JP2017172343A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP2017172343A
JP2017172343A JP2016055982A JP2016055982A JP2017172343A JP 2017172343 A JP2017172343 A JP 2017172343A JP 2016055982 A JP2016055982 A JP 2016055982A JP 2016055982 A JP2016055982 A JP 2016055982A JP 2017172343 A JP2017172343 A JP 2017172343A
Authority
JP
Japan
Prior art keywords
cylinder
compression chamber
axial direction
rotary compressor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016055982A
Other languages
Japanese (ja)
Other versions
JP6426645B2 (en
Inventor
謙治 竹澤
Kenji Takezawa
謙治 竹澤
敬悟 渡邉
Keigo Watanabe
敬悟 渡邉
宏介 鈴木
Kosuke Suzuki
宏介 鈴木
直洋 土屋
Naohiro Tsuchiya
直洋 土屋
康弘 岸
Yasuhiro Kishi
康弘 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2016055982A priority Critical patent/JP6426645B2/en
Priority to CN201710066979.6A priority patent/CN107202017B/en
Publication of JP2017172343A publication Critical patent/JP2017172343A/en
Application granted granted Critical
Publication of JP6426645B2 publication Critical patent/JP6426645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/601Shaft flexion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high efficiency rotary compressor in which a refrigerant leakage between an inside part of a closed container and an inside part of a compression chamber is reduced.SOLUTION: A rotary compressor C of this invention comprises in a closed vessel 1: an electric motor M; a crank shaft 5 rotationally driven by the electric motor M and having compression members 5A, 5B, 11 and 12 thereon; cylinders 7 and 8 having a compression chamber 9 where refrigerant is compressed through rotational driving of the compression members 5A, 5B, 11 and 12; a main bearing 6 for closing the cylinders 7 and 8 at one part in an axis direction and a sub-bearing 10 for closing at the other in an axis direction. The cylinders 7 and 8, the main bearing 6 and the sub-bearing 10 have component fastening holes 7A, 7B, 8A, and 8B in an axial direction, all holes 8C, 8D and 8E extending in an axial direction other than the component fastening holes 7A, 7B, 8A and 8B are arranged at a longer side in view of time where a pressure difference between the inside of the closed container and the inside of the compression chamber becomes low in a range of crank angle of the crank shaft of 180° or less or 180° or more.SELECTED DRAWING: Figure 2

Description

本発明は、回転式圧縮機に関する。   The present invention relates to a rotary compressor.

従来、回転式圧縮機として、特許文献1に記載される構成が既に知られている。なお、下記の括弧内の符号は、特許文献1の第1図、第2図等で使用される符号である。
特許文献1の回転式圧縮機は、シリンダ(2)と、シリンダ(2)の両端を閉塞する主軸受(9)および端軸受(10)とで囲まれた圧縮室内に、主軸受(9)および端軸受(10)に軸支されたクランク軸(3)によって偏心回転するピストン(4)を配設し、ピストン(4)の外周面に常に当接して圧縮室内を高圧側と低圧側とに区分するベーン(5)をシリンダ(2)に取り付けた圧縮要素(11)と、圧縮要素(11)を駆動する電動機とを密閉容器(1)内に収納した回転式圧縮機である。
Conventionally, the structure described in Patent Document 1 is already known as a rotary compressor. In addition, the code | symbol in the following parenthesis is a code | symbol used in FIG. 1, FIG. 2, etc. of patent document 1. FIG.
The rotary compressor of Patent Document 1 includes a main bearing (9) in a compression chamber surrounded by a cylinder (2) and a main bearing (9) and end bearings (10) that close both ends of the cylinder (2). And a piston (4) that is eccentrically rotated by a crankshaft (3) that is pivotally supported by the end bearing (10), and is always in contact with the outer peripheral surface of the piston (4) so that the inside of the compression chamber has a high pressure side and a low pressure side. It is a rotary compressor which accommodated in the airtight container (1) the compression element (11) attached to the cylinder (2) with the vane (5) classified into (2), and the electric motor which drives the compression element (11).

当該回転式圧縮機において、シリンダ(2)の吸入側部分に、シリンダ(2)をクランク軸(3)の方向に貫通する穴を設け、この穴の両端面を主軸受(9)および端軸受(10)で塞ぎ、密閉空間(7)を形成する。シリンダ(2)より熱伝導性が低い密閉空間(7)がシリンダ(2)の吸入側部分に介在することにより、運転時に高温となっている密閉容器(1)内のガスからシリンダ(2)の内壁への伝熱を抑えることができる。そのため、吸入行程中に長時間吸入ガスに接しているシリンダ(2)の吸入側部分の内壁の温度上昇が少なく、この結果、吸入ガスの予熱が抑止されるとしている。   In the rotary compressor, a hole penetrating the cylinder (2) in the direction of the crankshaft (3) is provided in the suction side portion of the cylinder (2), and both end surfaces of the hole are provided as the main bearing (9) and the end bearing. Closed with (10) to form a sealed space (7). Since the sealed space (7) having lower thermal conductivity than the cylinder (2) is interposed in the suction side portion of the cylinder (2), the cylinder (2) Heat transfer to the inner wall of the can be suppressed. Therefore, the temperature rise of the inner wall of the suction side portion of the cylinder (2) that has been in contact with the suction gas for a long time during the suction stroke is small, and as a result, preheating of the suction gas is suppressed.

なお、シリンダ(2)、主軸受(9)、端軸受(10)や、2シリンダの回転式圧縮機のシリンダ間で用いられる中仕切り板には、固定用穴以外に、冷媒流路、消音のためのサイレンサ等として、多数の穴が設けられることがよく知られている。
図8は、従来の2シリンダの回転式圧縮機のシリンダの平面図である。
従来のシリンダ108内には、クランク軸105に偏芯部105Bが固定され、偏芯部105Bの周りには、円環状のローラ112が回転自在に嵌合されている。
In addition to the fixing holes, the cylinder (2), the main bearing (9), the end bearing (10), and the partition plate used between the cylinders of the two-cylinder rotary compressor, It is well known that a large number of holes are provided as a silencer or the like.
FIG. 8 is a plan view of a cylinder of a conventional two-cylinder rotary compressor.
In the conventional cylinder 108, an eccentric part 105B is fixed to the crankshaft 105, and an annular roller 112 is rotatably fitted around the eccentric part 105B.

シリンダ108の内周面108a、ローラ112の外周面112a、ベーン114等で、吸込み側の圧縮室109sと吐出側の圧縮室109dとが形成される。
シリンダ108には低圧の冷媒を吸込む吸込み穴108Fと、シリンダ108の圧縮室109dで圧縮した高圧の冷媒を吐き出す吐出穴108Gとが設けられている。
The inner peripheral surface 108a of the cylinder 108, the outer peripheral surface 112a of the roller 112, the vane 114, and the like form a suction-side compression chamber 109s and a discharge-side compression chamber 109d.
The cylinder 108 is provided with a suction hole 108F for sucking low-pressure refrigerant, and a discharge hole 108G for discharging high-pressure refrigerant compressed in the compression chamber 109d of the cylinder 108.

クランク軸105が0°から360°回転することで、吸込み側の圧縮室109sが吐出側の圧縮室109dに遷移し、吐出側の圧縮室109dの容積が減少することで、冷媒の圧縮が行われる。
シリンダ108には、固定用ボルト孔108A、108B、サイレンサ穴108c、冷媒流路穴108D、工作基準穴108E等が形成されている。
As the crankshaft 105 rotates from 0 ° to 360 °, the suction-side compression chamber 109s transitions to the discharge-side compression chamber 109d, and the volume of the discharge-side compression chamber 109d decreases, thereby compressing the refrigerant. Is called.
The cylinder 108 is formed with fixing bolt holes 108A and 108B, a silencer hole 108c, a refrigerant flow path hole 108D, a work reference hole 108E, and the like.

特開平2-140486号公報(第1図、第2図等)Japanese Patent Laid-Open No. 2-140486 (FIGS. 1, 2, etc.)

しかしながら、従来の特許文献1の構成では、密閉容器(1)内と常時ほぼ吐出圧力Pdと吸込圧力Psとの圧力差がある吸込側において、シリンダ(2)上下端面のシール幅が狭くなる。シール幅とは、シリンダ(2)の内周面と外周面との間の肉厚寸法である。
このため、密閉容器(1)内から圧縮室への冷媒漏れが増大し、結果的に吸込ガスの加熱や、指圧の膨らみにより圧縮機効率の低下を生じる要因となっている。指圧の膨らみが生じる場合、高い初期圧力から吐出圧力に圧縮するにはエネルギが余計に必要となるため、圧縮機効率の低下を生じる。
However, in the configuration of the conventional Patent Document 1, the seal width of the upper and lower end surfaces of the cylinder (2) becomes narrow on the suction side where there is a pressure difference between the discharge pressure Pd and the suction pressure Ps at all times. The seal width is a thickness dimension between the inner peripheral surface and the outer peripheral surface of the cylinder (2).
For this reason, refrigerant leakage from the sealed container (1) to the compression chamber increases, and as a result, the efficiency of the compressor is lowered due to heating of the suction gas and swelling of the finger pressure. When the swelling of the finger pressure occurs, extra energy is required to compress from a high initial pressure to a discharge pressure, resulting in a reduction in compressor efficiency.

特に、従来家庭用空気調和機にて主流であったR22冷媒やR410A冷媒に対し、高温・高圧であり分子量の小さいR32冷媒を使用する場合、さらに、回転速度制御により漏れの影響が大となる低速運転を行う際、漏れの影響が大きくなることが懸念される。さらに、2シリンダ圧縮機においては、図8に示すように下側圧縮室からの吐出ガスを圧縮機構上部に導く冷媒流路108D、消音のためのサイレンサ穴108C等がシリンダ108の軸方向に多数設けられる。それらの穴も、シール幅を削ることとなるため、シール性を低下させる要因となっている。   In particular, when R32 refrigerant having high molecular weight and low molecular weight is used for R22 refrigerant and R410A refrigerant, which have been mainstream in conventional home air conditioners, the effect of leakage is further increased by rotational speed control. When performing low-speed operation, there is a concern that the influence of leakage will increase. Further, in the two-cylinder compressor, as shown in FIG. 8, there are a large number of refrigerant flow paths 108D for guiding the discharge gas from the lower compression chamber to the upper part of the compression mechanism, silencer holes 108C for silencing, etc. in the axial direction of the cylinder 108. Provided. These holes also reduce the seal width, which is a factor for reducing the sealing performance.

本発明は上記実状に鑑み創案されたものであり、密閉容器内と圧縮室内部との冷媒漏れが低減される高効率の回転式圧縮機の提供を目的とする。   The present invention has been devised in view of the above circumstances, and an object thereof is to provide a highly efficient rotary compressor in which refrigerant leakage between the sealed container and the inside of the compression chamber is reduced.

前記課題を解決するため、第1の本発明の回転式圧縮機は、電動機と、当該電動機により回転駆動され圧縮部材が設けられるクランク軸と、前記圧縮部材の回転駆動により冷媒が圧縮される圧縮室を内部に有するシリンダと、前記シリンダを軸方向の一方で閉塞する主軸受と前記軸方向の他方で閉塞する副軸受とを密閉容器内に備え、前記シリンダ、前記主軸受、および前記副軸受は、前記軸方向に部品締結用の穴を有し、前記部品締結用の穴以外の前記軸方向に延びる穴は、全て、前記クランク軸のクランク角180°以下または180°以上となる範囲のうち、前記密閉容器内と前記圧縮室内の圧力差が小さくなる時間の長い側に設けられている。   In order to solve the above problems, a rotary compressor according to a first aspect of the present invention includes an electric motor, a crankshaft that is rotationally driven by the electric motor and provided with a compression member, and a compression in which refrigerant is compressed by the rotational driving of the compression member. A cylinder having a chamber; a main bearing that closes the cylinder in one axial direction; and a sub-bearing that closes the other in the axial direction. The cylinder, the main bearing, and the sub-bearing Has holes for fastening components in the axial direction, and all the holes extending in the axial direction other than the holes for fastening components are in a range where the crank angle of the crankshaft is 180 ° or less or 180 ° or more. Among these, it is provided on the long side where the pressure difference between the sealed container and the compression chamber becomes small.

第2の本発明の回転式圧縮機は、第1の本発明に記載の回転式圧縮機において、前記部品締結用の穴以外の前期軸方向に延びる穴のうち、より面積の大きな穴は、前記クランク軸のクランク角において、前記密閉容器内と前記圧縮室内の圧力差が小さくなる時間の長い側に設けられている。   The rotary compressor according to the second aspect of the present invention is the rotary compressor according to the first aspect of the present invention, wherein holes having a larger area among the holes extending in the axial direction other than the holes for fastening the components are: In the crank angle of the crankshaft, the crankshaft is provided on the long side where the pressure difference between the sealed container and the compression chamber becomes small.

第3の本発明の回転式圧縮機は、電動機と、当該電動機により回転駆動され圧縮部材が設けられるクランク軸と、前記圧縮部材の回転駆動により冷媒が圧縮される圧縮室を内部に有するシリンダと、前記シリンダを軸方向の一方で閉塞する主軸受と前記軸方向の他方で閉塞する副軸受とを密閉容器内に備え、前記シリンダ、前記主軸受、および前記副軸受は、前記軸方向に部品締結用の穴を有し、前記部品締結用の穴の角度ピッチは、前記クランク軸のクランク角180°以下または180°以上となる範囲のうち、前記密閉容器内と前記圧縮室内の圧力差が小さくなる時間の長い側で広い。   A rotary compressor according to a third aspect of the present invention includes an electric motor, a crankshaft that is rotationally driven by the electric motor and provided with a compression member, and a cylinder that internally includes a compression chamber in which refrigerant is compressed by the rotational driving of the compression member. A main bearing that closes the cylinder in one axial direction and a secondary bearing that closes the other in the axial direction are provided in a sealed container, and the cylinder, the main bearing, and the secondary bearing are components in the axial direction. There is a hole for fastening, and the angular pitch of the hole for fastening the component is within a range where the crank angle of the crankshaft is 180 ° or less or 180 ° or more. Wide on the long side.

第4の本発明の回転式圧縮機は、電動機と、当該電動機により回転駆動され圧縮部材が設けられるクランク軸と、前記圧縮部材の回転駆動により冷媒が圧縮される圧縮室を内部に有するシリンダと、前記シリンダを軸方向の一方で閉塞する主軸受と前記軸方向の他方で閉塞する副軸受とを密閉容器内に備え、前記シリンダ、前記主軸受、および前記副軸受は、前記軸方向に部品締結用の穴を有し、前記部品締結用の穴以外の前記軸方向に延びる穴の角度ピッチは、前記クランク軸のクランク角180°以下または180°以上となる範囲のうち、前記密閉容器内と前記圧縮室内の圧力差が小さくなる時間の長い側で狭い。   A rotary compressor according to a fourth aspect of the present invention includes an electric motor, a crankshaft that is rotationally driven by the electric motor and provided with a compression member, and a cylinder that internally includes a compression chamber in which refrigerant is compressed by the rotational driving of the compression member. A main bearing that closes the cylinder in one axial direction and a secondary bearing that closes the other in the axial direction are provided in a sealed container, and the cylinder, the main bearing, and the secondary bearing are components in the axial direction. The angle pitch of the holes extending in the axial direction other than the holes for fastening the components has a fastening hole, and the crank angle of the crankshaft is 180 ° or less or 180 ° or more. And the pressure difference in the compression chamber is narrower on the longer time side.

第5の本発明の回転式圧縮機は、電動機と、当該電動機により回転駆動され圧縮部材が設けられるクランク軸と、 前記圧縮部材の回転駆動により冷媒が圧縮される圧縮室を内部に有するシリンダと、前記シリンダを軸方向の一方で閉塞する主軸受と前記軸方向の他方で閉塞する副軸受とを密閉容器内に備え、前記シリンダ、前記主軸受、および前記副軸受は、前記軸方向に部品締結用の穴を有し、前記圧縮室の外周面を形成する当該シリンダの内周面の内径の中心に対し、当該シリンダの外周面の中心を、前記クランク軸のクランク角180°以下または180°以上となる範囲のうち、前記密閉容器内と前記圧縮室内の圧力差が小さくなる時間の短い側にオフセットしている。   A rotary compressor according to a fifth aspect of the present invention includes an electric motor, a crank shaft that is rotationally driven by the electric motor and provided with a compression member, and a cylinder that internally includes a compression chamber in which refrigerant is compressed by the rotational driving of the compression member. A main bearing that closes the cylinder in one axial direction and a secondary bearing that closes the other in the axial direction are provided in a sealed container, and the cylinder, the main bearing, and the secondary bearing are components in the axial direction. With respect to the center of the inner diameter of the inner peripheral surface of the cylinder that has a fastening hole and forms the outer peripheral surface of the compression chamber, the center of the outer peripheral surface of the cylinder is not more than 180 ° crank angle or 180 ° In the range where the angle is greater than or equal to 0 °, the pressure difference is offset to the short side where the pressure difference between the sealed container and the compression chamber becomes small.

第6の本発明の回転式圧縮機は、電動機と、当該電動機により回転駆動され圧縮部材が設けられるクランク軸と、前記圧縮部材の回転駆動により冷媒が圧縮される圧縮室を内部に有するシリンダと、前記シリンダを軸方向の一方で閉塞する主軸受と前記軸方向の他方で閉塞する副軸受とを密閉容器内に備え、前記シリンダ、前記主軸受、および前記副軸受は、前記軸方向に部品締結用の穴を有し、前記部品締結用の穴以外の前記軸方向に延びる穴の開口面積は、前記クランク軸のクランク角180°以下または180°以上となる範囲のうち、前記密閉容器内と前記圧縮室内の圧力差が小さくなる時間の長い側で広い。   A rotary compressor according to a sixth aspect of the present invention includes an electric motor, a crankshaft that is rotationally driven by the electric motor and provided with a compression member, and a cylinder that internally includes a compression chamber in which refrigerant is compressed by the rotational driving of the compression member. A main bearing that closes the cylinder in one axial direction and a secondary bearing that closes the other in the axial direction are provided in a sealed container, and the cylinder, the main bearing, and the secondary bearing are components in the axial direction. An opening area of a hole having a fastening hole and extending in the axial direction other than the part fastening hole is within the sealed container within a range in which a crank angle of the crankshaft is 180 ° or less or 180 ° or more. And the pressure difference in the compression chamber is wider on the longer side.

第7の本発明の回転式圧縮機は、第1の本発明または第3から第6の本発明のうちの何れか一つの回転式圧縮機において、冷媒としてR32冷媒を使用する。   A rotary compressor according to a seventh aspect of the present invention uses an R32 refrigerant as a refrigerant in the rotary compressor according to any one of the first aspect of the present invention or the third to sixth aspects of the present invention.

第8の本発明の回転式圧縮機は、第1の本発明または第3から第6の本発明のうちの何れか一つの回転式圧縮機において、前記電動機は、回転速度制御が行われる。   The rotary compressor of the eighth aspect of the present invention is the rotary compressor according to any one of the first aspect of the present invention or the third to sixth aspects of the present invention, wherein the electric motor is controlled in rotational speed.

本発明によれば、密閉容器内と圧縮室内部との冷媒漏れが低減される高効率の回転式圧縮機を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the highly efficient rotary compressor with which the refrigerant | coolant leak between the airtight container and the compression chamber inside is reduced is realizable.

本発明の実施形態1に係る2シリンダ回転式圧縮機の縦断面図。1 is a longitudinal sectional view of a two-cylinder rotary compressor according to Embodiment 1 of the present invention. 実施形態1の2シリンダ回転式圧縮機の下シリンダの図1のI−I断面図。FIG. 2 is a cross-sectional view taken along the line II of FIG. 1 of the lower cylinder of the two-cylinder rotary compressor of the first embodiment. (a)〜(d)は回転式圧縮機における圧縮工程の下シリンダを密閉容器内と圧縮室内の圧力差とともに示す図1のI−I断面の概念図。(A)-(d) is the conceptual diagram of the II cross section of FIG. 1 which shows the lower cylinder of the compression process in a rotary compressor with the pressure difference in an airtight container and a compression chamber. 実施形態2に係る回転式圧縮機のシリンダの平面図。FIG. 5 is a plan view of a cylinder of a rotary compressor according to a second embodiment. 実施形態3に係る回転式圧縮機のシリンダの平面図。FIG. 6 is a plan view of a cylinder of a rotary compressor according to a third embodiment. 実施形態4に係る回転式圧縮機のシリンダの平面図。FIG. 6 is a plan view of a cylinder of a rotary compressor according to a fourth embodiment. 実施形態4の回転式圧縮機の電動機の制御ブロック図。FIG. 6 is a control block diagram of an electric motor of a rotary compressor according to a fourth embodiment. 従来の2シリンダの回転式圧縮機のシリンダの平面図。The top view of the cylinder of the conventional 2 cylinder rotary compressor. 実施形態1に係る回転式圧縮機の別の例を示す下シリンダの断面図。Sectional drawing of the lower cylinder which shows another example of the rotary compressor which concerns on Embodiment 1. FIG.

以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
本発明は、冷凍空調機器等に用いられる回転式圧縮機に係るものであり、冷媒の圧縮工程中の冷媒漏れを抑制する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
The present invention relates to a rotary compressor used in a refrigeration air conditioner or the like, and suppresses refrigerant leakage during a refrigerant compression process.

<<実施形態1>>
図1は本発明の実施形態1に係る高圧チャンバ方式の2シリンダ回転式圧縮機の縦断面図である。図1中の白抜き矢印は、冷媒の流動経路を示す。
図2は、実施形態1の2シリンダ回転式圧縮機の下シリンダの図1のI−I断面図である。図2に、上シリンダ7と下シリンダ8とを代表し、下シリンダ8を示す。
以下、図示は省略するが上シリンダ7についても下シリンダ8と同様な構成である。そこで、機能を同じくする構成要素については同じ添え字で示す。例えば、上シリンダ7の主軸受締付ボルト穴の符号7Aとすると、同一のボルトで締結される下シリンダ8の副軸受締結ボルト穴の符号を8Aで表す。
<< Embodiment 1 >>
FIG. 1 is a longitudinal sectional view of a high-pressure chamber type two-cylinder rotary compressor according to Embodiment 1 of the present invention. The white arrow in FIG. 1 indicates the flow path of the refrigerant.
2 is a cross-sectional view taken along the line II of FIG. 1 of the lower cylinder of the two-cylinder rotary compressor of the first embodiment. FIG. 2 shows the lower cylinder 8 as a representative of the upper cylinder 7 and the lower cylinder 8.
Hereinafter, although not shown, the upper cylinder 7 has the same configuration as the lower cylinder 8. Therefore, components having the same function are indicated by the same subscript. For example, if the reference 7A of the main bearing fastening bolt hole of the upper cylinder 7 is designated, the reference numeral of the auxiliary bearing fastening bolt hole of the lower cylinder 8 fastened by the same bolt is represented by 8A.

実施形態1の回転式圧縮機Cは、2つのシリンダ7、8を有する2シリンダ圧縮機である。上・下シリンダ7、8は、それぞれ冷媒rを吸込んで圧縮して吐出する圧縮室9を有する。
回転式圧縮機Cは、上・下シリンダ7、8の各圧縮室9に吸込んだ冷媒r11、r21を、各圧縮室9で圧縮して吐出圧力Pdの冷媒r12、r22として、吐出穴7G、8Gから密閉容器1内に吐き出す。
The rotary compressor C according to the first embodiment is a two-cylinder compressor having two cylinders 7 and 8. The upper and lower cylinders 7 and 8 each have a compression chamber 9 that sucks, compresses and discharges the refrigerant r.
The rotary compressor C compresses the refrigerants r11 and r21 sucked into the compression chambers 9 of the upper and lower cylinders 7 and 8 in the compression chambers 9 to form refrigerants r12 and r22 having a discharge pressure Pd as discharge holes 7G, It discharges in the airtight container 1 from 8G.

上シリンダ7の圧縮室9は、ローラ11の外周面11aと上シリンダ7の内周面7aと主軸受6と中仕切り板15とで形成される。
下シリンダ8の圧縮室9は、ローラ12の外周面12aと下シリンダ8の内周面8aと中仕切り板15と副軸受10とで形成される。
The compression chamber 9 of the upper cylinder 7 is formed by the outer peripheral surface 11 a of the roller 11, the inner peripheral surface 7 a of the upper cylinder 7, the main bearing 6, and the partition plate 15.
The compression chamber 9 of the lower cylinder 8 is formed by the outer peripheral surface 12 a of the roller 12, the inner peripheral surface 8 a of the lower cylinder 8, the partition plate 15, and the auxiliary bearing 10.

図1に示すように、主軸受6および副軸受10は、それぞれ密閉容器1内に固定されている。例えば、主軸受6、副軸受10の各外周部が筒体1Aに溶接等で固定されることにより、圧縮機構部が密閉容器1内に固定される。圧縮機構部とは、冷媒を圧縮する構成要素をいう。
図1に示すように、クランク軸5は、一方側の中央に、主軸受6に嵌入される主軸受嵌入部5Cを有し、他方側の端部に、副軸受10に嵌入される副軸受嵌入部5Dを有する。
As shown in FIG. 1, the main bearing 6 and the sub-bearing 10 are each fixed in the sealed container 1. For example, the outer peripheral portions of the main bearing 6 and the sub-bearing 10 are fixed to the cylindrical body 1 </ b> A by welding or the like, so that the compression mechanism portion is fixed in the sealed container 1. A compression mechanism part means the component which compresses a refrigerant | coolant.
As shown in FIG. 1, the crankshaft 5 has a main bearing insertion portion 5 </ b> C inserted into the main bearing 6 in the center on one side, and a sub-bearing inserted into the sub-bearing 10 on the other end. It has a fitting portion 5D.

そして、クランク軸5の主軸受嵌入部5Cおよび副軸受嵌入部5Dを、それぞれ主軸受6および副軸受10に嵌入することにより、クランク軸5が回転自在に、密閉容器1内に配置される。
上シリンダ7は、主軸受締付ボルト16により、主軸受6に締結される。下シリンダ8、中仕切り板15は、不図示の位置決めボルトにより上シリンダ7に仮に締結された後、副軸受締付ボルト17により副軸受10とともに上シリンダ7に締結される。
Then, by inserting the main bearing insertion portion 5C and the sub-bearing insertion portion 5D of the crankshaft 5 into the main bearing 6 and the sub-bearing 10, respectively, the crankshaft 5 is rotatably disposed in the sealed container 1.
The upper cylinder 7 is fastened to the main bearing 6 by main bearing fastening bolts 16. The lower cylinder 8 and the partition plate 15 are temporarily fastened to the upper cylinder 7 by positioning bolts (not shown), and then fastened to the upper cylinder 7 together with the secondary bearing 10 by secondary bearing fastening bolts 17.

密閉容器1内には、必要量の冷凍機油(図示せず)が封入されている。
副軸受10には、下サイレンサ21が、副軸受締付ボルト17の共締めにより取り付けられている。下サイレンサ21は、下シリンダ8の吐出口8Gから吐き出された冷媒r22が冷凍機油をかき回さないことと、消音を目的としている。
主軸受6にも、同様な上サイレンサ20が取り付けられている。
A necessary amount of refrigerating machine oil (not shown) is enclosed in the sealed container 1.
A lower silencer 21 is attached to the auxiliary bearing 10 by fastening the auxiliary bearing fastening bolts 17 together. The lower silencer 21 aims to prevent the refrigerant r22 discharged from the discharge port 8G of the lower cylinder 8 from stirring the refrigerating machine oil and to mute it.
A similar upper silencer 20 is also attached to the main bearing 6.

回転式圧縮機Cは、駆動源の電動要素(3、4)と、クランク軸5と、圧縮機構部(6、7、8、10、11、12、13、14、15)とが、密閉容器1に内包されている。上・下シリンダ7、8の各圧縮室9は、駆動源の動力で圧縮される。   The rotary compressor C includes an electric element (3, 4) as a driving source, a crankshaft 5, and a compression mechanism (6, 7, 8, 10, 11, 12, 13, 14, 15) hermetically sealed. It is contained in the container 1. The compression chambers 9 of the upper and lower cylinders 7 and 8 are compressed by the power of the drive source.

圧縮機構部は、主軸受6、副軸受10、シリンダ7、8、偏心部5A、5B、ローラ11、12、ベーン13、14、中仕切り板15を主要要素として構成される。
圧縮機構部は、クランク軸5を介して、駆動源の電動要素(4)に接続される。
The compression mechanism section includes main bearing 6, sub bearing 10, cylinders 7 and 8, eccentric parts 5A and 5B, rollers 11 and 12, vanes 13 and 14, and partition plate 15 as main elements.
The compression mechanism is connected to the electric element (4) of the drive source via the crankshaft 5.

密閉容器1は、筒体1A、蓋体1B、および、底体1Cにより構成される。筒体1Aは鋼板を用いて円筒状の形状に形成されている。蓋体1Bは、鋼板を用いて上底板を有する有底円筒状の形状に形成されている。底体1Cは、鋼板を用いて下底板を有する有底円筒状の形状に形成されている。   The sealed container 1 includes a cylindrical body 1A, a lid body 1B, and a bottom body 1C. The cylindrical body 1A is formed in a cylindrical shape using a steel plate. The lid 1B is formed in a bottomed cylindrical shape having an upper bottom plate using a steel plate. The bottom body 1C is formed in a bottomed cylindrical shape having a lower bottom plate using a steel plate.

筒体1Aに、蓋体1Bと底体1Cが嵌合され、その嵌合部が溶接されて内部が密閉される。
駆動源の電動要素は、電動機であり、筒体1Aに焼嵌等で固定された固定子3と、クランク軸5に圧入等で固定された回転子4とを有して構成される。
The lid 1B and the bottom body 1C are fitted to the cylinder 1A, and the fitting portion is welded to seal the inside.
The electric element of the drive source is an electric motor, and includes a stator 3 fixed to the cylinder 1A by shrink fitting or the like, and a rotor 4 fixed to the crankshaft 5 by press fitting or the like.

クランク軸5には、主軸受嵌入部5Cと副軸受嵌入部5Dとの間に、偏心部5A、5Bが一体に形成されている。
偏心部5A、5Bには、それぞれ円環状のローラ11、12が回転自在に嵌入される。ローラ11、12の外周面11a、12aに、それぞれ当接するように、上・下シリンダ7、8内にベーン13、14(図1、2参照)が嵌合されている。
The crankshaft 5 is integrally formed with eccentric portions 5A and 5B between the main bearing insertion portion 5C and the auxiliary bearing insertion portion 5D.
The annular rollers 11 and 12 are rotatably fitted in the eccentric portions 5A and 5B, respectively. Vanes 13 and 14 (see FIGS. 1 and 2) are fitted in the upper and lower cylinders 7 and 8 so as to contact the outer peripheral surfaces 11a and 12a of the rollers 11 and 12, respectively.

ベーン13は付勢されてローラ11に接触することで、上シリンダ7の圧縮室9を吸込み側と吐出側に区分けする。同様に、ベーン14は付勢されてローラ12に接触することで、下シリンダ8の圧縮室9を吸込み側と吐出側に区分けする。   The vane 13 is energized and contacts the roller 11 to divide the compression chamber 9 of the upper cylinder 7 into a suction side and a discharge side. Similarly, the vane 14 is urged to come into contact with the roller 12, thereby dividing the compression chamber 9 of the lower cylinder 8 into a suction side and a discharge side.

この構成により、上シリンダ7の吸込み側の圧縮室9sが、ローラ11の外周面11aと上シリンダ7の内周面7aとベーン13と主軸受6と中仕切り板15とで形成される。上シリンダ7の吐出側の圧縮室9dは、ローラ11の外周面11aと上シリンダ7の内周面7aとベーン13と主軸受6と中仕切り板15とで形成される。前記したように、吸込み側の圧縮室9sと吐出側の圧縮室9dとは、ベーン13で仕切られている。   With this configuration, a compression chamber 9 s on the suction side of the upper cylinder 7 is formed by the outer peripheral surface 11 a of the roller 11, the inner peripheral surface 7 a of the upper cylinder 7, the vane 13, the main bearing 6, and the partition plate 15. The compression chamber 9 d on the discharge side of the upper cylinder 7 is formed by the outer peripheral surface 11 a of the roller 11, the inner peripheral surface 7 a of the upper cylinder 7, the vane 13, the main bearing 6, and the partition plate 15. As described above, the suction-side compression chamber 9 s and the discharge-side compression chamber 9 d are partitioned by the vane 13.

同様に、下シリンダ8の吸込み側の圧縮室9sが、ローラ12の外周面12aと下シリンダ8の内周面8aとベーン14と副軸受10と中仕切り板15とで形成される。下シリンダ8の吐出側の圧縮室9dは、ローラ12の外周面12aと下シリンダ8の内周面8aとベーン14と副軸受10と中仕切り板15とで形成される。同様に、吸込み側の圧縮室9sと吐出側の圧縮室9dとは、ベーン14で仕切られている。   Similarly, a compression chamber 9 s on the suction side of the lower cylinder 8 is formed by the outer peripheral surface 12 a of the roller 12, the inner peripheral surface 8 a of the lower cylinder 8, the vane 14, the auxiliary bearing 10, and the partition plate 15. The compression chamber 9 d on the discharge side of the lower cylinder 8 is formed by the outer peripheral surface 12 a of the roller 12, the inner peripheral surface 8 a of the lower cylinder 8, the vane 14, the auxiliary bearing 10, and the partition plate 15. Similarly, the suction-side compression chamber 9 s and the discharge-side compression chamber 9 d are partitioned by a vane 14.

クランク軸5は、駆動源の電動要素(3、4)による駆動力を従動側(偏心部5A、5B、ローラ11、12等)に伝達する。クランク軸5により、偏心部5A、5Bが回転することにより、ローラ11、12を介して、圧縮室9の圧縮、拡張が行われる。   The crankshaft 5 transmits the driving force generated by the electric elements (3, 4) of the driving source to the driven side (eccentric portions 5A, 5B, rollers 11, 12 and the like). The eccentric portions 5 </ b> A and 5 </ b> B are rotated by the crankshaft 5, whereby the compression chamber 9 is compressed and expanded via the rollers 11 and 12.

アキュムレータ2は、冷媒をそれぞれ上・下シリンダ7、8の吸込み側の各圧縮室9sに供給する。
アキュムレータ2は、圧縮機構部の吸込口22、23の手前に結合されている。アキュムレータ2を介して、上・下シリンダ7、8にそれぞれ吸い込まれた冷媒r11、r21が、圧縮要素(偏心部5A、5B、ローラ11、12等)を用いて吸込圧力Psから吐出圧力Pdまで圧縮される。
The accumulator 2 supplies refrigerant to the compression chambers 9s on the suction side of the upper and lower cylinders 7 and 8, respectively.
The accumulator 2 is coupled in front of the suction ports 22 and 23 of the compression mechanism. The refrigerants r11 and r21 sucked into the upper and lower cylinders 7 and 8 through the accumulator 2 are compressed from the suction pressure Ps to the discharge pressure Pd using the compression elements (eccentric parts 5A and 5B, rollers 11 and 12, etc.). Compressed.

吸込圧力Psは、吸込み時の冷媒r11、r21の圧力である。吐出圧力Pdは、吐出側の圧縮室9dからの吐出時の冷媒r12、r22の圧力である。
その後、圧縮された冷媒r12、r22は、密閉容器1内に一旦吐出された後、図1の白抜き矢印のように密閉容器1内を流れ、蓋体1Bに設置された吐出パイプ19から、空気調和機等のサイクルへ吐出される。
The suction pressure Ps is the pressure of the refrigerants r11 and r21 at the time of suction. The discharge pressure Pd is the pressure of the refrigerants r12 and r22 when discharging from the compression chamber 9d on the discharge side.
Thereafter, the compressed refrigerants r12 and r22 are once discharged into the sealed container 1, and then flow through the sealed container 1 as indicated by the white arrows in FIG. 1, from the discharge pipe 19 installed on the lid 1B. It is discharged into a cycle such as an air conditioner.

<冷媒の圧縮工程>
回転式圧縮機Cにおける冷媒の圧縮工程は以下のように行われる。
上・下シリンダ7、8において、同様に圧縮工程が行われるので、下シリンダ8の圧縮工程について説明し、上シリンダ7の圧縮工程の説明は省略する。
図2に示すように、下シリンダ8において、冷媒は、下シリンダ8の内周面8aとローラ12の外周面12aとベーン14と中仕切り板15(図1参照)と副軸受10とで囲われた密閉空間の圧縮室9(9s、9d)を用いて圧縮が行われる。
<Refrigerant compression process>
The refrigerant compression process in the rotary compressor C is performed as follows.
Since the compression process is similarly performed in the upper and lower cylinders 7 and 8, the compression process of the lower cylinder 8 will be described, and the description of the compression process of the upper cylinder 7 will be omitted.
As shown in FIG. 2, in the lower cylinder 8, the refrigerant is surrounded by the inner peripheral surface 8 a of the lower cylinder 8, the outer peripheral surface 12 a of the roller 12, the vane 14, the partition plate 15 (see FIG. 1), and the auxiliary bearing 10. Compression is performed using the compression chamber 9 (9s, 9d) in the closed space.

図3(a)〜(d)は、回転式圧縮機における圧縮工程の下シリンダを密閉容器内と圧縮室内の圧力差とともに示す図1のI−I断面の概念図である。
圧縮工程は、図3(a)〜(d)に示すように、クランク軸5のクランク角0°からクランク角90°、180°、270°を経てクランク角360°までで1サイクルの圧縮が行われる。図3(a)〜(d)のハッチングが圧縮室9を示す。前記したように、吸込み側の圧縮室9sと吐出側の圧縮室9dとは、ベーン14で仕切られている。
FIGS. 3A to 3D are conceptual views taken along the line II of FIG. 1 showing the lower cylinder of the compression process in the rotary compressor together with the pressure difference between the sealed container and the compression chamber.
In the compression process, as shown in FIGS. 3A to 3D, one cycle of compression is performed from the crank angle 0 ° of the crankshaft 5 to the crank angle 360 ° through the crank angles 90 °, 180 °, 270 °. Done. The hatching in FIGS. 3A to 3D shows the compression chamber 9. As described above, the suction-side compression chamber 9 s and the discharge-side compression chamber 9 d are partitioned by the vanes 14.

まず、圧縮工程の開始は、図3(a)のクランク角0°の状態にある。この際、吸込み側の圧縮室9sは吸込穴8Fに連通している。冷媒がアキュムレータ2から、吸込穴8Fを介して、吸込み側の圧縮室9sに吸い込まれる。そのため、圧縮室9の冷媒は吸込圧力Psをもつ。   First, the compression process starts at a crank angle of 0 ° in FIG. At this time, the compression chamber 9s on the suction side communicates with the suction hole 8F. The refrigerant is sucked from the accumulator 2 through the suction hole 8F into the compression chamber 9s on the suction side. Therefore, the refrigerant in the compression chamber 9 has a suction pressure Ps.

クランク軸5が回転し、図3(b)のクランク角90°になると、下シリンダ8の内周面8aとローラ12の外周面12aとで挟まれる空間の容積が狭まって吸込み側の圧縮室9sはベーン14で画成される吐き出し側の圧縮室9dとなる。吐き出し側の圧縮室9dの冷媒は、中間圧力Pmに上昇する。中間圧力Pmとは、吸込圧力Psと吐出圧力Pdとの間の圧力である。
一方、吸込穴8Fに連通する吸込み側の圧縮室9sが新たに形成され、吸込穴8Fから冷媒が圧縮室9sに吸込まれる。吸込み側の圧縮室9sの冷媒は吸込圧力Psをもつ。
When the crankshaft 5 rotates and reaches a crank angle of 90 ° in FIG. 3B, the volume of the space sandwiched between the inner peripheral surface 8a of the lower cylinder 8 and the outer peripheral surface 12a of the roller 12 is reduced, and the compression chamber on the suction side 9 s becomes a discharge-side compression chamber 9 d defined by the vane 14. The refrigerant in the discharge-side compression chamber 9d rises to the intermediate pressure Pm. The intermediate pressure Pm is a pressure between the suction pressure Ps and the discharge pressure Pd.
On the other hand, a suction side compression chamber 9s communicating with the suction hole 8F is newly formed, and the refrigerant is sucked into the compression chamber 9s from the suction hole 8F. The refrigerant in the compression chamber 9s on the suction side has a suction pressure Ps.

クランク軸5がさらに回転し、図3(c)のクランク角180°になると、下シリンダ8の内周面8aとローラ12の外周面12aとで挟まれる吐き出し側の圧縮室9dの容積がさらに狭まる。そして、吐き出し側の圧縮室9dの冷媒の圧力は、中間圧力Pmまたは吐出圧力Pdに上昇する。
一方、吸込穴8Fに連通する吸込み側の圧縮室9sの容積は、ローラ12の動作により拡張される。圧縮室9sの冷媒は吸込圧力Psをもつ。
When the crankshaft 5 further rotates and reaches a crank angle of 180 ° in FIG. 3C, the volume of the discharge-side compression chamber 9d sandwiched between the inner peripheral surface 8a of the lower cylinder 8 and the outer peripheral surface 12a of the roller 12 further increases. It narrows. Then, the refrigerant pressure in the discharge-side compression chamber 9d increases to the intermediate pressure Pm or the discharge pressure Pd.
On the other hand, the volume of the suction side compression chamber 9 s communicating with the suction hole 8 </ b> F is expanded by the operation of the roller 12. The refrigerant in the compression chamber 9s has a suction pressure Ps.

クランク軸5がさらに回転し、図3(d)のクランク角270°になると、下シリンダ8の内周面8aとローラ12の外周面12aとで挟まれる吐き出し側の圧縮室9dの容積がさらに狭まる。そして、吐き出し側の圧縮室9dの冷媒は、吐出圧力Pdまで上昇する。吐き出し側の圧縮室9dの冷媒が、吐出圧力Pdまで上昇すると不図示の弁が開弁され、吐出穴8Gから密閉容器1内に吐き出される。
一方、吸込穴8Fに連通する吸込み側の圧縮室9sの容積は、ローラ12の動作によりさらに拡張される。圧縮室9sの冷媒は吸込圧力Psをもつ。
When the crankshaft 5 further rotates and reaches a crank angle of 270 ° in FIG. 3D, the volume of the discharge-side compression chamber 9d sandwiched between the inner peripheral surface 8a of the lower cylinder 8 and the outer peripheral surface 12a of the roller 12 further increases. It narrows. Then, the refrigerant in the discharge-side compression chamber 9d rises to the discharge pressure Pd. When the refrigerant in the discharge side compression chamber 9d rises to the discharge pressure Pd, a valve (not shown) is opened and discharged into the sealed container 1 from the discharge hole 8G.
On the other hand, the volume of the suction-side compression chamber 9s communicating with the suction hole 8F is further expanded by the operation of the roller 12. The refrigerant in the compression chamber 9s has a suction pressure Ps.

クランク軸5がさらに回転し、クランク角360°(0°)になると、吐き出し側の圧縮室9dの吐出圧力Pdの冷媒は、吐出穴8Gから密閉容器1内に完全に吐き出される。
一方、吸込穴8Fに連通する吸込み側の圧縮室9sの容積は、ローラ12の動作によりさらに拡張される。上記したように、圧縮室9sの冷媒は吸込圧力Psをもつ。
以上のクランク角0°〜360°の1サイクルの圧縮工程を繰り返し、アキュムレータ2から供給される冷媒は、圧縮室9を用いて圧縮される。
When the crankshaft 5 further rotates and reaches a crank angle of 360 ° (0 °), the refrigerant having the discharge pressure Pd in the discharge-side compression chamber 9d is completely discharged into the sealed container 1 from the discharge hole 8G.
On the other hand, the volume of the suction-side compression chamber 9s communicating with the suction hole 8F is further expanded by the operation of the roller 12. As described above, the refrigerant in the compression chamber 9s has the suction pressure Ps.
The above-described one-cycle compression process with a crank angle of 0 ° to 360 ° is repeated, and the refrigerant supplied from the accumulator 2 is compressed using the compression chamber 9.

<主軸受6、上・下シリンダ7、8、中仕切り板15、副軸受10に設けられる穴>
主軸受6、上・下シリンダ7、8、中仕切り板15、副軸受10には、部品締結用のボルトが挿通されるボルト穴7A、8A(図2参照)以外に下記の穴が設けられる。
すなわち、下シリンダ8の吐出口8Gから吐き出された冷媒を主軸受6の上部に導くための冷媒流路穴8D、特定の周波数の消音を目的としたサイレンサ穴8C、加工時の基準として設けられた加工基準穴8Eである。
<Hole provided in the main bearing 6, the upper and lower cylinders 7, 8, the partition plate 15, and the auxiliary bearing 10>
In addition to the bolt holes 7A and 8A (see FIG. 2) through which the bolts for fastening the components are inserted, the following holes are provided in the main bearing 6, the upper and lower cylinders 7 and 8, the partition plate 15 and the auxiliary bearing 10. .
That is, a refrigerant flow path hole 8D for guiding the refrigerant discharged from the discharge port 8G of the lower cylinder 8 to the upper part of the main bearing 6, a silencer hole 8C for the purpose of silencing at a specific frequency, and a reference for processing. The machining reference hole 8E.

これらの穴は、密閉容器1内と圧縮室9との間のシール部である主軸受6と上シリンダ7との接触面、副軸受10と下シリンダ8との接触面、上シリンダ7と中仕切り板15との接触面、中仕切り板15と下シリンダ8との接触面等に存在するため、過度に大きな穴や、穴を密度高く設けたりすると密閉容器1内と圧縮室9との間のシール性が低下する。
そのため、高圧の冷媒がある密閉容器1内の上・下シリンダ7、8の外部空間(以下、単に密閉容器1内の外部空間と称す)から、圧縮中の低圧の冷媒がある圧縮室9への冷媒漏れを招き、圧縮機効率を低下させる要因となる。
そこで、上述の知見に基づいて、以下に本実施形態1の特徴的な構造について、説明する。
These holes are a contact surface between the main bearing 6 and the upper cylinder 7 which is a seal portion between the sealed container 1 and the compression chamber 9, a contact surface between the auxiliary bearing 10 and the lower cylinder 8, and the upper cylinder 7 and the middle. Since it exists on the contact surface with the partition plate 15, the contact surface between the intermediate partition plate 15 and the lower cylinder 8, etc., if excessively large holes or holes are provided with high density, the space between the sealed container 1 and the compression chamber 9 The sealing performance of the is reduced.
Therefore, from the outer space of the upper and lower cylinders 7 and 8 in the sealed container 1 with the high-pressure refrigerant (hereinafter simply referred to as the outer space in the sealed container 1) to the compression chamber 9 with the low-pressure refrigerant being compressed. This causes leakage of the refrigerant and reduces the compressor efficiency.
Then, based on the above-mentioned knowledge, the characteristic structure of the first embodiment will be described below.

図2に示すように、冷媒流路穴8D、消音用サイレンサ穴8C、また加工時の基準として設けられた加工基準穴8Eを全て、クランク軸5のクランク角180°以下または180°以上となる範囲のうち、密閉容器1内と圧縮室9内の圧力差が小さくなる時間の長い側に設ける。即ち高圧チャンバ方式においては、クランク角180°以上となる範囲に配置する。図2において対象となる穴をハッチングで示す。
前記した如く、クランク角0°とは、図3(a)に示すように、偏心部5Bが最も上側に来たときを指し、反時計回りにクランク角が増加、即ち前記した圧縮工程が進行する。
As shown in FIG. 2, the coolant channel hole 8 </ b> D, the silencer hole 8 </ b> C for silencing, and the machining reference hole 8 </ b> E provided as a reference during machining all have a crank angle of 180 ° or less or 180 ° or more. Within the range, it is provided on the long side where the pressure difference between the sealed container 1 and the compression chamber 9 becomes small. That is, in the high pressure chamber system, the crank angle is set in a range of 180 ° or more. In FIG. 2, the target hole is indicated by hatching.
As described above, the crank angle of 0 ° indicates the time when the eccentric portion 5B comes to the uppermost side as shown in FIG. 3A, and the crank angle increases counterclockwise, that is, the compression process proceeds. To do.

クランク角180°とは、図3(c)に示すように、偏心部5Bが最も下側に来た時を指し、クランク角360°とは、クランク角0°と同じクランク角であることを示す。
即ち、図2に示すように、クランク角180°未満となる吸込穴8Fがある吸込側となる範囲には、部品締結用のボルト穴7A、8Aおよび位置決めボルト穴7B、8B以外の穴は存在しない。
As shown in FIG. 3C, the crank angle of 180 ° indicates the time when the eccentric portion 5B comes to the lowest side, and the crank angle of 360 ° means that the crank angle is the same as the crank angle of 0 °. Show.
That is, as shown in FIG. 2, there are holes other than the bolt holes 7A and 8A for fastening the components and the positioning bolt holes 7B and 8B in the range where the suction holes 8F having a crank angle of less than 180 ° are located on the suction side. do not do.

図3(b)〜(d)に示すように、圧縮室9の圧力分布は、クランク角が小さい範囲ほど吸込圧力Psに近い低圧である時間が長くなる。そのため、吐出圧力Pdである密閉容器1内の外部空間との圧力差により、当該外部空間の冷媒の圧縮室9への漏れが発生し易くなる。
なお、高圧チャンバ方式では、密閉容器1内の外部空間は、常時略吐出圧力Pdである。
As shown in FIGS. 3B to 3D, in the pressure distribution in the compression chamber 9, the time during which the pressure is close to the suction pressure Ps becomes longer as the crank angle is smaller. Therefore, the refrigerant in the external space is likely to leak into the compression chamber 9 due to the pressure difference with the external space in the sealed container 1 that is the discharge pressure Pd.
In the high pressure chamber system, the external space in the sealed container 1 is always at substantially the discharge pressure Pd.

このため、冷媒流路穴8D、消音用サイレンサ穴8C、および加工基準穴8Eを全て、クランク角180°以上となる範囲に配置する。これにより、クランク角180°未満の範囲の低圧の冷媒がある領域のシール幅を、広くとれる。
従って、密閉容器1内の高圧の冷媒の上・下シリンダ7、8の各圧縮室9への冷媒の漏れが低減される。
以上より、加熱損失や指圧の膨らみが低減され圧縮機効率の向上を図ることができる。そのため、消費電力の少ない省エネ性能が高い回転式圧縮機Cを提供できる。
For this reason, the refrigerant flow path hole 8D, the silencing silencer hole 8C, and the processing reference hole 8E are all arranged in a range where the crank angle is 180 ° or more. As a result, the seal width in the region where the low-pressure refrigerant having a crank angle of less than 180 ° is present can be widened.
Therefore, the leakage of the refrigerant to the compression chambers 9 of the upper and lower cylinders 7 and 8 of the high-pressure refrigerant in the sealed container 1 is reduced.
As described above, the heating loss and the swelling of the finger pressure are reduced, and the compressor efficiency can be improved. Therefore, the rotary compressor C with low power consumption and high energy saving performance can be provided.

<<実施形態2>>
図4に、実施形態2に係る高圧チャンバ方式の回転式圧縮機のシリンダの平面図を示す。
実施形態2では、実施形態1に示された回転式圧縮機Cにおいて、冷媒流路穴8Dや消音用サイレンサ穴8C、加工基準穴8E等の多数設けられた穴の中でも、より径の大きな穴をクランク角大となる位置に設ける。
<< Embodiment 2 >>
FIG. 4 is a plan view of a cylinder of the high-pressure chamber type rotary compressor according to the second embodiment.
In the second embodiment, the rotary compressor C shown in the first embodiment has a larger diameter among the many holes such as the refrigerant flow path hole 8D, the silencer silencer hole 8C, and the processing reference hole 8E. Is provided at a position where the crank angle is large.

例えば、径の大きな穴が、冷媒流路穴8D、消音用サイレンサ穴8C、加工基準穴8Eの順である場合、図4に示すように、クランク角大となる位置からクランク角小となる位置に向けて、冷媒流路穴8D、消音用サイレンサ穴8C、加工基準穴8Eの順に配置する。
これにより、圧縮室9内でも、冷媒がより低圧である時間の長い吸込み側の範囲のシール幅を広くとれ、密閉容器1内の高圧の冷媒の圧縮室9内への漏れをより効果的に低減できる。
For example, when the holes with large diameters are in the order of the refrigerant flow path hole 8D, the silencer hole 8C for noise reduction, and the processing reference hole 8E, as shown in FIG. 4, the position where the crank angle becomes smaller from the position where the crank angle becomes larger. The refrigerant passage hole 8D, the silencing silencer hole 8C, and the processing reference hole 8E are arranged in this order.
As a result, even in the compression chamber 9, the seal width in the range of the suction side where the refrigerant is at a low pressure is long can be widened, and the leakage of the high-pressure refrigerant in the sealed container 1 into the compression chamber 9 is more effectively performed. Can be reduced.

<<実施形態3>>
図5に、実施形態3に係る高圧チャンバ方式の回転式圧縮機のシリンダの平面図を示す。
実施形態3の回転式圧縮機Cでは、部品締結用のボルト穴7A、8Aの角度ピッチを、クランク角180°以上の範囲にあるθ3およびθ4よりもクランク角180°未満の範囲にあるθ1およびθ2を狭く配置する。
<< Embodiment 3 >>
FIG. 5 shows a plan view of a cylinder of a high-pressure chamber type rotary compressor according to the third embodiment.
In the rotary compressor C of the third embodiment, the angle pitch of the bolt holes 7A, 8A for fastening the components is θ1 in the range of the crank angle less than 180 ° than θ3 and θ4 in the range of the crank angle of 180 ° or more. θ2 is arranged narrowly.

クランク角180°未満の範囲にあるボルト穴7A、8Aの角度ピッチθ1、θ2が、クランク角180°以上の範囲にあるボルト穴7A、8Aの角度ピッチθ3、θ4より狭いので、主軸受締付ボルト16、副軸受締付ボルト17で締結した際に、クランク角180°未満の冷媒の吸込み側の密着度合いが、クランク角180°以上の吐出側の密着度合いより高い。   Since the angular pitch θ1, θ2 of the bolt holes 7A, 8A in the range of the crank angle less than 180 ° is narrower than the angular pitch θ3, θ4 of the bolt holes 7A, 8A in the range of the crank angle of 180 ° or more, the main bearing is tightened. When the bolts 16 and the sub-bearing tightening bolts 17 are fastened, the closeness of the refrigerant on the suction side with a crank angle of less than 180 ° is higher than the closeness of the discharge side with a crank angle of 180 ° or more.

すなわち、密閉容器1内と圧縮室9との圧力差が大となる時間の長いクランク角180°未満の範囲において、主軸受6、上シリンダ7、中仕切り板15、下シリンダ8、副軸受10の各端面間の密着性が高められる。これにより、密閉容器1内の外部空間の高圧の冷媒の圧縮室9内への漏れを低減することができる。従って、圧縮機効率の向上を図れる。   That is, the main bearing 6, the upper cylinder 7, the partition plate 15, the lower cylinder 8, and the auxiliary bearing 10 are within a range of a crank angle of less than 180 ° where the pressure difference between the sealed container 1 and the compression chamber 9 becomes large. Adhesion between the end faces of the is improved. Thereby, the leakage of the high-pressure refrigerant in the external space in the sealed container 1 into the compression chamber 9 can be reduced. Therefore, the compressor efficiency can be improved.

<<実施形態4>>
図6に、実施形態4に係る高圧チャンバ方式の回転式圧縮機のシリンダの平面図を示す。
実施形態4の回転式圧縮機Cでは、圧縮室9の外径を形成する下シリンダ8の内周面8aの中心C0に対し、シリンダ8の外周面8bの中心C1をクランク角180°未満の範囲に距離εオフセットしている。
<< Embodiment 4 >>
FIG. 6 is a plan view of a cylinder of the high-pressure chamber type rotary compressor according to the fourth embodiment.
In the rotary compressor C of the fourth embodiment, the center C1 of the outer peripheral surface 8b of the cylinder 8 is less than the crank angle of 180 ° with respect to the center C0 of the inner peripheral surface 8a of the lower cylinder 8 that forms the outer diameter of the compression chamber 9. The range is offset by distance ε.

これにより、主軸受6、上シリンダ7、中仕切り板15間の接触面積および中仕切り板15、下シリンダ8、副軸受10間の接触面積が、クランク角180°未満の範囲において、クランク角180°以上360°未満の範囲より、径方向に大きくなる。   As a result, the crank angle 180 is within the range where the contact area between the main bearing 6, the upper cylinder 7 and the intermediate partition plate 15 and the contact area between the intermediate partition plate 15, the lower cylinder 8 and the auxiliary bearing 10 is less than 180 ° crank angle. It becomes larger in the radial direction than the range of not less than 360 ° and less than 360 °.

従って、密閉容器1内の外部空間と圧縮室9との圧力差が大となる時間の長いクランク角180°未満の範囲の吸込み側においてシール幅を、クランク角180°以上360°未満の範囲の吐き出し側よりも広くとれる。図6に示すように、クランク角270°の下シリンダ8のシール幅Wに対して、クランク角90°の下シリンダ8のシール幅は、W+2εとなる。すなわち、吸込み側のシール幅が2ε広くとれる。   Accordingly, the seal width on the suction side of the crank angle less than 180 ° in the range where the pressure difference between the external space in the hermetic container 1 and the compression chamber 9 becomes large is long and the crank angle is less than 360 ° and less than 360 °. It is wider than the discharge side. As shown in FIG. 6, the seal width of the lower cylinder 8 with a crank angle of 90 ° is W + 2ε with respect to the seal width W of the lower cylinder 8 with a crank angle of 270 °. That is, the seal width on the suction side can be increased by 2ε.

そのため、密閉容器1内の外部空間の高圧の冷媒の圧縮室9内への漏れを低減することができる。従って、圧縮機効率の向上を図ることができる。
従って、圧縮機効率の向上を、不要に部品の体積を増加させることなく、即ち原価の増大を抑えた構成で達成できる。
Therefore, leakage of the high-pressure refrigerant in the external space in the sealed container 1 into the compression chamber 9 can be reduced. Therefore, the compressor efficiency can be improved.
Therefore, improvement of the compressor efficiency can be achieved without unnecessarily increasing the volume of the parts, that is, with a configuration that suppresses the increase in cost.

<<実施形態5>>
本発明の実施形態5では、実施形態1〜4に記載のいずれかの回転式圧縮機Cにおいて、冷媒としてR32を使用している。
従来、家庭用空気調和機にて主流であったR22冷媒やR410A冷媒に対し、高温・高圧であり分子量の小さいR32冷媒を使用する場合、従来より冷媒が高圧になることから、実施形態1〜4の構成により、密閉容器1内の外部空間の高圧の冷媒の圧縮室9内への冷媒の漏れを低減できる。
R32冷媒の場合、従来より冷媒が高圧になることから、冷媒漏れの低減効果をより効果的に得ることができる。
<< Embodiment 5 >>
In Embodiment 5 of the present invention, R32 is used as a refrigerant in any of the rotary compressors C described in Embodiments 1 to 4.
Conventionally, when an R32 refrigerant having a high molecular weight and a low molecular weight is used for the R22 refrigerant and the R410A refrigerant, which have been mainstream in home air conditioners, the refrigerant has a higher pressure than the conventional one. According to the configuration of 4, the leakage of the refrigerant into the compression chamber 9 of the high-pressure refrigerant in the external space in the sealed container 1 can be reduced.
In the case of R32 refrigerant, since the refrigerant has a higher pressure than before, the effect of reducing refrigerant leakage can be obtained more effectively.

図7に、実施形態5の回転式圧縮機の電動機の制御ブロック図を示す。
回転式圧縮機Cの駆動源の電動機Mは、電動要素の固定子3と回転子4とを有して構成される。
電動機Mは、図7に示す制御部Sを用いて回転速度(回転数)制御が行われる。
制御部Sは、マイクロコンピュータsm、コンバータsa、およびインバータsbを備えている。
In FIG. 7, the control block diagram of the electric motor of the rotary compressor of Embodiment 5 is shown.
An electric motor M that is a driving source of the rotary compressor C includes an electric element stator 3 and a rotor 4.
The electric motor M is subjected to rotational speed (rotational speed) control using the control unit S shown in FIG.
The control unit S includes a microcomputer sm, a converter sa, and an inverter sb.

マイクロコンピュータsm(以下、マイコンsmと称す)は、CPU、RDM、RAM等の記憶部等を有しており、制御プログラムが実行されることで電動機Mの制御が遂行される。
交流電源ACから交流電圧がコンバータsaに供給される。交流電圧はコンバータsaで直流電圧に変換され、マイコンsmとインバータsbとに分圧されて、所定の直流電圧が供給される。
The microcomputer sm (hereinafter referred to as the microcomputer sm) has a storage unit such as a CPU, RDM, and RAM, and the control of the electric motor M is performed by executing a control program.
An AC voltage is supplied from the AC power source AC to the converter sa. The AC voltage is converted into a DC voltage by the converter sa, divided into the microcomputer sm and the inverter sb, and a predetermined DC voltage is supplied.

マイコンsmは、回転速度制御により、制御回転速度の駆動電圧を示す制御信号をインバータsbに出力する。インバータsbは、当該制御信号に基づき電動機Mに加える駆動電圧を増減する。   The microcomputer sm outputs, to the inverter sb, a control signal indicating the drive voltage at the control rotation speed by the rotation speed control. The inverter sb increases or decreases the drive voltage applied to the electric motor M based on the control signal.

回転速度制御において、電動機Mが低速運転の場合、冷媒がシリンダ7、8の吸込み側(クランク角180°未満の範囲)にある時間が長くなる。つまり、回転速度制御の低速運転では、密閉容器1内の外部空間の高圧の冷媒の圧縮室9内への漏れが大きくなる。
そこで、実施形態1〜4に記載の構成を適用することで、回転速度制御において、冷媒漏れの影響が大となる低速運転を行う際により効果的に冷媒漏れを抑制できる。
In the rotational speed control, when the electric motor M is operating at a low speed, the time during which the refrigerant is on the suction side of the cylinders 7 and 8 (range of crank angle less than 180 °) becomes longer. That is, in the low speed operation of the rotational speed control, the leakage of the high-pressure refrigerant in the external space in the sealed container 1 into the compression chamber 9 becomes large.
Therefore, by applying the configurations described in the first to fourth embodiments, it is possible to more effectively suppress the refrigerant leakage when performing the low speed operation in which the influence of the refrigerant leakage becomes large in the rotational speed control.

<<その他の実施形態>>
1.前記実施形態3では、部品締結用のボルト穴7A、8Aの角度ピッチを、クランク角180°以上の範囲にあるθ3およびθ4よりもクランク角180°未満の範囲にあるθ1およびθ2を狭く配置した例を説明したが、部品結用のボルト穴7A、8A以外の穴、例えば、サイレンサ穴8C、冷媒流路穴8D、加工基準穴8EAの角度ピッチを、クランク角180°以上の範囲よりもクランク角180°未満の範囲にある角度ピッチを広くとってもよい。本構成によれば、圧縮室9の低圧側のクランク角180°未満の範囲にある部品結用のボルト穴7A、8A以外の穴の角度ピッチが広いので、冷媒漏れを抑制できる。
<< Other Embodiments >>
1. In the third embodiment, the angle pitch of the bolt holes 7A, 8A for fastening the components is arranged so that θ1 and θ2 in the range of crank angle less than 180 ° are narrower than θ3 and θ4 in the range of crank angle of 180 ° or more. Although the example has been described, the angular pitch of the holes other than the bolt holes 7A and 8A for connecting the components, for example, the silencer hole 8C, the refrigerant flow path hole 8D, and the machining reference hole 8EA is set to be larger than the crank angle of 180 ° or more. The angle pitch in the range of less than 180 ° may be wide. According to this configuration, since the angular pitch of the holes other than the bolt holes 7A and 8A for connecting the components in the range of the crank angle of less than 180 ° on the low pressure side of the compression chamber 9 is wide, refrigerant leakage can be suppressed.

2.或いは、部品結用のボルト穴7A、8A以外の穴、例えばサイレンサ穴8C、冷媒流路穴8D、加工基準穴8Eの開口面積を、クランク角180°未満の範囲よりもクランク角180°以上の範囲を広くとってもよい。本構成によれば、圧縮室9の低圧側のクランク角180°未満の範囲の部品結用のボルト穴7A、8A以外の穴の開口面積が狭いので、低圧側(クランク角180°未満)の領域における冷媒漏れを効果的に抑制できる。 2. Alternatively, the opening area of the holes other than the bolt holes 7A and 8A for connecting the components, for example, the silencer hole 8C, the refrigerant flow path hole 8D, and the machining reference hole 8E is 180 ° or more than the crank angle of 180 ° or less. The range may be wide. According to this configuration, since the opening area of the holes other than the bolt holes 7A and 8A for connecting the components in the range of the crank angle of less than 180 ° on the low pressure side of the compression chamber 9 is narrow, it is on the low pressure side (less than 180 ° of the crank angle). The refrigerant leakage in the region can be effectively suppressed.

3.なお、前記実施形態1等では、様々な構成を説明したが、各構成を適宜選択して組み合わせてもよい。 3. In the first embodiment and the like, various configurations have been described. However, the configurations may be appropriately selected and combined.

4.以上では、本発明の実施形態として、特に密閉型の縦形2シリンダ回転式圧縮機を例として説明したが、本発明はこれに限定されることなく、例えば非密閉型回転式圧縮機、横型回転式圧縮機、1シリンダもしくは3シリンダ以上の回転式圧縮機、スイング圧縮機にも適用可能である。なお、回転式圧縮機には、ローラ11とベーン13、およびローラ12とベーン14が別体で構成された所謂ロータリ圧縮機と、それらが一体で構成された所謂スイング圧縮機、スクロール圧縮機を少なくとも含む。 4). In the above, as an embodiment of the present invention, a sealed vertical two-cylinder rotary compressor has been described as an example. However, the present invention is not limited to this, and for example, a non-sealed rotary compressor, a horizontal rotary compressor, etc. The present invention can also be applied to a rotary compressor having one or more cylinders or three cylinders or a swing compressor. The rotary compressor includes a so-called rotary compressor in which the roller 11 and the vane 13 and the roller 12 and the vane 14 are formed separately, and a so-called swing compressor and scroll compressor in which they are integrally formed. Including at least.

5.また、前記実施形態1等では、密閉容器1内が略吐出圧力Pdとなる高圧チャンバ方式を用いて説明したが、密閉容器1内が略吸込圧力Psとなる低圧チャンバ方式や、密閉容器1内が吸込み圧力Psと吐出圧力Pdの中間になる中間圧チャンバ方式にも適用可能である。例えば低圧チャンバ方式の場合には、図9に示すように、前記実施形態1において、部品締結用の穴以外の軸方向に延びる穴は、全て、クランク軸5のクランク角180°以下または180°以上となる範囲のうち、前記密閉容器内と前記圧縮室内の圧力差が小さくなる時間の長い側、即ちクランク角180°以下の範囲に設けられる。また例えば2段圧縮の中間圧チャンバ方式の場合には、1段目の圧縮室は吸込み圧力Psの冷媒を吸い込み、中間圧力Pmまで圧縮して密閉容器内に吐出し、2段目の圧縮室は密閉容器内のPmの冷媒を吸い込み、吐出圧力Pdまで圧縮し、空気調和機等のサイクルへ吐出する。このため、1段目の圧縮室における穴の配置は高圧チャンバ方式と同様、2段目の圧縮室における穴の配置は低圧チャンバ方式と同様に設けられる。
実施形態1を例としたが、その他の実施形態においても同様であることは明らかである。
5. In the first embodiment and the like, the high-pressure chamber system in which the inside of the sealed container 1 has a substantially discharge pressure Pd has been described. However, the low-pressure chamber system in which the inside of the sealed container 1 has a substantially suction pressure Ps, Is also applicable to an intermediate pressure chamber system in which the suction pressure Ps and the discharge pressure Pd are intermediate. For example, in the case of the low pressure chamber system, as shown in FIG. 9, in the first embodiment, all the holes extending in the axial direction other than the component fastening holes are not more than a crank angle of 180 ° or 180 ° of the crankshaft 5. Of the above-described range, it is provided on the longer side where the pressure difference between the sealed container and the compression chamber becomes smaller, that is, the range of a crank angle of 180 ° or less. For example, in the case of a two-stage compression intermediate pressure chamber system, the first-stage compression chamber sucks in the refrigerant having the suction pressure Ps, compresses it to the intermediate pressure Pm, and discharges it into the hermetic container. Sucks the Pm refrigerant in the sealed container, compresses it to the discharge pressure Pd, and discharges it to a cycle of an air conditioner or the like. For this reason, the arrangement of holes in the first-stage compression chamber is the same as in the high-pressure chamber system, and the arrangement of holes in the second-stage compression chamber is the same as in the low-pressure chamber system.
Although Embodiment 1 was taken as an example, it is obvious that the same applies to other embodiments.

6.また、主軸受締付ボルト16および副軸受締付ボルト17は、主軸受6から副軸受10までを貫通する1本のボルトで構成しても勿論構わない。 6). Of course, the main bearing tightening bolt 16 and the sub bearing tightening bolt 17 may be configured by a single bolt penetrating from the main bearing 6 to the sub bearing 10.

7.本発明は、上述の実施形態に限定されない。即ち特に限定的な記載がない限り、本発明の範囲を前記した実施形態のみに限定するものではなく、単なる説明例に過ぎないことも明らかである。 7). The present invention is not limited to the above-described embodiment. That is, unless otherwise specified, it is obvious that the scope of the present invention is not limited to the above-described embodiment, but merely an illustrative example.

1 密閉容器
3 固定子(電動機)
4 回転子(電動機)
5 クランク軸
5A 上偏心部(圧縮部材)
5B 下偏心部(圧縮部材)
6 主軸受
7 上シリンダ(シリンダ)
8 下シリンダ(シリンダ)
7A 主軸受締付ボルト穴(部品締結用の穴)
7B 位置決めボルト穴(部品締結用の穴)
7C サイレンサ穴(軸方向の穴)
7D 冷媒流路穴(軸方向の穴、より面積の大きな穴)
7E 加工基準穴(軸方向の穴)
7G 吐出穴(吐出孔)
8A 副軸受締付ボルト穴(部品締結用の穴)
8a 内周面
8b 外周面
8B 位置決めボルト穴(部品締結用の穴)
8C サイレンサ穴(軸方向の穴)
8D 冷媒流路穴(軸方向の穴、より面積の大きな穴)
8E 加工基準穴(軸方向の穴)
8G 吐出穴(吐出孔)
8H ベーンスロット
9 圧縮室
9d 吐出側の圧縮室(圧縮室)
10 副軸受
11 上ローラ(圧縮部材)
12 下ローラ(圧縮部材)
C 回転式圧縮機
C0 内径の中心(内周面の中心)
C1 外径の中心(外周面の中心)
M 電動機
S 制御部
θ1、θ2、θ3、θ4 角度ピッチ
1 Sealed container 3 Stator (electric motor)
4 Rotor (electric motor)
5 Crankshaft 5A Upper eccentric part (compression member)
5B Lower eccentric part (compression member)
6 Main bearing 7 Upper cylinder (cylinder)
8 Lower cylinder (cylinder)
7A Main bearing tightening bolt holes (holes for fastening components)
7B Positioning bolt hole (Hole for fastening parts)
7C Silencer hole (Axial hole)
7D Refrigerant channel hole (Axial hole, larger area hole)
7E Machining reference hole (Axial hole)
7G Discharge hole (Discharge hole)
8A Sub bearing tightening bolt hole (Hole for fastening parts)
8a Inner peripheral surface 8b Outer peripheral surface 8B Positioning bolt hole (Hole for component fastening)
8C Silencer hole (Axial hole)
8D Refrigerant flow path hole (Axial hole, larger area hole)
8E Machining reference hole (Axial hole)
8G discharge hole (discharge hole)
8H Vane slot 9 Compression chamber 9d Compression chamber on the discharge side (compression chamber)
10 Sub bearing 11 Upper roller (compression member)
12 Lower roller (compression member)
C Rotary compressor C0 Center of inner diameter (center of inner peripheral surface)
C1 Center of outer diameter (center of outer peripheral surface)
M motor S controller θ1, θ2, θ3, θ4 Angular pitch

Claims (8)

電動機と、
当該電動機により回転駆動され圧縮部材が設けられるクランク軸と、
前記圧縮部材の回転駆動により冷媒が圧縮される圧縮室を内部に有するシリンダと、
前記シリンダを軸方向の一方で閉塞する主軸受と前記軸方向の他方で閉塞する副軸受とを密閉容器内に備え、
前記シリンダ、前記主軸受、および前記副軸受は、前記軸方向に部品締結用の穴を有し、
前記部品締結用の穴以外の前記軸方向に延びる穴は、全て、前記クランク軸のクランク角180°以下または180°以上となる範囲のうち、前記密閉容器内と前記圧縮室内の圧力差が小さくなる時間の長い側に設けられている
ことを特徴とする回転式圧縮機。
An electric motor,
A crankshaft that is rotationally driven by the electric motor and provided with a compression member;
A cylinder having therein a compression chamber in which the refrigerant is compressed by rotational driving of the compression member;
A main bearing that closes the cylinder in one axial direction and a secondary bearing that closes the other in the axial direction are provided in a sealed container,
The cylinder, the main bearing, and the auxiliary bearing have holes for fastening components in the axial direction,
All the axially extending holes other than the component fastening holes have a small pressure difference between the inside of the hermetic container and the compression chamber within a range where the crank angle of the crankshaft is 180 ° or less or 180 ° or more. The rotary compressor is provided on the long side.
請求項1に記載の回転式圧縮機において、
前記軸方向に延びる穴のうち、より面積の大きな穴は、前記クランク軸のクランク角において、前記密閉容器内と前記圧縮室内の圧力差が小さくなる時間の長い側に設けられている
ことを特徴とする回転式圧縮機。
The rotary compressor according to claim 1, wherein
Of the holes extending in the axial direction, a hole having a larger area is provided on the longer side of the crank angle of the crankshaft where the pressure difference between the sealed container and the compression chamber is reduced. And rotary compressor.
電動機と、
当該電動機により回転駆動され圧縮部材が設けられるクランク軸と、
前記圧縮部材の回転駆動により冷媒が圧縮される圧縮室を内部に有するシリンダと、
前記シリンダを軸方向の一方で閉塞する主軸受と前記軸方向の他方で閉塞する副軸受とを密閉容器内に備え、
前記シリンダ、前記主軸受、および前記副軸受は、前記軸方向に部品締結用の穴を有し、
前記部品締結用の穴の角度ピッチは、前記クランク軸のクランク角180°以下または180°以上となる範囲のうち、前記密閉容器内と前記圧縮室内の圧力差が小さくなる時間の長い側で広い
ことを特徴とする回転式圧縮機。
An electric motor,
A crankshaft that is rotationally driven by the electric motor and provided with a compression member;
A cylinder having therein a compression chamber in which the refrigerant is compressed by rotational driving of the compression member;
A main bearing that closes the cylinder in one axial direction and a secondary bearing that closes the other in the axial direction are provided in a sealed container,
The cylinder, the main bearing, and the auxiliary bearing have holes for fastening components in the axial direction,
The angular pitch of the holes for fastening the components is wide on the long side where the pressure difference between the sealed container and the compression chamber becomes small in the range where the crank angle of the crankshaft is 180 ° or less or 180 ° or more. A rotary compressor characterized by that.
電動機と、
当該電動機により回転駆動され圧縮部材が設けられるクランク軸と、
前記圧縮部材の回転駆動により冷媒が圧縮される圧縮室を内部に有するシリンダと、
前記シリンダを軸方向の一方で閉塞する主軸受と前記軸方向の他方で閉塞する副軸受とを密閉容器内に備え、
前記シリンダ、前記主軸受、および前記副軸受は、前記軸方向に部品締結用の穴を有し、
前記部品締結用の穴以外の前記軸方向に延びる穴の角度ピッチは、前記クランク軸のクランク角180°以下または180°以上となる範囲のうち、前記密閉容器内と前記圧縮室内の圧力差が小さくなる時間の長い側で狭い
ことを特徴とする回転式圧縮機。
An electric motor,
A crankshaft that is rotationally driven by the electric motor and provided with a compression member;
A cylinder having therein a compression chamber in which the refrigerant is compressed by rotational driving of the compression member;
A main bearing that closes the cylinder in one axial direction and a secondary bearing that closes the other in the axial direction are provided in a sealed container,
The cylinder, the main bearing, and the auxiliary bearing have holes for fastening components in the axial direction,
The angular pitch of the holes extending in the axial direction other than the holes for fastening the components is such that the pressure difference between the sealed container and the compression chamber is within a range where the crank angle of the crankshaft is 180 ° or less or 180 ° or more. A rotary compressor that is narrower on the longer side of the time it gets smaller.
電動機と、
当該電動機により回転駆動され圧縮部材が設けられるクランク軸と、
前記圧縮部材の回転駆動により冷媒が圧縮される圧縮室を内部に有するシリンダと、
前記シリンダを軸方向の一方で閉塞する主軸受と前記軸方向の他方で閉塞する副軸受とを密閉容器内に備え、
前記シリンダ、前記主軸受、および前記副軸受は、前記軸方向に部品締結用の穴を有し、
前記圧縮室の外周面を形成する前記シリンダの内周面の内径の中心に対し、当該シリンダの外周面の中心を、前記クランク軸のクランク角180°以下または180°以上となる範囲のうち、前記密閉容器内と前記圧縮室内の圧力差が小さくなる時間の短い側にオフセットした
ことを特徴とする回転式圧縮機。
An electric motor,
A crankshaft that is rotationally driven by the electric motor and provided with a compression member;
A cylinder having therein a compression chamber in which the refrigerant is compressed by rotational driving of the compression member;
A main bearing that closes the cylinder in one axial direction and a secondary bearing that closes the other in the axial direction are provided in a sealed container,
The cylinder, the main bearing, and the auxiliary bearing have holes for fastening components in the axial direction,
With respect to the center of the inner diameter of the inner peripheral surface of the cylinder that forms the outer peripheral surface of the compression chamber, the center of the outer peripheral surface of the cylinder is within a range where the crank angle of the crankshaft is 180 ° or less or 180 ° or more. A rotary compressor characterized in that the rotary compressor is offset to a side where the pressure difference between the sealed container and the compression chamber becomes small.
電動機と、
当該電動機により回転駆動され圧縮部材が設けられるクランク軸と、
前記圧縮部材の回転駆動により冷媒が圧縮される圧縮室を内部に有するシリンダと、
前記シリンダを軸方向の一方で閉塞する主軸受と前記軸方向の他方で閉塞する副軸受とを密閉容器内に備え、
前記シリンダ、前記主軸受、および前記副軸受は、前記軸方向に部品締結用の穴を有し、
前記部品締結用の穴以外の前記軸方向に延びる穴の開口面積は、前記クランク軸のクランク角180°以下または180°以上となる範囲のうち、前記密閉容器内と前記圧縮室内の圧力差が小さくなる時間の長い側で広い
ことを特徴とする回転式圧縮機。
An electric motor,
A crankshaft that is rotationally driven by the electric motor and provided with a compression member;
A cylinder having therein a compression chamber in which the refrigerant is compressed by rotational driving of the compression member;
A main bearing that closes the cylinder in one axial direction and a secondary bearing that closes the other in the axial direction are provided in a sealed container,
The cylinder, the main bearing, and the auxiliary bearing have holes for fastening components in the axial direction,
The opening area of the hole extending in the axial direction other than the hole for fastening the component has a pressure difference in the sealed container and the compression chamber within a range where the crank angle of the crankshaft is 180 ° or less or 180 ° or more. A rotary compressor characterized in that it is wide on the long side where it becomes smaller.
請求項1または請求項3から請求項6のうちの何れか一項に記載の回転式圧縮機において、
冷媒としてR32冷媒を使用する
ことを特徴とする回転式圧縮機。
In the rotary compressor as described in any one of Claim 1 or Claims 3-6,
A rotary compressor using R32 refrigerant as the refrigerant.
請求項1または請求項3から請求項6のうちの何れか一項に記載の回転式圧縮機において、
前記電動機は、回転速度制御が行われる
ことを特徴とする回転式圧縮機。
In the rotary compressor as described in any one of Claim 1 or Claims 3-6,
The electric motor is subjected to rotational speed control.
JP2016055982A 2016-03-18 2016-03-18 Rotary compressor Active JP6426645B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016055982A JP6426645B2 (en) 2016-03-18 2016-03-18 Rotary compressor
CN201710066979.6A CN107202017B (en) 2016-03-18 2017-02-07 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016055982A JP6426645B2 (en) 2016-03-18 2016-03-18 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2017172343A true JP2017172343A (en) 2017-09-28
JP6426645B2 JP6426645B2 (en) 2018-11-21

Family

ID=59904865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016055982A Active JP6426645B2 (en) 2016-03-18 2016-03-18 Rotary compressor

Country Status (2)

Country Link
JP (1) JP6426645B2 (en)
CN (1) CN107202017B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109611334A (en) * 2017-10-05 2019-04-12 桂林航天工业学院 A kind of double atmospheric pressure compressor with rolling rotor

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4730008U (en) * 1971-04-30 1972-12-05
JPS57153795U (en) * 1981-03-23 1982-09-27
JPS60259790A (en) * 1984-06-06 1985-12-21 Hitachi Ltd Rotary compressor
JPS62160789U (en) * 1986-04-02 1987-10-13
JPH01190984A (en) * 1988-01-25 1989-08-01 Matsushita Refrig Co Ltd Rotary compressor
JPH01237381A (en) * 1988-03-17 1989-09-21 Hitachi Ltd Lateral compressor
JPH10169579A (en) * 1996-12-06 1998-06-23 Daikin Ind Ltd Rotary compressor
JPH11270481A (en) * 1998-03-23 1999-10-05 Sanyo Electric Co Ltd Sealed type rotary compressor
JP2001329983A (en) * 2000-05-22 2001-11-30 Hitachi Ltd Rotary compressor
JP2003028060A (en) * 2002-05-17 2003-01-29 Toshiba Corp Hermetically closed compressor
JP2005147562A (en) * 2003-11-18 2005-06-09 Sanyo Electric Co Ltd Two-stage compression type rotary compressor, and car air conditioner and heat pump type hot water supply apparatus using it
JP2014139443A (en) * 2012-10-23 2014-07-31 Panasonic Corp Rotary compressor
JP2014145318A (en) * 2013-01-29 2014-08-14 Fujitsu General Ltd Rotary compressor
JP2015132255A (en) * 2013-12-13 2015-07-23 ダイキン工業株式会社 compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3490950B2 (en) * 2000-03-15 2004-01-26 三洋電機株式会社 2-cylinder 2-stage compression type rotary compressor
CN100447424C (en) * 2004-06-15 2008-12-31 东芝开利株式会社 Multi-cylinder rotary compressor
JP5299362B2 (en) * 2010-06-21 2013-09-25 株式会社デンソー Vane type pump and EVA POLYK check system using the same
WO2013057946A1 (en) * 2011-10-18 2013-04-25 パナソニック株式会社 Rotary compressor having two cylinders
DE102012005949B4 (en) * 2012-01-31 2013-09-12 Jung & Co. Gerätebau GmbH Two-spindle screw pump in double-flow design
CN203756523U (en) * 2013-11-20 2014-08-06 广东美芝制冷设备有限公司 Rotary compressor and compression device thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4730008U (en) * 1971-04-30 1972-12-05
JPS57153795U (en) * 1981-03-23 1982-09-27
JPS60259790A (en) * 1984-06-06 1985-12-21 Hitachi Ltd Rotary compressor
JPS62160789U (en) * 1986-04-02 1987-10-13
JPH01190984A (en) * 1988-01-25 1989-08-01 Matsushita Refrig Co Ltd Rotary compressor
JPH01237381A (en) * 1988-03-17 1989-09-21 Hitachi Ltd Lateral compressor
JPH10169579A (en) * 1996-12-06 1998-06-23 Daikin Ind Ltd Rotary compressor
JPH11270481A (en) * 1998-03-23 1999-10-05 Sanyo Electric Co Ltd Sealed type rotary compressor
JP2001329983A (en) * 2000-05-22 2001-11-30 Hitachi Ltd Rotary compressor
JP2003028060A (en) * 2002-05-17 2003-01-29 Toshiba Corp Hermetically closed compressor
JP2005147562A (en) * 2003-11-18 2005-06-09 Sanyo Electric Co Ltd Two-stage compression type rotary compressor, and car air conditioner and heat pump type hot water supply apparatus using it
JP2014139443A (en) * 2012-10-23 2014-07-31 Panasonic Corp Rotary compressor
JP2014145318A (en) * 2013-01-29 2014-08-14 Fujitsu General Ltd Rotary compressor
JP2015132255A (en) * 2013-12-13 2015-07-23 ダイキン工業株式会社 compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109611334A (en) * 2017-10-05 2019-04-12 桂林航天工业学院 A kind of double atmospheric pressure compressor with rolling rotor
CN109611334B (en) * 2017-10-05 2023-09-22 桂林航天工业学院 Double-row-pressure rolling rotor compressor

Also Published As

Publication number Publication date
CN107202017B (en) 2019-10-25
CN107202017A (en) 2017-09-26
JP6426645B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
KR101316247B1 (en) 2 stage rotary compressor
EP1851437B1 (en) Capacity varying type rotary compressor
US9429156B2 (en) Compressor
KR101637446B1 (en) Rotary compressor
US8517702B2 (en) Rotary compressor with enhanced sealing between mode switching device and chamber thereof
KR20100042168A (en) Scoroll compressor and refrigsrator having the same
KR20090049411A (en) 2 stage rotary compressor
KR101587174B1 (en) Rotary compressor
JP2008240666A (en) Rotary compressor and heat pump system
US11326605B2 (en) Dual cylinder rotary compressor with intermediate plate that flows both cylinders to the muffler
JP6426645B2 (en) Rotary compressor
US20220372983A1 (en) Compressor
KR101474460B1 (en) Scoroll compressor and refrigsrator having the same
JP2006177227A (en) Rotary two-stage compressor
US8485805B2 (en) Rotary compressor
JP6704555B1 (en) Compressor and refrigeration cycle device
US10968911B2 (en) Oscillating piston-type compressor
KR20100081813A (en) Hermetic compressor having the same and refrigerator having the same
KR20100036131A (en) Hermetic compressor and refrigerator having the same
KR101328229B1 (en) Rotary compressor
JP2009002297A (en) Rotary compressor
KR101463826B1 (en) Rotary compressor
KR101337079B1 (en) Two stage rotary compressor
KR101462933B1 (en) Rotary compressor
KR20090012855A (en) 2 stage rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180801

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180801

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181025

R150 Certificate of patent or registration of utility model

Ref document number: 6426645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150