161、162にてシリンダ38、40内部の低圧室側とそれぞれ連通する吸込通路58、60と、一部を凹陥させ、この凹陥部をカバー66、68にてそれぞれ閉塞することにより形成される吐出消音室62、64とが設けられている。
【0022】
吐出消音室64と密閉容器12内は、シリンダ38、40や中間仕切板36、カバー66を貫通し、更に、このカバー66から離間して設けられた後述するバッフル板100も貫通して電動要素14側に開口する連通路120にて連通されており、連通路120の端部には中間吐出管121が立設され、この中間吐出管121から第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスが密閉容器12内の電動要素14側に吐出される。このとき冷媒ガス中には第1の回転圧縮要素32に供給されたオイルが混入しているが、このオイルも密閉容器12内の電動要素14側に吐出されることになる。ここで、冷媒ガス中に混入したオイルは冷媒ガスから分離して密閉容器12内底部のオイル溜めに溜まる。
【0023】
そして、前述したバッフル板100は密閉容器12内を電動要素14側と回転圧縮機構部18側とに区画して、密閉容器12内に差圧を構成するために設けられる。このバッフル板100は、密閉容器12の内面との間に少許間隔を存して配設されたドーナッツ状の鋼板からなる。この場合、第1の回転圧縮要素32で圧縮され、密閉容器12内の電動要素14側に吐出された中間圧の冷媒ガスは、密閉容器12とバッフル板100の間に形成された隙間を通って回転圧縮機構部18側に流入することになるが、係るバッフル板100の存在により、密閉容器12内にはバッフル板100の電動要素14側の圧力は高く、回転圧縮機構部18側が低い差圧が構成される。
【0024】
そして、この差圧によって密閉容器12内底部のオイル溜めに貯溜されたオイルは回転圧縮機構部18側に移動し、バッフル板100より回転圧縮機構部18側のオイルレベルが上昇する。これにより、オイル吸上パイプ101Aの開口は支障無くオイル中に浸漬されるようになるので、オイルポンプ101による回転圧縮機構部18の摺動部へのオイルの供給が円滑に行われるようになる。
【0025】
また、このバッフル板100には密閉容器12内の中間圧の冷媒ガスを第2の回転圧縮要素34に導入するために、前述した吸込通路58と連通する吸気通路102が設けられている。この吸気通路102の吸込口104はバッフル板100の回転圧縮機構部18側の上部に開口しており、この吸込口104から中間圧の冷媒ガスを吸入する。そして、この吸気通路102はバッフル板100内を貫通し、バッフル板100の電動要素14側に沿って延在した後、バッフル板100及びカバー66を貫通して吸込通路58と連通するように構成されている。
【0026】
ここで、バッフル板100は回転圧縮機構部18の第2の回転圧縮要素34のカバー66から離間して配設されている。これにより、回転圧縮機構部18の熱によりバッフル板100が加熱され難くなるので、このバッフル板100に設けられた吸気通路102内を通過して第2の回転圧縮要素34に導入される冷媒ガスも加熱され難くなり、第2の回転圧縮要素34における圧縮効率の向上を図ることができるようになる。また、吸気通路102の吸込口104は、中間吐出管121が開口する電動要素14側とはバッフル板100を挟んで反対側の回転圧縮機構部18側上部にて開口しているので、吸気通路102に吸い込まれる冷媒ガスのオイル分離が円滑に行われるようになる。
【0027】
また、吸気通路102はバッフル板100の電動要素14側を通過するように形成されているため、回転圧縮機構部18により吸気通路102内を通る冷媒ガスは一層加熱され難くなる。また、吸気通路102が回転圧縮機構部18と干渉することが無くなり、密閉容器12内の部品配置が容易となる。
【0028】
そして、この場合の冷媒としては、地球環境にやさしく可燃性及び毒性等を考慮して自然冷媒である前記CO2(二酸化炭素)を使用し、密閉容器12内に封入される潤滑油としてのオイルとしては、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)等既存のオイルが使用される。
【0029】
密閉容器12の側面には、支持部材56と54の側部に対応する位置にスリーブ142、143がそれぞれ溶接固定されている。そして、スリーブ142内にはシリンダ40に冷媒を導入するための冷媒導入管94の一端が挿入接続され、吸込通路60に連通されている。また、スリーブ143内には冷媒吐出管96が挿入され、この冷媒導入管96の一端は吐出消音室62に連通されている。更に、密閉容器12の底部には取付用台座110が設けられている(図2では図示しない)。
【0030】
以上の構成で次にロータリコンプレッサ10の動作を説明する。ターミナル20及び図示しない配線を介して電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けられた偏心部42、44に嵌合されたローラ46、48がシリンダ38、40内で偏心回転する。
【0031】
これにより、冷媒導入管94及び支持部材56に形成された吸込通路60を経由して吸込ポート162から第1の回転圧縮要素32のシリンダ40の低圧室側に低圧の冷媒ガスが吸入され、ローラ48とベーン52の動作により圧縮されて中間圧となり、シリンダ40の高圧室側より連通路120を経て中間吐出管121から密閉容器12内の電動要素14側に吐出される。このとき、密閉容器12内の電動要素14側に吐出された中間圧の冷媒ガス中には、第1の回転圧縮要素23に供給されたオイルが混入しており、このオイルは分離して密閉容器12内底部のオイル溜めに溜まる。そして、冷媒ガスはバッフル板100と密閉容器12の間に形成された隙間から回転圧縮機構部18側に流入する。
【0032】
ここで、冷媒ガスがバッフル板100と密閉容器12との間に形成された隙間を通過すると云う作用により、前述の如く密閉容器12内の圧力は、電動要素14側より回転圧縮機構部18側の方が低くなる。これにより、回転圧縮機構部18側のオイルレベルは高くなるので、オイルはオイル吸上パイプ101Aを介してオイルポンプ101により前述の如く円滑に吸い上げられる。
【0033】
更に、回転圧縮機構部18側に流入した中間圧の冷媒ガスは吸込口104から吸気通路102内に流入する。吸気通路102内に流入した冷媒ガスは、内部を通過して吸込通路58に流入し、吸込ポート161から第2の回転圧縮要素34のシリンダ38の低圧室側に吸入される。吸入された中間圧の冷媒ガスは、ローラ46とベーン50の回転により2段目の圧縮が行われて高圧高温の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り、支持部材54に形成された吐出消音室62、冷媒吐出管96を経て外部の放熱器に流入する。
【0034】
このように、電動要素14側と回転圧縮機構部18側とに区画して差圧を構成するためのバッフル板100を設けることにより、密閉容器12内に封入するオイル量を増やすこと無く、回転圧縮機構部18にオイルを充分に供給できるようようになる。
【0035】
また、第2の回転圧縮要素34に吸い込まれる冷媒ガスがバッフル板100を介して回転圧縮機構部18側の熱により加熱され難くなり、第2の回転圧縮要素34における圧縮効率が向上するようになる。
【0036】
更に、第1の回転圧縮要素32からバッフル板100の電動要素14側に冷媒ガスを吐出すると共に、吸気通路102の吸込口104は、バッフル板100の回転圧縮機構部18側に開口しているので、冷媒ガスとオイルが分離しやすくなる。
【0037】
そして、吸気通路102をバッフル板100の電動要素14側に設けたので、第2の回転圧縮要素34に吸い込まれる冷媒ガスの温度をより一層下げることができる。
【0038】
次に、図3を参照して本発明の横型多段圧縮式ロータリコンプレッサの他の実施形態について詳述する。図3はこの場合の内部中間圧型多段(2段)圧縮式ロータリコンプレッサ10の縦断側面図、図4は図3のロータリコンプレッサ10の平断面図をそれぞれ示している。
【0039】
尚、図3及び図4において図1及び図2と同一の符号が付されているものは同一若しくは同様の作用を奏するものとする。図3及び図4において、バッフル板200は密閉容器12内を電動要素14側と回転圧縮機構部18側とに区画し、前述同様に密閉容器12内に差圧を構成するものであり、密閉容器12の内面と少許間隔を存して配置されている。また、この場合のバッフル板200は、支持部材54の一部を凹陥させて形成された吐出消音室62のカバーを兼ねており、従って、図1及び図2におけるカバー66は省略されている。
【0040】
この場合も、バッフル板200の電動要素14側には吸気通路202が設けられている。この吸気通路202も、密閉容器12内の中間圧の冷媒ガスを第2の回転圧縮要素34のシリンダ38内に導入するために設けられ、支持部材54内に形成された吸込通路58と連通している。また、バッフル板200の回転圧縮機構部18側上部に吸込口204が開口しており、吸気通路202はバッフル板200内を貫通し、バッフル板200の電動要素14側を配管が通過した後、バッフル板200を貫通して吸込通路58と連通するように構成されている。
【0041】
そして、この場合吸気通路202は、その取付箇所(貫通箇所)以外の部分が当該バッフル板200から離間して設けられている。
【0042】
このように、バッフル板200が第2の回転圧縮要素34の吐出消音室62のカバーを兼ねているので、部品点数の削減によるコストの低減を図ることができるようになる。また、吸気通路202はバッフル板200への取付箇所以外の部分が当該バッフル板200から離間しているので、回転圧縮機構部18の熱により加熱され難くなる。これにより、内部を通過する冷媒ガスも加熱され難くなるので、第2の回転圧縮要素34に吸い込まれる冷媒ガスの温度上昇を防止し、圧縮効率の向上も図ることができる。また、回転圧縮機構部18側に吸込口を設けているので、同様にオイル分離も良好に行われるようになる。
【0043】
尚、上記各実施例では冷媒としてCO2(二酸化炭素)を用いたが、これに限らず、HC(炭化水素)、NH3(アンモニア)等の冷媒を用いても本発明は有効である。
【0044】
【発明の効果】
以上詳述した如く請求項1の発明によれば、密閉容器内の圧力はバッフル板の電動要素側よりも回転圧縮機構部側が低くなると共に、バッフル板が回転圧縮機構部からの熱影響を受け難くなる。これにより、密閉容器内底部に溜まるオイルはバッフル板の回転圧縮機構部側に移動し、そこに設けられた給油手段により吸引されるようになるので、回転圧縮機構部などの摺動部への給油を円滑に行うことができると共に、バッフル板に設けられた吸気通路を通過して第2の回転圧縮要素に吸い込まれる冷媒ガスの温度上昇を抑制することが可能となるので、第2の回転圧縮要素における圧縮効率を向上させることができるようになる。
【0046】
また、請求項2の発明によれば、請求項1の発明の効果に加えて吸気通路を通過する冷媒ガスが回転圧縮機構部からの熱影響を受け難くなる。これにより、第2の回転圧縮要素に吸い込まれる冷媒ガスの温度上昇を抑制することが可能となるので、第2の回転圧縮要素における圧縮効率を向上させることができるようになる。特に、バッフル板が第2の回転圧縮要素の吐出消音室を構成するカバーを兼ねるので、部品点数の削減による構造の簡素化とコストの削減並びに寸法の小型化を図ることができるようになる。
【0047】
請求項3の発明によれば上記各発明の効果に加えて、第1の回転圧縮要素からバッフル板の電動要素側に吐出された冷媒ガス中のオイルが吸気通路に流入し難くなり、第2の回転圧縮要素に吸い込まれる以前の冷媒ガスとオイルとの分離が促進される。
【0048】
請求項4の発明によれば上記各発明の効果に加えて、回転圧縮機構部により吸気通路内を通る冷媒ガスは一層加熱され難くなる。また、吸気通路が回転圧縮機構部と干渉することが無くなり、密閉容器内の部品配置が容易となる。
【図面の簡単な説明】
【図1】本発明の実施例の横型多段圧縮式ロータリコンプレッサの縦断側面図である。
【図2】図1のロータリコンプレッサの平断面図である。
【図3】本発明の他の実施例の横型多段圧縮式ロータリコンプレッサの縦断側面図である。
【図4】図3のロータリコンプレッサの平断面図である。
【符号の説明】
10 横型多段圧縮式ロータリコンプレッサ
12 密閉容器
14 電動要素
16 回転軸
18 回転圧縮機構部
32 第1の回転圧縮要素
34 第2の回転圧縮要素
38、40 シリンダ
42、44 偏心部
46、48 ローラ
50、52 ベーン
54、56 支持部材
100、200 バッフル板
101 オイルポンプ
102、202 吸気通路
104、204 吸込口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a horizontal multistage compression rotary compressor that sucks refrigerant gas compressed by a first rotary compression element and discharged into a sealed container into a second rotary compression element, and compresses and discharges the refrigerant gas.
[0002]
[Prior art]
A multi-stage compression rotary compressor that uses CO2 as a refrigerant and includes a rotary compression mechanism unit composed of a first rotary compression element and a second rotary compression element, particularly an internal intermediate pressure type multi-stage compression rotary compressor, is usually a vertical type. The electric element is arranged in the upper part of the sealed container, and the rotary compression mechanism part driven by the rotating shaft of the electric element is arranged in the lower part. Then, the CO2 refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the first rotary compression element, and is compressed by the operation of the roller and the vane to become an intermediate pressure. And then discharged into the sealed container.
[0003]
The intermediate-pressure refrigerant gas in the sealed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second-stage compression is performed by the operation of the roller and the vane, and the high-temperature and high-pressure refrigerant gas. Thus, it is configured to flow from the high pressure chamber side to the radiator outside the compressor through the discharge port and the discharge silencer chamber.
[0004]
Further, in such a vertical rotary compressor, the bottom of the hermetic container located below the rotary compression mechanism is an oil reservoir, and oil is supplied from the oil reservoir by an oil pump as an oil supply means configured at the lower end of the rotary shaft. It is sucked and supplied to the rotary compression mechanism part to prevent wear of the rotary compression mechanism part and the sliding part of the rotary shaft.
[0005]
[Problems to be solved by the invention]
By the way, when such a multistage compression rotary compressor is used as a horizontal type, the oil discharged into the hermetic container together with the refrigerant gas compressed by the first rotary compression element is not only the rotary compression mechanism section side but also the electric It also collects at the bottom of the sealed container on the element side. Therefore, there arises a problem that oil cannot be smoothly sucked by the oil pump configured at the end of the rotary shaft on the side of the rotary compression mechanism.
[0006]
In addition, since the refrigerant gas sucked into the second rotary compression element in the second stage is in the hermetic container, the refrigerant gas sucked into the second rotary compression element and the oil must be separated well if the second gas is not well separated. A large amount of oil is discharged from the rotary compression element to the outside, causing a shortage of oil in the sealed container.
[0007]
The present invention has been made to solve the technical problem, and when using a so-called internal intermediate pressure type multistage compression rotary compressor as a horizontal type, the oil can be smoothly supplied to the sliding portion. The purpose is to.
[0008]
[Means for Solving the Problems]
That is, the invention of claim 1 comprises an electric element and a rotary compression mechanism portion comprising first and second rotary compression elements driven by the electric element in a horizontal sealed container, and the first rotation. A horizontal multi-stage compression rotary compressor that discharges refrigerant gas compressed by a compression element into the sealed container and further compresses the discharged intermediate-pressure refrigerant gas by the second rotary compression element, The container is partitioned into the electric element side and the rotary compression mechanism part side, and the pressure on the electric compression element part side is made higher than the pressure on the rotary compression mechanism part side so that the oil on the rotary compression mechanism part side in the sealed container A baffle plate for constructing a differential pressure that makes the level higher than the oil level on the electric element side , and the rotary compression mechanism portion side of the baffle plate provided on the rotary compression mechanism part side, and the oil enclosed in the hermetic container is rotated and compressed Supply to the mechanism And oil supply means for the opening of the oil suction pipe and is opened in said oil in order, provided in the baffle plate, and an intake manifold for sucked refrigerant gas in the sealed container to the second rotary compression element The refrigerant gas compressed by the first rotary compression element is discharged to the electric element side of the baffle plate, and the baffle plate is provided at a distance from the rotary compression mechanism portion. .
[0010]
According to a second aspect of the present invention, the first rotary compression element includes an electric element and a rotary compression mechanism portion including first and second rotary compression elements driven by the electric element in a horizontal sealed container. A horizontal type multi-stage compression rotary compressor that discharges the refrigerant gas compressed in step 2 into the sealed container and further compresses the discharged intermediate-pressure refrigerant gas by the second rotary compression element. Is divided into the electric element side and the rotary compression mechanism part side, the pressure on the electric element side is made higher than the pressure on the rotary compression mechanism part side, and the oil level on the rotary compression mechanism part side in the sealed container is increased. A baffle plate for configuring a differential pressure to be higher than the oil level on the electric element side , and the rotary compression mechanism portion provided on the rotary compression mechanism portion side of the baffle plate and sealed in the sealed container To supply To the oil supply means is opened to the opening of the oil suction pipe in said oil, it is provided in the baffle plate, an intake passage for inhalation of the refrigerant gas in the sealed container to the second rotary compression element A refrigerant gas compressed by the first rotary compression element is discharged to the electric element side of the baffle plate, and the baffle plate constitutes a discharge silencer chamber of the second rotary compression element. Also serving as a cover, the portion of the intake passage other than the attachment location to the baffle plate is spaced from the baffle plate.
[0011]
The invention of claim 3 is characterized in that, in addition to the above-described inventions, the suction port of the intake passage is opened to the rotary compression mechanism portion side of the baffle plate.
[0012]
According to a fourth aspect of the invention, in addition to the above-described inventions, the intake passage is provided on the electric element side of the baffle plate.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal side view of an internal intermediate pressure type horizontal multi-stage (two-stage) compression rotary compressor 10 having first and second rotary compression elements 32 and 34 as an embodiment of a horizontal multi-stage compression rotary compressor of the present invention. FIG. 2 and FIG. 2 show plan sectional views of the rotary compressor 10 of FIG.
[0014]
In each figure, the rotary compressor 10 of the embodiment is an internal intermediate pressure type horizontal multi-stage compression rotary compressor using carbon dioxide (CO2) as a refrigerant. The rotary compressor 10 includes a horizontally long cylindrical sealed container 12 with both ends sealed. And the bottom of the sealed container 12 is used as an oil reservoir. The sealed container 12 houses a rotary compression mechanism portion 18 including an electric element 14 and a first rotary compression element 32 and a second rotary compression element 34 driven by the rotary shaft 16 of the electric element 14. .
[0015]
A circular attachment hole 12D is formed at the end of the sealed container 12 on the electric element 14 side, and a terminal 20 for supplying electric power to the electric element 14 is attached to the attachment hole 12D.
[0016]
The electric element 14 includes a stator 22 that is annularly attached along the inner peripheral surface of the hermetic container 12 and a rotor 24 that is inserted and installed inside the stator 22 with a slight gap. The rotor 24 is fixed to a rotating shaft 16 that passes through the center and extends in the axial direction of the sealed container 12.
[0017]
An oil pump 101 as an oil supply means is formed at the end of the rotary shaft 16 on the rotary compression mechanism 18 side. The oil pump 101 is provided to suck up oil as lubricating oil from an oil reservoir formed at the bottom of the sealed container 12 and supply it to the sliding portion of the rotary compression mechanism 18 to prevent wear. The oil suction pipe 101A descends from the oil pump 101 toward the bottom of the hermetic container 12, and is opened at the oil reservoir.
[0018]
The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method. The rotor 22 is also formed of a laminated body 30 of electromagnetic steel plates, like the stator 22, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0019]
The first rotary compression element 32 and the second rotary compression element 34 are constituted by first and second cylinders 38 and 40, and an intermediate partition plate 36 is sandwiched between the cylinders 38 and 40. That is, the rotary compression mechanism unit 18 includes a first rotary compression element 32, a second rotary compression element 34, and an intermediate partition plate 36. Further, the first and second rotary compression elements 32 and 34 are different from the first and second cylinders 38 and 40 disposed on both sides (left and right in FIG. 1) of the intermediate partition plate 36 by 180 degrees. The first and second rollers 46 are fitted into first and second eccentric portions 42 and 44 provided on the rotary shaft 16 and rotate eccentrically in the first and second cylinders 38 and 40. , 48, first and second vanes 50, 52 that abut against the rollers 46, 48, respectively, and divide the inside of the cylinders 38, 40 into a low pressure chamber side and a high pressure chamber side, respectively, and the electric element 14 of the cylinder 38 The side opening surface and the opening surface on the side opposite to the electric element 14 of the cylinder 40 are respectively closed, and support members 54 and 56 that also serve as bearings for the rotating shaft 16 are configured.
[0020]
On the outer side (lower side in FIG. 1) of the vanes 50 and 52, springs 74 and 76 that abut against the outer ends of the vanes 50 and 52 and constantly bias the vanes 50 and 52 toward the rollers 46 and 48 are provided. It has been. Furthermore, metal plugs 130 and 132 are provided on the closed container 12 side of the springs 74 and 76, and serve to prevent the springs 74 and 76 from coming off. Further, a back pressure chamber (not shown) is formed in the first vane 50, and the pressure on the high pressure chamber side in the cylinder 38 is applied as a back pressure to the back pressure chamber.
[0021]
In addition, the support members 54 and 56 are provided with recesses in the suction passages 58 and 60 respectively communicating with the low pressure chambers inside the cylinders 38 and 40 through the suction ports 161 and 162, respectively. Discharge silencer chambers 62 and 64 formed by closing at 68 are provided.
[0022]
The discharge silencing chamber 64 and the sealed container 12 pass through the cylinders 38 and 40, the intermediate partition plate 36, and the cover 66, and further pass through a baffle plate 100, which will be described later, provided apart from the cover 66. The intermediate discharge pipe 121 is erected at the end of the communication path 120, and is compressed by the first rotary compression element 32 from the intermediate discharge pipe 121. The refrigerant gas having a pressure is discharged toward the electric element 14 in the sealed container 12. At this time, the oil supplied to the first rotary compression element 32 is mixed in the refrigerant gas, but this oil is also discharged to the electric element 14 side in the sealed container 12. Here, the oil mixed in the refrigerant gas is separated from the refrigerant gas and collected in an oil reservoir at the bottom of the sealed container 12.
[0023]
The baffle plate 100 described above is provided to divide the inside of the sealed container 12 into the electric element 14 side and the rotary compression mechanism unit 18 side, and to form a differential pressure in the sealed container 12. The baffle plate 100 is made of a donut-shaped steel plate disposed with a small clearance between the inner surface of the sealed container 12. In this case, the intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 and discharged to the electric element 14 side in the sealed container 12 passes through a gap formed between the sealed container 12 and the baffle plate 100. However, due to the presence of the baffle plate 100, the pressure on the electric element 14 side of the baffle plate 100 is high in the sealed container 12 and the difference on the rotary compression mechanism portion 18 side is low. Pressure is configured.
[0024]
Then, the oil stored in the oil reservoir in the bottom of the sealed container 12 is moved to the rotary compression mechanism 18 side by this differential pressure, and the oil level on the rotary compression mechanism 18 side rises from the baffle plate 100. Accordingly, the opening of the oil suction pipe 101A is immersed in the oil without any trouble, so that the oil is smoothly supplied to the sliding portion of the rotary compression mechanism portion 18 by the oil pump 101. .
[0025]
The baffle plate 100 is provided with an intake passage 102 that communicates with the suction passage 58 described above in order to introduce the intermediate-pressure refrigerant gas in the sealed container 12 into the second rotary compression element 34. A suction port 104 of the intake passage 102 is opened at an upper portion of the baffle plate 100 on the rotary compression mechanism portion 18 side, and an intermediate-pressure refrigerant gas is sucked from the suction port 104. The intake passage 102 passes through the baffle plate 100 and extends along the electric element 14 side of the baffle plate 100, and then passes through the baffle plate 100 and the cover 66 to communicate with the suction passage 58. Has been.
[0026]
Here, the baffle plate 100 is disposed away from the cover 66 of the second rotary compression element 34 of the rotary compression mechanism 18. As a result, the baffle plate 100 is hardly heated by the heat of the rotary compression mechanism portion 18, so that the refrigerant gas that passes through the intake passage 102 provided in the baffle plate 100 and is introduced into the second rotary compression element 34. Also, it becomes difficult to heat, and the compression efficiency of the second rotary compression element 34 can be improved. Further, the suction port 104 of the intake passage 102 is opened at the upper portion on the side of the rotary compression mechanism portion 18 on the opposite side of the baffle plate 100 from the electric element 14 side where the intermediate discharge pipe 121 is opened. Oil separation of the refrigerant gas sucked into 102 is performed smoothly.
[0027]
Further, since the intake passage 102 is formed so as to pass through the electric element 14 side of the baffle plate 100, the refrigerant gas passing through the intake passage 102 by the rotary compression mechanism 18 is more difficult to be heated. In addition, the intake passage 102 does not interfere with the rotary compression mechanism 18, and the arrangement of components in the sealed container 12 is facilitated.
[0028]
As the refrigerant in this case, CO2 (carbon dioxide) which is a natural refrigerant is used in consideration of flammability, toxicity, etc., which is kind to the global environment, and as oil as lubricating oil sealed in the sealed container 12 For example, existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.
[0029]
Sleeves 142 and 143 are welded and fixed to the side surfaces of the sealed container 12 at positions corresponding to the side portions of the support members 56 and 54, respectively. One end of a refrigerant introduction pipe 94 for introducing the refrigerant into the cylinder 40 is inserted into the sleeve 142 and communicated with the suction passage 60. In addition, a refrigerant discharge pipe 96 is inserted into the sleeve 143, and one end of the refrigerant introduction pipe 96 communicates with the discharge silencer chamber 62. Further, a mounting base 110 is provided at the bottom of the sealed container 12 (not shown in FIG. 2).
[0030]
Next, the operation of the rotary compressor 10 with the above configuration will be described. When the stator coil 28 of the electric element 14 is energized through the terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. By this rotation, the rollers 46 and 48 fitted to the eccentric portions 42 and 44 provided integrally with the rotary shaft 16 are eccentrically rotated in the cylinders 38 and 40.
[0031]
As a result, the low-pressure refrigerant gas is sucked into the low-pressure chamber side of the cylinder 40 of the first rotary compression element 32 from the suction port 162 via the refrigerant introduction pipe 94 and the suction passage 60 formed in the support member 56. The pressure is compressed by the operation of 48 and the vane 52 to be an intermediate pressure, and is discharged from the high pressure chamber side of the cylinder 40 through the communication passage 120 to the electric element 14 side in the sealed container 12 from the intermediate discharge pipe 121. At this time, the oil supplied to the first rotary compression element 23 is mixed in the intermediate-pressure refrigerant gas discharged to the electric element 14 side in the sealed container 12, and this oil is separated and sealed. It accumulates in the oil sump at the bottom of the container 12. Then, the refrigerant gas flows from the gap formed between the baffle plate 100 and the sealed container 12 to the rotary compression mechanism unit 18 side.
[0032]
Here, the refrigerant gas passes through a gap formed between the baffle plate 100 and the sealed container 12, so that the pressure in the sealed container 12 is increased from the electric element 14 side to the rotary compression mechanism unit 18 side as described above. Is lower. As a result, the oil level on the rotary compression mechanism 18 side is increased, so that the oil is smoothly sucked up by the oil pump 101 through the oil suction pipe 101A as described above.
[0033]
Further, the intermediate-pressure refrigerant gas that has flowed into the rotary compression mechanism 18 side flows into the intake passage 102 from the suction port 104. The refrigerant gas flowing into the intake passage 102 passes through the inside and flows into the suction passage 58 and is sucked into the low pressure chamber side of the cylinder 38 of the second rotary compression element 34 from the suction port 161. The sucked intermediate-pressure refrigerant gas is compressed in the second stage by the rotation of the roller 46 and the vane 50 to become high-pressure and high-temperature refrigerant gas, which is formed on the support member 54 from the high-pressure chamber side through a discharge port (not shown). The discharge silencer chamber 62 and the refrigerant discharge pipe 96 flow into the external radiator.
[0034]
As described above, by providing the baffle plate 100 for partitioning the electric element 14 side and the rotary compression mechanism portion 18 side to form the differential pressure, the rotation can be performed without increasing the amount of oil sealed in the sealed container 12. Oil can be sufficiently supplied to the compression mechanism section 18.
[0035]
Further, the refrigerant gas sucked into the second rotary compression element 34 is hardly heated by the heat on the rotary compression mechanism portion 18 side through the baffle plate 100, so that the compression efficiency in the second rotary compression element 34 is improved. Become.
[0036]
Further, the refrigerant gas is discharged from the first rotary compression element 32 to the electric element 14 side of the baffle plate 100, and the suction port 104 of the intake passage 102 opens to the rotary compression mechanism portion 18 side of the baffle plate 100. Therefore, it becomes easy to separate refrigerant gas and oil.
[0037]
Since the intake passage 102 is provided on the baffle plate 100 on the electric element 14 side, the temperature of the refrigerant gas sucked into the second rotary compression element 34 can be further reduced.
[0038]
Next, another embodiment of the horizontal multistage compression rotary compressor of the present invention will be described in detail with reference to FIG. FIG. 3 is a longitudinal side view of the internal intermediate pressure type multistage (two-stage) compression rotary compressor 10 in this case, and FIG. 4 is a plan sectional view of the rotary compressor 10 of FIG.
[0039]
3 and 4 that are denoted by the same reference numerals as those in FIGS. 1 and 2 have the same or similar functions. 3 and 4, the baffle plate 200 divides the sealed container 12 into an electric element 14 side and a rotary compression mechanism unit 18 side, and constitutes a differential pressure in the sealed container 12 as described above. The inner surface of the container 12 is arranged with a small clearance. Further, the baffle plate 200 in this case also serves as a cover for the discharge silencer chamber 62 formed by recessing a part of the support member 54, and thus the cover 66 in FIGS. 1 and 2 is omitted.
[0040]
Also in this case, an intake passage 202 is provided on the baffle plate 200 on the electric element 14 side. The intake passage 202 is also provided for introducing the intermediate-pressure refrigerant gas in the sealed container 12 into the cylinder 38 of the second rotary compression element 34 and communicates with the suction passage 58 formed in the support member 54. ing. Further, a suction port 204 is opened at the upper part of the baffle plate 200 on the rotary compression mechanism portion 18 side, and the intake passage 202 penetrates through the baffle plate 200, and after the piping passes through the electric element 14 side of the baffle plate 200, It is configured to penetrate the baffle plate 200 and communicate with the suction passage 58.
[0041]
In this case, the intake passage 202 is provided apart from the baffle plate 200 at a portion other than its attachment location (through location).
[0042]
Thus, since the baffle plate 200 also serves as the cover of the discharge silencer chamber 62 of the second rotary compression element 34, the cost can be reduced by reducing the number of parts. Further, since the intake passage 202 is separated from the baffle plate 200 except for the portion where the intake passage 202 is attached to the baffle plate 200, it is difficult to be heated by the heat of the rotary compression mechanism portion 18. As a result, the refrigerant gas passing through the inside is hardly heated, so that the temperature rise of the refrigerant gas sucked into the second rotary compression element 34 can be prevented, and the compression efficiency can be improved. In addition, since the suction port is provided on the rotary compression mechanism portion 18 side, the oil separation is similarly performed well.
[0043]
In each of the above embodiments, CO2 (carbon dioxide) is used as the refrigerant. However, the present invention is not limited to this, and the present invention is effective even when a refrigerant such as HC (hydrocarbon) or NH3 (ammonia) is used.
[0044]
【The invention's effect】
As described in detail above, according to the first aspect of the present invention, the pressure in the sealed container is lower on the rotary compression mechanism portion side than the electric element side of the baffle plate, and the baffle plate is affected by the heat from the rotary compression mechanism portion. It becomes difficult. As a result, the oil accumulated in the bottom of the sealed container moves to the rotary compression mechanism portion side of the baffle plate and is sucked by the oil supply means provided there. Since the fuel can be smoothly supplied and the temperature rise of the refrigerant gas sucked into the second rotary compression element through the intake passage provided in the baffle plate can be suppressed, the second rotation The compression efficiency in the compression element can be improved.
[0046]
According to the invention of claim 2 , in addition to the effect of the invention of claim 1, the refrigerant gas passing through the intake passage is hardly affected by the heat from the rotary compression mechanism. As a result, it is possible to suppress an increase in the temperature of the refrigerant gas sucked into the second rotary compression element, so that the compression efficiency in the second rotary compression element can be improved. In particular, since the baffle plate also serves as a cover constituting the discharge silencer chamber of the second rotary compression element, the structure can be simplified, the cost can be reduced, and the size can be reduced by reducing the number of parts.
[0047]
According to the invention of claim 3 , in addition to the effects of the above inventions, the oil in the refrigerant gas discharged from the first rotary compression element to the electric element side of the baffle plate is less likely to flow into the intake passage. Separation of the refrigerant gas and oil before being sucked into the rotary compression element is promoted.
[0048]
According to the fourth aspect of the invention, in addition to the effects of the above-described inventions, the refrigerant gas passing through the intake passage by the rotary compression mechanism is further hardly heated. In addition, the intake passage does not interfere with the rotary compression mechanism, and parts can be easily arranged in the sealed container.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view of a horizontal multi-stage compression rotary compressor according to an embodiment of the present invention.
2 is a cross-sectional plan view of the rotary compressor of FIG. 1. FIG.
FIG. 3 is a longitudinal side view of a horizontal multistage compression rotary compressor according to another embodiment of the present invention.
4 is a plan sectional view of the rotary compressor of FIG. 3. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Horizontal multistage compression type rotary compressor 12 Sealed container 14 Electric element 16 Rotating shaft 18 Rotation compression mechanism part 32 1st rotation compression element 34 2nd rotation compression element 38, 40 Cylinder 42, 44 Eccentric part 46, 48 Roller 50, 52 Vane 54, 56 Support member 100, 200 Baffle plate 101 Oil pump 102, 202 Intake passage 104, 204 Suction port

Claims (4)

横型の密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の回転圧縮要素から成る回転圧縮機構部とを備え、前記第1の回転圧縮要素で圧縮された冷媒ガスを前記密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを前記第2の回転圧縮要素で圧縮する横型多段圧縮式ロータリコンプレッサであって、
前記密閉容器内を前記電動要素側と回転圧縮機構部側とに区画して前記電動要素側の圧力を前記回転圧縮機構部側の圧力より高くして前記密閉容器内の前記回転圧縮機構部側のオイルレベルを前記電動要素側のオイルレベルより高くする差圧を構成するためのバッフル板と、
該バッフル板の前記回転圧縮機構部側に設けられ、前記密閉容器内に封入されたオイルを前記回転圧縮機構部に供給するためにオイル吸上パイプの開口を前記オイル中に開口させた給油手段と、
前記バッフル板に設けられ、前記密閉容器内の冷媒ガスを前記第2の回転圧縮要素に吸い込ませるための吸気通路とを備え
前記第1の回転圧縮要素で圧縮された冷媒ガスを前記バッフル板の前記電動要素側に吐出させると共に、当該バッフル板を前記回転圧縮機構部と間隔を存して設けたことを特徴とする横型多段圧縮式ロータリコンプレッサ。
Refrigerant gas compressed by the first rotary compression element, comprising an electric element and a rotary compression mechanism portion composed of first and second rotary compression elements driven by the electric element in a horizontal sealed container A horizontal multi-stage compression rotary compressor that compresses the discharged intermediate-pressure refrigerant gas by the second rotary compression element,
The inside of the sealed container is divided into the electric element side and the rotary compression mechanism part side, and the pressure on the electric element side is made higher than the pressure on the rotary compression mechanism part side so that the rotary compression mechanism part side in the sealed container A baffle plate for constituting a differential pressure for making the oil level higher than the oil level on the electric element side ,
An oil supply means provided on the baffle plate on the side of the rotary compression mechanism and having an oil suction pipe open in the oil in order to supply the oil sealed in the sealed container to the rotary compression mechanism. When,
An intake passage provided on the baffle plate, for sucking refrigerant gas in the sealed container into the second rotary compression element ,
The refrigerant gas compressed by the first rotary compression element is discharged to the electric element side of the baffle plate, and the baffle plate is provided at a distance from the rotary compression mechanism portion. Multi-stage compression rotary compressor.
横型の密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の回転圧縮要素から成る回転圧縮機構部とを備え、前記第1の回転圧縮要素で圧縮された冷媒ガスを前記密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを前記第2の回転圧縮要素で圧縮する横型多段圧縮式ロータリコンプレッサであって、
前記密閉容器内を前記電動要素側と回転圧縮機構部側とに区画して前記電動要素側の圧力を前記回転圧縮機構部側の圧力より高くして前記密閉容器内の前記回転圧縮機構部側のオイルレベルを前記電動要素側のオイルレベルより高くする差圧を構成するためのバッフル板と、
該バッフル板の前記回転圧縮機構部側に設けられ、前記密閉容器内に封入されたオイルを前記回転圧縮機構部に供給するためにオイル吸上パイプの開口を前記オイル中に開口させた給油手段と、
前記バッフル板に設けられ、前記密閉容器内の冷媒ガスを前記第2の回転圧縮要素に吸い込ませるための吸気通路とを備え、
前記第1の回転圧縮要素で圧縮された冷媒ガスを前記バッフル板の前記電動要素側に吐出させると共に、
前記バッフル板は、前記第2の回転圧縮要素の吐出消音室を構成するためのカバーを兼ね、前記吸気通路の前記バッフル板への取付箇所以外の部分は当該バッフル板から離間していることを特徴とする横型多段圧縮式ロータリコンプレッサ。
Refrigerant gas compressed by the first rotary compression element, comprising an electric element and a rotary compression mechanism portion composed of first and second rotary compression elements driven by the electric element in a horizontal sealed container A horizontal multi-stage compression rotary compressor that compresses the discharged intermediate-pressure refrigerant gas by the second rotary compression element,
The inside of the sealed container is divided into the electric element side and the rotary compression mechanism part side, and the pressure on the electric element side is made higher than the pressure on the rotary compression mechanism part side so that the rotary compression mechanism part side in the sealed container A baffle plate for constituting a differential pressure for making the oil level higher than the oil level on the electric element side ,
An oil supply means provided on the baffle plate on the side of the rotary compression mechanism and having an oil suction pipe open in the oil in order to supply the oil sealed in the sealed container to the rotary compression mechanism. When,
An intake passage provided on the baffle plate, for sucking refrigerant gas in the sealed container into the second rotary compression element,
The refrigerant gas compressed by the first rotary compression element is discharged to the electric element side of the baffle plate, and
The baffle plate also serves as a cover for constituting a discharge silencing chamber of the second rotary compression element, and a portion other than the attachment portion of the intake passage to the baffle plate is separated from the baffle plate. Features a horizontal multistage compression rotary compressor.
前記吸気通路の吸込口は、前記バッフル板の前記回転圧縮機構部側に開口することを特徴とする請求項1又は請求項2の横型多段圧縮式ロータリコンプレッサ。The horizontal multistage compression rotary compressor according to claim 1 or 2, wherein a suction port of the intake passage is opened to the rotary compression mechanism portion side of the baffle plate . 前記吸気通路は、前記バッフル板の前記電動要素側に設けられることを特徴とする請求項1、請求項2又は請求項3の横型多段圧縮式ロータリコンプレッサ。The horizontal multi-stage compression rotary compressor according to claim 1, 2 or 3 , wherein the intake passage is provided on the electric element side of the baffle plate .
JP2002100914A 2002-04-03 2002-04-03 Horizontal multi-stage rotary compressor Expired - Fee Related JP4024067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002100914A JP4024067B2 (en) 2002-04-03 2002-04-03 Horizontal multi-stage rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002100914A JP4024067B2 (en) 2002-04-03 2002-04-03 Horizontal multi-stage rotary compressor

Publications (2)

Publication Number Publication Date
JP2003293974A JP2003293974A (en) 2003-10-15
JP4024067B2 true JP4024067B2 (en) 2007-12-19

Family

ID=29241561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002100914A Expired - Fee Related JP4024067B2 (en) 2002-04-03 2002-04-03 Horizontal multi-stage rotary compressor

Country Status (1)

Country Link
JP (1) JP4024067B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412379C (en) * 2003-12-12 2008-08-20 乐金电子(天津)电器有限公司 Oil separating device in rotating type compressor
JP5328697B2 (en) * 2010-03-02 2013-10-30 三菱電機株式会社 Two-stage compressor and heat pump device
JP5341031B2 (en) * 2010-06-30 2013-11-13 三菱電機株式会社 Multi-cylinder rotary compressor, its assembling method and its manufacturing apparatus

Also Published As

Publication number Publication date
JP2003293974A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
JP2007100513A (en) Refrigerant compressor and refrigerant cycle device having the same
JP2003269356A (en) Horizontal type rotary compressor
JP4024067B2 (en) Horizontal multi-stage rotary compressor
JP2004027970A (en) Multistage compression type rotary compressor
JP4289975B2 (en) Multi-stage rotary compressor
JP2013130061A (en) Rotary compressor
JP3778867B2 (en) Horizontal multi-stage rotary compressor
JP4225793B2 (en) Horizontal type compressor
JP4063568B2 (en) Horizontal multistage compression rotary compressor
KR101326450B1 (en) Compressor
KR20060051709A (en) Compressor
JP4446923B2 (en) compressor
JP3935855B2 (en) Rotary compressor
JP3935854B2 (en) Rotary compressor
JP4093801B2 (en) Horizontal rotary compressor
JP4136747B2 (en) Rotary compressor
JP2004092469A (en) Rotary compressor
JP2005256709A (en) Lateral rotary compressor and air conditioner for vehicle
JP4118109B2 (en) Rotary compressor
JP3896020B2 (en) Rotary compressor
JP4274841B2 (en) Manufacturing method of airtight container for compressor
JP2005256669A (en) Lateral rotary compressor and air conditioner for vehicle
JP4100969B2 (en) Rotary compressor
JP2004169617A (en) Horizontal compressor
JP2005036741A (en) Horizontal compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees