JP4307945B2 - Horizontal rotary compressor - Google Patents

Horizontal rotary compressor Download PDF

Info

Publication number
JP4307945B2
JP4307945B2 JP2003342460A JP2003342460A JP4307945B2 JP 4307945 B2 JP4307945 B2 JP 4307945B2 JP 2003342460 A JP2003342460 A JP 2003342460A JP 2003342460 A JP2003342460 A JP 2003342460A JP 4307945 B2 JP4307945 B2 JP 4307945B2
Authority
JP
Japan
Prior art keywords
oil
rotary compression
baffle plate
sealed container
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003342460A
Other languages
Japanese (ja)
Other versions
JP2005105985A (en
Inventor
裕之 松森
大 松浦
俊行 江原
孝 佐藤
隆泰 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003342460A priority Critical patent/JP4307945B2/en
Priority to EP04013883A priority patent/EP1520989A3/en
Priority to EP09015899A priority patent/EP2180189A3/en
Priority to US10/873,293 priority patent/US7303379B2/en
Priority to CN200410079444.5A priority patent/CN1603626A/en
Priority to CN200710196154A priority patent/CN100575708C/en
Priority to CN2007101961538A priority patent/CN101187375B/en
Publication of JP2005105985A publication Critical patent/JP2005105985A/en
Application granted granted Critical
Publication of JP4307945B2 publication Critical patent/JP4307945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Description

本発明は、密閉容器内に駆動要素と、この駆動要素により駆動される第1及び第2の回転圧縮要素から成る回転圧縮機構部とを備える横型ロータリコンプレッサに関するものである。   The present invention relates to a horizontal rotary compressor including a driving element in a hermetic container, and a rotary compression mechanism unit including first and second rotary compression elements driven by the drive element.

従来この種ロータリコンプレッサ、例えば、第1及び第2の回転圧縮要素を備えた内部中間圧型多段(2段)圧縮式ロータリコンプレッサでは、密閉容器内に駆動要素とこの駆動要素にて駆動される回転圧縮機構部とにより構成されている。   Conventionally, in this type of rotary compressor, for example, an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor provided with first and second rotary compression elements, a drive element and a rotation driven by the drive element in a hermetic container It is comprised by the compression mechanism part.

そして、第1の回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となりシリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。そして、この密閉容器内の中間圧の冷媒ガスは第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経てコンプレッサの外部に吐出される構成とされている。   Then, the refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the first rotary compression element and is compressed by the operation of the roller and the vane to become an intermediate pressure from the high pressure chamber side of the cylinder through the discharge port and the discharge silencer chamber. It is discharged into a closed container. The intermediate-pressure refrigerant gas in the sealed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second stage compression is performed by the operation of the roller and the vane, so The refrigerant gas is discharged from the high-pressure chamber side through the discharge port and discharge silencer chamber to the outside of the compressor.

また、密閉容器内の底部はオイル溜めとされ、回転軸の一端に取り付けられたオイルポンプ(給油手段)によりオイル溜めからオイルが吸い上げられて、回転圧縮機構部の摺動部等に供給されて潤滑とシールを行っている(例えば、特許文献1参照)。
特許第2507047号公報
The bottom of the sealed container is an oil reservoir, and oil is sucked up from the oil reservoir by an oil pump (oil supply means) attached to one end of the rotating shaft and supplied to the sliding portion of the rotary compression mechanism. Lubrication and sealing are performed (see, for example, Patent Document 1).
Japanese Patent No. 25007047

ところで、このようなロータリコンプレッサを横型として用いた場合、第1の回転圧縮要素にて圧縮された冷媒ガス中には第1の回転圧縮要素に供給されたオイルが溶け込んでおり、当該オイルはオイルポンプ側だけで無く、電動要素側の密閉容器底部にも溜まるようになる。そのため、回転軸の回転圧縮機構部側の端部に構成されるオイルポンプによるオイルの吸引が円滑に行えなくなる恐れがあった。   By the way, when such a rotary compressor is used as a horizontal type, the oil supplied to the first rotary compression element is dissolved in the refrigerant gas compressed by the first rotary compression element. Not only on the pump side, but also on the bottom of the sealed container on the electric element side. For this reason, there is a fear that oil cannot be smoothly sucked by the oil pump configured at the end of the rotary shaft on the rotary compression mechanism portion side.

また、第1の回転圧縮要素で圧縮された冷媒ガス中に混入したオイルは、密閉容器内に吐出され、当該密閉容器内の空間を移動する過程で冷媒ガスからある程度分離されるが、第2の回転圧縮要素で圧縮された冷媒ガス中に混入したオイルは、冷媒ガスと共にそのままコンプレッサの外部に吐出されていた。   The oil mixed in the refrigerant gas compressed by the first rotary compression element is discharged into the sealed container and separated to some extent from the refrigerant gas in the process of moving through the space in the sealed container. The oil mixed in the refrigerant gas compressed by the rotary compression element was directly discharged to the outside of the compressor together with the refrigerant gas.

このため、オイル溜めのオイルが不足し、オイルポンプによるオイルの吸引が円滑に行えなくなり、摺動性能やシール性が低下すると云う問題が生じていた。更に、コンプレッサ外部に吐出されたオイルにより、冷媒回路内の冷媒循環に支障をきたすなど、冷媒回路に悪影響を及ぼす恐れもあった。   For this reason, there has been a problem that the oil in the oil reservoir is insufficient, the oil cannot be sucked smoothly by the oil pump, and the sliding performance and the sealing performance are deteriorated. Furthermore, the oil discharged to the outside of the compressor may adversely affect the refrigerant circuit, for example, hindering the refrigerant circulation in the refrigerant circuit.

また、上述のようなコンプレッサ外部へのオイル吐出を防ぐため、冷媒吐出管にオイルセパレータを接続して吐出冷媒ガスからオイルを分離し、コンプレッサに戻す工夫も成されているが、設置スペースが拡大するなどの問題があった。   In order to prevent oil discharge outside the compressor as described above, an oil separator is connected to the refrigerant discharge pipe to separate the oil from the discharged refrigerant gas and return it to the compressor, but the installation space is expanded. There was a problem such as.

請求項1の発明の横型ロータリコンプレッサは、密閉容器内に駆動要素と、この駆動要素により駆動される回転圧縮機構部とを収納して成るものであって、密閉容器内底部のオイル溜め内のオイルを回転圧縮機構部等に供給するための給油手段と、密閉容器内に設けられ、回転圧縮機構部から吐出された冷媒中のオイルを遠心分離するオイル分離手段と、このオイル分離手段にて分離されたオイルをオイル溜めに戻すためのオイル通路と、密閉容器内を駆動要素側と回転圧縮機構部側に区画して差圧を構成するためのバッフル板と、オイル溜め内に位置し、バッフル板の駆動要素側と回転圧縮機構部側とを連通する小径通路とを備え、給油手段をバッフル板の回転圧縮機構部側に設けると共に、当該回転圧縮機構部は第1及び第2の回転圧縮要素からなり、第1の回転圧縮要素で圧縮された冷媒を密閉容器内に吐出して、この密閉容器内の冷媒を第2の回転圧縮要素で吸い込んで圧縮し、第1の回転圧縮要素にて圧縮された冷媒をバッフル板の駆動要素側に吐出すると共に、オイル通路の出口を、バッフル板の駆動要素側から小径通路に指向させたものである。 A horizontal rotary compressor according to a first aspect of the present invention comprises a sealed element containing a drive element and a rotary compression mechanism driven by the drive element, and is provided in an oil reservoir at the bottom of the sealed container. An oil supply means for supplying oil to the rotary compression mechanism, etc., an oil separation means provided in the sealed container for centrifuging the oil in the refrigerant discharged from the rotary compression mechanism, and the oil separation means An oil passage for returning the separated oil to the oil sump, a baffle plate for dividing the inside of the sealed container into a drive element side and a rotary compression mechanism part side to constitute a differential pressure, and an oil sump, A small-diameter passage that communicates the drive element side of the baffle plate and the rotary compression mechanism portion side is provided, and the oil supply means is provided on the rotary compression mechanism portion side of the baffle plate. compression The refrigerant, which is composed of raw material and is compressed by the first rotary compression element, is discharged into the sealed container, and the refrigerant in the sealed container is sucked and compressed by the second rotary compression element. The compressed refrigerant is discharged to the drive element side of the baffle plate, and the outlet of the oil passage is directed from the drive element side of the baffle plate to the small diameter passage .

請求項1の発明によれば、オイル分離手段により第2の回転圧縮要素で圧縮された冷媒からオイルを効果的に分離することができるようになる。これにより、コンプレッサからのオイル吐出量を著しく低減することができるようになる。 According to the first aspect of the invention, the oil can be effectively separated from the refrigerant compressed by the second rotary compression element by the oil separation means . As a result, the amount of oil discharged from the compressor can be significantly reduced.

また、オイル分離手段にて分離されたオイルは、当該オイル分離手段内の冷媒ガスにてオイル通路から押し出される。そのため、オイル分離手段にて分離されたオイルを、オイル分離手段内の冷媒ガスにて押し出される速度を利用して小径通路を通過させることで、小径通路がエゼクタポンプの如く作用して、バッフル板の駆動要素側のオイル溜め内のオイルも巻き込んで回転圧縮機構部側に移動させることができるようになる。The oil separated by the oil separation means is pushed out from the oil passage by the refrigerant gas in the oil separation means. Therefore, by passing the oil separated by the oil separating means through the small diameter passage by using the speed pushed out by the refrigerant gas in the oil separating means, the small diameter passage acts like an ejector pump, and the baffle plate The oil in the oil reservoir on the drive element side can also be entrained and moved to the rotary compression mechanism portion side.

これにより、バッフル板の回転圧縮機構部側のオイル溜めのオイルレベルを上昇させることができるようになる。   As a result, the oil level of the oil reservoir on the rotary compression mechanism portion side of the baffle plate can be raised.

本発明は、係る技術的課題を解決するために、外部へのオイル吐出量を減らすと共に、回転圧縮機構部等へのオイル供給を円滑に行うことができる横型ロータリコンプレッサを提供することを目的とする。以下に図面に基づき本発明の実施形態を詳述する。   In order to solve the technical problem, an object of the present invention is to provide a horizontal rotary compressor that can reduce the amount of oil discharged to the outside and can smoothly supply oil to a rotary compression mechanism and the like. To do. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の横型ロータリコンプレッサの実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式のロータリコンプレッサ10の縦断面図を示している。   FIG. 1 shows a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor 10 having first and second rotary compression elements 32 and 34 as an embodiment of a horizontal rotary compressor of the present invention. Yes.

図1において、10は二酸化炭素(CO2)を冷媒として使用する内部中間圧型多段圧縮式の横型ロータリコンプレッサで、このロータリコンプレッサ10は鋼板からなる横型円筒状の密閉容器12と、この密閉容器12の内部空間に配置収納された駆動要素としての電動要素14及びこの電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)からなる回転圧縮機構部18にて構成されている。 In FIG. 1, reference numeral 10 denotes an internal intermediate pressure multistage compression horizontal rotary compressor using carbon dioxide (CO 2 ) as a refrigerant. The rotary compressor 10 includes a horizontal cylindrical sealed container 12 made of a steel plate, and the sealed container 12. The electric element 14 as a drive element disposed and housed in the internal space of the electric element 14, the first rotary compression element 32 (first stage) and the second rotary compression element 34 (2) driven by the rotary shaft 16 of the electric element 14 The rotary compression mechanism 18 is composed of a stage).

密閉容器12は、底部をオイル溜め13とし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの開口を閉塞する略椀状のエンドキャップ(密閉蓋)12Bで構成され、且つ、このエンドキャップ12Bの中心には電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。   The sealed container 12 has an oil sump 13 at the bottom, a container body 12A that houses the electric element 14 and the rotary compression mechanism 18, and a substantially bowl-shaped end cap (sealed lid) 12B that closes the opening of the container body 12A. A terminal (wiring is omitted) 20 for supplying power to the electric element 14 is attached to the center of the end cap 12B.

電動要素14は密閉容器12の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り密閉容器12の軸心方向(横方向)に延在する回転軸16に固定されている。   The electric element 14 includes a stator 22 that is annularly attached along the inner peripheral surface of the hermetic container 12 and a rotor 24 that is inserted and installed inside the stator 22 with a slight gap. The rotor 24 is fixed to a rotating shaft 16 that passes through the center and extends in the axial direction (lateral direction) of the sealed container 12.

ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。そして、前記ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して構成されている。   The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method. The rotor 24 is also formed of a laminated body 30 of electromagnetic steel plates, like the stator 22, and is configured by inserting a permanent magnet MG into the laminated body 30.

前記第1及び第2の回転圧縮要素32、34の電動要素14とは反対側、即ち、回転軸16の回転圧縮機構部18側の端部には給油手段としてのオイルポンプ103が形成されている。このオイルポンプ103は、密閉容器12内の底部に構成されたオイル溜め13から潤滑用のオイルを吸い上げて回転圧縮機構部18の摺動部に供給し、摩耗を防止するために設けられており、このオイルポンプ103からは密閉容器12の底部に向かってオイル吸上パイプ104が降下し、オイル溜め13にて開口している。   An oil pump 103 as an oil supply means is formed on the opposite side of the first and second rotary compression elements 32, 34 from the electric element 14, that is, on the end of the rotary shaft 16 on the rotary compression mechanism 18 side. Yes. The oil pump 103 is provided to suck up lubricating oil from an oil reservoir 13 formed at the bottom of the sealed container 12 and supply the oil to the sliding portion of the rotary compression mechanism 18 to prevent wear. The oil suction pipe 104 descends from the oil pump 103 toward the bottom of the hermetic container 12 and is opened at the oil reservoir 13.

第1及び第2の回転圧縮要素32、34は、それぞれ中間仕切板36の両側(図1では左右)に配置されたシリンダ38、40と、180度の位相差を有して回転軸16に設けられた偏心部42、44に嵌合され、シリンダ38、40内を偏心回転するローラ46、48と、これらローラ46、48にそれぞれ当接してシリンダ38、40内をそれぞれ低圧室側と高圧室側に区画するベーン50、52と、シリンダ38の電動要素14側の開口面とシリンダ40の電動要素14とは反対側(オイルポンプ103側)の開口面をそれぞれ閉塞して回転軸16の軸受けを兼用する支持部材54、56とから構成されている。   The first and second rotary compression elements 32 and 34 have a phase difference of 180 degrees with the cylinders 38 and 40 arranged on both sides (left and right in FIG. 1) of the intermediate partition plate 36, respectively. Rollers 46 and 48 that are fitted into the eccentric portions 42 and 44 and rotate eccentrically in the cylinders 38 and 40, and abut against the rollers 46 and 48, respectively, and the cylinders 38 and 40 are respectively in the low pressure chamber side and the high pressure. The vanes 50 and 52 partitioned on the chamber side, the opening surface of the cylinder 38 on the electric element 14 side, and the opening surface of the cylinder 40 opposite to the electric element 14 (the oil pump 103 side) are respectively closed to close the rotating shaft 16. It comprises support members 54 and 56 that also serve as bearings.

支持部材54および支持部材56には、図示しない吸込ポートにてシリンダ38、40の内部とそれぞれ連通する図示しない吸込通路と、一部を凹陥させ、この凹陥部をカバー66、カバー68にて閉塞することにより画成される吐出消音室62、64とが設けられている。また、支持部材54及び支持部材56の中央にはそれぞれ軸受け54A、56Aが形成されており、回転軸16を支持している。   The support member 54 and the support member 56 have a suction passage (not shown) communicating with the inside of the cylinders 38 and 40 through a suction port (not shown), and a part thereof is recessed, and the recessed portion is closed with a cover 66 and a cover 68. Discharge silencer chambers 62 and 64 defined by the operation are provided. Further, bearings 54A and 56A are formed at the centers of the support member 54 and the support member 56, respectively, and support the rotating shaft 16.

そして、上記カバー66の外周面にはバッフル板100が形成されている。このバッフル板100はドーナッツ形状を呈した鋼板により構成されており、カバー66との接続部を溶接することにより固定されている。そして、バッフル板100は略全周において密閉容器12内面に近接しており、両者間には電動要素14側と回転圧縮機構部18側との間に冷媒ガスが通過可能な隙間が形成されている。   A baffle plate 100 is formed on the outer peripheral surface of the cover 66. The baffle plate 100 is made of a steel plate having a donut shape, and is fixed by welding a connection portion with the cover 66. The baffle plate 100 is close to the inner surface of the hermetic container 12 at almost the entire circumference, and a gap through which refrigerant gas can pass is formed between the electric element 14 side and the rotary compression mechanism portion 18 side. Yes.

そして、第1の回転圧縮要素32で圧縮され、密閉容器12内の電動要素14側に吐出された中間圧の冷媒ガスは、バッフル板100の外周縁と密閉容器12の内周面との間に形成された隙間を通って回転圧縮機構部18側に流入することになるが、係るバッフル板100の存在により、密閉容器12内にはバッフル板100の電動要素14側の圧力が高く、回転圧縮機構部18側が低い差圧が構成されることになる。   The intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 and discharged to the electric element 14 side in the sealed container 12 is between the outer peripheral edge of the baffle plate 100 and the inner peripheral surface of the sealed container 12. However, due to the presence of the baffle plate 100, the pressure on the electric element 14 side of the baffle plate 100 is high in the sealed container 12, and the rotary compression mechanism unit 18 side rotates. A low differential pressure is configured on the compression mechanism portion 18 side.

また、図2に示すようにバッフル板100内の下部には細孔101が形成されている。この細孔101は密閉容器12内のオイル溜め13内に位置し、当該バッフル板100を軸心方向(横方向)に貫通する孔である。また、この細孔101はオイル溜め13内のオイルにて浸漬されるため、前述する差圧に何ら影響を及ぼさない。   In addition, as shown in FIG. 2, pores 101 are formed in the lower part of the baffle plate 100. The pore 101 is located in the oil reservoir 13 in the sealed container 12 and penetrates the baffle plate 100 in the axial direction (lateral direction). Further, since the pore 101 is immersed in the oil in the oil reservoir 13, it does not affect the above-described differential pressure.

そして、上記バッフル板100の細孔101に隣接する支持部材54内には支持部材54内を軸心方向(横方向)に貫通する小径通路55が形成されている。この小径通路55は、バッフル板100の電動要素14側と回転圧縮機構部18側とを連通する通路であり、当該支持部材54の電動要素14側に隣接するバッフル板100に形成された細孔101と略対応した位置に形成されている。   A small diameter passage 55 is formed in the support member 54 adjacent to the pore 101 of the baffle plate 100 so as to penetrate the support member 54 in the axial direction (lateral direction). The small-diameter passage 55 is a passage that connects the electric element 14 side of the baffle plate 100 and the rotary compression mechanism portion 18 side, and is a pore formed in the baffle plate 100 adjacent to the electric element 14 side of the support member 54. It is formed at a position substantially corresponding to 101.

この小径通路55のバッフル板100側(電動要素14側)は前記細孔101と略同一の径を有し、ここから回転圧縮機構部18側に向けて徐々に細くなり、当該小径通路55の略中心付近で径が最小となり、そこから回転圧縮機構部18側に向けて徐々に太くなる形状を呈している。尚、当該小径通路55も前記バッフル板100の細孔101と同様に密閉容器12内のオイル溜め13内に位置し、オイル溜め13内のオイルにて浸漬されるため、バッフル板100による差圧の構成に何ら影響を及ぼさない。   The baffle plate 100 side (electric element 14 side) of the small diameter passage 55 has substantially the same diameter as the pore 101 and gradually becomes narrower from here toward the rotary compression mechanism portion 18 side. It has a shape in which the diameter is minimum near the approximate center and gradually increases from there toward the rotary compression mechanism 18 side. The small-diameter passage 55 is also located in the oil reservoir 13 in the sealed container 12 and is immersed in the oil in the oil reservoir 13 in the same manner as the pore 101 of the baffle plate 100. It has no effect on the composition of

ここで、前記カバー66は鋼板により構成されており、中心部に回転軸16及び支持部材54の軸受け54Aが貫通するための孔が形成された略ドーナッツ状を呈している。また、このカバー66は密閉容器12内が中間圧となるため、吐出消音室62に吐出された高温高圧冷媒が密閉容器12内に漏れ出る不都合を防ぐために肉厚に形成して、カバー66の強度を上げている。特に、本実施例のように冷媒として二酸化炭素を使用した場合には、前記密閉容器12内と吐出消音室62の圧力差はより大きくなるので、カバー66にある程度の剛性(厚み)を持たせることで、高温高圧冷媒が密閉容器12内に漏れ出る不都合回避している。   Here, the cover 66 is made of a steel plate, and has a substantially donut shape in which a hole through which the shaft 54 and the bearing 54A of the support member 54 penetrate is formed at the center. Further, since the cover 66 has an intermediate pressure inside the sealed container 12, the cover 66 is formed thick to prevent the high temperature and high pressure refrigerant discharged into the discharge silencer chamber 62 from leaking into the sealed container 12. Strength is raised. In particular, when carbon dioxide is used as the refrigerant as in the present embodiment, the pressure difference between the sealed container 12 and the discharge silencer chamber 62 becomes larger, so that the cover 66 has a certain degree of rigidity (thickness). This avoids inconvenience that the high-temperature and high-pressure refrigerant leaks into the sealed container 12.

また、肉厚に形成された当該カバー66内の上部には第2の回転圧縮要素34にて圧縮され、吐出された冷媒中のオイルを遠心分離するオイル分離手段としてのオイル分離機構110が設けられている。当該オイル分離機構110は回転軸16の上部に位置するカバー66内に形成されており、カバー66内に縦長円筒状に形成され、上面が開口した空間部111と、空間部111と吐出消音室62とを連通する連通孔112と、空間部111の下側に形成された開口部113にて構成されている。   In addition, an oil separation mechanism 110 serving as an oil separation means that centrifuges the oil in the discharged refrigerant that is compressed by the second rotary compression element 34 is provided in the upper portion of the cover 66 that is formed thick. It has been. The oil separation mechanism 110 is formed in a cover 66 positioned above the rotating shaft 16. The oil separation mechanism 110 is formed in a vertically long cylindrical shape in the cover 66, and has a space portion 111 having an open top surface, the space portion 111, and a discharge silencer chamber. A communication hole 112 that communicates with 62 and an opening 113 formed below the space 111.

そして、空間部111の上面の開口部から当該空間部111の内径と略同一の大きさで形成された冷媒吐出管96を挿入し、接続箇所を溶接することでオイル分離機構110が形成される。前記冷媒吐出管96は先端部96Aが所定の長さで他の部分より配管の厚みが薄く形成されており、先端部96Aは下方に向かって開口している。また、空間部111と冷媒吐出管96の先端部96Aの間には隙間が形成されている。前記連通孔112は先端部96Aの上端と略対応する支持部材54内に位置し、吐出消音室62からの冷媒が冷媒吐出管96の先端部96Aの外壁面に向かって吐出されるように形成されている。   And the oil separation mechanism 110 is formed by inserting the refrigerant | coolant discharge pipe 96 formed in the magnitude | size substantially the same as the internal diameter of the said space part 111 from the opening part of the upper surface of the space part 111, and welding a connection location. . The refrigerant discharge pipe 96 has a distal end portion 96A having a predetermined length and a smaller pipe thickness than other portions, and the distal end portion 96A is open downward. Further, a gap is formed between the space portion 111 and the tip end portion 96 </ b> A of the refrigerant discharge pipe 96. The communication hole 112 is located in the support member 54 substantially corresponding to the upper end of the tip end portion 96 </ b> A, and is formed so that the refrigerant from the discharge silencing chamber 62 is discharged toward the outer wall surface of the tip end portion 96 </ b> A of the refrigerant discharge pipe 96. Has been.

また、空間部111の下側は、開口部113に向かって徐々に細くなる略円錐形状を呈している。このオイル分離機構110の開口部113の下側には、開口部113と略同一の径を有するオイル通路114のオイル孔115が形成されている。当該オイル通路114は、オイル分離機構110にて分離されたオイルを密閉容器12内の下部に形成されたオイル溜め13に戻すための通路であり、カバー66内に形成されたオイル孔115と、連通管116にて構成されている。   In addition, the lower side of the space 111 has a substantially conical shape that gradually decreases toward the opening 113. An oil hole 115 of an oil passage 114 having a diameter substantially the same as that of the opening 113 is formed below the opening 113 of the oil separation mechanism 110. The oil passage 114 is a passage for returning the oil separated by the oil separation mechanism 110 to the oil sump 13 formed in the lower part of the sealed container 12, and includes an oil hole 115 formed in the cover 66, The communication pipe 116 is used.

オイル孔115は上述の如く開口部113にてオイル分離機構110と連通すると共に、カバー66の下面にて開口している。この下面の開口部には連通管116が接続されており、カバー66との接続を溶接等により固定することにより取り付けられている。このオイル通路114の連通管116の出口は密閉容器12底部のオイル溜め13内に開口すると共に、オイルポンプ103側に指向している。   The oil hole 115 communicates with the oil separation mechanism 110 at the opening 113 as described above, and opens at the lower surface of the cover 66. A communication pipe 116 is connected to the opening on the lower surface, and is attached by fixing the connection with the cover 66 by welding or the like. The outlet of the communication pipe 116 of the oil passage 114 opens into the oil reservoir 13 at the bottom of the hermetic container 12 and is directed to the oil pump 103 side.

即ち、本実施例においてはオイル通路114の連通管116の出口は前記バッフル板100の電動要素14側から小径通路55に指向しており、オイル通路114からのオイルが細孔101、前記小径通路55を介してバッフル板100の回転圧縮機構部18側(オイルポンプ103側)に移動し易いように構成されている。   That is, in this embodiment, the outlet of the communication pipe 116 of the oil passage 114 is directed from the electric element 14 side of the baffle plate 100 to the small diameter passage 55, and the oil from the oil passage 114 has the pore 101 and the small diameter passage. The baffle plate 100 is configured so as to easily move to the rotary compression mechanism portion 18 side (oil pump 103 side).

前記第1の回転圧縮要素32の吐出消音室64と密閉容器12内とは連通路にて連通されており、この連通路は支持部材56、支持部材54、カバー66、シリンダ38、40、中間仕切板36を貫通する図示しない孔である。この場合、連通路の端部には中間吐出管121が形成されており、この中間吐出管121から密閉容器12内のバッフル板100の電動要素14側に中間圧の冷媒が吐出される。   The discharge silencer chamber 64 of the first rotary compression element 32 and the inside of the sealed container 12 are communicated with each other through a communication path, which is a support member 56, a support member 54, a cover 66, cylinders 38, 40, It is a hole (not shown) that penetrates the partition plate 36. In this case, an intermediate discharge pipe 121 is formed at the end of the communication path, and an intermediate pressure refrigerant is discharged from the intermediate discharge pipe 121 to the electric element 14 side of the baffle plate 100 in the sealed container 12.

尚、密閉容器12内に封入される潤滑油としてのオイルとしては、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキレングリコール)等既存のオイルが使用される。そして、冷媒としては、地球環境にやさしく可燃性及び毒性等を考慮して自然冷媒である前述した二酸化炭素(CO2)を使用する。 In addition, as oil as lubricating oil enclosed in the airtight container 12, existing oils, such as mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, PAG (polyalkylene glycol), are used, for example. As the refrigerant, the aforementioned carbon dioxide (CO 2 ), which is a natural refrigerant, is used in consideration of flammability, toxicity, and the like that are friendly to the global environment.

密閉容器12の側面の支持部材54の下方と回転圧縮機構部18の電動要素14とは反対側の上方(オイルポンプ103の上方に略対応する位置)、支持部材56の下方、カバー66の上部に対応する位置には冷媒導入管92、冷媒導入管94、冷媒吐出管96がそれぞれ図示しないスリーブを介して挿入接続されている。   Below the support member 54 on the side surface of the hermetic container 12 and above the opposite side of the rotary compression mechanism 18 from the electric element 14 (a position substantially corresponding to the top of the oil pump 103), below the support member 56, and above the cover 66. The refrigerant introduction pipe 92, the refrigerant introduction pipe 94, and the refrigerant discharge pipe 96 are inserted and connected through positions not shown in the drawings.

以上の構成で次にロータリコンプレッサ10の動作を説明する。ターミナル20及び図示しない配線を介して電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けられた偏心部42、44に嵌合されたローラ46、48がシリンダ38、40内で偏心回転する。   Next, the operation of the rotary compressor 10 with the above configuration will be described. When the stator coil 28 of the electric element 14 is energized through the terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. By this rotation, the rollers 46 and 48 fitted to the eccentric portions 42 and 44 provided integrally with the rotary shaft 16 are eccentrically rotated in the cylinders 38 and 40.

これにより、冷媒導入管94から図示しない吸込通路、吸込ポートを経て第1の回転圧縮要素32のシリンダ40の低圧室側に吸入された冷媒ガスは、ローラ48、ベーン52の動作により圧縮され中間圧となり、シリンダ40の高圧室側より吐出ポートを介して吐出消音室64に吐出された後、連通路を経て中間吐出管121から密閉容器12内のバッフル板100の電動要素14側に吐出される。これにより、密閉容器12内は中間圧となる。   As a result, the refrigerant gas sucked into the low pressure chamber side of the cylinder 40 of the first rotary compression element 32 from the refrigerant introduction pipe 94 through a suction passage and a suction port (not shown) is compressed by the operation of the roller 48 and the vane 52. After being discharged from the high pressure chamber side of the cylinder 40 through the discharge port to the discharge silencer chamber 64, the pressure is discharged from the intermediate discharge pipe 121 to the electric element 14 side of the baffle plate 100 in the sealed container 12 through the communication path. The Thereby, the inside of the airtight container 12 becomes an intermediate pressure.

密閉容器12内のバッフル板100の電動要素14側に吐出された中間圧の冷媒ガスは、バッフル板100の外周縁と密閉容器12の内周面との間に形成された隙間を通過して、バッフル板100の回転圧縮機構部18側に流入する。   The intermediate-pressure refrigerant gas discharged to the electric element 14 side of the baffle plate 100 in the sealed container 12 passes through a gap formed between the outer peripheral edge of the baffle plate 100 and the inner peripheral surface of the sealed container 12. The baffle plate 100 flows into the rotary compression mechanism 18 side.

このとき、冷媒ガスが密閉容器12内のバッフル板100の外周縁と密閉容器12の内周面との間に形成された隙間を通過すると云う作用により、バッフル板100の電動要素14側の圧力が高く、バッフル板100の回転圧縮機構部18側の圧力が低い差圧が構成される。この差圧により、密閉容器12内のオイルはバッフル板100の回転圧縮機構部18側に流入し易くなる。   At this time, the pressure on the electric element 14 side of the baffle plate 100 due to the action that the refrigerant gas passes through a gap formed between the outer peripheral edge of the baffle plate 100 in the sealed container 12 and the inner peripheral surface of the sealed container 12. The differential pressure is high and the pressure on the rotary compression mechanism 18 side of the baffle plate 100 is low. Due to this differential pressure, the oil in the sealed container 12 easily flows into the rotary compression mechanism 18 side of the baffle plate 100.

更に、回転圧縮機構部18側に流入した中間圧の冷媒ガスは密閉容器12の側面のオイルポンプ103の上側に接続された冷媒導入管92を通り、支持部材54に形成された図示しない吸込通路、吸込ポートを経てシリンダ38の低圧室側に吸入される。   Further, the intermediate-pressure refrigerant gas flowing into the rotary compression mechanism 18 passes through a refrigerant introduction pipe 92 connected to the upper side of the oil pump 103 on the side surface of the hermetic container 12 and is formed in a suction passage (not shown) formed in the support member 54. The air is sucked into the low pressure chamber side of the cylinder 38 through the suction port.

そして、ローラ46とベーン50の動作により2段目の圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り支持部材54に形成された吐出消音室62に吐出された後、オイル分離機構110の連通孔112から空間部111内に吐出される。このとき、冷媒ガス及び当該冷媒ガス中に混入したオイルは、連通孔112から空間部111内の冷媒吐出管96の先端部96Aの外壁面に吐出され、吐出された冷媒ガス及びオイルは、吐出時の勢いにより先端部96Aの外壁面及び空間部111の内周面の間に形成された隙間を螺旋状に周りながら空間部111内を降下して行く。   Then, the second stage compression is performed by the operation of the roller 46 and the vane 50 to form a high-temperature and high-pressure refrigerant gas, which is discharged from the high-pressure chamber side to a discharge silencer chamber 62 formed in the support member 54 through a discharge port (not shown). After that, the oil is separated from the communication hole 112 of the oil separation mechanism 110 into the space 111. At this time, the refrigerant gas and the oil mixed in the refrigerant gas are discharged from the communication hole 112 to the outer wall surface of the distal end portion 96A of the refrigerant discharge pipe 96 in the space 111, and the discharged refrigerant gas and oil are discharged. Due to the momentum, the inside of the space portion 111 is lowered while spiraling around the gap formed between the outer wall surface of the distal end portion 96A and the inner peripheral surface of the space portion 111.

この過程で、冷媒ガス中に混入したオイルが冷媒ガスから遠心分離され空間部111の外壁面等に付着し、当該外壁面を伝わって、空間部111の下側に形成された開口部113からオイル通路114のオイル孔115に入る。このとき、オイル分離機構110内は高圧であり密閉容器12内は中間圧であるため、分離されたオイルはオイル分離機構110内の高圧の冷媒ガスにより連通管116から押し出される。   In this process, the oil mixed in the refrigerant gas is centrifuged from the refrigerant gas and adheres to the outer wall surface of the space portion 111, and is transmitted through the outer wall surface from the opening 113 formed on the lower side of the space portion 111. The oil hole 115 enters the oil passage 114. At this time, since the oil separation mechanism 110 has a high pressure and the sealed container 12 has an intermediate pressure, the separated oil is pushed out from the communication pipe 116 by the high-pressure refrigerant gas in the oil separation mechanism 110.

また、連通管116は前述の如く小径通路55に指向しているため、押し出されたオイルは、図2に矢印で示す如く細孔101を経て小径通路55を通過して回転圧縮機構部18側に移動する。   Since the communication pipe 116 is directed to the small diameter passage 55 as described above, the extruded oil passes through the small diameter passage 55 through the pore 101 as shown by the arrow in FIG. Move to.

このとき、オイル通路114からのオイルは、オイル分離機構110内の高圧の冷媒ガスにて押し出される速度を利用して小径通路55内を通過するため、径の小さい小径通路55を通過する過程でオイルが加速される。これにより、バッフル板100の電動要素14側のオイル溜め13内のオイルも巻き込まれて、細孔101から小径通路55に吸い込まれるようになる。即ち、小径通路55がエゼクタポンプの如く作用し、バッフル板100の電動要素14側のオイル溜め13のオイルがバッフル板100の回転圧縮機構部18側に移動する(図2の矢印)。   At this time, the oil from the oil passage 114 passes through the small-diameter passage 55 by using the speed pushed out by the high-pressure refrigerant gas in the oil separation mechanism 110, and thus in the process of passing through the small-diameter passage 55 having a small diameter. Oil is accelerated. As a result, the oil in the oil sump 13 on the electric element 14 side of the baffle plate 100 is also caught and sucked into the small diameter passage 55 from the pore 101. That is, the small-diameter passage 55 acts like an ejector pump, and the oil in the oil reservoir 13 on the electric element 14 side of the baffle plate 100 moves to the rotary compression mechanism portion 18 side of the baffle plate 100 (arrow in FIG. 2).

このように、バッフル板100による差圧の効果に加え、当該小径通路55のエゼクタ効果により、バッフル板100の電動要素14側のオイルが回転圧縮機構部18側に移動するため、回転圧縮機構部18側のオイル溜め13のオイルレベルが上昇する。これにより、オイル吸上パイプ104の開口は支障無くオイル中に浸漬されるようになるので、オイルポンプ103による回転圧縮機構部18の摺動部へのオイルの供給が円滑に行われるようになる。   Thus, in addition to the effect of the differential pressure by the baffle plate 100, the oil on the electric element 14 side of the baffle plate 100 moves to the rotary compression mechanism portion 18 side due to the ejector effect of the small diameter passage 55. The oil level of the oil reservoir 13 on the 18 side increases. Accordingly, the opening of the oil suction pipe 104 is immersed in the oil without any trouble, so that the oil is smoothly supplied to the sliding portion of the rotary compression mechanism portion 18 by the oil pump 103. .

他方、冷媒ガスは空間部111の下側に開口した冷媒吐出管96から冷媒吐出管96内に入り、コンプレッサ10の外部に吐出される。   On the other hand, the refrigerant gas enters the refrigerant discharge pipe 96 from the refrigerant discharge pipe 96 opened to the lower side of the space portion 111 and is discharged to the outside of the compressor 10.

このように、第2の回転圧縮要素34で圧縮された冷媒ガスをオイル分離機構110に吐出することで、冷媒ガス中に混入したオイルを効果的に遠心分離することができ、コンプレッサ10からのオイル吐出量を著しく低減することができるようになる。これにより、コンプレッサ10内がオイル不足となる不都合や冷媒回路内に悪影響を及ぼす不都合も未然に回避することができるようになる。   In this way, by discharging the refrigerant gas compressed by the second rotary compression element 34 to the oil separation mechanism 110, the oil mixed in the refrigerant gas can be effectively centrifuged, The oil discharge amount can be significantly reduced. As a result, it is possible to avoid the disadvantage that the compressor 10 is short of oil and the disadvantage that adversely affects the refrigerant circuit.

これらにより、コンプレッサ10の外部へのオイル吐出量を低減すると共に、コンプレッサ10の摺動部等へのオイル供給を円滑に行うことができるようになり、当該コンプレッサ10の性能及び信頼性の向上を図ることができるようになる。   As a result, the amount of oil discharged to the outside of the compressor 10 can be reduced, and the oil can be smoothly supplied to the sliding portion of the compressor 10 to improve the performance and reliability of the compressor 10. It becomes possible to plan.

また、オイル分離機構110を肉厚に形成された第2の回転圧縮要素34のカバー66内に設けることで、コンプレッサの全長の拡大を回避することができるようになる。これにより、コンプレッサ10の小型化を図ることができるようになる。   Further, by providing the oil separation mechanism 110 in the cover 66 of the second rotary compression element 34 formed with a large thickness, it is possible to avoid an increase in the overall length of the compressor. Thereby, size reduction of the compressor 10 can be achieved.

同様に、オイル分離機構110と連通するオイル通路114のオイル孔をカバー66内に形成することで、コンプレッサの全長の拡大を回避できると共に、当該オイル通路114の形成による部品点数の増加を極力抑えることが出来るようになり、生産コストの削減を図ることができるようになる。   Similarly, by forming the oil hole of the oil passage 114 communicating with the oil separation mechanism 110 in the cover 66, it is possible to avoid an increase in the overall length of the compressor and to suppress an increase in the number of parts due to the formation of the oil passage 114 as much as possible. It becomes possible to reduce the production cost.

尚、本実施例では小径通路を支持部材54内に形成するものとしたが、これに限らず、バッフル板100内に小径通路を形成したり、密閉容器12内の他の箇所に形成するものとしても構わない。   In the present embodiment, the small-diameter passage is formed in the support member 54. However, the present invention is not limited to this, and the small-diameter passage is formed in the baffle plate 100 or formed in other places in the sealed container 12. It does not matter.

更に、本実施例では横型ロータリコンプレッサ10を第1及び第2の回転圧縮要素32、34を備えた2段圧縮式の横型ロータリコンプレッサを用いて説明したが、これに限らず、単段の回転圧縮要素を備えた横型ロータリコンプレッサや3段、4段或いはそれ以上の回転圧縮要素を備えた多段圧縮式の横型ロータリコンプレッサに適応しても構わない。   Further, in the present embodiment, the horizontal rotary compressor 10 has been described using a two-stage compression type rotary rotary compressor including the first and second rotary compression elements 32 and 34. You may apply to the horizontal rotary compressor provided with the compression element, and the multistage compression type horizontal rotary compressor provided with the rotation compression element of 3 stages, 4 stages, or more.

また、本実施例で冷媒として二酸化炭素を使用したが、冷媒はそれに限定されるものではなく、炭化水素系の冷媒や亜酸化窒素など、種々の冷媒が適応可能である。   Further, although carbon dioxide is used as the refrigerant in this embodiment, the refrigerant is not limited thereto, and various refrigerants such as hydrocarbon refrigerants and nitrous oxide can be applied.

本発明の縦型ロータリコンプレッサの縦断面図である。It is a longitudinal cross-sectional view of the vertical rotary compressor of this invention. バッフル板の電動要素側のオイル溜め内のオイルの流れを示す図である。It is a figure which shows the flow of the oil in the oil sump by the side of the electric element of a baffle board.

10 ロータリコンプレッサ
12 密閉容器
12A 容器本体
12B エンドキャップ
13 オイル溜め
14 電動要素
16 回転軸
18 回転圧縮機構部
20 ターミナル
22 ステータ
24 ロータ
26 積層体
28 ステータコイル
30 積層体
32 第1の回転圧縮要素
34 第2の回転圧縮要素
36 中間仕切板
38、40 シリンダ
42、44 偏心部
46、48 ローラ
50、52 ベーン
54、56 支持部材
54A、56A 軸受け
62、64 吐出消音室
66、68 カバー
92、94 冷媒導入管
96 冷媒吐出管
96A 先端部
100 バッフル板
101 細孔
103 オイルポンプ
104 オイル吸上パイプ
110 オイル分離機構
111 空間部
112 連通孔
113 開口部
114 オイル通路
115 オイル孔
116 連通管
DESCRIPTION OF SYMBOLS 10 Rotary compressor 12 Airtight container 12A Container main body 12B End cap 13 Oil sump 14 Electric element 16 Rotating shaft 18 Rotation compression mechanism part 20 Terminal 22 Stator 24 Rotor 26 Lamination body 28 Stator coil 30 Lamination body 32 1st rotation compression element 34 1st Rotational compression element 2 36 Intermediate partition plate 38, 40 Cylinder 42, 44 Eccentric part 46, 48 Roller 50, 52 Vane 54, 56 Support member 54A, 56A Bearing 62, 64 Discharge silencer 66, 68 Cover 92, 94 Introduction of refrigerant Pipe 96 Refrigerant discharge pipe 96A Tip part 100 Baffle plate 101 Fine hole 103 Oil pump 104 Oil suction pipe 110 Oil separation mechanism 111 Space part 112 Communication hole 113 Opening part 114 Oil passage 115 Oil hole 116 Communication pipe

Claims (1)

密閉容器内に駆動要素と、該駆動要素により駆動される回転圧縮機構部とを収納して成る横型ロータリコンプレッサにおいて、
前記密閉容器内底部のオイル溜め内のオイルを前記回転圧縮機構部等に供給するための給油手段と、
前記密閉容器内に設けられ、前記回転圧縮機構部から吐出された冷媒中のオイルを遠心分離するオイル分離手段と、
該オイル分離手段にて分離されたオイルを前記オイル溜めに戻すためのオイル通路と、
前記密閉容器内を前記駆動要素側と前記回転圧縮機構部側に区画して差圧を構成するためのバッフル板と、
前記オイル溜め内に位置し、前記バッフル板の前記駆動要素側と前記回転圧縮機構部側とを連通する小径通路とを備え、
前記給油手段を前記バッフル板の前記回転圧縮機構部側に設けると共に、当該回転圧縮機構部は第1及び第2の回転圧縮要素からなり、前記第1の回転圧縮要素で圧縮された冷媒を前記密閉容器内に吐出して、この密閉容器内の冷媒を前記第2の回転圧縮要素で吸い込んで圧縮し、
前記第1の回転圧縮要素にて圧縮された冷媒を前記バッフル板の前記駆動要素側に吐出すると共に、前記オイル通路の出口を、前記バッフル板の前記駆動要素側から前記小径通路に指向させたことを特徴とする横型ロータリコンプレッサ。
In a horizontal rotary compressor in which a driving element and a rotary compression mechanism driven by the driving element are housed in an airtight container,
Oil supply means for supplying the oil in the oil reservoir at the bottom of the sealed container to the rotary compression mechanism and the like;
An oil separating means provided in the sealed container for centrifuging oil in the refrigerant discharged from the rotary compression mechanism;
An oil passage for returning the oil separated by the oil separation means to the oil reservoir ;
A baffle plate for dividing the inside of the sealed container into the drive element side and the rotary compression mechanism part side to constitute a differential pressure;
A small-diameter passage located in the oil sump and communicating the drive element side of the baffle plate and the rotary compression mechanism portion side;
The oil supply means is provided on the baffle plate on the rotary compression mechanism portion side, the rotary compression mechanism portion includes first and second rotary compression elements, and the refrigerant compressed by the first rotary compression element is It is discharged into a sealed container, and the refrigerant in this sealed container is sucked and compressed by the second rotary compression element,
The refrigerant compressed by the first rotary compression element is discharged to the drive element side of the baffle plate, and the outlet of the oil passage is directed from the drive element side of the baffle plate to the small diameter passage. This is a horizontal rotary compressor.
JP2003342460A 2003-09-30 2003-09-30 Horizontal rotary compressor Expired - Fee Related JP4307945B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003342460A JP4307945B2 (en) 2003-09-30 2003-09-30 Horizontal rotary compressor
EP04013883A EP1520989A3 (en) 2003-09-30 2004-06-14 Horizontal type rotary compressor
EP09015899A EP2180189A3 (en) 2003-09-30 2004-06-14 Horizontal type rotary compressor
US10/873,293 US7303379B2 (en) 2003-09-30 2004-06-23 Horizontal type compressor and automobile air conditioner equipped with the same
CN200410079444.5A CN1603626A (en) 2003-09-30 2004-06-29 Horizontal type compressor and automobile air conditioner equipped with the same
CN200710196154A CN100575708C (en) 2003-09-30 2004-06-29 Horizontal-type compressor
CN2007101961538A CN101187375B (en) 2003-09-30 2004-06-29 Horizontal type compressor and automobile air conditioner equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003342460A JP4307945B2 (en) 2003-09-30 2003-09-30 Horizontal rotary compressor

Publications (2)

Publication Number Publication Date
JP2005105985A JP2005105985A (en) 2005-04-21
JP4307945B2 true JP4307945B2 (en) 2009-08-05

Family

ID=34536719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342460A Expired - Fee Related JP4307945B2 (en) 2003-09-30 2003-09-30 Horizontal rotary compressor

Country Status (2)

Country Link
JP (1) JP4307945B2 (en)
CN (2) CN101187375B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101713405B (en) * 2009-08-22 2012-01-04 广东美芝制冷设备有限公司 Internal gas guide mechanism for horizontal rotary compressor
EP2530320B1 (en) * 2010-01-27 2019-09-04 Daikin Industries, Ltd. Compressor and refrigeration device
JP5570917B2 (en) * 2010-08-31 2014-08-13 三洋電機株式会社 Rotary compressor
CN103089627B (en) * 2011-11-07 2015-08-12 三洋电机株式会社 Rotary compressor
TWI557318B (en) * 2014-05-16 2016-11-11 Qing-Ke Zhang Miniature DC compressor
CN105134596B (en) * 2014-06-04 2019-05-31 珠海格力节能环保制冷技术研究中心有限公司 Compound compressor
CN106050619B (en) * 2016-08-09 2019-08-13 珠海格力电器股份有限公司 A kind of compressor
CN106812698B (en) * 2017-01-24 2019-05-31 广东美芝制冷设备有限公司 Compressor
WO2018142466A1 (en) * 2017-01-31 2018-08-09 三菱電機株式会社 Compressor
CN108426385B (en) * 2018-04-17 2023-12-08 珠海格力电器股份有限公司 Heat pump system and air conditioner
EP4317858A1 (en) * 2022-08-01 2024-02-07 Valeo Systemes Thermiques Refrigerant module for thermal management system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269356A (en) * 2002-03-18 2003-09-25 Sanyo Electric Co Ltd Horizontal type rotary compressor

Also Published As

Publication number Publication date
CN101187376A (en) 2008-05-28
CN101187375A (en) 2008-05-28
CN101187375B (en) 2010-09-29
JP2005105985A (en) 2005-04-21
CN100575708C (en) 2009-12-30

Similar Documents

Publication Publication Date Title
EP1520990B1 (en) Rotary compressor
JP4307945B2 (en) Horizontal rotary compressor
JP2007315366A (en) Compressor
KR20040084798A (en) Rotary compressor
JP2001073977A (en) Two-stage compression type rotary compressor
JP2004027970A (en) Multistage compression type rotary compressor
JP2005105986A (en) Vertical rotary compressor
JP5570917B2 (en) Rotary compressor
JP5874010B2 (en) Rotary compressor
JP2005139973A (en) Multistage compression type rotary compressor
JP2004293380A (en) Horizontal rotary compressor
JP5764733B2 (en) Rotary compressor and method for manufacturing the same
JP3935855B2 (en) Rotary compressor
JP2007270638A (en) Compressor
JP4263047B2 (en) Horizontal type compressor
JP2004092469A (en) Rotary compressor
WO2013069071A1 (en) Horizontally mounted compressor
JP2006307687A (en) Compressor
JP5681958B2 (en) Rotary compressor
JP4225793B2 (en) Horizontal type compressor
JP3778867B2 (en) Horizontal multi-stage rotary compressor
WO2013065140A1 (en) Rotary compressor
JP3819795B2 (en) Internal intermediate pressure type multi-stage compression rotary compressor
JP2005036741A (en) Horizontal compressor
JP4093801B2 (en) Horizontal rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees