JP6426645B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP6426645B2
JP6426645B2 JP2016055982A JP2016055982A JP6426645B2 JP 6426645 B2 JP6426645 B2 JP 6426645B2 JP 2016055982 A JP2016055982 A JP 2016055982A JP 2016055982 A JP2016055982 A JP 2016055982A JP 6426645 B2 JP6426645 B2 JP 6426645B2
Authority
JP
Japan
Prior art keywords
cylinder
compression chamber
refrigerant
hole
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016055982A
Other languages
Japanese (ja)
Other versions
JP2017172343A (en
Inventor
謙治 竹澤
謙治 竹澤
敬悟 渡邉
敬悟 渡邉
宏介 鈴木
宏介 鈴木
直洋 土屋
直洋 土屋
康弘 岸
康弘 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2016055982A priority Critical patent/JP6426645B2/en
Priority to CN201710066979.6A priority patent/CN107202017B/en
Publication of JP2017172343A publication Critical patent/JP2017172343A/en
Application granted granted Critical
Publication of JP6426645B2 publication Critical patent/JP6426645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/601Shaft flexion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、回転式圧縮機に関する。   The present invention relates to a rotary compressor.

従来、回転式圧縮機として、特許文献1に記載される構成が既に知られている。なお、下記の括弧内の符号は、特許文献1の第1図、第2図等で使用される符号である。
特許文献1の回転式圧縮機は、シリンダ(2)と、シリンダ(2)の両端を閉塞する主軸受(9)および端軸受(10)とで囲まれた圧縮室内に、主軸受(9)および端軸受(10)に軸支されたクランク軸(3)によって偏心回転するピストン(4)を配設し、ピストン(4)の外周面に常に当接して圧縮室内を高圧側と低圧側とに区分するベーン(5)をシリンダ(2)に取り付けた圧縮要素(11)と、圧縮要素(11)を駆動する電動機とを密閉容器(1)内に収納した回転式圧縮機である。
DESCRIPTION OF RELATED ART Conventionally, the structure described in patent document 1 is already known as a rotary compressor. In addition, the code | symbol in the following parenthesis is a code | symbol used by FIG. 1, FIG. 2 etc. of patent document 1. FIG.
The rotary compressor of Patent Document 1 includes a main bearing (9) in a compression chamber surrounded by a cylinder (2) and a main bearing (9) and an end bearing (10) closing both ends of the cylinder (2). And a piston (4) eccentrically rotated by a crankshaft (3) axially supported by the end bearing (10), and always in contact with the outer peripheral surface of the piston (4) The compressor (11) has a compression element (11) attached to a cylinder (2) and a motor for driving the compression element (11) housed in a closed container (1).

当該回転式圧縮機において、シリンダ(2)の吸入側部分に、シリンダ(2)をクランク軸(3)の方向に貫通する穴を設け、この穴の両端面を主軸受(9)および端軸受(10)で塞ぎ、密閉空間(7)を形成する。シリンダ(2)より熱伝導性が低い密閉空間(7)がシリンダ(2)の吸入側部分に介在することにより、運転時に高温となっている密閉容器(1)内のガスからシリンダ(2)の内壁への伝熱を抑えることができる。そのため、吸入行程中に長時間吸入ガスに接しているシリンダ(2)の吸入側部分の内壁の温度上昇が少なく、この結果、吸入ガスの予熱が抑止されるとしている。   In the rotary compressor, the suction side portion of the cylinder (2) is provided with a hole passing through the cylinder (2) in the direction of the crankshaft (3), and both end faces of this hole are the main bearing (9) and the end bearing Close with (10) to form an enclosed space (7). Since the closed space (7) having lower thermal conductivity than the cylinder (2) is interposed in the suction side of the cylinder (2), the gas in the closed container (1), which is hot during operation, is removed from the cylinder (2) Heat transfer to the inner wall of can be suppressed. Therefore, the temperature rise of the inner wall of the suction side portion of the cylinder (2) in contact with the suction gas for a long time during the suction stroke is small, and as a result, preheating of the suction gas is suppressed.

なお、シリンダ(2)、主軸受(9)、端軸受(10)や、2シリンダの回転式圧縮機のシリンダ間で用いられる中仕切り板には、固定用穴以外に、冷媒流路、消音のためのサイレンサ等として、多数の穴が設けられることがよく知られている。
図8は、従来の2シリンダの回転式圧縮機のシリンダの平面図である。
従来のシリンダ108内には、クランク軸105に偏芯部105Bが固定され、偏芯部105Bの周りには、円環状のローラ112が回転自在に嵌合されている。
In addition to the fixing holes, inside the cylinder (2), the main bearing (9), the end bearing (10), and the middle partition plate used between the cylinders of the 2-cylinder rotary compressor, there are also refrigerant flow paths and noise reduction It is well known that a large number of holes are provided as a silencer or the like.
FIG. 8 is a plan view of a cylinder of a conventional two-cylinder rotary compressor.
In the conventional cylinder 108, an eccentric part 105B is fixed to the crankshaft 105, and an annular roller 112 is rotatably fitted around the eccentric part 105B.

シリンダ108の内周面108a、ローラ112の外周面112a、ベーン114等で、吸込み側の圧縮室109sと吐出側の圧縮室109dとが形成される。
シリンダ108には低圧の冷媒を吸込む吸込み穴108Fと、シリンダ108の圧縮室109dで圧縮した高圧の冷媒を吐き出す吐出穴108Gとが設けられている。
A compression chamber 109s on the suction side and a compression chamber 109d on the discharge side are formed by the inner peripheral surface 108a of the cylinder 108, the outer peripheral surface 112a of the roller 112, the vanes 114, and the like.
The cylinder 108 is provided with a suction hole 108F for sucking a low pressure refrigerant, and a discharge hole 108G for discharging a high pressure refrigerant compressed by the compression chamber 109d of the cylinder 108.

クランク軸105が0°から360°回転することで、吸込み側の圧縮室109sが吐出側の圧縮室109dに遷移し、吐出側の圧縮室109dの容積が減少することで、冷媒の圧縮が行われる。
シリンダ108には、固定用ボルト孔108A、108B、サイレンサ穴108c、冷媒流路穴108D、工作基準穴108E等が形成されている。
As the crankshaft 105 rotates from 0 ° to 360 °, the compression chamber 109s on the suction side transitions to the compression chamber 109d on the discharge side, and the volume of the compression chamber 109d on the discharge side decreases, thereby compressing the refrigerant. It will be.
In the cylinder 108, fixing bolt holes 108A and 108B, a silencer hole 108c, a coolant passage hole 108D, a work reference hole 108E and the like are formed.

特開平2-140486号公報(第1図、第2図等)JP-A-2-140486 (FIGS. 1, 2 etc.)

しかしながら、従来の特許文献1の構成では、密閉容器(1)内と常時ほぼ吐出圧力Pdと吸込圧力Psとの圧力差がある吸込側において、シリンダ(2)上下端面のシール幅が狭くなる。シール幅とは、シリンダ(2)の内周面と外周面との間の肉厚寸法である。
このため、密閉容器(1)内から圧縮室への冷媒漏れが増大し、結果的に吸込ガスの加熱や、指圧の膨らみにより圧縮機効率の低下を生じる要因となっている。指圧の膨らみが生じる場合、高い初期圧力から吐出圧力に圧縮するにはエネルギが余計に必要となるため、圧縮機効率の低下を生じる。
However, in the configuration of the conventional patent document 1, the seal width of the upper and lower end surfaces of the cylinder (2) is narrowed on the suction side where the pressure difference between the discharge pressure Pd and the suction pressure Ps is always almost the same as in the closed container (1). The seal width is a thickness dimension between the inner peripheral surface and the outer peripheral surface of the cylinder (2).
For this reason, the refrigerant leakage from the inside of the closed container (1) to the compression chamber increases, and as a result, the compressor efficiency is lowered due to the heating of the suction gas and the expansion of the finger pressure. When finger pressure bulge occurs, more energy is required to compress from the high initial pressure to the discharge pressure, resulting in a decrease in compressor efficiency.

特に、従来家庭用空気調和機にて主流であったR22冷媒やR410A冷媒に対し、高温・高圧であり分子量の小さいR32冷媒を使用する場合、さらに、回転速度制御により漏れの影響が大となる低速運転を行う際、漏れの影響が大きくなることが懸念される。さらに、2シリンダ圧縮機においては、図8に示すように下側圧縮室からの吐出ガスを圧縮機構上部に導く冷媒流路108D、消音のためのサイレンサ穴108C等がシリンダ108の軸方向に多数設けられる。それらの穴も、シール幅を削ることとなるため、シール性を低下させる要因となっている。   In particular, when using a high molecular weight, low molecular weight R32 refrigerant that is high temperature / high pressure and a smaller molecular weight than the R22 refrigerant or R410A refrigerant that was mainly used in conventional home air conditioners, the influence of leakage is further increased by rotational speed control. When operating at low speed, it is feared that the influence of the leakage will increase. Furthermore, in the two-cylinder compressor, as shown in FIG. 8, there are a large number of refrigerant channels 108D for guiding the discharge gas from the lower compression chamber to the upper part of the compression mechanism, silencer holes 108C for muffling etc. in the axial direction of the cylinder 108. Provided. These holes also cause the seal width to be cut, which is a factor to reduce the sealability.

本発明は上記実状に鑑み創案されたものであり、密閉容器内と圧縮室内部との冷媒漏れが低減される高効率の回転式圧縮機の提供を目的とする。   The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a highly efficient rotary compressor in which refrigerant leakage in the sealed container and in the compression chamber is reduced.

発明の回転式圧縮機は、電動機と、当該電動機により回転駆動され圧縮部材が設けられるクランク軸と、前記圧縮部材の回転駆動により冷媒が圧縮される圧縮室を内部に有するシリンダと、前記シリンダを軸方向の一方で閉塞する主軸受と前記軸方向の他方で閉塞する副軸受とを密閉容器内に備え、前記シリンダ、前記主軸受、および前記副軸受は、前記軸方向に前記シリンダ、前記主軸受、および前記副軸受を締結するための部品締結用の穴を有し、前記圧縮室の外周面を形成する当該シリンダの内周面の内径の中心に対し、当該シリンダの外周面の中心を、前記クランク軸のクランク角180°以下または180°以上となる範囲のうち、前記密閉容器内と前記圧縮室内の圧力差が小さくなる時間の短い側にオフセットしている。 The rotary compressor according to the present invention comprises an electric motor, a crankshaft rotatably driven by the electric motor and provided with a compression member, a cylinder having therein a compression chamber in which a refrigerant is compressed by rotation of the compression member, and the cylinder the a sub-bearing which closes the main bearing which closes at one axial direction by the axial direction of the other in a sealed container, the cylinder, the main bearing, and the sub-bearing, the cylinder in the axial direction, the The center of the outer peripheral surface of the cylinder relative to the center of the inner diameter of the inner peripheral surface of the cylinder which has a main bearing and a part fastening hole for fastening the sub bearing and which forms the outer peripheral surface of the compression chamber In the range where the crank angle of the crankshaft is 180 ° or less or 180 ° or more, the pressure difference between the inside of the closed container and the compression chamber is offset to the side where the time difference between the inside and the compression chamber becomes small.

本発明によれば、密閉容器内と圧縮室内部との冷媒漏れが低減される高効率の回転式圧縮機を実現できる。   According to the present invention, it is possible to realize a highly efficient rotary compressor in which refrigerant leakage in the closed container and in the compression chamber is reduced.

本発明の実施形態1に係る2シリンダ回転式圧縮機の縦断面図。1 is a longitudinal sectional view of a two-cylinder rotary compressor according to Embodiment 1 of the present invention. 実施形態1の2シリンダ回転式圧縮機の下シリンダの図1のI−I断面図。FIG. 2 is a cross-sectional view of the lower cylinder of the two-cylinder rotary compressor of Embodiment 1 taken along line II in FIG. 1; (a)〜(d)は回転式圧縮機における圧縮工程の下シリンダを密閉容器内と圧縮室内の圧力差とともに示す図1のI−I断面の概念図。(A)-(d) is a conceptual diagram of the II cross section of FIG. 1 which shows the lower cylinder of the compression process in a rotary compressor with the pressure difference in an airtight container and a compression chamber. 実施形態2に係る回転式圧縮機のシリンダの平面図。FIG. 7 is a plan view of a cylinder of a rotary compressor according to a second embodiment. 実施形態3に係る回転式圧縮機のシリンダの平面図。FIG. 7 is a plan view of a cylinder of a rotary compressor according to a third embodiment. 実施形態4に係る回転式圧縮機のシリンダの平面図。FIG. 10 is a plan view of a cylinder of a rotary compressor according to a fourth embodiment. 実施形態4の回転式圧縮機の電動機の制御ブロック図。The control block diagram of the motor of the rotary compressor of Embodiment 4. FIG. 従来の2シリンダの回転式圧縮機のシリンダの平面図。The top view of the cylinder of the conventional 2 cylinder rotary compressor. 実施形態1に係る回転式圧縮機の別の例を示す下シリンダの断面図。FIG. 7 is a cross-sectional view of a lower cylinder showing another example of the rotary compressor according to Embodiment 1.

以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
本発明は、冷凍空調機器等に用いられる回転式圧縮機に係るものであり、冷媒の圧縮工程中の冷媒漏れを抑制する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The present invention relates to a rotary compressor used for a refrigeration air conditioner etc., and suppresses refrigerant leakage during the refrigerant compression process.

<<実施形態1>>
図1は本発明の実施形態1に係る高圧チャンバ方式の2シリンダ回転式圧縮機の縦断面図である。図1中の白抜き矢印は、冷媒の流動経路を示す。
図2は、実施形態1の2シリンダ回転式圧縮機の下シリンダの図1のI−I断面図である。図2に、上シリンダ7と下シリンダ8とを代表し、下シリンダ8を示す。
以下、図示は省略するが上シリンダ7についても下シリンダ8と同様な構成である。そこで、機能を同じくする構成要素については同じ添え字で示す。例えば、上シリンダ7の主軸受締付ボルト穴の符号7Aとすると、同一のボルトで締結される下シリンダ8の副軸受締結ボルト穴の符号を8Aで表す。
<< First Embodiment >>
FIG. 1 is a longitudinal sectional view of a high-pressure chamber type two-cylinder rotary compressor according to a first embodiment of the present invention. The white arrows in FIG. 1 indicate the flow path of the refrigerant.
FIG. 2 is a cross-sectional view of the lower cylinder of the two-cylinder rotary compressor of Embodiment 1 taken along the line II in FIG. The lower cylinder 8 is shown in FIG. 2 as a representative of the upper cylinder 7 and the lower cylinder 8.
Hereinafter, although illustration is abbreviate | omitted, it is the structure similar to the lower cylinder 8 also about the upper cylinder 7. FIG. Therefore, components having the same function are indicated by the same subscript. For example, in the case of the code 7A of the main bearing tightening bolt hole of the upper cylinder 7, the code of the auxiliary bearing fastening bolt hole of the lower cylinder 8 which is tightened by the same bolt is represented by 8A.

実施形態1の回転式圧縮機Cは、2つのシリンダ7、8を有する2シリンダ圧縮機である。上・下シリンダ7、8は、それぞれ冷媒rを吸込んで圧縮して吐出する圧縮室9を有する。
回転式圧縮機Cは、上・下シリンダ7、8の各圧縮室9に吸込んだ冷媒r11、r21を、各圧縮室9で圧縮して吐出圧力Pdの冷媒r12、r22として、吐出穴7G、8Gから密閉容器1内に吐き出す。
The rotary compressor C of the first embodiment is a two-cylinder compressor having two cylinders 7 and 8. The upper and lower cylinders 7 and 8 each have a compression chamber 9 that sucks, compresses and discharges the refrigerant r.
The rotary compressor C compresses the refrigerants r11 and r21 sucked into the compression chambers 9 of the upper and lower cylinders 7 and 8 in the compression chambers 9 and discharges the discharge holes 7G as refrigerants r12 and r22 of discharge pressure Pd. Exhale from inside 8G into the sealed container 1.

上シリンダ7の圧縮室9は、ローラ11の外周面11aと上シリンダ7の内周面7aと主軸受6と中仕切り板15とで形成される。
下シリンダ8の圧縮室9は、ローラ12の外周面12aと下シリンダ8の内周面8aと中仕切り板15と副軸受10とで形成される。
The compression chamber 9 of the upper cylinder 7 is formed by the outer peripheral surface 11 a of the roller 11, the inner peripheral surface 7 a of the upper cylinder 7, the main bearing 6, and the middle partition plate 15.
The compression chamber 9 of the lower cylinder 8 is formed by the outer peripheral surface 12 a of the roller 12, the inner peripheral surface 8 a of the lower cylinder 8, the middle partition plate 15, and the auxiliary bearing 10.

図1に示すように、主軸受6および副軸受10は、それぞれ密閉容器1内に固定されている。例えば、主軸受6、副軸受10の各外周部が筒体1Aに溶接等で固定されることにより、圧縮機構部が密閉容器1内に固定される。圧縮機構部とは、冷媒を圧縮する構成要素をいう。
図1に示すように、クランク軸5は、一方側の中央に、主軸受6に嵌入される主軸受嵌入部5Cを有し、他方側の端部に、副軸受10に嵌入される副軸受嵌入部5Dを有する。
As shown in FIG. 1, the main bearing 6 and the auxiliary bearing 10 are each fixed in the closed container 1. For example, the compression mechanism portion is fixed in the sealed container 1 by fixing the outer peripheries of the main bearing 6 and the sub bearing 10 to the cylindrical body 1A by welding or the like. The compression mechanism portion refers to a component that compresses a refrigerant.
As shown in FIG. 1, the crankshaft 5 has a main bearing fitting portion 5C fitted into the main bearing 6 at the center on one side, and a sub bearing fitted into the sub bearing 10 at the other end. It has insertion part 5D.

そして、クランク軸5の主軸受嵌入部5Cおよび副軸受嵌入部5Dを、それぞれ主軸受6および副軸受10に嵌入することにより、クランク軸5が回転自在に、密閉容器1内に配置される。
上シリンダ7は、主軸受締付ボルト16により、主軸受6に締結される。下シリンダ8、中仕切り板15は、不図示の位置決めボルトにより上シリンダ7に仮に締結された後、副軸受締付ボルト17により副軸受10とともに上シリンダ7に締結される。
Then, the main bearing insertion portion 5C and the sub bearing insertion portion 5D of the crankshaft 5 are respectively inserted into the main bearing 6 and the sub bearing 10, whereby the crankshaft 5 is rotatably disposed in the hermetic container 1.
The upper cylinder 7 is fastened to the main bearing 6 by a main bearing fastening bolt 16. The lower cylinder 8 and the middle partition plate 15 are temporarily fastened to the upper cylinder 7 by a positioning bolt (not shown), and then fastened to the upper cylinder 7 together with the secondary bearing 10 by a secondary bearing tightening bolt 17.

密閉容器1内には、必要量の冷凍機油(図示せず)が封入されている。
副軸受10には、下サイレンサ21が、副軸受締付ボルト17の共締めにより取り付けられている。下サイレンサ21は、下シリンダ8の吐出口8Gから吐き出された冷媒r22が冷凍機油をかき回さないことと、消音を目的としている。
主軸受6にも、同様な上サイレンサ20が取り付けられている。
A necessary amount of refrigeration oil (not shown) is enclosed in the closed container 1.
The lower silencer 21 is attached to the sub bearing 10 by co-clamping of the sub bearing tightening bolt 17. The lower silencer 21 is for the purpose of muffling that the refrigerant r22 discharged from the discharge port 8G of the lower cylinder 8 does not stir refrigeration oil.
A similar upper silencer 20 is attached to the main bearing 6 as well.

回転式圧縮機Cは、駆動源の電動要素(3、4)と、クランク軸5と、圧縮機構部(6、7、8、10、11、12、13、14、15)とが、密閉容器1に内包されている。上・下シリンダ7、8の各圧縮室9は、駆動源の動力で圧縮される。   In the rotary compressor C, the drive element motor elements (3, 4), the crankshaft 5, and the compression mechanism (6, 7, 8, 10, 11, 12, 13, 14, 15) are sealed. It is contained in the container 1. The compression chambers 9 of the upper and lower cylinders 7 and 8 are compressed by the power of the drive source.

圧縮機構部は、主軸受6、副軸受10、シリンダ7、8、偏心部5A、5B、ローラ11、12、ベーン13、14、中仕切り板15を主要要素として構成される。
圧縮機構部は、クランク軸5を介して、駆動源の電動要素(4)に接続される。
The compression mechanism portion is mainly composed of the main bearing 6, the sub bearing 10, the cylinders 7, 8, the eccentric portions 5A, 5B, the rollers 11, 12, the vanes 13, 14, and the middle partition plate 15.
The compression mechanism is connected to the motorized element (4) of the drive source via the crankshaft 5.

密閉容器1は、筒体1A、蓋体1B、および、底体1Cにより構成される。筒体1Aは鋼板を用いて円筒状の形状に形成されている。蓋体1Bは、鋼板を用いて上底板を有する有底円筒状の形状に形成されている。底体1Cは、鋼板を用いて下底板を有する有底円筒状の形状に形成されている。   The closed container 1 is composed of a cylinder 1A, a lid 1B, and a bottom 1C. The cylindrical body 1A is formed in a cylindrical shape using a steel plate. The lid 1B is formed in a bottomed cylindrical shape having an upper bottom plate using a steel plate. Bottom body 1C is formed in a bottomed cylindrical shape having a lower bottom plate using a steel plate.

筒体1Aに、蓋体1Bと底体1Cが嵌合され、その嵌合部が溶接されて内部が密閉される。
駆動源の電動要素は、電動機であり、筒体1Aに焼嵌等で固定された固定子3と、クランク軸5に圧入等で固定された回転子4とを有して構成される。
The lid 1B and the bottom 1C are fitted in the cylindrical body 1A, and the fitting portion is welded to seal the inside.
The electric element of the drive source is an electric motor, and is configured to include a stator 3 fixed to the cylindrical body 1A by caulking or the like, and a rotor 4 fixed to the crankshaft 5 by press fitting or the like.

クランク軸5には、主軸受嵌入部5Cと副軸受嵌入部5Dとの間に、偏心部5A、5Bが一体に形成されている。
偏心部5A、5Bには、それぞれ円環状のローラ11、12が回転自在に嵌入される。ローラ11、12の外周面11a、12aに、それぞれ当接するように、上・下シリンダ7、8内にベーン13、14(図1、2参照)が嵌合されている。
Eccentric portions 5A and 5B are integrally formed on the crankshaft 5 between the main bearing insertion portion 5C and the auxiliary bearing insertion portion 5D.
Annular rollers 11 and 12 are rotatably fitted in the eccentric portions 5A and 5B, respectively. The vanes 13 and 14 (see FIGS. 1 and 2) are fitted in the upper and lower cylinders 7 and 8 so as to abut on the outer peripheral surfaces 11a and 12a of the rollers 11 and 12, respectively.

ベーン13は付勢されてローラ11に接触することで、上シリンダ7の圧縮室9を吸込み側と吐出側に区分けする。同様に、ベーン14は付勢されてローラ12に接触することで、下シリンダ8の圧縮室9を吸込み側と吐出側に区分けする。   The vanes 13 are biased and come into contact with the roller 11 to divide the compression chamber 9 of the upper cylinder 7 into the suction side and the discharge side. Similarly, the vanes 14 are biased to contact the roller 12 to divide the compression chamber 9 of the lower cylinder 8 into the suction side and the discharge side.

この構成により、上シリンダ7の吸込み側の圧縮室9sが、ローラ11の外周面11aと上シリンダ7の内周面7aとベーン13と主軸受6と中仕切り板15とで形成される。上シリンダ7の吐出側の圧縮室9dは、ローラ11の外周面11aと上シリンダ7の内周面7aとベーン13と主軸受6と中仕切り板15とで形成される。前記したように、吸込み側の圧縮室9sと吐出側の圧縮室9dとは、ベーン13で仕切られている。   With this configuration, the compression chamber 9s on the suction side of the upper cylinder 7 is formed by the outer peripheral surface 11a of the roller 11, the inner peripheral surface 7a of the upper cylinder 7, the vanes 13, the main bearing 6, and the middle partition plate 15. The compression chamber 9 d on the discharge side of the upper cylinder 7 is formed by the outer peripheral surface 11 a of the roller 11, the inner peripheral surface 7 a of the upper cylinder 7, the vanes 13, the main bearing 6, and the middle partition plate 15. As described above, the compression chamber 9s on the suction side and the compression chamber 9d on the discharge side are separated by the vanes 13.

同様に、下シリンダ8の吸込み側の圧縮室9sが、ローラ12の外周面12aと下シリンダ8の内周面8aとベーン14と副軸受10と中仕切り板15とで形成される。下シリンダ8の吐出側の圧縮室9dは、ローラ12の外周面12aと下シリンダ8の内周面8aとベーン14と副軸受10と中仕切り板15とで形成される。同様に、吸込み側の圧縮室9sと吐出側の圧縮室9dとは、ベーン14で仕切られている。   Similarly, a compression chamber 9 s on the suction side of the lower cylinder 8 is formed by the outer peripheral surface 12 a of the roller 12, the inner peripheral surface 8 a of the lower cylinder 8, the vanes 14, the auxiliary bearing 10, and the middle partition plate 15. The compression chamber 9 d on the discharge side of the lower cylinder 8 is formed by the outer peripheral surface 12 a of the roller 12, the inner peripheral surface 8 a of the lower cylinder 8, the vanes 14, the sub bearing 10, and the middle partition plate 15. Similarly, a compression chamber 9s on the suction side and a compression chamber 9d on the discharge side are separated by a vane 14.

クランク軸5は、駆動源の電動要素(3、4)による駆動力を従動側(偏心部5A、5B、ローラ11、12等)に伝達する。クランク軸5により、偏心部5A、5Bが回転することにより、ローラ11、12を介して、圧縮室9の圧縮、拡張が行われる。   The crankshaft 5 transmits the driving force by the electric element (3, 4) of the driving source to the driven side (e.g., the eccentric portions 5A, 5B, the rollers 11, 12 and the like). As the eccentric portions 5A and 5B rotate by the crankshaft 5, the compression chamber 9 is compressed and expanded via the rollers 11 and 12.

アキュムレータ2は、冷媒をそれぞれ上・下シリンダ7、8の吸込み側の各圧縮室9sに供給する。
アキュムレータ2は、圧縮機構部の吸込口22、23の手前に結合されている。アキュムレータ2を介して、上・下シリンダ7、8にそれぞれ吸い込まれた冷媒r11、r21が、圧縮要素(偏心部5A、5B、ローラ11、12等)を用いて吸込圧力Psから吐出圧力Pdまで圧縮される。
The accumulator 2 supplies refrigerant to the compression chambers 9s on the suction side of the upper and lower cylinders 7, 8, respectively.
The accumulator 2 is coupled in front of the suction ports 22 and 23 of the compression mechanism unit. The refrigerants r11 and r21 respectively sucked into the upper and lower cylinders 7 and 8 through the accumulator 2 are used from the suction pressure Ps to the discharge pressure Pd using the compression elements (eccentric portions 5A, 5B, rollers 11, 12 etc.) It is compressed.

吸込圧力Psは、吸込み時の冷媒r11、r21の圧力である。吐出圧力Pdは、吐出側の圧縮室9dからの吐出時の冷媒r12、r22の圧力である。
その後、圧縮された冷媒r12、r22は、密閉容器1内に一旦吐出された後、図1の白抜き矢印のように密閉容器1内を流れ、蓋体1Bに設置された吐出パイプ19から、空気調和機等のサイクルへ吐出される。
The suction pressure Ps is the pressure of the refrigerants r11 and r21 at the time of suction. The discharge pressure Pd is the pressure of the refrigerants r12 and r22 at the time of discharge from the compression chamber 9d on the discharge side.
Thereafter, the compressed refrigerants r12 and r22 are once discharged into the closed container 1, and then flow in the closed container 1 as shown by the white arrows in FIG. 1, and from the discharge pipe 19 installed on the lid 1B It is discharged to the cycle of an air conditioner or the like.

<冷媒の圧縮工程>
回転式圧縮機Cにおける冷媒の圧縮工程は以下のように行われる。
上・下シリンダ7、8において、同様に圧縮工程が行われるので、下シリンダ8の圧縮工程について説明し、上シリンダ7の圧縮工程の説明は省略する。
図2に示すように、下シリンダ8において、冷媒は、下シリンダ8の内周面8aとローラ12の外周面12aとベーン14と中仕切り板15(図1参照)と副軸受10とで囲われた密閉空間の圧縮室9(9s、9d)を用いて圧縮が行われる。
<Compression process of refrigerant>
The compression process of the refrigerant in the rotary compressor C is performed as follows.
Since the compression process is similarly performed in the upper and lower cylinders 7 and 8, the compression process of the lower cylinder 8 will be described, and the description of the compression process of the upper cylinder 7 will be omitted.
As shown in FIG. 2, in the lower cylinder 8, the refrigerant is surrounded by the inner peripheral surface 8 a of the lower cylinder 8, the outer peripheral surface 12 a of the roller 12, the vanes 14, the middle partition plate 15 (see FIG. 1) The compression is performed using the compression chamber 9 (9s, 9d) of the enclosed space.

図3(a)〜(d)は、回転式圧縮機における圧縮工程の下シリンダを密閉容器内と圧縮室内の圧力差とともに示す図1のI−I断面の概念図である。
圧縮工程は、図3(a)〜(d)に示すように、クランク軸5のクランク角0°からクランク角90°、180°、270°を経てクランク角360°までで1サイクルの圧縮が行われる。図3(a)〜(d)のハッチングが圧縮室9を示す。前記したように、吸込み側の圧縮室9sと吐出側の圧縮室9dとは、ベーン14で仕切られている。
Fig.3 (a)-(d) is a conceptual diagram of the II cross section of FIG. 1 which shows the lower cylinder of the compression process in a rotary compressor with the pressure difference in an airtight container and a compression chamber.
In the compression process, as shown in FIGS. 3A to 3D, one cycle of compression is performed from a crank angle of 0 ° of crankshaft 5 to a crank angle of 90 °, 180 °, 270 ° and a crank angle of 360 °. To be done. The hatching in FIGS. 3A to 3D indicates the compression chamber 9. As described above, the compression chamber 9 s on the suction side and the compression chamber 9 d on the discharge side are separated by the vanes 14.

まず、圧縮工程の開始は、図3(a)のクランク角0°の状態にある。この際、吸込み側の圧縮室9sは吸込穴8Fに連通している。冷媒がアキュムレータ2から、吸込穴8Fを介して、吸込み側の圧縮室9sに吸い込まれる。そのため、圧縮室9の冷媒は吸込圧力Psをもつ。   First, the start of the compression process is in the state of a crank angle of 0 ° in FIG. 3 (a). At this time, the compression chamber 9s on the suction side communicates with the suction hole 8F. The refrigerant is sucked from the accumulator 2 into the suction side compression chamber 9s through the suction hole 8F. Therefore, the refrigerant in the compression chamber 9 has a suction pressure Ps.

クランク軸5が回転し、図3(b)のクランク角90°になると、下シリンダ8の内周面8aとローラ12の外周面12aとで挟まれる空間の容積が狭まって吸込み側の圧縮室9sはベーン14で画成される吐き出し側の圧縮室9dとなる。吐き出し側の圧縮室9dの冷媒は、中間圧力Pmに上昇する。中間圧力Pmとは、吸込圧力Psと吐出圧力Pdとの間の圧力である。
一方、吸込穴8Fに連通する吸込み側の圧縮室9sが新たに形成され、吸込穴8Fから冷媒が圧縮室9sに吸込まれる。吸込み側の圧縮室9sの冷媒は吸込圧力Psをもつ。
When the crank shaft 5 rotates and reaches a crank angle of 90 ° in FIG. 3B, the volume of the space between the inner circumferential surface 8a of the lower cylinder 8 and the outer circumferential surface 12a of the roller 12 narrows and the compression chamber on the suction side 9s is a discharge side compression chamber 9d defined by the vanes 14. The refrigerant in the compression chamber 9d on the discharge side rises to the intermediate pressure Pm. The intermediate pressure Pm is a pressure between the suction pressure Ps and the discharge pressure Pd.
On the other hand, the suction side compression chamber 9s communicating with the suction hole 8F is newly formed, and the refrigerant is sucked into the compression chamber 9s from the suction hole 8F. The refrigerant in the compression chamber 9s on the suction side has a suction pressure Ps.

クランク軸5がさらに回転し、図3(c)のクランク角180°になると、下シリンダ8の内周面8aとローラ12の外周面12aとで挟まれる吐き出し側の圧縮室9dの容積がさらに狭まる。そして、吐き出し側の圧縮室9dの冷媒の圧力は、中間圧力Pmまたは吐出圧力Pdに上昇する。
一方、吸込穴8Fに連通する吸込み側の圧縮室9sの容積は、ローラ12の動作により拡張される。圧縮室9sの冷媒は吸込圧力Psをもつ。
When the crankshaft 5 further rotates and reaches a crank angle of 180 ° in FIG. 3C, the volume of the discharge-side compression chamber 9d sandwiched between the inner peripheral surface 8a of the lower cylinder 8 and the outer peripheral surface 12a of the roller 12 further increases. It narrows. Then, the pressure of the refrigerant in the compression chamber 9 d on the discharge side rises to the intermediate pressure Pm or the discharge pressure Pd.
On the other hand, the volume of the suction side compression chamber 9s in communication with the suction hole 8F is expanded by the operation of the roller 12. The refrigerant in the compression chamber 9s has a suction pressure Ps.

クランク軸5がさらに回転し、図3(d)のクランク角270°になると、下シリンダ8の内周面8aとローラ12の外周面12aとで挟まれる吐き出し側の圧縮室9dの容積がさらに狭まる。そして、吐き出し側の圧縮室9dの冷媒は、吐出圧力Pdまで上昇する。吐き出し側の圧縮室9dの冷媒が、吐出圧力Pdまで上昇すると不図示の弁が開弁され、吐出穴8Gから密閉容器1内に吐き出される。
一方、吸込穴8Fに連通する吸込み側の圧縮室9sの容積は、ローラ12の動作によりさらに拡張される。圧縮室9sの冷媒は吸込圧力Psをもつ。
When the crankshaft 5 further rotates and reaches a crank angle of 270 ° in FIG. 3D, the volume of the discharge-side compression chamber 9d sandwiched between the inner peripheral surface 8a of the lower cylinder 8 and the outer peripheral surface 12a of the roller 12 further increases. It narrows. Then, the refrigerant in the compression chamber 9 d on the discharge side rises to the discharge pressure Pd. When the refrigerant in the compression chamber 9 d on the discharge side rises to the discharge pressure Pd, a valve (not shown) is opened, and the refrigerant is discharged from the discharge hole 8 G into the closed container 1.
On the other hand, the volume of the suction side compression chamber 9s in communication with the suction hole 8F is further expanded by the operation of the roller 12. The refrigerant in the compression chamber 9s has a suction pressure Ps.

クランク軸5がさらに回転し、クランク角360°(0°)になると、吐き出し側の圧縮室9dの吐出圧力Pdの冷媒は、吐出穴8Gから密閉容器1内に完全に吐き出される。
一方、吸込穴8Fに連通する吸込み側の圧縮室9sの容積は、ローラ12の動作によりさらに拡張される。上記したように、圧縮室9sの冷媒は吸込圧力Psをもつ。
以上のクランク角0°〜360°の1サイクルの圧縮工程を繰り返し、アキュムレータ2から供給される冷媒は、圧縮室9を用いて圧縮される。
When the crankshaft 5 further rotates and reaches a crank angle of 360 ° (0 °), the refrigerant of the discharge pressure Pd of the compression chamber 9 d on the discharge side is completely discharged into the closed container 1 from the discharge hole 8G.
On the other hand, the volume of the suction side compression chamber 9s in communication with the suction hole 8F is further expanded by the operation of the roller 12. As described above, the refrigerant in the compression chamber 9s has the suction pressure Ps.
The compression process of one cycle of crank angle 0 ° to 360 ° is repeated, and the refrigerant supplied from the accumulator 2 is compressed using the compression chamber 9.

<主軸受6、上・下シリンダ7、8、中仕切り板15、副軸受10に設けられる穴>
主軸受6、上・下シリンダ7、8、中仕切り板15、副軸受10には、部品締結用のボルトが挿通されるボルト穴7A、8A(図2参照)以外に下記の穴が設けられる。
すなわち、下シリンダ8の吐出口8Gから吐き出された冷媒を主軸受6の上部に導くための冷媒流路穴8D、特定の周波数の消音を目的としたサイレンサ穴8C、加工時の基準として設けられた加工基準穴8Eである。
<Hole provided in main bearing 6, upper and lower cylinders 7, 8, middle partition plate 15, sub bearing 10>
The main bearing 6, the upper and lower cylinders 7, 8, the middle partition plate 15, and the auxiliary bearing 10 have the following holes in addition to the bolt holes 7A, 8A (see FIG. 2) through which bolts for fastening parts are inserted. .
That is, a refrigerant passage hole 8D for guiding the refrigerant discharged from the discharge port 8G of the lower cylinder 8 to the upper part of the main bearing 6, a silencer hole 8C for silencing of a specific frequency, and a reference at the time of processing It is the processing reference hole 8E.

これらの穴は、密閉容器1内と圧縮室9との間のシール部である主軸受6と上シリンダ7との接触面、副軸受10と下シリンダ8との接触面、上シリンダ7と中仕切り板15との接触面、中仕切り板15と下シリンダ8との接触面等に存在するため、過度に大きな穴や、穴を密度高く設けたりすると密閉容器1内と圧縮室9との間のシール性が低下する。
そのため、高圧の冷媒がある密閉容器1内の上・下シリンダ7、8の外部空間(以下、単に密閉容器1内の外部空間と称す)から、圧縮中の低圧の冷媒がある圧縮室9への冷媒漏れを招き、圧縮機効率を低下させる要因となる。
そこで、上述の知見に基づいて、以下に本実施形態1の特徴的な構造について、説明する。
These holes are contact surfaces between the main bearing 6 and the upper cylinder 7, which are seal portions between the inside of the hermetic container 1 and the compression chamber 9, contact surfaces between the sub bearing 10 and the lower cylinder 8, and the upper cylinder 7 and the middle. Because it is in the contact surface with the partition plate 15, the contact surface with the middle partition plate 15 and the lower cylinder 8, etc., if an excessively large hole or a hole is provided with a high density, the space between the inside of the sealed container 1 and the compression chamber 9 Seal performance is reduced.
Therefore, from the outer space of the upper and lower cylinders 7 and 8 in the closed vessel 1 where high pressure refrigerant exists (hereinafter simply referred to as the outer space in the closed vessel 1), to the compression chamber 9 where the low pressure refrigerant being compressed is present. And cause a reduction in the compressor efficiency.
Then, based on the above-mentioned knowledge, the characteristic structure of this Embodiment 1 is explained below.

図2に示すように、冷媒流路穴8D、消音用サイレンサ穴8C、また加工時の基準として設けられた加工基準穴8Eを全て、クランク軸5のクランク角180°以下または180°以上となる範囲のうち、密閉容器1内と圧縮室9内の圧力差が小さくなる時間の長い側に設ける。即ち高圧チャンバ方式においては、クランク角180°以上となる範囲に配置する。図2において対象となる穴をハッチングで示す。
前記した如く、クランク角0°とは、図3(a)に示すように、偏心部5Bが最も上側に来たときを指し、反時計回りにクランク角が増加、即ち前記した圧縮工程が進行する。
As shown in FIG. 2, the coolant passage hole 8D, the silencer hole 8C for muffling, and the processing reference hole 8E provided as a reference during machining all have a crank angle of 180 ° or less or 180 ° or more of the crankshaft 5 It is provided on the long side of the range in which the pressure difference between the closed container 1 and the compression chamber 9 becomes smaller. That is, in the high pressure chamber system, the crank angle is arranged in the range of 180 ° or more. The target holes are hatched in FIG.
As described above, the crank angle of 0 ° refers to the time when the eccentric part 5B comes to the uppermost side as shown in FIG. 3A, and the crank angle increases counterclockwise, that is, the above-mentioned compression process proceeds Do.

クランク角180°とは、図3(c)に示すように、偏心部5Bが最も下側に来た時を指し、クランク角360°とは、クランク角0°と同じクランク角であることを示す。
即ち、図2に示すように、クランク角180°未満となる吸込穴8Fがある吸込側となる範囲には、部品締結用のボルト穴7A、8Aおよび位置決めボルト穴7B、8B以外の穴は存在しない。
As shown in FIG. 3 (c), the crank angle of 180 ° refers to the time when the eccentric part 5B comes to the lowermost side, and the crank angle of 360 ° is the same crank angle as the crank angle of 0 °. Show.
That is, as shown in FIG. 2, holes other than bolt holes 7A and 8A for fastening parts and positioning bolt holes 7B and 8B are present in the range on the suction side where suction holes 8F having a crank angle of less than 180 ° are present. do not do.

図3(b)〜(d)に示すように、圧縮室9の圧力分布は、クランク角が小さい範囲ほど吸込圧力Psに近い低圧である時間が長くなる。そのため、吐出圧力Pdである密閉容器1内の外部空間との圧力差により、当該外部空間の冷媒の圧縮室9への漏れが発生し易くなる。
なお、高圧チャンバ方式では、密閉容器1内の外部空間は、常時略吐出圧力Pdである。
As shown in FIGS. 3B to 3D, in the pressure distribution of the compression chamber 9, the time during which the low pressure is closer to the suction pressure Ps is longer as the crank angle is smaller. Therefore, due to the pressure difference between the discharge pressure Pd and the external space in the sealed container 1, leakage of the refrigerant in the external space to the compression chamber 9 is likely to occur.
In the high pressure chamber system, the external space in the sealed container 1 is always substantially at the discharge pressure Pd.

このため、冷媒流路穴8D、消音用サイレンサ穴8C、および加工基準穴8Eを全て、クランク角180°以上となる範囲に配置する。これにより、クランク角180°未満の範囲の低圧の冷媒がある領域のシール幅を、広くとれる。
従って、密閉容器1内の高圧の冷媒の上・下シリンダ7、8の各圧縮室9への冷媒の漏れが低減される。
以上より、加熱損失や指圧の膨らみが低減され圧縮機効率の向上を図ることができる。そのため、消費電力の少ない省エネ性能が高い回転式圧縮機Cを提供できる。
For this reason, the refrigerant passage holes 8D, the silencer holes 8C for noise reduction, and the processing reference holes 8E are all arranged in the range where the crank angle is 180 ° or more. This makes it possible to widen the seal width in the region where there is a low pressure refrigerant in the range of a crank angle of less than 180 °.
Therefore, the leakage of the refrigerant to the compression chambers 9 of the high and low pressure refrigerant upper and lower cylinders 7 and 8 in the closed vessel 1 is reduced.
As described above, the heat loss and the swelling of the finger pressure are reduced, and the compressor efficiency can be improved. Therefore, it is possible to provide the rotary compressor C with high power saving performance with low power consumption.

<<実施形態2>>
図4に、実施形態2に係る高圧チャンバ方式の回転式圧縮機のシリンダの平面図を示す。
実施形態2では、実施形態1に示された回転式圧縮機Cにおいて、冷媒流路穴8Dや消音用サイレンサ穴8C、加工基準穴8E等の多数設けられた穴の中でも、より径の大きな穴をクランク角大となる位置に設ける。
<< Embodiment 2 >>
FIG. 4 is a plan view of a cylinder of the high-pressure chamber type rotary compressor according to the second embodiment.
In the second embodiment, in the rotary compressor C shown in the first embodiment, a hole having a larger diameter among a large number of holes such as the refrigerant flow passage hole 8D, the silencer silencer hole 8C, and the processing reference hole 8E. In the position where the crank angle is large.

例えば、径の大きな穴が、冷媒流路穴8D、消音用サイレンサ穴8C、加工基準穴8Eの順である場合、図4に示すように、クランク角大となる位置からクランク角小となる位置に向けて、冷媒流路穴8D、消音用サイレンサ穴8C、加工基準穴8Eの順に配置する。
これにより、圧縮室9内でも、冷媒がより低圧である時間の長い吸込み側の範囲のシール幅を広くとれ、密閉容器1内の高圧の冷媒の圧縮室9内への漏れをより効果的に低減できる。
For example, when the large diameter hole is in the order of the refrigerant passage hole 8D, the silencer silencer hole 8C, and the processing reference hole 8E, as shown in FIG. , The refrigerant passage hole 8D, the silencer silencer hole 8C for noise reduction, and the processing reference hole 8E in this order.
As a result, even in the compression chamber 9, the seal width of the long suction side range where the refrigerant is at a lower pressure can be widened, and the leakage of the high pressure refrigerant in the closed container 1 into the compression chamber 9 can be made more effective. It can be reduced.

<<実施形態3>>
図5に、実施形態3に係る高圧チャンバ方式の回転式圧縮機のシリンダの平面図を示す。
実施形態3の回転式圧縮機Cでは、部品締結用のボルト穴7A、8Aの角度ピッチを、クランク角180°以上の範囲にあるθ3およびθ4よりもクランク角180°未満の範囲にあるθ1およびθ2を狭く配置する。
<< Third Embodiment >>
FIG. 5 is a plan view of a cylinder of the high-pressure chamber type rotary compressor according to the third embodiment.
In the rotary compressor C according to the third embodiment, the angular pitch of the bolt holes 7A and 8A for component fastening is θ1 and the crank angle less than 180 ° than θ3 and θ4 in the range of 180 ° or more. Arrange θ2 narrowly.

クランク角180°未満の範囲にあるボルト穴7A、8Aの角度ピッチθ1、θ2が、クランク角180°以上の範囲にあるボルト穴7A、8Aの角度ピッチθ3、θ4より狭いので、主軸受締付ボルト16、副軸受締付ボルト17で締結した際に、クランク角180°未満の冷媒の吸込み側の密着度合いが、クランク角180°以上の吐出側の密着度合いより高い。   The angle pitches θ1 and θ2 of the bolt holes 7A and 8A in the crank angle range of less than 180 ° are narrower than the angle pitches θ3 and θ4 of the bolt holes 7A and 8A in the crank angle range of 180 ° or more. When tightened by the bolt 16 and the sub bearing tightening bolt 17, the degree of close contact on the suction side of the refrigerant with a crank angle of less than 180 ° is higher than the degree of close contact on the discharge side with a crank angle of 180 ° or more.

すなわち、密閉容器1内と圧縮室9との圧力差が大となる時間の長いクランク角180°未満の範囲において、主軸受6、上シリンダ7、中仕切り板15、下シリンダ8、副軸受10の各端面間の密着性が高められる。これにより、密閉容器1内の外部空間の高圧の冷媒の圧縮室9内への漏れを低減することができる。従って、圧縮機効率の向上を図れる。   That is, the main bearing 6, the upper cylinder 7, the middle partition plate 15, the lower cylinder 8, the auxiliary bearing 10 in a range of less than 180 ° where the pressure difference between the inside of the sealed container 1 and the compression chamber 9 is large. The adhesion between the end faces of the Thereby, the leak to the compression chamber 9 of the high pressure refrigerant | coolant of the external space in the airtight container 1 can be reduced. Therefore, the compressor efficiency can be improved.

<<実施形態4>>
図6に、実施形態4に係る高圧チャンバ方式の回転式圧縮機のシリンダの平面図を示す。
実施形態4の回転式圧縮機Cでは、圧縮室9の外径を形成する下シリンダ8の内周面8aの中心C0に対し、シリンダ8の外周面8bの中心C1をクランク角180°未満の範囲に距離εオフセットしている。
<< Embodiment 4 >>
FIG. 6 is a plan view of a cylinder of the high-pressure chamber type rotary compressor according to the fourth embodiment.
In the rotary compressor C of the fourth embodiment, the center C1 of the outer peripheral surface 8b of the cylinder 8 is smaller than the crank angle 180 ° with respect to the center C0 of the inner peripheral surface 8a of the lower cylinder 8 forming the outer diameter of the compression chamber 9 The range is offset by ε.

これにより、主軸受6、上シリンダ7、中仕切り板15間の接触面積および中仕切り板15、下シリンダ8、副軸受10間の接触面積が、クランク角180°未満の範囲において、クランク角180°以上360°未満の範囲より、径方向に大きくなる。   Thereby, the contact area between the main bearing 6, the upper cylinder 7, and the middle partition plate 15 and the contact area between the middle partition plate 15, the lower cylinder 8 and the auxiliary bearing 10 have a crank angle of 180 It becomes larger in the radial direction than the range of more than 360 °.

従って、密閉容器1内の外部空間と圧縮室9との圧力差が大となる時間の長いクランク角180°未満の範囲の吸込み側においてシール幅を、クランク角180°以上360°未満の範囲の吐き出し側よりも広くとれる。図6に示すように、クランク角270°の下シリンダ8のシール幅Wに対して、クランク角90°の下シリンダ8のシール幅は、W+2εとなる。すなわち、吸込み側のシール幅が2ε広くとれる。   Therefore, on the suction side in the range of less than 180 ° where the pressure difference between the external space in the closed container 1 and the compression chamber 9 is large, the seal width is in the range of 180 ° to less than 360 °. It can be taken wider than the discharge side. As shown in FIG. 6, with respect to the seal width W of the lower cylinder 8 at a crank angle of 270 °, the seal width of the lower cylinder 8 at a crank angle of 90 ° is W + 2ε. That is, the seal width on the suction side can be increased by 2ε.

そのため、密閉容器1内の外部空間の高圧の冷媒の圧縮室9内への漏れを低減することができる。従って、圧縮機効率の向上を図ることができる。
従って、圧縮機効率の向上を、不要に部品の体積を増加させることなく、即ち原価の増大を抑えた構成で達成できる。
Therefore, it is possible to reduce the leakage of the high pressure refrigerant in the external space in the closed container 1 into the compression chamber 9. Therefore, the compressor efficiency can be improved.
Therefore, the improvement of the compressor efficiency can be achieved without increasing the volume of parts unnecessarily, that is, with the configuration in which the increase in cost is suppressed.

<<実施形態5>>
本発明の実施形態5では、実施形態1〜4に記載のいずれかの回転式圧縮機Cにおいて、冷媒としてR32を使用している。
従来、家庭用空気調和機にて主流であったR22冷媒やR410A冷媒に対し、高温・高圧であり分子量の小さいR32冷媒を使用する場合、従来より冷媒が高圧になることから、実施形態1〜4の構成により、密閉容器1内の外部空間の高圧の冷媒の圧縮室9内への冷媒の漏れを低減できる。
R32冷媒の場合、従来より冷媒が高圧になることから、冷媒漏れの低減効果をより効果的に得ることができる。
<< Embodiment 5 >>
In Embodiment 5 of the present invention, R32 is used as a refrigerant in any of the rotary compressors C described in Embodiments 1 to 4.
In the case of using a high temperature, high pressure, and small molecular weight R32 refrigerant as opposed to the R22 refrigerant or R410A refrigerant that has been mainly used in domestic air conditioners, the refrigerant has a higher pressure than in the prior art. By the configuration of 4, the leakage of the refrigerant into the compression chamber 9 of the high pressure refrigerant in the external space in the closed container 1 can be reduced.
In the case of the R32 refrigerant, since the refrigerant has a higher pressure than before, the refrigerant leakage reduction effect can be more effectively obtained.

図7に、実施形態5の回転式圧縮機の電動機の制御ブロック図を示す。
回転式圧縮機Cの駆動源の電動機Mは、電動要素の固定子3と回転子4とを有して構成される。
電動機Mは、図7に示す制御部Sを用いて回転速度(回転数)制御が行われる。
制御部Sは、マイクロコンピュータsm、コンバータsa、およびインバータsbを備えている。
FIG. 7 shows a control block diagram of the motor of the rotary compressor of the fifth embodiment.
The motor M of the drive source of the rotary compressor C is configured to include the stator 3 and the rotor 4 of the electric element.
The rotational speed (rotational speed) control of the electric motor M is performed using the control unit S shown in FIG.
The control unit S includes a microcomputer sm, a converter sa, and an inverter sb.

マイクロコンピュータsm(以下、マイコンsmと称す)は、CPU、RDM、RAM等の記憶部等を有しており、制御プログラムが実行されることで電動機Mの制御が遂行される。
交流電源ACから交流電圧がコンバータsaに供給される。交流電圧はコンバータsaで直流電圧に変換され、マイコンsmとインバータsbとに分圧されて、所定の直流電圧が供給される。
The microcomputer sm (hereinafter referred to as the microcomputer sm) includes a storage unit such as a CPU, an RDM, a RAM, and the like, and the control program is executed to control the motor M.
An AC voltage is supplied from the AC power supply AC to the converter sa. The AC voltage is converted to a DC voltage by the converter sa, divided by the microcomputer sm and the inverter sb, and a predetermined DC voltage is supplied.

マイコンsmは、回転速度制御により、制御回転速度の駆動電圧を示す制御信号をインバータsbに出力する。インバータsbは、当該制御信号に基づき電動機Mに加える駆動電圧を増減する。   The microcomputer sm outputs a control signal indicating a drive voltage of the control rotational speed to the inverter sb by the rotational speed control. The inverter sb increases or decreases the drive voltage applied to the motor M based on the control signal.

回転速度制御において、電動機Mが低速運転の場合、冷媒がシリンダ7、8の吸込み側(クランク角180°未満の範囲)にある時間が長くなる。つまり、回転速度制御の低速運転では、密閉容器1内の外部空間の高圧の冷媒の圧縮室9内への漏れが大きくなる。
そこで、実施形態1〜4に記載の構成を適用することで、回転速度制御において、冷媒漏れの影響が大となる低速運転を行う際により効果的に冷媒漏れを抑制できる。
In the rotational speed control, when the motor M is operating at a low speed, the time during which the refrigerant is on the suction side of the cylinders 7 and 8 (range less than 180 ° of the crank angle) becomes long. That is, in the low speed operation of rotational speed control, the leakage of the high pressure refrigerant in the external space in the closed container 1 into the compression chamber 9 becomes large.
Therefore, by applying the configuration described in the first to fourth embodiments, it is possible to suppress the refrigerant leakage more effectively when performing the low speed operation where the influence of the refrigerant leakage becomes large in the rotational speed control.

<<その他の実施形態>>
1.前記実施形態3では、部品締結用のボルト穴7A、8Aの角度ピッチを、クランク角180°以上の範囲にあるθ3およびθ4よりもクランク角180°未満の範囲にあるθ1およびθ2を狭く配置した例を説明したが、部品結用のボルト穴7A、8A以外の穴、例えば、サイレンサ穴8C、冷媒流路穴8D、加工基準穴8EAの角度ピッチを、クランク角180°以上の範囲よりもクランク角180°未満の範囲にある角度ピッチを広くとってもよい。本構成によれば、圧縮室9の低圧側のクランク角180°未満の範囲にある部品結用のボルト穴7A、8A以外の穴の角度ピッチが広いので、冷媒漏れを抑制できる。
<< Other Embodiments >>
1. In the third embodiment, the angular pitches of bolt holes 7A and 8A for fastening parts are narrowly arranged in θ1 and θ2 in a range of a crank angle less than 180 ° than θ3 and θ4 in a range of a crank angle of 180 ° or more. Although an example has been described, the angular pitch of holes other than bolt holes 7A and 8A for component connection, for example, silencer holes 8C, coolant passage holes 8D and machining reference holes 8EA, is cranked more than the range of 180 ° or more crank angle The angular pitch in the range of less than 180 ° may be wide. According to this configuration, since the angular pitch of the holes other than the bolt holes 7A and 8A for component connection in the range of less than the crank angle of 180 ° on the low pressure side of the compression chamber 9 is wide, refrigerant leakage can be suppressed.

2.或いは、部品結用のボルト穴7A、8A以外の穴、例えばサイレンサ穴8C、冷媒流路穴8D、加工基準穴8Eの開口面積を、クランク角180°未満の範囲よりもクランク角180°以上の範囲を広くとってもよい。本構成によれば、圧縮室9の低圧側のクランク角180°未満の範囲の部品結用のボルト穴7A、8A以外の穴の開口面積が狭いので、低圧側(クランク角180°未満)の領域における冷媒漏れを効果的に抑制できる。 2. Alternatively, the opening area of holes other than bolt holes 7A and 8A for component connection, such as silencer hole 8C, coolant passage hole 8D, and processing reference hole 8E, has a crank angle of 180 ° or more than the range of crank angle less than 180 °. The range may be wide. According to this configuration, the opening area of the holes other than the bolt holes 7A and 8A for component connection in the range of less than 180 ° of the crank angle on the low pressure side of the compression chamber 9 is narrow. The refrigerant leakage in the region can be effectively suppressed.

3.なお、前記実施形態1等では、様々な構成を説明したが、各構成を適宜選択して組み合わせてもよい。 3. Although various configurations have been described in the first embodiment and the like, each configuration may be appropriately selected and combined.

4.以上では、本発明の実施形態として、特に密閉型の縦形2シリンダ回転式圧縮機を例として説明したが、本発明はこれに限定されることなく、例えば非密閉型回転式圧縮機、横型回転式圧縮機、1シリンダもしくは3シリンダ以上の回転式圧縮機、スイング圧縮機にも適用可能である。なお回転式圧縮機には、ローラ11とベーン13、およびローラ12とベーン14が別体で構成された所謂ロータリ圧縮機と、それらが一体で構成された所謂スイング圧縮機を少なくとも含む。 4. In the above, as the embodiment of the present invention, in particular, the closed vertical two-cylinder rotary compressor has been described as an example, but the present invention is not limited thereto. For example, a non-closed rotary compressor, a horizontal rotary The present invention is also applicable to rotary type compressors, rotary type compressors having one or three cylinders or more, and swing compressors. Note that the rotary compressor, the roller 11 and the vane 13, and a so-called rotary compressor roller 12 and the vane 14 are configured separately, they contain at least a so-called swing compressor configured integrally.

5.また、前記実施形態1等では、密閉容器1内が略吐出圧力Pdとなる高圧チャンバ方式を用いて説明したが、密閉容器1内が略吸込圧力Psとなる低圧チャンバ方式や、密閉容器1内が吸込み圧力Psと吐出圧力Pdの中間になる中間圧チャンバ方式にも適用可能である。例えば低圧チャンバ方式の場合には、図9に示すように、前記実施形態1において、部品締結用の穴以外の軸方向に延びる穴は、全て、クランク軸5のクランク角180°以下または180°以上となる範囲のうち、前記密閉容器内と前記圧縮室内の圧力差が小さくなる時間の長い側、即ちクランク角180°以下の範囲に設けられる。また例えば2段圧縮の中間圧チャンバ方式の場合には、1段目の圧縮室は吸込み圧力Psの冷媒を吸い込み、中間圧力Pmまで圧縮して密閉容器内に吐出し、2段目の圧縮室は密閉容器内のPmの冷媒を吸い込み、吐出圧力Pdまで圧縮し、空気調和機等のサイクルへ吐出する。このため、1段目の圧縮室における穴の配置は高圧チャンバ方式と同様、2段目の圧縮室における穴の配置は低圧チャンバ方式と同様に設けられる。
実施形態1を例としたが、その他の実施形態においても同様であることは明らかである。
5. In the first embodiment and the like, the high pressure chamber method in which the inside of the closed container 1 is substantially discharge pressure Pd is described, but the low pressure chamber method in which the inside of the closed container 1 is substantially suction pressure Ps It is also applicable to an intermediate pressure chamber system in which the pressure is intermediate between the suction pressure Ps and the discharge pressure Pd. For example, in the case of the low pressure chamber type, as shown in FIG. 9, in the first embodiment, all the axially extending holes other than the component fastening holes have a crank angle of 180 ° or less or 180 ° of the crank shaft 5 Among the above-mentioned range, it is provided on the long side where the pressure difference between the inside of the closed container and the compression chamber becomes small, that is, in the range of 180 ° or less of the crank angle. For example, in the case of a two-stage compression intermediate pressure chamber system, the first-stage compression chamber sucks in the refrigerant with suction pressure Ps, compresses it to the intermediate pressure Pm, and discharges it into the closed container. The refrigerant absorbs the Pm refrigerant in the closed container, compresses it to the discharge pressure Pd, and discharges it to a cycle such as an air conditioner. For this reason, the arrangement of the holes in the first-stage compression chamber is the same as the high pressure chamber system, and the arrangement of the holes in the second-stage compression chamber is the same as the low pressure chamber system.
Although Embodiment 1 is taken as an example, it is apparent that the same is true for the other embodiments.

6.また、主軸受締付ボルト16および副軸受締付ボルト17は、主軸受6から副軸受10までを貫通する1本のボルトで構成しても勿論構わない。 6. Further, the main bearing tightening bolt 16 and the sub bearing tightening bolt 17 may of course be constituted by one bolt penetrating from the main bearing 6 to the sub bearing 10.

7.本発明は、上述の実施形態に限定されない。即ち特に限定的な記載がない限り、本発明の範囲を前記した実施形態のみに限定するものではなく、単なる説明例に過ぎないことも明らかである。 7. The invention is not limited to the embodiments described above. That is, it is also apparent that the scope of the present invention is not limited to the above-described embodiment unless stated otherwise in particular, and is merely an illustrative example.

1 密閉容器
3 固定子(電動機)
4 回転子(電動機)
5 クランク軸
5A 上偏心部(圧縮部材)
5B 下偏心部(圧縮部材)
6 主軸受
7 上シリンダ(シリンダ)
8 下シリンダ(シリンダ)
7A 主軸受締付ボルト穴(部品締結用の穴)
7B 位置決めボルト穴(部品締結用の穴)
7C サイレンサ穴(軸方向の穴)
7D 冷媒流路穴(軸方向の穴、より面積の大きな穴)
7E 加工基準穴(軸方向の穴)
7G 吐出穴(吐出孔)
8A 副軸受締付ボルト穴(部品締結用の穴)
8a 内周面
8b 外周面
8B 位置決めボルト穴(部品締結用の穴)
8C サイレンサ穴(軸方向の穴)
8D 冷媒流路穴(軸方向の穴、より面積の大きな穴)
8E 加工基準穴(軸方向の穴)
8G 吐出穴(吐出孔)
8H ベーンスロット
9 圧縮室
9d 吐出側の圧縮室(圧縮室)
10 副軸受
11 上ローラ(圧縮部材)
12 下ローラ(圧縮部材)
C 回転式圧縮機
C0 内径の中心(内周面の中心)
C1 外径の中心(外周面の中心)
M 電動機
S 制御部
θ1、θ2、θ3、θ4 角度ピッチ
1 Sealed container 3 Stator (motor)
4 Rotor (motor)
5 Crankshaft 5A Upper eccentric part (compression member)
5B Lower eccentric part (compression member)
6 Main bearing 7 Upper cylinder (cylinder)
8 Lower cylinder (cylinder)
7A Main bearing tightening bolt hole (hole for fastening parts)
7B Positioning bolt hole (hole for part fastening)
7C silencer hole (axial hole)
7D coolant channel hole (axial hole, larger area hole)
7E Machining reference hole (axial hole)
7G discharge hole (discharge hole)
8A Secondary bearing tightening bolt hole (hole for part fastening)
8a Inner peripheral surface 8b Outer peripheral surface 8B Positioning bolt hole (hole for fastening parts)
8C silencer hole (axial hole)
8D coolant channel hole (axial hole, larger area hole)
8E Machining reference hole (axial hole)
8G discharge hole (discharge hole)
8H Vane slot 9 Compression chamber 9d Discharge chamber (compression chamber)
10 secondary bearing 11 upper roller (compression member)
12 Lower roller (compression member)
C Rotary compressor C0 Center of inner diameter (center of inner circumferential surface)
C1 Center of outer diameter (center of outer peripheral surface)
M motor S control unit θ1, θ2, θ3, θ4 Angle pitch

Claims (1)

電動機と、
当該電動機により回転駆動され圧縮部材が設けられるクランク軸と、
前記圧縮部材の回転駆動により冷媒が圧縮される圧縮室を内部に有するシリンダと、
前記シリンダを軸方向の一方で閉塞する主軸受と前記軸方向の他方で閉塞する副軸受とを密閉容器内に備え、
前記シリンダ、前記主軸受、および前記副軸受は、前記軸方向に前記シリンダ、前記主軸受、および前記副軸受を締結するための部品締結用の穴を有し、
前記圧縮室の外周面を形成する前記シリンダの内周面の内径の中心に対し、当該シリンダの外周面の中心を、前記クランク軸のクランク角180°以下または180°以上となる範囲のうち、前記密閉容器内と前記圧縮室内の圧力差が小さくなる時間の短い側にオフセットした
ことを特徴とする回転式圧縮機。
Electric motor,
A crankshaft rotatably driven by the motor and provided with a compression member;
A cylinder having therein a compression chamber in which a refrigerant is compressed by rotational driving of the compression member;
The sealed container is provided with a main bearing that closes the cylinder in one axial direction and a sub bearing that closes the other in the axial direction,
The cylinder, the main bearing, and the sub bearing have holes for fastening parts for fastening the cylinder, the main bearing, and the sub bearing in the axial direction,
With respect to the center of the inner diameter of the inner peripheral surface of the cylinder forming the outer peripheral surface of the compression chamber, within the range where the center of the outer peripheral surface of the cylinder is a crank angle of 180 ° or less or 180 ° or more A rotary compressor characterized in that the pressure difference between the inside of the closed container and the inside of the compression chamber is reduced to a short time side.
JP2016055982A 2016-03-18 2016-03-18 Rotary compressor Active JP6426645B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016055982A JP6426645B2 (en) 2016-03-18 2016-03-18 Rotary compressor
CN201710066979.6A CN107202017B (en) 2016-03-18 2017-02-07 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016055982A JP6426645B2 (en) 2016-03-18 2016-03-18 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2017172343A JP2017172343A (en) 2017-09-28
JP6426645B2 true JP6426645B2 (en) 2018-11-21

Family

ID=59904865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016055982A Active JP6426645B2 (en) 2016-03-18 2016-03-18 Rotary compressor

Country Status (2)

Country Link
JP (1) JP6426645B2 (en)
CN (1) CN107202017B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109611334B (en) * 2017-10-05 2023-09-22 桂林航天工业学院 Double-row-pressure rolling rotor compressor

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4730008U (en) * 1971-04-30 1972-12-05
JPS57153795U (en) * 1981-03-23 1982-09-27
JPH0819913B2 (en) * 1984-06-06 1996-03-04 株式会社日立製作所 Rotary compressor
JPS62160789U (en) * 1986-04-02 1987-10-13
JPH01190984A (en) * 1988-01-25 1989-08-01 Matsushita Refrig Co Ltd Rotary compressor
JPH01237381A (en) * 1988-03-17 1989-09-21 Hitachi Ltd Lateral compressor
JP3518210B2 (en) * 1996-12-06 2004-04-12 ダイキン工業株式会社 Rotary compressor
JPH11270481A (en) * 1998-03-23 1999-10-05 Sanyo Electric Co Ltd Sealed type rotary compressor
JP3490950B2 (en) * 2000-03-15 2004-01-26 三洋電機株式会社 2-cylinder 2-stage compression type rotary compressor
JP2001329983A (en) * 2000-05-22 2001-11-30 Hitachi Ltd Rotary compressor
JP2003028060A (en) * 2002-05-17 2003-01-29 Toshiba Corp Hermetically closed compressor
JP2005147562A (en) * 2003-11-18 2005-06-09 Sanyo Electric Co Ltd Two-stage compression type rotary compressor, and car air conditioner and heat pump type hot water supply apparatus using it
CN100447424C (en) * 2004-06-15 2008-12-31 东芝开利株式会社 Multi-cylinder rotary compressor
JP5299362B2 (en) * 2010-06-21 2013-09-25 株式会社デンソー Vane type pump and EVA POLYK check system using the same
EP2770212B1 (en) * 2011-10-18 2021-12-01 Panasonic Corporation Rotary compressor having two cylinders
DE102012005949B4 (en) * 2012-01-31 2013-09-12 Jung & Co. Gerätebau GmbH Two-spindle screw pump in double-flow design
CN103946546B (en) * 2012-10-23 2016-08-24 松下电器产业株式会社 Rotary compressor
JP2014145318A (en) * 2013-01-29 2014-08-14 Fujitsu General Ltd Rotary compressor
CN203756523U (en) * 2013-11-20 2014-08-06 广东美芝制冷设备有限公司 Rotary compressor and compression device thereof
JP5743019B1 (en) * 2013-12-13 2015-07-01 ダイキン工業株式会社 Compressor

Also Published As

Publication number Publication date
JP2017172343A (en) 2017-09-28
CN107202017B (en) 2019-10-25
CN107202017A (en) 2017-09-26

Similar Documents

Publication Publication Date Title
KR101316247B1 (en) 2 stage rotary compressor
US9429156B2 (en) Compressor
US9004888B2 (en) Rotary compressor having discharge groove to communicate compression chamber with discharge port near vane groove
JP2008240667A (en) Rotary compressor
EP3249230B1 (en) Rotary compressor
US8517702B2 (en) Rotary compressor with enhanced sealing between mode switching device and chamber thereof
KR20100042168A (en) Scoroll compressor and refrigsrator having the same
US11326605B2 (en) Dual cylinder rotary compressor with intermediate plate that flows both cylinders to the muffler
KR20090049411A (en) 2 stage rotary compressor
EP1851437B1 (en) Capacity varying type rotary compressor
JP6426645B2 (en) Rotary compressor
KR101587174B1 (en) Rotary compressor
US11698072B2 (en) Compressor
JP2006177227A (en) Rotary two-stage compressor
JP2003254276A (en) Rotary compressor
AU2014316483B2 (en) Rotary compressor
KR101587170B1 (en) Rotary compressor
KR20100036133A (en) Scoroll compressor and refrigsrator having the same
KR101462935B1 (en) Hermetic compressor and refrigerator having the same
JP2009002297A (en) Rotary compressor
KR101328229B1 (en) Rotary compressor
KR101337079B1 (en) Two stage rotary compressor
US10968911B2 (en) Oscillating piston-type compressor
KR101978960B1 (en) Compressor
KR20140086482A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180801

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180801

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181025

R150 Certificate of patent or registration of utility model

Ref document number: 6426645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150