JP2004169617A - Horizontal compressor - Google Patents

Horizontal compressor Download PDF

Info

Publication number
JP2004169617A
JP2004169617A JP2002336174A JP2002336174A JP2004169617A JP 2004169617 A JP2004169617 A JP 2004169617A JP 2002336174 A JP2002336174 A JP 2002336174A JP 2002336174 A JP2002336174 A JP 2002336174A JP 2004169617 A JP2004169617 A JP 2004169617A
Authority
JP
Japan
Prior art keywords
oil
refrigerant
compressor
rotary compression
closed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002336174A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matsumori
裕之 松森
Takayasu Saito
隆泰 斎藤
Takashi Sato
孝 佐藤
Masaru Matsuura
大 松浦
Toshiyuki Ebara
俊行 江原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002336174A priority Critical patent/JP2004169617A/en
Publication of JP2004169617A publication Critical patent/JP2004169617A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Abstract

<P>PROBLEM TO BE SOLVED: To provide a horizontal compressor capable of improving oil sealing performance and surely preventing oil shortage in minute clearances of sliding portions. <P>SOLUTION: The horizontal compressor (multistage compression type rotary compressor) 10 comprises a drive element 14 and a compressing mechanism section 18 driven by the drive element 14 in a horizontal hermetic container 12, in which refrigerant is compressed and discharged by the compressing mechanism section 18. The compressor is equipped with an oil separation means (tank) 130 provided on a refrigerant discharge side of the compressing mechanism section 18. Oil separated in the oil separation means (tank) 130 is supplied to the sliding portions of members in the hermetic container 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、横置き型の密閉容器内に駆動要素と、この駆動要素にて駆動される圧縮機構部とを備え、この圧縮機構部にて冷媒を圧縮して吐出する横置き型圧縮機に関するものである。
【0002】
【従来の技術】
従来よりこの種電動圧縮機としてのロータリコンプレッサ、特に第1の回転圧縮要素と第2の回転圧縮要素から成る回転圧縮機構部を備える多段圧縮式ロータリコンプレッサにおいては、通常縦型の密閉容器内上部に駆動要素を配置し、下部に当該駆動要素の回転軸で駆動される回転圧縮機構部を配置して構成されている。そして、第1の回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて、シリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。このとき密閉容器内は中間圧となる(特許文献1参照)。
【0003】
この密閉容器内の中間圧の冷媒ガスは第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経て、コンプレッサ外部の放熱器に流入する構成とされていた。
【0004】
また、係る縦型のロータリコンプレッサでは、回転圧縮機構部の下方に位置する密閉容器内底部がオイル溜めとされており、回転軸下端に構成された給油手段としてのオイルポンプによりオイル溜めからオイルが吸引され、回転圧縮機構部に供給されて回転圧縮機構部や回転軸の摺動部の摩耗等を防いでいた。
【0005】
【特許文献1】
特開平2−294587号公報(F04C 23/00)(第4頁、第5頁)。
【0006】
【発明が解決しようとする課題】
このような電動圧縮機では、吐出された冷媒ガス中に第1及び第2の回転圧縮要素に供給するオイルを混入させているが、冷媒ガスに混入したオイルをコンプレッサ外部の放熱器に流入させると不具合が発生してしまう。このため、吐出された冷媒ガス中のオイルを分離した後このオイルは一般的にキャピラリチューブなどの細管を用いて、密閉容器内上部に戻し密閉容器内の摺動部を潤滑していたが、上部から下流するオイルは摺動部の隙間に入り難く、摺動部のオイルシール性能が低下してしまう問題があった。
【0007】
また、容器上部から下流するオイルは特に微小隙間の摺動部には入り難いものである。このため、微小隙間の摺動部にオイル切れが発生してしまうなどの不都合が発生する問題もあった。
【0008】
本発明は、係る従来技術の課題を解決するために成されたものであり、オイルシール性能を向上でき、且つ、摺動部の微小隙間のオイル切れを確実に防止することができる横置き型圧縮機を提供することを目的とする。
【0009】
【課題を解決するための手段】
即ち、本発明の横置き型圧縮機は、密閉容器内に駆動要素と、この駆動要素にて駆動される圧縮機構部とを備え、この圧縮機構部にて冷媒を圧縮して吐出するものであって、圧縮機構部の冷媒吐出側に設けられたオイル分離手段を備え、このオイル分離手段にて分離されたオイルを、高圧で密閉容器内の部材摺動部に供給するので、密閉容器内の部材摺動部の微小隙間にでもオイルを供給することができる。
【0010】
特に、圧縮機構部の冷媒吐出側に設けられたオイル分離手段から戻るオイルは高圧となるため、部材摺動部の微小隙間のオイルシール性能を向上させることが可能となる。従って、部材摺動部の微小隙間にオイル切れが発生するなどの不都合を確実に防止することができるようになるものである。
【0011】
また、請求項2の発明の横置き型圧縮機は、上記において、オイル分離手段にて分離されたオイルを、高圧で駆動要素の回転軸とこの回転軸の軸受け間の摺動部に供給するので、回転軸と軸受け間との潤滑を確実に行うことが可能となる。これにより、回転軸と軸受け間のオイルシール性能を大幅に向上させることができるようになるものである。
【0012】
また、請求項3の発明の横置き型圧縮機は、請求項1に加えて、圧縮機構部を、シリンダと、駆動要素の回転軸に形成された偏心部に嵌合されてシリンダ内で偏心回転するローラと、このローラに当接してシリンダ内を低圧室側と高圧室側に区画するベーンと、シリンダに形成され、ベーンを収納するための案内溝とを備えた回転圧縮要素にて構成し、オイル分離手段にて分離されたオイルを、高圧でベーンと案内溝間の摺動部に供給するので、特に、ロータリコンプレッサの場合には、ベーンと案内溝間の潤滑を好適に行うことが可能となる。これによって、ベーンと案内溝間のオイルシール性能と潤滑性能とを大幅に向上させることができるようになるものである。
【0013】
また、請求項4の発明の横置き型圧縮機は、請求項1、請求項2又は請求項3に加えて、圧縮機構部を第1及び第2の回転圧縮要素から構成し、当該第1の回転圧縮要素で圧縮された冷媒を密閉容器内に吐出し、更にこの吐出された中間圧の冷媒を第2の回転圧縮要素で圧縮してオイル分離手段に吐出するので、例えば、内部中間圧の多段圧縮式のロータリコンプレッサにおいて、密閉容器内の摺動部の微小隙間に高圧のオイルを供給することができる。
【0014】
特に、第2の回転圧縮要素の冷媒吐出側に設けられたオイル分離手段から戻るオイルは極めて高圧となるため、密閉容器内の摺動部の微小隙間のオイルシール性能と潤滑性能とを大幅に向上させることが可能となる。従って、密閉容器内の摺動部の微小隙間にオイル切れが発生してしまうなどの不都合を確実に防止することができるようになるものである。
【0015】
更に、請求項5の発明の横置き型圧縮機は、請求項1、請求項2、請求項3又は請求項4において、冷媒として二酸化炭素を用いるので、高低圧差が大きくなる二酸化炭素冷媒を用いる場合にはオイル分離手段から戻るオイルは極めて高圧となる。これにより、密閉容器内の摺動部の微小隙間のオイルシールを特に効果的に行うことができるようになる。従って、特に高低圧差の大きい二酸化炭素冷媒を用いて横置き型圧縮機の密閉容器内の摺動部の微小隙間でもオイル切れが発生してしまうなどの不都合を確実に防止することができるようになるものである。
【0016】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の横置き型圧縮機の実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型の横置き型多段(2段)圧縮式ロータリコンプレッサ10の縦断側面図、図2は図1の多段圧縮式ロータリコンプレッサ10の平断面図をそれぞれ示している。
【0017】
各図において、10は二酸化炭素(CO2)を冷媒とする内部中間圧型の横置き型多段圧縮式電動圧縮機(多段圧縮式ロータリコンプレッサ)で、この多段圧縮式ロータリコンプレッサ10は両端が密閉された横長円筒状の横置き型密閉容器12を備え、この密閉容器12の底部をオイル溜めとしている。密閉容器12は、容器本体12Aとこの容器本体12Aの開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成されている。
【0018】
この密閉容器12内には駆動要素14と、水平方向に延在する駆動要素14の回転軸16により駆動される第1の回転圧縮要素32及び第2の回転圧縮要素34からなる回転圧縮機構部18が左右に並設して収納されている。また、密閉容器12の駆動要素14側の端部には円形の取付孔12Dが形成されており、この取付孔12Dには駆動要素14に電力を供給するためのターミナル20(配線を省略)が取り付けられている。
【0019】
駆動要素14は、密閉容器12の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り密閉容器12の軸心方向に延在する回転軸16に固定されている。
【0020】
回転軸16の回転圧縮機構部18側の端部には給油手段としてのオイルポンプ80が形成されている。このオイルポンプ80は、密閉容器12内の底部に形成されたオイル溜めから潤滑油としてのオイルを吸い上げて回転圧縮機構部18の摺動部に供給して摩耗を防止するために設けられており、このオイルポンプ80からは密閉容器12の底部に向かってオイル吸上パイプ80Aが降下し、オイル溜にて開口している。
【0021】
また、前記ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。そして、前記ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0022】
前記第1の回転圧縮要素32と第2の回転圧縮要素34は第1及び第2のシリンダ40、38により構成され、これらシリンダ40、38間には中間仕切板36が狭持されている。即ち、回転圧縮機構部18は、第1の回転圧縮要素32及び第2の回転圧縮要素34と、中間仕切板36とから構成されている。
【0023】
また、第1及び第2の回転圧縮要素32、34は、それぞれ中間仕切板36の両側(図1では左右)に配置された第1及び第2のシリンダ40、38と、180度の異相差を有して回転軸16に設けられた第1及び第2の偏心部44、42に嵌合され、第1及び第2のシリンダ40、38内を偏心回転する第1及び第2のローラ48、46と、これらローラ48、46にそれぞれ当接し往復動してシリンダ40、38内をそれぞれ低圧室側LRと高圧室側HR(図3)とに区画する第1及び第2のベーン52、50とシリンダ38の駆動要素14側の開口面とシリンダ40の駆動要素14とは反対側の開口面をそれぞれ閉塞して回転軸16の軸受けを兼用する支持部材54、56とから構成されている。
【0024】
両シリンダ40、38には第1及び第2のベーン52、50を摺動自在に収納するための案内溝70(第2のベーン52側は図示せず)と、この案内溝70の外側には、第1及び第2のベーン52、50の外側端部に当接して、常時第1及び第2のベーン52、50をローラ48、46側に付勢するスプリング76、74が設けられている(図3)。更に、スプリング76、74の密閉容器12側には金属製のプラグ76A、74Aが設けられ、スプリング76、74の抜け止めの役目を果たす。また、第2のベーン50には図示しない背圧室が構成され、この背圧室にはシリンダ38内の高圧室側HRの圧力が背圧として印加される。
【0025】
また、支持部材54、56には、吸込ポート161、162にてシリンダ38、40内部の低圧室側LRとそれぞれ連通する吸込通路58、60と、一部を凹陥させ、この凹陥部をカバー66、68にてそれぞれ閉塞することにより形成される吐出消音室62、64とが設けられている。尚、163は吐出ポートである。
【0026】
吐出消音室64と密閉容器12内は、シリンダ38、40や中間仕切板36、カバー66を貫通し、更に、このカバー66から離間して設けられた後述するバッフル板100も貫通して駆動要素14側に開口する図示しない連通路にて連通されており、連通路の端部には中間吐出管121が立設されている。この中間吐出管121から第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスが密閉容器12内の駆動要素14側に吐出される。このとき冷媒ガス中には第1の回転圧縮要素32に供給されたオイルが混入しているが、このオイルも密閉容器12内の駆動要素14側に吐出されることになる。ここで、冷媒ガス中に混入したオイルは冷媒ガスから分離して密閉容器12内底部のオイル溜めに溜まる。
【0027】
そして、前述したバッフル板100は密閉容器12内を駆動要素14側と回転圧縮機構部18側とに区画して、密閉容器12内に差圧を構成するために設けられる。このバッフル板100は、密閉容器12の内面との間に少許間隔を存して配設されたドーナッツ状の鋼板からなる。この場合、第1の回転圧縮要素32で圧縮され、密閉容器12内の駆動要素14側に吐出された中間圧の冷媒ガスは、密閉容器12とバッフル板100の間に形成された隙間を通って回転圧縮機構部18側に流入することになるが、係るバッフル板100の存在により、密閉容器12内にはバッフル板100の駆動要素14側の圧力は高く、回転圧縮機構部18側が低い差圧が構成される。
【0028】
そして、この差圧によって密閉容器12内底部のオイル溜めに貯溜されたオイルは回転圧縮機構部18側に移動し、バッフル板100より回転圧縮機構部18側のオイルレベルが上昇する。これにより、オイル吸上パイプ80Aの開口は支障無くオイル中に浸漬されるようになるので、オイルポンプ80による回転圧縮機構部18の摺動部へのオイルの供給が円滑に行われるようになる。
【0029】
また、このバッフル板100には密閉容器12内の中間圧の冷媒ガスを第2の回転圧縮要素34に導入するために、前述した吸込通路58と連通する吸気通路102が設けられている。この吸気通路102の吸込口104はバッフル板100の回転圧縮機構部18側の上部に開口しており、この吸込口104から中間圧の冷媒ガスを吸入する。そして、この吸気通路102はバッフル板100内を貫通し、バッフル板100の駆動要素14側に沿って延在した後、バッフル板100及びカバー66を貫通して吸込通路58と連通するように構成されている。
【0030】
該バッフル板100は回転圧縮機構部18の第2の回転圧縮要素34のカバー66から所定寸法離間して配設されている。これにより、回転圧縮機構部18の熱によりバッフル板100が加熱され難くなるので、このバッフル板100に設けられた吸気通路102内を通過して第2の回転圧縮要素34に導入される冷媒ガスも加熱され難くなる。これによって、第2の回転圧縮要素34における圧縮効率の向上を図っている。
【0031】
また、吸気通路102の吸込口104は、中間吐出管121が開口する駆動要素14側とはバッフル板100を挟んで反対側の回転圧縮機構部18側上部にて開口させている。これによって吸気通路102に吸い込まれる冷媒ガスのオイル分離を円滑に行っている。また、吸気通路102と回転圧縮機構部18とが干渉することが無くなり、密閉容器12内の部品配置が容易となる。
【0032】
そして、この場合の冷媒としては、地球環境にやさしく可燃性及び毒性等を考慮して自然冷媒である前記CO2(二酸化炭素)を使用し、密閉容器12内に封入される潤滑油としてのオイルとしては、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)等該存のオイルが使用される。
【0033】
密閉容器12の側面には、支持部材56と支持部材54の側部に対応する位置にスリーブ142、143がそれぞれ溶接固定されている。そして、スリーブ142内にはシリンダ40に冷媒を導入するための冷媒導入管94の一端が挿入接続され、吸込通路60に連通されている。また、スリーブ143内には冷媒吐出管96が挿入され、この冷媒吐出管96の一端は吐出消音室62に連通されている。更に、密閉容器12の底部には取付用台座110が設けられている(図2では図示しない)。
【0034】
一方、前記冷媒吐出管96の端部には縦長円筒形のタンク130(本発明のオイル分離手段に相当)を介して冷媒配管98が溶接にて接続固定されており、この冷媒配管98は、タンク130内上部に開口している。タンク130の下部にはオイル戻り配管134が接続され、オイル戻り配管134はタンク130内下部に開口すると共に、先端は容器本体12A、支持部材54を貫通して回転軸16周囲に開口している。即ち、タンク130下部に接続されたオイル戻り配管134の先端は、回転軸16とこの回転軸16の軸受け(支持部材54)間の摺動部(本発明の部材摺動部の微小隙間に相当)に開口している。
【0035】
前記、タンク130内には図示しないがタンク130内の空間を上下に仕切るかたちでオイルセパレータが設けられている。前記冷媒吐出管96からタンク130内に流入した冷媒ガスがオイルセパレータを通過する過程で、オイルセパレータは冷媒ガスとともに吐出されたオイルを分離させる。そして、分離されたオイルは、タンク130内下部に貯溜され、オイル戻り配管134内を通って駆動要素14の回転軸16と回転軸16の軸受け(支持部材54)間の摺動部に供給される。
【0036】
以上の構成で次に動作を説明する。ターミナル20及び図示されない配線を介して駆動要素14のステータコイル28に通電されると、駆動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた偏心部42、44に嵌合されたローラ46、48がシリンダ38、40内を偏心回転する。
【0037】
これにより、冷媒導入管94及び支持部材56に形成された吸込通路60を経由して吸込ポート162からシリンダ40の低圧室側に吸入された低圧の冷媒は、ローラ48と第2のベーン52の動作により圧縮されて中間圧となりシリンダ40の高圧室側より図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。これによって、密閉容器12内は中間圧となる。
【0038】
そして、密閉容器12内の中間圧の冷媒ガスは、図示しないが冷媒導入管及び吸込通路を経由して吸込ポート161からシリンダ38の低圧室側LRに吸入される。吸入された中間圧の冷媒ガスは、ローラ46と第1のベーン50の動作により2段目の圧縮が行われて高温・高圧の冷媒ガスとなる。高温・高圧の冷媒ガスは、高圧室側HRから吐出ポート163を通り支持部材54内に形成された吐出消音室62を経て、冷媒吐出管96内を通り、タンク130内に吐出されてタンク130内は高圧となる。
【0039】
タンク130内に吐出された高温・高圧の冷媒ガスは、タンク130内に設けられたオイルセパレータを通過する過程で、それに溶け込んでいるオイルが分離される。このオイルセパレータでオイルが分離された冷媒ガスは下流側の冷媒配管98からタンク130外に出て外部の図示しないガスクーラなどに流入する。このガスクーラで冷媒は放熱した後、図示しない減圧装置などで減圧され、これもまた図示しないエバポレータに流入する。
【0040】
そこで冷媒が蒸発し、その後、前記アキュムレータを経て冷媒導入管94から第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0041】
前記、オイルセパレータで冷媒ガスと分離されたオイルは、高圧のタンク130内に貯留される。タンク130内に貯留されたオイルは、高圧でオイル戻り配管134に押し出され、オイル戻り配管134内を通って駆動要素14の回転軸16と回転軸16の軸受け(支持部材54)間の摺動部に高圧で供給されて潤滑する。
【0042】
このように、従来の如きキャピラリチューブを使用すること無く、タンク130にて分離された高圧のオイルを、駆動要素14の回転軸16とこの回転軸16の支持部材54との摺動部に供給するようにしているので、回転軸16と支持部材54間の微小隙間にでも確実に潤滑を行うことが可能となる。これにより、回転軸16と支持部材54間のオイルシール性能を大幅に向上させることができるようになる。
【0043】
尚、上記実施例ではオイル戻り配管134により、タンク130にて分離された高圧のオイルを回転軸16とこの回転軸16の支持部材54との摺動部に供給するようにしたが、それに限らず、図3に示す如くオイル戻り配管134を、第2の回転圧縮要素34のシリンダ38を貫通して第2のベーン50の案内溝70まで延在させ、そこで開口させても良い(図3)。
【0044】
即ち、この場合オイル戻り配管134は、第2のベーン50と案内溝70との間(本発明の摺動部の微小隙間に相当)に開口する。そして、タンク130内で分離されたオイルは、分岐したオイル戻り配管134内を通って第2のベーン50と案内溝70間の摺動部に高圧で供給される。
【0045】
このように、タンク130にて分離された高圧のオイルを、第2のベーン50と案内溝70間の摺動部に供給するようにすれば、内部中間圧式の多段圧縮式ロータリコンプレッサ10において、2段目の回転圧縮要素34のシリンダ38の第2のベーン50と案内溝70間の微小隙間にでも好適に潤滑を行うことが可能となる。これによって、第2のベーン50と案内溝70間のオイルシール性能を大幅に向上させることが可能となる。従って、密閉容器12内の摺動部の微小隙間にオイル切れが発生してしまうなどの不都合を確実に防止することができる。
【0046】
尚、実施例では本発明の横置き型圧縮機を内部中間圧型の横置き型多段圧縮式ロータリコンプレッサ10に適用したが、それに限らず、単シリンダのロータリコンプレッサにおいても本発明は有効である。
【0047】
【発明の効果】
以上詳述した如く本発明によれば、横置き型の密閉容器内に駆動要素と、この駆動要素にて駆動される圧縮機構部とを備え、この圧縮機構部にて冷媒を圧縮して吐出するものであって、圧縮機構部の冷媒吐出側に設けられたオイル分離手段を備え、このオイル分離手段にて分離されたオイルを、高圧で密閉容器内の部材摺動部に供給するので、密閉容器内の部材摺動部の微小隙間にでもオイルを供給することができる。
【0048】
特に、圧縮機構部の冷媒吐出側に設けられたオイル分離手段から戻るオイルは高圧となるため、部材摺動部の微小隙間のオイルシール性能を向上させることが可能となる。従って、部材摺動部の微小隙間にオイル切れが発生するなどの不都合を確実に防止することができるようになるものである。
【0049】
また、請求項2の発明によれば、上記に加えて、オイル分離手段にて分離されたオイルを、高圧で駆動要素の回転軸とこの回転軸の軸受け間の摺動部に供給するので、回転軸と軸受け間との潤滑を確実に行うことが可能となる。これにより、回転軸と軸受け間のオイルシール性能を大幅に向上させることができるようになるものである。
【0050】
また、請求項3の発明によれば、請求項1に加えて、圧縮機構部を、シリンダと、駆動要素の回転軸に形成された偏心部に嵌合されてシリンダ内で偏心回転するローラと、このローラに当接してシリンダ内を低圧室側と高圧室側に区画するベーンと、シリンダに形成され、ベーンを収納するための案内溝とを備えた回転圧縮要素にて構成し、オイル分離手段にて分離されたオイルを、高圧でベーンと案内溝間の摺動部に供給するので、特にロータリコンプレッサの場合には、ベーンと案内溝間の潤滑を好適に行うことが可能となる。これによって、ベーンと案内溝間のオイルシール性能と潤滑性能とを大幅に向上させることができるようになるものである。
【0051】
また、請求項4の発明によれば、請求項1、請求項2又は請求項3に加えて、圧縮機構部を第1及び第2の回転圧縮要素から構成し、当該第1の回転圧縮要素で圧縮された冷媒を密閉容器内に吐出し、更にこの吐出された中間圧の冷媒を第2の回転圧縮要素で圧縮してオイル分離手段に吐出するので、例えば、内部中間圧の多段圧縮式のロータリコンプレッサにおいて、密閉容器内の摺動部の微小隙間に高圧のオイルを供給することができる。
【0052】
特に、第2の回転圧縮要素の冷媒吐出側に設けられたオイル分離手段から戻るオイルは極めて高圧となるため、密閉容器内の摺動部の微小隙間のオイルシール性能と潤滑性能とを大幅に向上させることが可能となる。従って、密閉容器内の摺動部の微小隙間にオイル切れが発生してしまうなどの不都合を確実に防止することができるようになるものである。
【0053】
更に、請求項5の発明によれば、請求項1、請求項2、請求項3又は請求項4において、冷媒として二酸化炭素を用いるので、高低圧差が大きくなる二酸化炭素冷媒を用いる場合にはオイル分離手段から戻るオイルは極めて高圧となる。これにより、密閉容器内の摺動部の微小隙間のオイルシールを特に効果的に行うことができるようになる。従って、特に高低圧差の大きい二酸化炭素冷媒を用いて横置き型圧縮機の密閉容器内の摺動部の微小隙間でもオイル切れが発生してしまうなどの不都合を確実に防止することができるようになるものである。
【図面の簡単な説明】
【図1】本発明の圧縮機の実施例として、第1及び第2の回転圧縮要素を備えた内部中間圧型の横置き型多段圧縮式ロータリコンプレッサの縦断側面図である。
【図2】図1の多段圧縮式ロータリコンプレッサの平断面図である。
【図3】本発明の他の実施例を説明する多段圧縮式ロータリコンプレッサの第2のシリンダの縦断側面図である。
【符号の説明】
10 多段圧縮式ロータリコンプレッサ
12 密閉容器
12A 容器本体
18 回転圧縮機構部
32 第1の回転圧縮要素
34 第2の回転圧縮要素
38、40 シリンダ
42、44 偏心部
46、48 ローラ
50 第2のベーン
52 第1のベーン
54 支持部材
70 案内溝
96 冷媒吐出管
98 冷媒配管
130 タンク
134 オイル戻り配管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a horizontal compressor in which a driving element and a compression mechanism driven by the driving element are provided in a horizontal closed container, and the compression mechanism compresses and discharges the refrigerant. Things.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a rotary compressor as an electric compressor of this type, particularly a multi-stage compression type rotary compressor having a rotary compression mechanism including a first rotary compression element and a second rotary compression element, usually has an upper portion inside a vertical closed container. , And a rotary compression mechanism driven by a rotation shaft of the drive element is arranged at a lower portion. Refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the first rotary compression element, is compressed by the operation of the rollers and vanes, and is discharged from the high pressure chamber side of the cylinder through the discharge port and the discharge muffling chamber. It is discharged into. At this time, the inside of the sealed container has an intermediate pressure (see Patent Document 1).
[0003]
The intermediate-pressure refrigerant gas in the closed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second-stage compression is performed by the operation of the roller and the vane, so that the high-temperature and high-pressure refrigerant gas is discharged. Thus, the configuration is such that the gas flows from the high-pressure chamber through a discharge port and a discharge muffling chamber to a radiator outside the compressor.
[0004]
Further, in such a vertical rotary compressor, the bottom of the closed container located below the rotary compression mechanism is an oil reservoir, and oil is supplied from the oil reservoir by an oil pump as an oil supply means formed at the lower end of the rotary shaft. It is sucked and supplied to the rotary compression mechanism to prevent wear of the rotary compression mechanism and the sliding portion of the rotary shaft.
[0005]
[Patent Document 1]
JP-A-2-294587 (F04C 23/00) (pages 4 and 5).
[0006]
[Problems to be solved by the invention]
In such an electric compressor, the oil supplied to the first and second rotary compression elements is mixed in the discharged refrigerant gas, but the oil mixed in the refrigerant gas flows into a radiator outside the compressor. And a problem will occur. For this reason, after separating the oil in the discharged refrigerant gas, the oil is generally returned to the upper part in the closed container using a thin tube such as a capillary tube to lubricate the sliding portion in the closed container. There is a problem that the oil downstream from the upper portion is hard to enter the gap between the sliding portions, and the oil sealing performance of the sliding portion is reduced.
[0007]
Further, the oil downstream from the upper part of the container is hard to enter particularly the sliding portion of the minute gap. For this reason, there is also a problem that inconvenience such as running out of oil occurs in the sliding portion of the minute gap.
[0008]
The present invention has been made in order to solve the problems of the related art, and a horizontal mounting type capable of improving oil sealing performance and reliably preventing oil shortage in a minute gap of a sliding portion. An object is to provide a compressor.
[0009]
[Means for Solving the Problems]
That is, the horizontal compressor of the present invention includes a driving element in a closed container, and a compression mechanism driven by the driving element, and compresses and discharges the refrigerant by the compression mechanism. There is provided an oil separating means provided on the refrigerant discharge side of the compression mechanism, and the oil separated by the oil separating means is supplied at a high pressure to a member sliding portion in the closed container. The oil can be supplied even to the minute gap of the member sliding portion.
[0010]
In particular, since the oil returning from the oil separating means provided on the refrigerant discharge side of the compression mechanism has a high pressure, it is possible to improve the oil sealing performance of the minute gap of the member sliding portion. Therefore, it is possible to reliably prevent inconvenience such as running out of oil in the minute gap of the member sliding portion.
[0011]
In the horizontal compressor according to the second aspect of the present invention, the oil separated by the oil separating means is supplied to the sliding portion between the rotating shaft of the driving element and the bearing of the rotating shaft at a high pressure. Therefore, it is possible to reliably perform lubrication between the rotating shaft and the bearing. Thereby, the oil seal performance between the rotating shaft and the bearing can be greatly improved.
[0012]
According to a third aspect of the present invention, there is provided a horizontal compressor according to the first aspect, wherein the compression mechanism portion is fitted to an eccentric portion formed on a rotary shaft of a drive element and a cylinder, and the eccentric portion is formed in the cylinder. A rotary compression element including a rotating roller, a vane abutting on the roller to partition the inside of the cylinder into a low pressure chamber side and a high pressure chamber side, and a guide groove formed in the cylinder and accommodating the vane. Since the oil separated by the oil separating means is supplied to the sliding portion between the vane and the guide groove at a high pressure, particularly in the case of a rotary compressor, the lubrication between the vane and the guide groove is preferably performed. Becomes possible. As a result, the oil seal performance and lubrication performance between the vane and the guide groove can be greatly improved.
[0013]
Also, in the horizontal compressor according to the invention of claim 4, in addition to claim 1, claim 2 or claim 3, the compression mechanism section comprises first and second rotary compression elements. The refrigerant compressed by the rotary compression element is discharged into the closed container, and the discharged intermediate-pressure refrigerant is compressed by the second rotary compression element and discharged to the oil separating means. In the multi-stage compression type rotary compressor described above, high-pressure oil can be supplied to the minute gap of the sliding portion in the sealed container.
[0014]
In particular, since the oil returning from the oil separating means provided on the refrigerant discharge side of the second rotary compression element has an extremely high pressure, the oil sealing performance and the lubrication performance of the minute gap of the sliding portion in the closed container are greatly reduced. It can be improved. Therefore, it is possible to reliably prevent inconvenience such as running out of oil in a minute gap of the sliding portion in the closed container.
[0015]
Furthermore, in the horizontal compressor according to the fifth aspect of the present invention, since carbon dioxide is used as the refrigerant in the first, second, third, or fourth aspect, a carbon dioxide refrigerant having a large difference between high and low pressures is used. In this case, the oil returning from the oil separating means has an extremely high pressure. As a result, it is possible to particularly effectively perform oil sealing of the minute gap of the sliding portion in the closed container. Therefore, it is possible to reliably prevent inconvenience such as running out of oil even in a minute gap of a sliding portion in a sealed container of a horizontal compressor by using a carbon dioxide refrigerant having a large difference between high and low pressures. It becomes.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows, as an embodiment of a horizontal compressor of the present invention, a longitudinal section of a horizontal multistage (two-stage) compression type rotary compressor 10 of an internal intermediate pressure type having first and second rotary compression elements 32 and 34. FIG. 2 is a side sectional view of the multi-stage compression type rotary compressor 10 shown in FIG.
[0017]
In each of the drawings, reference numeral 10 denotes an internal intermediate-pressure type horizontally mounted multistage compression type electric compressor (multistage compression type rotary compressor) using carbon dioxide (CO2) as a refrigerant, and the multistage compression type rotary compressor 10 is sealed at both ends. A horizontally long cylindrical closed container 12 is provided, and the bottom of the closed container 12 is used as an oil reservoir. The closed container 12 includes a container body 12A and a substantially bowl-shaped end cap (lid) 12B for closing an opening of the container body 12A.
[0018]
A rotary compression mechanism unit including a drive element 14 and a first rotary compression element 32 and a second rotary compression element 34 driven by the rotation shaft 16 of the drive element 14 extending in the horizontal direction. 18 are housed side by side. A circular mounting hole 12D is formed at the end of the closed container 12 on the driving element 14 side, and a terminal 20 (wiring is omitted) for supplying power to the driving element 14 is formed in the mounting hole 12D. Installed.
[0019]
The driving element 14 includes a stator 22 annularly mounted along the inner peripheral surface of the closed casing 12, and a rotor 24 inserted inside the stator 22 with a slight space therebetween. The rotor 24 is fixed to the rotating shaft 16 that extends through the center in the axial direction of the closed casing 12.
[0020]
An oil pump 80 as an oil supply means is formed at an end of the rotary shaft 16 on the side of the rotary compression mechanism 18. The oil pump 80 is provided for sucking oil as a lubricating oil from an oil reservoir formed at the bottom of the sealed container 12 and supplying the oil to the sliding portion of the rotary compression mechanism 18 to prevent wear. An oil suction pipe 80A descends from the oil pump 80 toward the bottom of the sealed container 12, and is opened in the oil reservoir.
[0021]
The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel sheets are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method. The rotor 24 is also formed of a laminated body 30 of electromagnetic steel sheets, like the stator 22, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0022]
The first rotary compression element 32 and the second rotary compression element 34 are constituted by first and second cylinders 40 and 38, and an intermediate partition plate 36 is sandwiched between the cylinders 40 and 38. That is, the rotary compression mechanism 18 includes a first rotary compression element 32 and a second rotary compression element 34, and an intermediate partition plate 36.
[0023]
Further, the first and second rotary compression elements 32 and 34 are respectively provided with first and second cylinders 40 and 38 disposed on both sides (left and right in FIG. 1) of the intermediate partition plate 36, respectively, with a 180 ° phase difference. The first and second rollers 48 which are fitted to the first and second eccentric portions 44 and 42 provided on the rotating shaft 16 and eccentrically rotate in the first and second cylinders 40 and 38. , 46, and the first and second vanes 52, which respectively contact the rollers 48, 46 to reciprocate and partition the cylinders 40, 38 into a low-pressure chamber LR and a high-pressure chamber HR (FIG. 3), respectively. The support members 54, 56, which also serve as bearings for the rotating shaft 16, by closing the opening surface of the cylinder 50 on the drive element 14 side and the opening surface of the cylinder 40 on the side opposite to the drive element 14. .
[0024]
A guide groove 70 (the second vane 52 side is not shown) for slidably storing the first and second vanes 52, 50 is provided in both cylinders 40, 38. Are provided with springs 76, 74 that abut against the outer ends of the first and second vanes 52, 50 and constantly bias the first and second vanes 52, 50 toward the rollers 48, 46. (Fig. 3). Further, metal plugs 76A and 74A are provided on the closed container 12 side of the springs 76 and 74, and serve to prevent the springs 76 and 74 from coming off. A back pressure chamber (not shown) is formed in the second vane 50, and the pressure of the high pressure chamber HR in the cylinder 38 is applied to the back pressure chamber as a back pressure.
[0025]
The support members 54 and 56 have suction ports 58 and 60 that communicate with the low-pressure chamber LR inside the cylinders 38 and 40 at the suction ports 161 and 162, respectively, and a part thereof is recessed. , 68 are provided, respectively. In addition, 163 is a discharge port.
[0026]
The discharge muffling chamber 64 and the inside of the sealed container 12 penetrate the cylinders 38 and 40, the intermediate partition plate 36, and the cover 66, and further penetrate a baffle plate 100, which will be described later, provided separately from the cover 66. It communicates with a communication passage (not shown) that opens to the 14 side, and an intermediate discharge pipe 121 is provided upright at an end of the communication passage. The intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 is discharged from the intermediate discharge pipe 121 toward the drive element 14 in the closed casing 12. At this time, the oil supplied to the first rotary compression element 32 is mixed in the refrigerant gas, and this oil is also discharged to the drive element 14 side in the closed container 12. Here, the oil mixed in the refrigerant gas is separated from the refrigerant gas and stored in an oil reservoir at the bottom of the closed container 12.
[0027]
The above-described baffle plate 100 is provided to divide the inside of the closed container 12 into the drive element 14 side and the rotary compression mechanism 18 side, and to configure a differential pressure in the closed container 12. The baffle plate 100 is made of a donut-shaped steel plate disposed at a small distance from the inner surface of the closed container 12. In this case, the intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 and discharged to the drive element 14 side in the sealed container 12 passes through a gap formed between the sealed container 12 and the baffle plate 100. However, due to the presence of the baffle plate 100, the pressure on the drive element 14 side of the baffle plate 100 is high in the closed container 12 and the difference is low on the rotary compression mechanism portion 18 side. Pressure is configured.
[0028]
Then, due to this differential pressure, the oil stored in the oil reservoir at the bottom of the closed container 12 moves to the rotary compression mechanism 18 side, and the oil level on the rotary compression mechanism 18 side from the baffle plate 100 rises. As a result, the opening of the oil suction pipe 80A is immersed in the oil without any trouble, so that the oil pump 80 smoothly supplies the oil to the sliding portion of the rotary compression mechanism 18. .
[0029]
In addition, the baffle plate 100 is provided with an intake passage 102 that communicates with the above-described suction passage 58 in order to introduce the intermediate-pressure refrigerant gas in the closed casing 12 into the second rotary compression element 34. The suction port 104 of the intake passage 102 is opened at the upper part of the baffle plate 100 on the side of the rotary compression mechanism 18, and the refrigerant gas at an intermediate pressure is sucked from the suction port 104. The intake passage 102 penetrates through the baffle plate 100, extends along the drive element 14 side of the baffle plate 100, and then penetrates through the baffle plate 100 and the cover 66 to communicate with the suction passage 58. Have been.
[0030]
The baffle plate 100 is disposed at a predetermined distance from the cover 66 of the second rotary compression element 34 of the rotary compression mechanism 18. This makes it difficult for the baffle plate 100 to be heated by the heat of the rotary compression mechanism 18, so that the refrigerant gas introduced into the second rotary compression element 34 through the intake passage 102 provided in the baffle plate 100 Is also difficult to be heated. Thereby, the compression efficiency of the second rotary compression element 34 is improved.
[0031]
Further, the suction port 104 of the intake passage 102 is opened at the upper part of the rotary compression mechanism 18 opposite to the drive element 14 side where the intermediate discharge pipe 121 opens, with the baffle plate 100 interposed therebetween. Thereby, oil separation of the refrigerant gas sucked into the intake passage 102 is performed smoothly. In addition, the intake passage 102 and the rotary compression mechanism 18 do not interfere with each other, and the components in the closed casing 12 can be easily arranged.
[0032]
As the refrigerant in this case, the CO2 (carbon dioxide), which is a natural refrigerant in consideration of flammability and toxicity, which is friendly to the global environment, is used, and is used as an oil as a lubricating oil sealed in the closed container 12. For example, mineral oil (mineral oil), alkyl benzene oil, ether oil, ester oil, PAG (polyalkyl glycol) and the like are used.
[0033]
Sleeves 142 and 143 are fixed to the side surfaces of the sealed container 12 by welding at positions corresponding to the side portions of the support members 56 and 54, respectively. One end of a refrigerant introduction pipe 94 for introducing refrigerant into the cylinder 40 is inserted and connected into the sleeve 142, and communicates with the suction passage 60. A refrigerant discharge pipe 96 is inserted into the sleeve 143, and one end of the refrigerant discharge pipe 96 is connected to the discharge muffling chamber 62. Further, a mounting pedestal 110 is provided at the bottom of the sealed container 12 (not shown in FIG. 2).
[0034]
On the other hand, a refrigerant pipe 98 is fixedly connected to an end of the refrigerant discharge pipe 96 by welding via a vertically long cylindrical tank 130 (corresponding to the oil separating means of the present invention). It is open at the top inside the tank 130. An oil return pipe 134 is connected to a lower part of the tank 130, and the oil return pipe 134 is opened at a lower part in the tank 130, and a tip end is opened around the rotation shaft 16 through the container body 12A and the support member 54. . That is, the tip of the oil return pipe 134 connected to the lower part of the tank 130 is a sliding portion between the rotating shaft 16 and a bearing (support member 54) of the rotating shaft 16 (corresponding to a minute gap of the member sliding portion of the present invention). ).
[0035]
Although not shown, an oil separator is provided in the tank 130 so as to partition the space in the tank 130 up and down. While the refrigerant gas flowing into the tank 130 from the refrigerant discharge pipe 96 passes through the oil separator, the oil separator separates the oil discharged together with the refrigerant gas. The separated oil is stored in the lower portion of the tank 130 and supplied to the sliding portion between the rotating shaft 16 of the driving element 14 and the bearing (support member 54) of the rotating shaft 16 through the oil return pipe 134. You.
[0036]
Next, the operation of the above configuration will be described. When the stator coil 28 of the driving element 14 is energized via the terminal 20 and the wiring (not shown), the driving element 14 starts and the rotor 24 rotates. By this rotation, the rollers 46 and 48 fitted to the eccentric portions 42 and 44 provided integrally with the rotating shaft 16 eccentrically rotate inside the cylinders 38 and 40.
[0037]
As a result, the low-pressure refrigerant sucked from the suction port 162 to the low-pressure chamber side of the cylinder 40 via the refrigerant introduction pipe 94 and the suction passage 60 formed in the support member 56 is supplied to the roller 48 and the second vane 52. It is compressed by the operation to become an intermediate pressure, and is discharged from the intermediate discharge pipe 121 into the closed container 12 through a communication passage (not shown) from the high pressure chamber side of the cylinder 40. Thereby, the inside of the sealed container 12 has an intermediate pressure.
[0038]
The intermediate-pressure refrigerant gas in the sealed container 12 is drawn into the low-pressure chamber LR of the cylinder 38 from the suction port 161 via a refrigerant introduction pipe and a suction passage (not shown). The sucked intermediate-pressure refrigerant gas is compressed in the second stage by the operation of the roller 46 and the first vane 50, and becomes a high-temperature and high-pressure refrigerant gas. The high-temperature and high-pressure refrigerant gas is discharged from the high-pressure chamber HR through the discharge port 163, through the discharge muffling chamber 62 formed in the support member 54, through the refrigerant discharge pipe 96, into the tank 130, and into the tank 130. Inside is high pressure.
[0039]
The high-temperature and high-pressure refrigerant gas discharged into the tank 130 passes through an oil separator provided in the tank 130, whereby oil dissolved therein is separated. The refrigerant gas from which oil has been separated by the oil separator flows out of the tank 130 from the refrigerant pipe 98 on the downstream side, and flows into an external gas cooler (not shown). After the refrigerant radiates heat in the gas cooler, the pressure is reduced by a pressure reducing device (not shown) or the like, and also flows into an evaporator (not shown).
[0040]
Then, a cycle in which the refrigerant evaporates and thereafter is sucked into the first rotary compression element 32 from the refrigerant introduction pipe 94 through the accumulator is repeated.
[0041]
The oil separated from the refrigerant gas by the oil separator is stored in a high-pressure tank 130. The oil stored in the tank 130 is extruded at a high pressure into an oil return pipe 134, passes through the oil return pipe 134, and slides between the rotation shaft 16 of the driving element 14 and a bearing (support member 54) of the rotation shaft 16. It is supplied to the section at high pressure and lubricated.
[0042]
As described above, the high-pressure oil separated in the tank 130 is supplied to the sliding portion between the rotating shaft 16 of the driving element 14 and the supporting member 54 of the rotating shaft 16 without using a conventional capillary tube. Therefore, it is possible to reliably perform lubrication even in a minute gap between the rotating shaft 16 and the support member 54. As a result, the performance of the oil seal between the rotating shaft 16 and the support member 54 can be greatly improved.
[0043]
In the above-described embodiment, the high-pressure oil separated in the tank 130 is supplied to the sliding portion between the rotating shaft 16 and the support member 54 of the rotating shaft 16 by the oil return pipe 134, but is not limited thereto. Instead, as shown in FIG. 3, an oil return pipe 134 may extend through the cylinder 38 of the second rotary compression element 34 to the guide groove 70 of the second vane 50 and be opened there (FIG. 3). ).
[0044]
That is, in this case, the oil return pipe 134 is opened between the second vane 50 and the guide groove 70 (corresponding to a minute gap of the sliding portion of the present invention). Then, the oil separated in the tank 130 is supplied at high pressure to the sliding portion between the second vane 50 and the guide groove 70 through the branched oil return pipe 134.
[0045]
As described above, when the high-pressure oil separated in the tank 130 is supplied to the sliding portion between the second vane 50 and the guide groove 70, in the internal intermediate pressure type multi-stage compression type rotary compressor 10, Lubrication can be suitably performed even in the minute gap between the second vane 50 of the cylinder 38 of the second-stage rotary compression element 34 and the guide groove 70. As a result, it is possible to greatly improve the oil sealing performance between the second vane 50 and the guide groove 70. Therefore, it is possible to reliably prevent inconvenience such as running out of oil in a minute gap of the sliding portion in the sealed container 12.
[0046]
In the embodiment, the horizontal compressor of the present invention is applied to the internal intermediate pressure type horizontal multistage compression type rotary compressor 10, but the present invention is not limited to this, and the present invention is also effective for a single cylinder rotary compressor.
[0047]
【The invention's effect】
As described above in detail, according to the present invention, a drive element and a compression mechanism driven by the drive element are provided in a horizontal closed container, and the compression mechanism compresses and discharges the refrigerant. It is provided with oil separating means provided on the refrigerant discharge side of the compression mechanism, and the oil separated by the oil separating means is supplied at high pressure to a member sliding portion in a closed container, Oil can be supplied even to a minute gap in the member sliding portion in the closed container.
[0048]
In particular, since the oil returning from the oil separating means provided on the refrigerant discharge side of the compression mechanism has a high pressure, it is possible to improve the oil sealing performance of the minute gap of the member sliding portion. Therefore, it is possible to reliably prevent inconvenience such as running out of oil in the minute gap of the member sliding portion.
[0049]
According to the second aspect of the present invention, in addition to the above, the oil separated by the oil separating means is supplied at a high pressure to the sliding portion between the rotating shaft of the driving element and the bearing of the rotating shaft. Lubrication between the rotating shaft and the bearing can be reliably performed. Thereby, the oil seal performance between the rotating shaft and the bearing can be greatly improved.
[0050]
According to the third aspect of the present invention, in addition to the first aspect, the compression mechanism includes a cylinder and a roller that is fitted to an eccentric portion formed on a rotation shaft of the drive element and that rotates eccentrically in the cylinder. A rotary compression element having a vane abutting against the roller and partitioning the inside of the cylinder into a low pressure chamber side and a high pressure chamber side, and a guide groove formed in the cylinder and accommodating the vane. Since the oil separated by the means is supplied to the sliding portion between the vane and the guide groove at high pressure, lubrication between the vane and the guide groove can be suitably performed particularly in the case of a rotary compressor. As a result, the oil seal performance and lubrication performance between the vane and the guide groove can be greatly improved.
[0051]
According to the fourth aspect of the present invention, in addition to the first, second, or third aspect, the compression mechanism section includes the first and second rotary compression elements, and the first rotary compression element. Is discharged into the closed container, and the discharged intermediate-pressure refrigerant is compressed by the second rotary compression element and discharged to the oil separating means. For example, the internal intermediate-pressure multistage compression type In this rotary compressor, high-pressure oil can be supplied to a minute gap in a sliding portion in a closed container.
[0052]
In particular, since the oil returning from the oil separating means provided on the refrigerant discharge side of the second rotary compression element has an extremely high pressure, the oil sealing performance and the lubrication performance of the minute gap of the sliding portion in the closed container are greatly reduced. It can be improved. Therefore, it is possible to reliably prevent inconvenience such as running out of oil in a minute gap of the sliding portion in the closed container.
[0053]
According to the fifth aspect of the present invention, carbon dioxide is used as the refrigerant in the first, second, third, or fourth aspect of the present invention. The oil returning from the separation means has a very high pressure. Thereby, it is possible to particularly effectively perform the oil sealing of the minute gap of the sliding portion in the closed container. Therefore, it is possible to reliably prevent inconvenience such as running out of oil even in a minute gap of a sliding portion in a sealed container of a horizontal compressor by using a carbon dioxide refrigerant having a large difference between high and low pressures. It becomes.
[Brief description of the drawings]
FIG. 1 is a vertical cross-sectional side view of an internal intermediate pressure type horizontal multi-stage compression type rotary compressor having first and second rotary compression elements as an embodiment of the compressor of the present invention.
FIG. 2 is a plan sectional view of the multi-stage compression type rotary compressor of FIG. 1;
FIG. 3 is a vertical sectional side view of a second cylinder of a multi-stage compression type rotary compressor illustrating another embodiment of the present invention.
[Explanation of symbols]
Reference Signs List 10 multi-stage compression type rotary compressor 12 closed container 12A container body 18 rotary compression mechanism 32 first rotary compression element 34 second rotary compression element 38, 40 cylinder 42, 44 eccentric part 46, 48 roller 50 second vane 52 First vane 54 Support member 70 Guide groove 96 Refrigerant discharge pipe 98 Refrigerant pipe 130 Tank 134 Oil return pipe

Claims (5)

横置き型の密閉容器内に駆動要素と、該駆動要素にて駆動される圧縮機構部とを備え、該圧縮機構部にて冷媒を圧縮して吐出する横置き型圧縮機において、
前記圧縮機構部の冷媒吐出側に設けられたオイル分離手段を備え、該オイル分離手段にて分離されたオイルを、前記密閉容器内の部材摺動部に供給することを特徴とする横置き型圧縮機。
In a horizontal compressor that includes a driving element in a horizontal type closed container and a compression mechanism driven by the driving element, and compresses and discharges the refrigerant in the compression mechanism.
An oil separating unit provided on a refrigerant discharge side of the compression mechanism unit, wherein the oil separated by the oil separating unit is supplied to a member sliding portion in the closed container. Compressor.
前記オイル分離手段にて分離されたオイルを、前記駆動要素の回転軸と該回転軸の軸受け間の摺動部に供給することを特徴とする請求項1の横置き型圧縮機。The horizontal compressor according to claim 1, wherein the oil separated by the oil separating means is supplied to a sliding portion between a rotation shaft of the driving element and a bearing of the rotation shaft. 前記圧縮機構部を、シリンダと、前記駆動要素の回転軸に形成された偏心部に嵌合されて前記シリンダ内で偏心回転するローラと、該ローラに当接して前記シリンダ内を低圧室側と高圧室側に区画するベーンと、前記シリンダに形成され、前記ベーンを収納するための案内溝とを備えた回転圧縮要素にて構成し、前記オイル分離手段にて分離されたオイルを、前記ベーンと案内溝間の摺動部に供給することを特徴とする請求項1の横置き型圧縮機。The compression mechanism section, a cylinder, a roller that is fitted to an eccentric portion formed on the rotation shaft of the drive element and that rotates eccentrically in the cylinder, A rotary compression element having a vane partitioned into a high-pressure chamber and a guide groove formed in the cylinder and accommodating the vane, wherein the oil separated by the oil separating means is supplied to the vane. The horizontal compressor according to claim 1, wherein the compressor is supplied to a sliding portion between the first and second guide grooves. 前記圧縮機構部を第1及び第2の回転圧縮要素から構成し、当該第1の回転圧縮要素で圧縮された冷媒を前記密閉容器内に吐出し、更にこの吐出された中間圧の冷媒を前記第2の回転圧縮要素で圧縮して前記オイル分離手段に吐出することを特徴とする請求項1、請求項2又は請求項3の横置き型圧縮機。The compression mechanism section includes first and second rotary compression elements, discharges the refrigerant compressed by the first rotary compression element into the closed container, and further discharges the discharged intermediate-pressure refrigerant to the closed container. 4. The horizontal compressor according to claim 1, wherein said compressor is compressed by a second rotary compression element and discharged to said oil separating means. 前記冷媒として二酸化炭素を用いることを特徴とする請求項1、請求項2、請求項3又は請求項4の横置き型圧縮機。5. The horizontal compressor according to claim 1, wherein carbon dioxide is used as the refrigerant.
JP2002336174A 2002-11-20 2002-11-20 Horizontal compressor Pending JP2004169617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002336174A JP2004169617A (en) 2002-11-20 2002-11-20 Horizontal compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002336174A JP2004169617A (en) 2002-11-20 2002-11-20 Horizontal compressor

Publications (1)

Publication Number Publication Date
JP2004169617A true JP2004169617A (en) 2004-06-17

Family

ID=32700087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002336174A Pending JP2004169617A (en) 2002-11-20 2002-11-20 Horizontal compressor

Country Status (1)

Country Link
JP (1) JP2004169617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200129A (en) * 2010-03-25 2011-09-28 三洋电机株式会社 Spiral compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200129A (en) * 2010-03-25 2011-09-28 三洋电机株式会社 Spiral compressor

Similar Documents

Publication Publication Date Title
JP3291484B2 (en) 2-stage compression type rotary compressor
JP2004027970A (en) Multistage compression type rotary compressor
JP4307945B2 (en) Horizontal rotary compressor
JP4289975B2 (en) Multi-stage rotary compressor
JP3935855B2 (en) Rotary compressor
JP4225793B2 (en) Horizontal type compressor
JP2004169617A (en) Horizontal compressor
JP3370026B2 (en) 2-stage compression type rotary compressor
JP4024067B2 (en) Horizontal multi-stage rotary compressor
JP3935854B2 (en) Rotary compressor
JP2006307687A (en) Compressor
JP3778867B2 (en) Horizontal multi-stage rotary compressor
JP4136747B2 (en) Rotary compressor
JP4118109B2 (en) Rotary compressor
JP4063568B2 (en) Horizontal multistage compression rotary compressor
JP4263047B2 (en) Horizontal type compressor
JP2004293380A (en) Horizontal rotary compressor
JP2004092469A (en) Rotary compressor
JP2003286984A (en) Internal intermediate pressure type multi-stage compression rotary compressor
JP2001082371A (en) Two-stage compression type rotary compressor
JP2005036741A (en) Horizontal compressor
JP2004019599A (en) Multiple-stage compression type rotary compressor
JP4093801B2 (en) Horizontal rotary compressor
JP3370041B2 (en) Rotary compressor
JP4100969B2 (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041207

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071116

A131 Notification of reasons for refusal

Effective date: 20071120

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A131 Notification of reasons for refusal

Effective date: 20080624

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080819

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090210