JP2008240667A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP2008240667A
JP2008240667A JP2007083399A JP2007083399A JP2008240667A JP 2008240667 A JP2008240667 A JP 2008240667A JP 2007083399 A JP2007083399 A JP 2007083399A JP 2007083399 A JP2007083399 A JP 2007083399A JP 2008240667 A JP2008240667 A JP 2008240667A
Authority
JP
Japan
Prior art keywords
stage
low
stage compression
compression section
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007083399A
Other languages
Japanese (ja)
Inventor
Naoya Morozumi
尚哉 両角
Takeshi Ueda
健史 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2007083399A priority Critical patent/JP2008240667A/en
Priority to US12/073,484 priority patent/US20080240954A1/en
Priority to EP08251003A priority patent/EP1975413A1/en
Priority to CNA2008100903440A priority patent/CN101275562A/en
Publication of JP2008240667A publication Critical patent/JP2008240667A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/601Shaft flexion

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-stage compression type rotary compressor capable of balancing the moment for inclining the whole shaft, by minimizing the mass of a balancer of a rotor. <P>SOLUTION: The shaft length L2 of a high stage side crankshaft 72 corresponding to a high stage side compression part 32, is set larger than the shaft length L1 of a low stage side crankshaft 73 corresponding to a low stage side compression part 31 (L2 > L1). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、低段側圧縮部と高段側圧縮部とを含む2段圧縮部を有したロータリ圧縮機に関し、さらに詳しく言えば、電動機と圧縮部とを連結するシャフトに生じる撓みを防止して、信頼性を向上する技術に関する。   The present invention relates to a rotary compressor having a two-stage compression section including a low-stage compression section and a high-stage compression section. More specifically, the present invention prevents bending that occurs in a shaft connecting an electric motor and a compression section. And technology for improving reliability.

一般に、ロータリ圧縮機は、圧縮室の隙間をシールして冷媒の漏れによる損失を低減する目的と、軸受けなど摺動部分を潤滑するため、潤滑油の溜まる密閉容器の下側に圧縮部が配置される。   In general, rotary compressors have a compression part placed under the sealed container where lubricating oil is stored to seal gaps in the compression chamber to reduce loss due to refrigerant leakage and to lubricate sliding parts such as bearings. Is done.

また、2段圧縮型ロータリ圧縮機では、2つの圧縮部で発生する圧縮負荷トルクのバランスと、2つの圧縮部に対応した偏芯部分すなわち旋回運動するピストンと前記ピストンに嵌合するシャフトの偏芯部に作用する遠心力のバランスを良くするため、低段側圧縮部と高段側圧縮部との圧縮位相を180°ずらしている。
また、シャフトの2つの偏芯部分および旋回運動する2つのピストンに作用する遠心力により、シャフト全体を傾けようとするモーメントが発生する。そこで、電動機のロータの上下にバランサを取り付けてシャフト全体を傾けようとするモーメントを打ち消すようにしている。
Further, in the two-stage compression type rotary compressor, the balance of the compression load torque generated in the two compression portions, the eccentric portion corresponding to the two compression portions, that is, the piston that performs the swiveling motion and the shaft that fits the piston are offset. In order to improve the balance of centrifugal force acting on the core, the compression phases of the low-stage compression section and the high-stage compression section are shifted by 180 °.
Further, a moment for tilting the entire shaft is generated by the centrifugal force acting on the two eccentric portions of the shaft and the two pistons that make a turning motion. Therefore, a balancer is attached to the top and bottom of the rotor of the electric motor so as to cancel out the moment to tilt the entire shaft.

ここで、2段圧縮型のロータリ圧縮機は、その圧縮特性上、高段側圧縮部の容積を低段側圧縮部の容積よりも小さくする必要がある。圧縮室の容積を小さくする手段として、圧縮室の厚さすなわちシリンダの厚さを小さくする方法と、ピストンの旋回半径を小さくする方法があるが、シャフトの偏芯部およびピストンに作用する遠心力は、いずれの方法でも容積の小さい高段側圧縮部のほうが小さくなる。   Here, in the two-stage compression type rotary compressor, it is necessary to make the volume of the high-stage compression section smaller than the volume of the low-stage compression section because of its compression characteristics. As a means for reducing the volume of the compression chamber, there are a method of reducing the thickness of the compression chamber, that is, the thickness of the cylinder, and a method of reducing the turning radius of the piston, but the centrifugal force acting on the eccentric part of the shaft and the piston. In any method, the high-stage compression section having a small volume is smaller.

このため、特許文献1に示すように、作用する遠心力の大きい低段側圧縮部を、バランサを取り付けるロータに近い側とする、すなわち低段側圧縮部を高段側圧縮部よりも上に配置することによって、バランサの質量を小さくする手段が知られている。   For this reason, as shown in Patent Document 1, the low-stage side compression part that acts with a large centrifugal force is the side closer to the rotor to which the balancer is attached, that is, the low-stage side compression part is above the high-stage side compression part. Means are known for reducing the mass of the balancer by arranging it.

特開平11−230073号公報Japanese Patent Laid-Open No. 11-230073

しかしながら、低段側圧縮部を高段側圧縮部よりも上に配置した場合、次のような問題があった。すなわち、圧縮機の運転圧力条件および回転数条件によっては密閉容器内の上側に配置された圧縮部よりも潤滑油の油面が下がり、上側の圧縮部は冷媒ガス中にさらされる。これによって、ベーンとベーン溝の隙間などを通って冷媒が吸入室および圧縮室に漏れることによって漏れ損失が発生する。   However, when the low-stage compression section is disposed above the high-stage compression section, there are the following problems. That is, depending on the operating pressure condition and the rotational speed condition of the compressor, the oil level of the lubricating oil is lower than that of the compression part disposed on the upper side in the sealed container, and the upper compression part is exposed to the refrigerant gas. As a result, leakage loss occurs due to the refrigerant leaking into the suction chamber and the compression chamber through a gap between the vane and the vane groove.

低段側圧縮部を上側に配置すると、密閉容器内部が高段側圧縮部の吐出圧力であるため、吸入室および圧縮室との圧力差が高段側圧縮部を上側に配置した場合よりも大きくなり、隙間から吸入室および圧縮室に漏れる冷媒量が大きくなり、圧縮機の効率がより低下するという問題がある。   When the low-stage compression section is arranged on the upper side, the inside of the sealed container is the discharge pressure of the high-stage compression section, so the pressure difference between the suction chamber and the compression chamber is higher than when the high-stage compression section is arranged on the upper side. There is a problem that the amount of refrigerant leaking from the gap to the suction chamber and the compression chamber increases, and the efficiency of the compressor is further reduced.

そこで、本発明の目的は、高段側圧縮部を上側に配置した構成において、バランサの質量を小さくでき、これによって、シャフトのたわみ量を低減し軸受け部における焼き付きやロータとステータの接触を防止できるロータリ圧縮機を提供することにある。   Therefore, an object of the present invention is to reduce the mass of the balancer in the configuration in which the high-stage compression unit is arranged on the upper side, thereby reducing the amount of shaft deflection and preventing seizure at the bearing unit and contact between the rotor and the stator. It is in providing the rotary compressor which can be performed.

上述した目的を達成するため、本発明は、以下に示すいくつかの特徴を備えている。すなわち、密閉シェルの内部に低段側圧縮部および高段側圧縮部を含む2段圧縮部と、2段圧縮部を駆動する電動機を有し、高段側圧縮部が電動機側に配置されているロータリ圧縮機において、低段側圧縮部に対応するシャフトの偏芯部すなわち低段側クランク軸の軸方向の長さをL1、高段側圧縮部に対応するシャフトの偏芯部すなわち高段側クランク軸の軸方向の長さをL2としたとき、L2>L1であることを特徴としている。   In order to achieve the above-described object, the present invention has several features described below. That is, the sealed shell has a two-stage compression section including a low-stage compression section and a high-stage compression section, and an electric motor that drives the two-stage compression section, and the high-stage compression section is disposed on the motor side. In the rotary compressor, the eccentric portion of the shaft corresponding to the low-stage side compression portion, that is, the axial length of the low-stage side crankshaft is L1, and the eccentric portion of the shaft corresponding to the high-stage side compression portion, that is, the high step When the length of the side crankshaft in the axial direction is L2, L2> L1.

請求項2に記載の発明は、前記圧縮部の回転数が可変であることを特徴としている。   The invention described in claim 2 is characterized in that the rotation speed of the compression section is variable.

請求項1に記載の発明によれば、高段側クランク軸の軸方向の長さを低段側クランク軸の軸方向の長さより長くすることによって、ロータに取り付けるバランサの質量を小さくすることが可能となり、よってシャフト全体のたわみを低減して軸受け部の局部的な荷重過剰による焼き付けや、ロータとステータの接触を防止することができる。   According to the first aspect of the present invention, the mass of the balancer attached to the rotor can be reduced by making the axial length of the high-stage crankshaft longer than the axial length of the low-stage crankshaft. Therefore, it is possible to reduce the deflection of the entire shaft and prevent the bearing portion from being burned due to local excessive load and the contact between the rotor and the stator.

請求項2に記載の発明によれば、回転数が可変なロータリ圧縮機においては、回転数が高い場合、上部バランサおよび下部バランサに作用する遠心力が大きくなり、よってシャフトのたわみがより大きくなるため、本発明の効果がより大きくなる。   According to the second aspect of the present invention, in the rotary compressor having a variable rotation speed, when the rotation speed is high, the centrifugal force acting on the upper balancer and the lower balancer is increased, and thus the deflection of the shaft is further increased. Therefore, the effect of the present invention is further increased.

本発明の実施形態を図1を用いて説明する。ロータリ圧縮機1は、円筒状の密閉容器2を縦方向に配置し、密閉容器2内部の上方に電動機4と下方に圧縮部3を備えている。   An embodiment of the present invention will be described with reference to FIG. The rotary compressor 1 includes a cylindrical sealed container 2 arranged in the vertical direction, and includes an electric motor 4 above the sealed container 2 and a compression unit 3 below.

密閉容器2は、円筒状のメインシェル21とメインシェル21の上部および下部を閉塞するドーム状のトップシェル22およびボトムシェル23とから成り、トップシェル22およびボトムシェル23はメインシェル21に溶接固定されている。   The hermetic container 2 includes a cylindrical main shell 21 and a dome-shaped top shell 22 and a bottom shell 23 that close the upper and lower portions of the main shell 21. The top shell 22 and the bottom shell 23 are fixed to the main shell 21 by welding. Has been.

トップシェル22には、圧縮部3から密閉容器2内部に吐出された冷媒を密閉容器2外部に吐出するための冷媒吐出管24が設けられている。   The top shell 22 is provided with a refrigerant discharge pipe 24 for discharging the refrigerant discharged from the compression unit 3 into the sealed container 2 to the outside of the sealed container 2.

電動機4のステータ41はメインシェル21に焼きバメされ、電動機4のロータ42は電動機4と圧縮部3を機械的に連結するシャフト7に焼きバメ固定されている。また、ロータ42の上下には回転部品全体の遠心力のバランスを取るため、上部バランサ43および下部バランサ44が取り付けられている。   The stator 41 of the electric motor 4 is shrunk to the main shell 21, and the rotor 42 of the motor 4 is shrunk and fixed to the shaft 7 that mechanically connects the motor 4 and the compression unit 3. An upper balancer 43 and a lower balancer 44 are attached above and below the rotor 42 to balance the centrifugal force of the entire rotating component.

圧縮部3は、上方に高段側圧縮部32と下方に低段側圧縮部31を有し、低段側圧縮部31の吐出側と高段側圧縮部32の吸入側とを密閉容器2外部の中間連絡管26によって接続することにより、2段圧縮部を構成している。   The compression unit 3 includes a high-stage compression unit 32 on the upper side and a low-stage compression unit 31 on the lower side. The discharge side of the low-stage compression unit 31 and the suction side of the high-stage compression unit 32 are hermetically sealed. By connecting with an external intermediate connecting pipe 26, a two-stage compression section is configured.

次に各圧縮部3の構成を図2を用いて説明する。図2は図1における低段側圧縮部31の横断面である。高段側圧縮部32もピストンの位相が180°異なるだけで、構成は同じである。   Next, the structure of each compression part 3 is demonstrated using FIG. FIG. 2 is a cross-sectional view of the lower stage compression section 31 in FIG. The high-stage compression section 32 has the same configuration except that the phase of the piston differs by 180 °.

各圧縮部31,32は、シリンダ200,400と、シリンダ200,400の内側に形成される円筒状のシリンダボア200a,400aの内部に収納される円筒状のピストン220,420とを有し、シリンダボア200a,400a内壁とピストン220,420の外周面との間に冷媒の作動空間を形成している。   Each compression part 31 and 32 has cylinders 200 and 400 and cylindrical pistons 220 and 420 accommodated inside cylindrical cylinder bores 200a and 400a formed inside the cylinders 200 and 400, respectively. A working space for the refrigerant is formed between the inner walls of 200a and 400a and the outer peripheral surfaces of the pistons 220 and 420.

シリンダ200,400には、シリンダボア200a,400aから外周方向に向けてシリンダ溝200b,400bが設けられ、シリンダ溝200b,400b内に平板状のベーン230,430を有している。   The cylinders 200 and 400 are provided with cylinder grooves 200b and 400b from the cylinder bores 200a and 400a toward the outer periphery, and have flat plate-like vanes 230 and 430 in the cylinder grooves 200b and 400b.

ベーン230,430と密閉容器2の内壁の間にはスプリング240,440を有し、スプリング240,440の付勢力によってベーン230,430の先端がピストン220,420の外壁と摺接することによって、作動空間を吸入室V1,V2と圧縮室C1,C2に区画している。   Springs 240 and 440 are provided between the vanes 230 and 430 and the inner wall of the sealed container 2, and the tip of the vanes 230 and 430 is brought into sliding contact with the outer wall of the pistons 220 and 420 by the biasing force of the springs 240 and 440. The space is divided into suction chambers V1, V2 and compression chambers C1, C2.

ここで、高段側圧縮部32の作動空間容積を低段側圧縮部31の作動空間容積より小さくするために、高段側のシリンダ200、ピストン220、ベーン230はそれぞれ軸方向の厚さを低段側のシリンダ400、ピストン420、ベーン430よりも薄くしている。   Here, in order to make the working space volume of the high stage side compression part 32 smaller than the working space volume of the low stage side compression part 31, the cylinder 200, the piston 220, and the vane 230 on the high stage side have their respective axial thicknesses. It is thinner than the low-stage cylinder 400, piston 420, and vane 430.

次に再び図1を用いて、圧縮機1全体の説明をする。高段側シリンダ200の上にメインフレーム100と、高段側シリンダ200と低段側シリンダ400との間に中間仕切り板300と、低段側シリンダ400の下にサブフレーム500とを有し、メインフレーム100、中間仕切り板300、サブフレーム500によって2つの作動空間の上下を閉塞して、それぞれを密閉した空間としている。   Next, the whole compressor 1 is demonstrated using FIG. 1 again. A main frame 100 on the high-stage cylinder 200, an intermediate partition plate 300 between the high-stage cylinder 200 and the low-stage cylinder 400, and a subframe 500 under the low-stage cylinder 400; The upper and lower sides of the two working spaces are closed by the main frame 100, the intermediate partition plate 300, and the sub-frame 500, thereby forming a sealed space.

メインフレーム100の上およびサブフレーム500の下に、それぞれ高段側吐出マフラーカバー130、低段側吐出マフラーカバー510を有し、吐出冷媒の圧力脈動を低減するための高段側吐出マフラー室M2および低段側吐出マフラー室M1が形成される。   A high-stage discharge muffler cover 130 and a low-stage discharge muffler cover 510 are provided above the main frame 100 and under the subframe 500, respectively, and a high-stage discharge muffler chamber M2 for reducing pressure pulsation of discharged refrigerant. In addition, a low-stage discharge muffler chamber M1 is formed.

高段側吐出マフラーカバー130、メインフレーム100、高段側シリンダ200、中間仕切り板300、低段側シリンダ400、サブフレーム500、低段側吐出マフラーカバー510はボルト(図示せず)によって一体に固定され、さらにメインフレーム100外周部がメインシェル21にスポット溶接にて固定されている。   The high-stage discharge muffler cover 130, the main frame 100, the high-stage cylinder 200, the intermediate partition plate 300, the low-stage cylinder 400, the subframe 500, and the low-stage discharge muffler cover 510 are integrated with bolts (not shown). Further, the outer periphery of the main frame 100 is fixed to the main shell 21 by spot welding.

メインフレーム100およびサブフレーム500は、軸受け部110,502を有し、軸受け部110,502にシャフト7を嵌合することによってシャフト7を回転自在に支持している。   The main frame 100 and the sub frame 500 have bearing portions 110 and 502, and the shaft 7 is rotatably supported by fitting the shaft 7 to the bearing portions 110 and 502.

シャフト7は、180°異なる方向に偏芯した2つのクランク軸72,73を有し、一方のクランク軸72が高段側圧縮部32のピストン220と嵌合し、他方のクランク軸73が、低段側圧縮部31のピストン420と嵌合している。   The shaft 7 has two crankshafts 72 and 73 eccentric in directions different from each other by 180 °. One crankshaft 72 is fitted to the piston 220 of the high-stage side compression portion 32, and the other crankshaft 73 is The piston 420 of the low-stage compression unit 31 is fitted.

シャフト7の回転に伴い、ピストン220,420はそれぞれのシリンダボア200a,400a内壁に摺接しながら旋回運動し、これに追随してベーン230,430が往復運動することによって、それぞれの吸入室V1,V2および圧縮室C1,C2の容積が連続的に変化する。これによって圧縮部3は冷媒の吸入と圧縮を繰り返す。   As the shaft 7 rotates, the pistons 220 and 420 revolve while slidingly contacting the inner walls of the cylinder bores 200a and 400a, and the vanes 230 and 430 reciprocate following the reciprocating movements. And the volume of the compression chambers C1, C2 changes continuously. Thereby, the compression unit 3 repeats the suction and compression of the refrigerant.

低段側圧縮部31の吸入室V1は、シリンダ400に設けられた低段側吸入孔410を介して冷媒吸入管64に接続されている。低段側圧縮部31の圧縮室C1は、サブフレーム500に設けられた低段側吐出孔520および低段側吐出マフラー室M1を介して中間連絡管26に接続される。   The suction chamber V <b> 1 of the low-stage compression unit 31 is connected to the refrigerant suction pipe 64 via a low-stage suction hole 410 provided in the cylinder 400. The compression chamber C1 of the low-stage compression unit 31 is connected to the intermediate connecting pipe 26 via a low-stage discharge hole 520 and a low-stage discharge muffler chamber M1 provided in the subframe 500.

さらに詳しくは、低段側吐出孔520には逆止弁540が設けられ、また冷媒吸入管64は低段側吸入接続管411を介して低段側吸入孔410に接続され、中間連絡管26は中間吐出接続管521を介して低段側吐出マフラー室M1に接続される。   More specifically, a check valve 540 is provided in the low-stage side discharge hole 520, and the refrigerant suction pipe 64 is connected to the low-stage side suction hole 410 via the low-stage side suction connection pipe 411, and the intermediate connection pipe 26. Is connected to the low-stage discharge muffler chamber M1 through an intermediate discharge connection pipe 521.

高段側圧縮部32の吸入室V2は、シリンダ200に設けられた高段側吸入孔210を介して中間連絡管26に接続されている。高段側圧縮部32の圧縮室C2はメインフレーム100に設けられた高段側吐出孔120および高段側吐出マフラー室M2を介して密閉容器2内部に開口される。   The suction chamber V <b> 2 of the high stage side compression unit 32 is connected to the intermediate connecting pipe 26 via a high stage side suction hole 210 provided in the cylinder 200. The compression chamber C2 of the high-stage compression section 32 is opened inside the hermetic container 2 through a high-stage discharge hole 120 and a high-stage discharge muffler chamber M2 provided in the main frame 100.

さらに詳しくは、高段側吐出孔120には逆止弁140が設けられ、また中間連絡管26は中間吸入接続管211を介して高段側吸入孔210に接続される。   More specifically, the high-stage discharge hole 120 is provided with a check valve 140, and the intermediate communication pipe 26 is connected to the high-stage suction hole 210 via the intermediate suction connection pipe 211.

圧縮機本体1の側面には、独立した密閉容器61から成るアキュムレータ6を有している。アキュムレータ6の上部には、図示しないヒートポンプシステム側と接続する冷媒戻り管62を有し、アキュムレータ6の下部にはL字状の一端がアキュムレータ6内部の上方まで延長され、他端が圧縮機1の側面から低段側圧縮部31の吸入室V1と接続する冷媒吸入管64を有している。   On the side surface of the compressor body 1, an accumulator 6 including an independent sealed container 61 is provided. A refrigerant return pipe 62 connected to the heat pump system side (not shown) is provided at the upper part of the accumulator 6, and an L-shaped one end extends to the upper part inside the accumulator 6 at the lower part of the accumulator 6, and the other end is the compressor 1. The refrigerant suction pipe 64 is connected to the suction chamber V1 of the low-stage compression section 31 from the side surface.

次に、以上の構成による冷媒の流れを図1および図2を参照して説明する。システム側から冷媒戻り管62を通ってアキュムレータ6内に流入した冷媒は、液冷媒がアキュムレータ6の下部に、ガス冷媒がアキュムレータ6の上部に分離される。   Next, the flow of the refrigerant having the above configuration will be described with reference to FIGS. 1 and 2. The refrigerant flowing from the system side into the accumulator 6 through the refrigerant return pipe 62 is separated into a liquid refrigerant at the lower part of the accumulator 6 and a gas refrigerant at the upper part of the accumulator 6.

低段側ピストン420が旋回運動して低段側吸入室V1の容積が拡大することによって、アキュムレータ6内のガス冷媒は、冷媒吸入管64を通って圧縮機本体1の低段側吸入室V1に吸入される。   As the low stage side piston 420 pivots and the volume of the low stage side suction chamber V1 expands, the gas refrigerant in the accumulator 6 passes through the refrigerant suction pipe 64 and the low stage side suction chamber V1 of the compressor body 1. Inhaled.

一回転後に低段側吸入室V1は低段側吸入孔410と遮断された位置となり、そのまま低段側圧縮室C1に切り替わることによって、冷媒は圧縮される。   After one revolution, the low-stage suction chamber V1 becomes a position that is blocked from the low-stage suction hole 410, and the refrigerant is compressed by switching to the low-stage compression chamber C1 as it is.

圧縮された冷媒は、圧力が低段側吐出孔520に設けられた逆止弁540の外側となる低段側吐出マフラー室M1の圧力すなわち中間圧力に達すると逆止弁540が開放し、低段側吐出マフラー室M1に吐出される。   When the compressed refrigerant reaches the pressure in the low-stage discharge muffler chamber M1, which is the outside of the check valve 540 provided in the low-stage discharge hole 520, that is, the intermediate pressure, the check valve 540 opens and the low pressure is reduced. It is discharged into the stage side discharge muffler chamber M1.

冷媒は、低段側吐出マフラー室M1で騒音の原因となる圧力脈動を低減したあと、中間連絡管26を通って高段側圧縮部32の吸入室V2に導かれる。   The refrigerant is reduced in pressure pulsation that causes noise in the low-stage discharge muffler chamber M1 and then guided to the suction chamber V2 of the high-stage compression section 32 through the intermediate connecting pipe 26.

高段側圧縮部32の吸入室V2に導かれた冷媒は、低段側圧縮部31と同様の原理により高段側圧縮部32で吸入、圧縮、吐出され、高段側吐出マフラー室M2で圧力脈動を低減したあと、密閉容器2の内部に吐出される。   The refrigerant guided to the suction chamber V2 of the high-stage compression section 32 is sucked, compressed, and discharged by the high-stage compression section 32 according to the same principle as that of the low-stage compression section 31, and is stored in the high-stage discharge muffler chamber M2. After reducing the pressure pulsation, it is discharged into the closed container 2.

さらに電動機4のステータ41のコア切り欠き(図示せず)やコアと巻き線の隙間を通って電動機4の上部に導かれ、吐出管24を通ってシステム側に吐出される。   Further, it is guided to the upper part of the motor 4 through a core notch (not shown) of the stator 41 of the motor 4 and a gap between the core and the winding, and discharged to the system side through the discharge pipe 24.

次に、以上の構成による圧縮機内の回転系部品に作用する遠心力を、図3を用いて説明する。図3は、圧縮機内の回転系部品を抽出して示した図である。   Next, the centrifugal force which acts on the rotating system components in the compressor having the above configuration will be described with reference to FIG. FIG. 3 is a diagram showing extracted rotary system components in the compressor.

回転系部品に作用する遠心力としては、低段側クランク軸73およびこれと嵌合する低段側ピストン420に作用する遠心力(F1)と、高段側クランク軸72およびこれと嵌合する高段側ピストン220に作用する遠心力(F2)と、ロータ42の上部に取り付けられた上部バランサ43に作用する遠心力(F4)と、ロータ42の下部に取り付けられた下部バランサ44に作用する遠心力(F3)とがあり、これらが水平方向に釣り合うようにするため、
F1+F4=F2+F3 ・・・式1
シャフト全体を傾けようとするモーメントを釣り合わせるため、F3の作用点周りのモーメントから、
F1×(Lx+Ly)=F2×Ly+F4×Lz ・・・式2
の2式が得られ、この2式を満足するように、F3およびF4すなわちロータ42の上部バランサ43の質量と下部バランサ44の質量が決められる。
Centrifugal force acting on the rotating system parts includes centrifugal force (F1) acting on the low-stage side crankshaft 73 and the low-stage side piston 420 fitted thereto, and high-stage side crankshaft 72 and this part. Centrifugal force (F2) acting on the high-stage piston 220, centrifugal force (F4) acting on the upper balancer 43 attached to the upper portion of the rotor 42, and acting on the lower balancer 44 attached to the lower portion of the rotor 42 There is centrifugal force (F3), and in order to balance these in the horizontal direction,
F1 + F4 = F2 + F3 Formula 1
To balance the moment to tilt the entire shaft, from the moment around the point of action of F3,
F1 × (Lx + Ly) = F2 × Ly + F4 × Lz Expression 2
Thus, F3 and F4, that is, the mass of the upper balancer 43 of the rotor 42 and the mass of the lower balancer 44 are determined so as to satisfy these two equations.

ここで、式2を変形して、
F4=(F1×(Lx+Ly)−F2×Ly)/Lz ・・・式3
式3より、F1を小さくするほど、またF2を大きくするほど、F4は小さくすることができる。
Here, Equation 2 is transformed and
F4 = (F1 × (Lx + Ly) −F2 × Ly) / Lz Expression 3
From Equation 3, F4 can be reduced as F1 is decreased and F2 is increased.

すなわち、低段側クランク軸73の質量を小さくするほど、また高段側のクランク軸72の質量を大きくするほどロータ42の上部バランサ43を小さくすることができる。   That is, the upper balancer 43 of the rotor 42 can be made smaller as the mass of the lower stage crankshaft 73 is made smaller and as the mass of the higher stage crankshaft 72 is made larger.

ここで、シャフト7に作用する遠心力によってシャフトがたわむ状態を図4を用いて説明する。図4は、シャフト7およびシャフトを支持する軸受け部110を抽出して示した図である。   Here, a state in which the shaft is bent by the centrifugal force acting on the shaft 7 will be described with reference to FIG. FIG. 4 is an extracted view of the shaft 7 and the bearing 110 that supports the shaft.

シャフト7全体のたわみが大きくなると、特にメインフレーム100の軸受け110にて、軸と軸受け110の隙間以上にシャフト7が変形して軸受け110の上下でシャフト7と軸受け110が局部的に接触する状態となり、焼き付けの原因となる。   When the deflection of the entire shaft 7 increases, the shaft 7 deforms more than the gap between the shaft and the bearing 110, particularly in the bearing 110 of the main frame 100, and the shaft 7 and the bearing 110 are locally in contact with each other above and below the bearing 110. And cause burn-in.

したがって、高段側クランク軸72の軸方向の長さを低段側クランク軸73の軸方向の長さより長くすることによって、ロータ42の上部バランサ43を小さくすることが可能となり、よってシャフト7全体のたわみを低減して軸受け部110の局部的な荷重過剰による焼き付けや、ロータ42とステータ41の接触を防止することができる。   Therefore, the upper balancer 43 of the rotor 42 can be made smaller by making the length of the high-stage crankshaft 72 in the axial direction longer than the length of the low-stage crankshaft 73 in the axial direction. The deflection of the bearing portion 110 can be reduced, and the bearing portion 110 can be prevented from being burned due to excessive load and the contact between the rotor 42 and the stator 41.

他方において、以下のような効果も得られる。すなわち、空気調和機や給湯器などのヒートポンプに利用される圧縮機では、主に外気温条件によって圧縮機の吸入圧力Psと吐出圧力Pdが変化する。これは圧縮機全体としての圧縮比ψ=Pd/Psは一定でなく、広い範囲に対応することが必要なことを意味する。   On the other hand, the following effects can also be obtained. That is, in a compressor used for a heat pump such as an air conditioner or a water heater, the suction pressure Ps and the discharge pressure Pd of the compressor change mainly depending on the outside air temperature condition. This means that the compression ratio ψ = Pd / Ps as a whole compressor is not constant and needs to correspond to a wide range.

そこで、低段側圧縮部31の吸入容積をV1、高段側圧縮部32の吸入容積をV2、圧縮ガスの比熱をκとすると、各圧縮部31,32の損失を無視して考えた場合、低段側圧縮部31の圧力比ψ1は、ψ1=(V1/V2)κとなる。すなわち、低段側圧縮部31の圧縮比ψ1は、外気温条件によらずに2つのシリンダの吸入容積によって決まる。 Therefore, when the suction volume of the low-stage compression section 31 is V1, the suction volume of the high-stage compression section 32 is V2, and the specific heat of the compressed gas is κ, the loss of each compression section 31, 32 is ignored. The pressure ratio ψ1 of the low-stage compression unit 31 is ψ1 = (V1 / V2) κ . That is, the compression ratio ψ1 of the low-stage compression unit 31 is determined by the suction volumes of the two cylinders regardless of the outside air temperature condition.

したがって、外気温が特に高い条件の冷房運転や、外気温が特に低い条件の暖房運転など、全圧力比ψが大きくなる条件においては、高段側圧縮部32の圧力比ψ2が必然的に高くなる。   Therefore, in a condition in which the total pressure ratio ψ is large, such as a cooling operation in which the outside air temperature is particularly high and a heating operation in which the outside air temperature is particularly low, the pressure ratio ψ2 of the high-stage compression unit 32 is inevitably high. Become.

すなわち、このような条件下においては、低段側圧縮部31の負荷トルクよりも高段側圧縮部32の負荷トルクが大きくなる。この負荷荷重を支持するためには、所定長さ以上のクランク軸長さが必要であるが、必要以上にクランク軸を長くすることは、クランク部における摺動損失増加の要因となりうるため、好ましくない。   That is, under such conditions, the load torque of the high stage compression unit 32 is larger than the load torque of the low stage compression unit 31. In order to support this load load, a crankshaft length of a predetermined length or more is necessary, but it is preferable to make the crankshaft longer than necessary because it may cause an increase in sliding loss in the crank portion. Absent.

そこで、上述したように、高段側クランク軸の軸方向の長さL2を低段側クランク軸L1の軸方向の長さよりも大きく(L2>L1)することにより、各クランク軸受け部における信頼性向上と摺動損失低減による効率向上を両立することができる。   Thus, as described above, the axial length L2 of the high-stage crankshaft is set to be larger than the axial length of the low-stage crankshaft L1 (L2> L1), whereby reliability in each crank bearing portion is achieved. It is possible to achieve both improvement and efficiency improvement by reducing sliding loss.

この実施例において、ロータリ圧縮機1は、低段側圧縮部31と高段側圧縮部32とを有する2段圧縮式の圧縮部を備えた圧縮機において、高段側圧縮部32の軸方向長さを低段側圧縮部31の軸方向長さより小さくすることによって、高段側圧縮部32の作動空間容積を低段側圧縮部31の作動空間容積より小さくした構成を好ましい形態として例示したが、圧縮部3の軸方向長さを同じとして、高段側ピストン220の旋回半径を低段側ピストン420の旋回半径よりも小さくすることによって、高段側圧縮部32の作動空間容積を小さくした構成に適用してもよい。   In this embodiment, the rotary compressor 1 is a compressor including a two-stage compression unit having a low-stage compression unit 31 and a high-stage compression unit 32, and the axial direction of the high-stage compression unit 32. A configuration in which the working space volume of the high-stage compression section 32 is made smaller than the working space volume of the low-stage compression section 31 by making the length smaller than the axial length of the low-stage compression section 31 is illustrated as a preferred embodiment. However, by setting the axial length of the compression unit 3 to be the same and making the turning radius of the high stage side piston 220 smaller than the turning radius of the low stage side piston 420, the working space volume of the high stage side compression unit 32 can be reduced. You may apply to the structure which did.

また、冷凍サイクルとしてガスインジェクションサイクルを利用し、低段側圧縮部31と高段側圧縮部32との間の中間圧力部にインジェクション冷媒を流入できるように構成した2段圧縮式のロータリ圧縮機でもよい。   Further, a two-stage compression rotary compressor configured to use a gas injection cycle as a refrigeration cycle and to allow injection refrigerant to flow into an intermediate pressure section between the low-stage compression section 31 and the high-stage compression section 32. But you can.

また圧縮部3の圧縮機構として、クランク軸72,73によってピストン220,420を旋回運動させて吸入室V1,V2および圧縮室C1,C2の容積が変化することを利用した圧縮機であれば本実施例の圧縮機構に限定することはない。   In addition, as a compression mechanism of the compression unit 3, if the compressor utilizes the fact that the pistons 220, 420 are swung by the crankshafts 72, 73 and the volumes of the suction chambers V 1, V 2 and the compression chambers C 1, C 2 are changed. The compression mechanism is not limited to the embodiment.

本発明の一実施形態におけるロータリ圧縮機の縦断面図。The longitudinal cross-sectional view of the rotary compressor in one Embodiment of this invention. 本発明の一実施形態におけるロータリ圧縮機の圧縮部の横断面図。The cross-sectional view of the compression part of the rotary compressor in one Embodiment of this invention. 本発明の一実施形態におけるロータリ圧縮機の回転系部品とこれに作用する遠心力を示した図。The figure which showed the rotary system component of the rotary compressor in one Embodiment of this invention, and the centrifugal force which acts on this. 本発明の一実施形態におけるロータリ圧縮機の遠心力によるシャフトたわみ状態を示した図。The figure which showed the shaft deflection state by the centrifugal force of the rotary compressor in one Embodiment of this invention.

符号の説明Explanation of symbols

1 ロータリ圧縮機
2 密閉シェル
3 圧縮部(2段圧縮部)
4 電動機
41 ステータ
42 ロータ
43 上部バランサ
44 下部バランサ
6 アキュムレータ
7 シャフト
71 主軸
72 高段側クランク軸
73 低段側クランク軸
100 メインフレーム
110 主軸受け
200 高段側シリンダ
220 高段側ロータリピストン
300 仕切板
400 低段側シリンダ
420 低段側ロータリピストン
500 サブフレーム
C1 低段側圧縮室
C2 高段側圧縮室
V1 低段側吸入室
V2 高段側吸入室
DESCRIPTION OF SYMBOLS 1 Rotary compressor 2 Sealing shell 3 Compression part (two-stage compression part)
4 Electric motor 41 Stator 42 Rotor 43 Upper balancer 44 Lower balancer 6 Accumulator 7 Shaft 71 Main shaft 72 High-stage crankshaft 73 Low-stage crankshaft 100 Mainframe 110 Main bearing 200 High-stage cylinder 220 High-stage rotary piston 300 Partition plate 400 Low-stage cylinder 420 Low-stage rotary piston 500 Subframe C1 Low-stage compression chamber C2 High-stage compression chamber V1 Low-stage suction chamber V2 High-stage suction chamber

Claims (2)

密閉容器と、前記密閉容器の内部に低段側圧縮部および高段側圧縮部と、前記低段側圧縮部および前記高段側圧縮部に対応した低段側偏芯部および高段側偏芯部を備えたシャフトと、前記シャフトに機械的に接続され前記低段側圧縮部および前記高段側圧縮部を駆動する電動機と、
前記低段側圧縮部および前記高段側圧縮部のそれぞれにシリンダと、前記シリンダ内で前記シャフトの偏芯部に嵌合して旋回運動するピストンと、前記シリンダのベーン溝内を往復運動しながら先端を前記ピストンと摺接することによって前記シリンダと前記ピストンと共に冷媒の吸入室と圧縮室とを形成するベーンと、前記低段側圧縮部および前記高段側圧縮部に挟まれ前記吸入室および前記圧縮室の一端面を閉塞する中間仕切り板と、前記シャフトを回転自在に支持する軸受け部を備えると共に前記吸入室および前記圧縮室の一端面を閉塞するメインフレームおよびサブフレームとを有し、
前記低段側圧縮部の吐出側と前記高段側圧縮部の吸入側を連通する手段を有して2段圧縮部を構成したロータリ圧縮機において、
前記低段側圧縮部に対応するシャフトの偏芯部の軸方向の長さをL1、前記高段側圧縮部に対応するシャフトの偏芯部の軸方向の長さをL2としたとき、L2>L1であることを特徴とするロータリ圧縮機。
A closed container, a low-stage compression section and a high-stage compression section, and a low-stage eccentric section and a high-stage eccentric section corresponding to the low-stage compression section and the high-stage compression section. A shaft having a core, and an electric motor that is mechanically connected to the shaft and drives the low-stage compression section and the high-stage compression section,
A reciprocating motion is achieved in each of the low-stage compression section and the high-stage compression section, a piston that fits in the eccentric part of the shaft in the cylinder and pivots, and a vane groove in the cylinder. The vane that forms a refrigerant suction chamber and a compression chamber together with the cylinder and the piston by sliding the tip with the piston while being sandwiched between the low-stage compression section and the high-stage compression section, and the suction chamber and An intermediate partition plate that closes one end surface of the compression chamber, a bearing that rotatably supports the shaft, and a main frame and a subframe that close the one end surface of the suction chamber and the compression chamber;
In the rotary compressor having a means for communicating the discharge side of the low-stage compression section and the suction side of the high-stage compression section to form a two-stage compression section,
When the axial length of the eccentric portion of the shaft corresponding to the low-stage compression portion is L1, and the axial length of the eccentric portion of the shaft corresponding to the high-stage compression portion is L2, L2 > A rotary compressor characterized by being L1.
前記圧縮部の回転数が可変であることを特徴とする請求項1に記載のロータリ圧縮機。   The rotary compressor according to claim 1, wherein the rotation speed of the compression unit is variable.
JP2007083399A 2007-03-28 2007-03-28 Rotary compressor Pending JP2008240667A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007083399A JP2008240667A (en) 2007-03-28 2007-03-28 Rotary compressor
US12/073,484 US20080240954A1 (en) 2007-03-28 2008-03-06 Rotary compressor
EP08251003A EP1975413A1 (en) 2007-03-28 2008-03-20 Multi stage rotary compressor
CNA2008100903440A CN101275562A (en) 2007-03-28 2008-03-27 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083399A JP2008240667A (en) 2007-03-28 2007-03-28 Rotary compressor

Publications (1)

Publication Number Publication Date
JP2008240667A true JP2008240667A (en) 2008-10-09

Family

ID=39537963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083399A Pending JP2008240667A (en) 2007-03-28 2007-03-28 Rotary compressor

Country Status (4)

Country Link
US (1) US20080240954A1 (en)
EP (1) EP1975413A1 (en)
JP (1) JP2008240667A (en)
CN (1) CN101275562A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223140A (en) * 2009-03-24 2010-10-07 Fujitsu General Ltd Two-stage compression rotary compressor
WO2010117214A2 (en) * 2009-04-09 2010-10-14 엘지전자 주식회사 Rotary-type 2-stage compressor
CN103727035A (en) * 2012-10-12 2014-04-16 Lg电子株式会社 Hemetic compressor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472280B (en) * 2009-08-06 2014-08-20 大金工业株式会社 Compressor
KR101681585B1 (en) * 2009-12-22 2016-12-01 엘지전자 주식회사 Twin type rotary compressor
CN102691661B (en) * 2011-03-23 2014-07-23 珠海格力节能环保制冷技术研究中心有限公司 Rotary compressor
JP2016114049A (en) * 2014-12-15 2016-06-23 三星電子株式会社Samsung Electronics Co.,Ltd. Rotary compressor
JP2018009534A (en) * 2016-07-14 2018-01-18 株式会社富士通ゼネラル Rotary Compressor
CN109026693B (en) * 2018-08-31 2023-10-03 珠海格力电器股份有限公司 Pump body assembly, compressor and air conditioner
DE102018217018A1 (en) * 2018-10-04 2020-04-09 Premium Aerotec Gmbh SEMI-FINISHED PRODUCT AND METHOD FOR PRODUCING A STRUCTURAL COMPONENT
CN110685911A (en) * 2019-09-29 2020-01-14 安徽美芝精密制造有限公司 Compressor and refrigeration equipment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205390A (en) * 1985-03-07 1986-09-11 Mitsubishi Electric Corp Two-cylinder type rotary compressor
US5006051A (en) * 1987-12-03 1991-04-09 Kabushiki Kaisha Toshiba Rotary two-cylinder compressor with delayed compression phases and oil-guiding bearing grooves
JP2768004B2 (en) * 1990-11-21 1998-06-25 松下電器産業株式会社 Rotary multi-stage gas compressor
US5597293A (en) * 1995-12-11 1997-01-28 Carrier Corporation Counterweight drag eliminator
JPH11230073A (en) 1998-02-10 1999-08-24 Sanyo Electric Co Ltd Compressor
JP3778730B2 (en) * 1999-07-01 2006-05-24 三洋電機株式会社 Manufacturing method of multi-cylinder rotary compressor
JP3389539B2 (en) * 1999-08-31 2003-03-24 三洋電機株式会社 Internal intermediate pressure type two-stage compression type rotary compressor
TW568996B (en) * 2001-11-19 2004-01-01 Sanyo Electric Co Defroster of refrigerant circuit and rotary compressor for refrigerant circuit
JP4247077B2 (en) * 2003-09-02 2009-04-02 東芝キヤリア株式会社 Air conditioner
US20080213116A1 (en) * 2004-12-14 2008-09-04 Young-Ju Bae Multi-Stage Rotary Compressor
JP2006177226A (en) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc Rotary compressor and air conditioner using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223140A (en) * 2009-03-24 2010-10-07 Fujitsu General Ltd Two-stage compression rotary compressor
WO2010117214A2 (en) * 2009-04-09 2010-10-14 엘지전자 주식회사 Rotary-type 2-stage compressor
WO2010117214A3 (en) * 2009-04-09 2011-01-20 엘지전자 주식회사 Rotary-type 2-stage compressor
CN102138004A (en) * 2009-04-09 2011-07-27 Lg电子株式会社 Rotary-type 2-stage compressor
US8807973B2 (en) 2009-04-09 2014-08-19 Lg Electronics Inc. Rotary-type 2-stage compressor
CN102138004B (en) * 2009-04-09 2015-04-01 Lg电子株式会社 Rotary-type 2-stage compressor
CN103727035A (en) * 2012-10-12 2014-04-16 Lg电子株式会社 Hemetic compressor
US9188126B2 (en) 2012-10-12 2015-11-17 Lg Electronics Inc. Hermatic compressor having a fluid guide disposed in an intermediate chamber
CN103727035B (en) * 2012-10-12 2017-01-11 Lg电子株式会社 Hemetic compressor

Also Published As

Publication number Publication date
US20080240954A1 (en) 2008-10-02
EP1975413A1 (en) 2008-10-01
CN101275562A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP2008240667A (en) Rotary compressor
US7563080B2 (en) Rotary compressor
JP4422208B2 (en) Expander integrated compressor
WO2005103496A1 (en) Rotating fluid machine
WO2005108795A1 (en) Rotary fluid machine
JP6664118B2 (en) 2-cylinder hermetic compressor
US20130171017A1 (en) Rotary compressor with dual eccentric portion
JP4380734B2 (en) Rotary compressor
JP6127722B2 (en) Rotary compressor
JP2008240666A (en) Rotary compressor and heat pump system
JP4065654B2 (en) Multi-cylinder rotary compressor
KR20210012231A (en) Rotary comppresor
JPH10141271A (en) Rotary compressor
JP4973148B2 (en) Rotary compressor
US10968911B2 (en) Oscillating piston-type compressor
JP4792947B2 (en) Compressor
JP2003065236A (en) Hermetic electric compressor
JP4830708B2 (en) Compressor
WO2022004027A1 (en) Rotary compressor and refrigeration cycle device
WO2022004028A1 (en) Rotary compressor and refrigeration cycle device
JP5343501B2 (en) Rotary compressor
KR101567086B1 (en) compressor
JP5423538B2 (en) Rotary compressor
JP2007092738A (en) Compressor
JP6673491B2 (en) Hermetic compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104