JP2006177226A - Rotary compressor and air conditioner using the same - Google Patents

Rotary compressor and air conditioner using the same Download PDF

Info

Publication number
JP2006177226A
JP2006177226A JP2004370381A JP2004370381A JP2006177226A JP 2006177226 A JP2006177226 A JP 2006177226A JP 2004370381 A JP2004370381 A JP 2004370381A JP 2004370381 A JP2004370381 A JP 2004370381A JP 2006177226 A JP2006177226 A JP 2006177226A
Authority
JP
Japan
Prior art keywords
compression element
rotary
flow path
intermediate flow
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004370381A
Other languages
Japanese (ja)
Inventor
Atsushi Kubota
淳 久保田
Kazutaka Watabe
一孝 渡部
Masato Kaneko
正人 金子
Atsushi Onuma
敦 大沼
Hiroshi Izaki
宏 井崎
Tetsuya Tadokoro
哲也 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2004370381A priority Critical patent/JP2006177226A/en
Publication of JP2006177226A publication Critical patent/JP2006177226A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve assembling work efficiency of a device such as piping while reducing an occupied area of a rotary two-stage compressor. <P>SOLUTION: The rotary two-stage compressor is provided with a rotary compression element having a low pressure compression element and a high pressure compression element, and an intermediate passage connected to a compression chamber of the low pressure compression element and a compression chamber of the high pressure compression element and separated from the internal space of a sealed container. The outer peripheral side lower part of the sealed container is provided with three legs almost uniformly in the circumferential direction. An accumulator connected to a suction port of the low pressure compression element, the intermediate passage, and injection piping connected to the intermediate passage are provided between the adjacent legs provided at the sealed container, and installed such that the outer periphery of the accumulator is closer to the leg than that of the injection piping. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷凍サイクルを備えた空気調和機とそれに用いられるロータリ圧縮機に関する。   The present invention relates to an air conditioner equipped with a refrigeration cycle and a rotary compressor used therefor.

従来、冷凍サイクルに使用されるロータリ2段圧縮機として、例えば特開昭60−128990号公報(以下、特許文献1)に開示された構造が知られている。この従来技術における圧縮機は、密閉容器の内部において上部にステータとロータからなる電動機を備えている。電動機に連結された回転軸は2つの偏心部を備えている。それらの偏心部に対応した圧縮機構として、電動機側から順に、高圧用圧縮要素と低圧用圧縮要素とが密閉容器の内部に設けられている。   Conventionally, as a rotary two-stage compressor used in a refrigeration cycle, for example, a structure disclosed in Japanese Patent Application Laid-Open No. 60-128990 (hereinafter referred to as Patent Document 1) is known. The compressor in this prior art is provided with an electric motor composed of a stator and a rotor at the upper part inside a sealed container. The rotating shaft connected to the electric motor has two eccentric portions. As a compression mechanism corresponding to these eccentric portions, a high-pressure compression element and a low-pressure compression element are provided inside the sealed container in order from the electric motor side.

各圧縮要素は、回転軸の偏心部の偏心回転によりローラを公転運動させる。それらの偏心部は位相が180°異なり、各圧縮要素の圧縮工程の位相差は180°である。すなわち2つの圧縮要素の圧縮工程は逆位相である。   Each compression element revolves the roller by the eccentric rotation of the eccentric portion of the rotation shaft. The eccentric portions have a phase difference of 180 °, and the phase difference of the compression process of each compression element is 180 °. That is, the compression process of the two compression elements is in antiphase.

作動流体であるガス冷媒は低圧Psで冷媒の液戻りを防止するアキュムレータを通過して、低圧用圧縮要素内に吸入されて、圧縮されて中間圧Pmに上昇する。中間圧Pmで吐出されたガス冷媒は中間流路に吐出される。次に中間圧Pmのガス冷媒は中間流路を経て高圧用圧縮要素内に吸入され、高圧Pdに圧縮される。   The gas refrigerant that is the working fluid passes through an accumulator that prevents the refrigerant from returning at low pressure Ps, is sucked into the compression element for low pressure, is compressed, and rises to an intermediate pressure Pm. The gas refrigerant discharged at the intermediate pressure Pm is discharged into the intermediate flow path. Next, the gas refrigerant having the intermediate pressure Pm is sucked into the high pressure compression element through the intermediate flow path and compressed to the high pressure Pd.

圧縮機から吐出された高圧Pdのガス冷媒は凝縮器で凝縮された後、膨張機構で低圧Psまで減圧される。その後、蒸発器で蒸発してガス冷媒となり低圧用圧縮要素内に吸入される。   The high-pressure Pd gas refrigerant discharged from the compressor is condensed by the condenser and then decompressed to the low pressure Ps by the expansion mechanism. After that, it evaporates in an evaporator to become a gas refrigerant and is sucked into the low pressure compression element.

このようなロータリ2段圧縮機の構造として、例えば特許文献1に開示された構造が知られている。この従来技術におけるロータリ2段圧縮機では中間流路の形状については言及されておらず、中間流路の上流側と下流側では回転軸の回転中心に対して、逆方向に設置されているのが図示されている。   As a structure of such a rotary two-stage compressor, for example, a structure disclosed in Patent Document 1 is known. In this conventional rotary two-stage compressor, the shape of the intermediate flow path is not mentioned, and the upstream and downstream sides of the intermediate flow path are installed in opposite directions with respect to the rotation center of the rotation shaft. Is shown.

またガスインジェクションサイクルに使用されるロータリ2段圧縮機として、例えば特開平5−106575号公報(以下、特許文献2)に示された構造が知られている。ガスインジェクションサイクルの気液分離器と中間流路を連通するインジェクション配管が、中間流路に接続されている。   Further, as a rotary two-stage compressor used in a gas injection cycle, for example, a structure shown in JP-A-5-106575 (hereinafter referred to as Patent Document 2) is known. An injection pipe communicating the gas / liquid separator of the gas injection cycle and the intermediate flow path is connected to the intermediate flow path.

特開昭60−128990号公報(第5頁、第1図)JP-A-60-128990 (page 5, FIG. 1)

特開平5−106575号公報(第6頁、第8図)JP-A-5-106575 (page 6, FIG. 8)

従来技術で述べたインジェクションサイクルで使用されるロータリ2段圧縮機では、アキュムレータと、その下流に位置する吸込管と、中間流路と、インジェクション配管とを備えていて複雑な配管となっている。そのためロータリ2段圧縮機の外形寸法が大きくなり、圧縮機単独の輸送や保管時や、空気調和機に設置する時の占有面積が大きくなるという課題があった。   The rotary two-stage compressor used in the injection cycle described in the prior art is a complicated pipe including an accumulator, a suction pipe located downstream thereof, an intermediate flow path, and an injection pipe. Therefore, the external dimension of the rotary two-stage compressor is increased, and there is a problem that an occupied area is increased when the compressor is transported and stored alone or when it is installed in an air conditioner.

さらにロータリ2段圧縮機の組み立て時に、複雑な配管により中間流路やインジェクション配管の溶接作業が困難であるという課題があった。   Further, when assembling the rotary two-stage compressor, there is a problem that it is difficult to weld the intermediate flow path and the injection pipe due to complicated piping.

さらにロータリ2段圧縮機を空気調和機に組み付ける際に、低圧Ps側や高圧Pd側のサイクル配管とロータリ2段圧縮機との接続に加えて、気液分離器とインジェクション配管とを接続する際に、複雑な配管であるため溶接作業性が困難であるという課題があった。   Furthermore, when assembling the rotary two-stage compressor to the air conditioner, in addition to connecting the low-pressure Ps-side or high-pressure Pd-side cycle pipe and the rotary two-stage compressor, the gas-liquid separator and the injection pipe are connected. In addition, there is a problem that welding workability is difficult because of complicated piping.

上記目的を達成するために、本発明のロータリ圧縮機は、密閉容器内に電動機と、その電動機で駆動され2つの偏心部を有する回転軸と、前記偏心部の偏心回転により圧縮する低圧用圧縮要素と高圧用圧縮要素とが設けられた回転圧縮要素と、前記低圧用圧縮要素の圧縮室と前記高圧用圧縮要素の圧縮室とに接続する前記密閉容器の内部空間と隔てた中間流路と、前記密閉容器の外周側の下部に設けられた3つの脚とを有し、前記低圧用圧縮要素と接続するアキュムレータと、前記密閉容器の外側に配された中間流路と、この密閉容器の外側に配された中間流路の途中に設けられインジェクション配管と接続するインジェクション用配管とが、隣り合う前記脚の間に設けられ、前記インジェクション配管と前記隣り合う脚の一方の脚との距離より、前記アキュムレータと前記隣り合う脚の他方の脚との距離のほうが短くした。   In order to achieve the above object, a rotary compressor according to the present invention comprises a motor in a sealed container, a rotary shaft driven by the motor and having two eccentric parts, and a compression for low pressure compressed by eccentric rotation of the eccentric part. A rotary compression element provided with an element and a compression element for high pressure, an intermediate flow path separated from an internal space of the sealed container connected to a compression chamber of the compression element for low pressure and a compression chamber of the compression element for high pressure An accumulator connected to the compression element for low pressure, an intermediate flow path disposed outside the sealed container, and An injection pipe that is provided in the middle of the intermediate flow path arranged on the outside and is connected to the injection pipe is provided between the adjacent legs, and the distance between the injection pipe and one leg of the adjacent legs Ri, towards the distance between the other leg of the accumulator and the adjacent leg is shortened.

さらに、インジェクション配管が長管部と短管部を備えた略L字状であり、その短管部の端部を中間流路に接続してもよい。またインジェクションサイクル制御用の温度センサまたは温度センサ固定部材を、短管部に備えてもよい。   Further, the injection pipe may have a substantially L shape having a long pipe portion and a short pipe portion, and an end portion of the short pipe portion may be connected to the intermediate flow path. Moreover, you may equip the short pipe part with the temperature sensor or temperature sensor fixing member for injection cycle control.

また空気調和機の室外機として、本発明のロータリ2段圧縮機と、サイクルを構成するための配管との接続部をその一端部に備えた熱交換器と、気液分離器と、を備え、空気調和機の上方から見て、インジェクション配管や気液分離機よりもアキュムレータが熱交換器の接続部に近接するように配置した。このような構成を備えることで、空気調和機への組み付け作業性が向上する。   As an outdoor unit of an air conditioner, the rotary two-stage compressor according to the present invention, a heat exchanger provided at one end thereof with a connection part for piping for constituting a cycle, and a gas-liquid separator are provided. As seen from above the air conditioner, the accumulator was arranged closer to the connection part of the heat exchanger than the injection pipe and the gas-liquid separator. By providing such a configuration, the workability of assembling to the air conditioner is improved.

本発明によれば、圧縮機の占有面積を低減しつつ装置の組立て作業性を向上する。   ADVANTAGE OF THE INVENTION According to this invention, the assembly workability | operativity of an apparatus is improved, reducing the occupation area of a compressor.

本発明の一実施形態を、図を用いて説明する。図1に本実施形態のロータリ2段圧縮機1の縦断面図を、図2に上面図である矢印Aの矢視図を、図3に側面図である矢印Bの矢視図を示す。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of the rotary two-stage compressor 1 of the present embodiment, FIG. 2 is a top view of the arrow A, and FIG. 3 is a side view of the arrow B.

圧縮機1は、底部21と蓋部12と胴部22からなる密閉容器13を備える。密閉容器13内部の上方には、ステータ7とロータ8を有する電動機14が設けられている。電動機14に連結された回転軸2は、2つの偏心部5を備えて、主軸受9と副軸受19aに軸支されている。   The compressor 1 includes a sealed container 13 including a bottom portion 21, a lid portion 12, and a body portion 22. An electric motor 14 having a stator 7 and a rotor 8 is provided above the inside of the sealed container 13. The rotating shaft 2 connected to the electric motor 14 includes two eccentric portions 5 and is pivotally supported by the main bearing 9 and the auxiliary bearing 19a.

その回転軸2に対して電動機14側から順に、端板部9aを備えた主軸受9、円筒状のシリンダ10b、中間仕切板15、円筒状のシリンダ10a及び端板部19bと副軸受19aを備えた中間容器19が積層され、ボルト等の締結要素36で一体化されている。   A main bearing 9 provided with an end plate portion 9a, a cylindrical cylinder 10b, an intermediate partition plate 15, a cylindrical cylinder 10a, an end plate portion 19b, and a sub-bearing 19a in order from the motor 14 side with respect to the rotating shaft 2. The provided intermediate container 19 is laminated and integrated with a fastening element 36 such as a bolt.

端板部9aは、胴部22の内壁に溶接によって固定されて、主軸受9を支持している。端板部19bは、副軸受19aに支持されている。なお、本実施形態では端板部19bが締結要素36で固定されているが、胴部22に溶接で固定されても構わない。   The end plate portion 9 a is fixed to the inner wall of the body portion 22 by welding and supports the main bearing 9. The end plate portion 19b is supported by the auxiliary bearing 19a. In the present embodiment, the end plate portion 19b is fixed by the fastening element 36, but may be fixed to the body portion 22 by welding.

各圧縮要素20aと20bは、図1のように構成されている。すなわち、低圧圧縮要素20aは、端板部19bと、円筒状のシリンダ10aと、偏心部5aの外周に嵌め合わされた円筒状のローラ11aと、中間仕切板15とで圧縮室23aは構成される。   Each compression element 20a and 20b is configured as shown in FIG. That is, in the low pressure compression element 20a, the compression chamber 23a is configured by the end plate portion 19b, the cylindrical cylinder 10a, the cylindrical roller 11a fitted to the outer periphery of the eccentric portion 5a, and the intermediate partition plate 15. .

また、高圧圧縮要素20bは、主軸受9と、円筒状のシリンダ10bと、偏心部5bの外周に嵌め合わされた円筒状のローラ11bと、中間仕切板15とで圧縮室23bは構成される。   In the high-pressure compression element 20b, a compression chamber 23b is constituted by the main bearing 9, the cylindrical cylinder 10b, the cylindrical roller 11b fitted to the outer periphery of the eccentric portion 5b, and the intermediate partition plate 15.

それらの圧縮室23a、23bは、コイルバネのような付勢力付与手段に連結された平板状のベーン18が、偏心部5a、5bの偏心運動に合わせて回転するローラ11a、11bの外周上を接触しながら進退運動することにより、圧縮室23a、23bを圧縮空間と吸込み空間に分割する。   These compression chambers 23a and 23b contact the outer periphery of the rollers 11a and 11b in which a flat vane 18 connected to an urging force applying means such as a coil spring rotates in accordance with the eccentric motion of the eccentric portions 5a and 5b. While moving forward and backward, the compression chambers 23a and 23b are divided into a compression space and a suction space.

圧縮要素20は、偏心部5が偏心回転することでローラ11を駆動する。図1に示すように偏心部5aと偏心部5bは位相が180°異なり、圧縮要素20a、20bの圧縮工程の位相差は180°である。すなわち2つの圧縮要素の圧縮工程は逆位相となっている。   The compression element 20 drives the roller 11 when the eccentric part 5 rotates eccentrically. As shown in FIG. 1, the eccentric portion 5a and the eccentric portion 5b have a phase difference of 180 °, and the phase difference in the compression process of the compression elements 20a and 20b is 180 °. That is, the compression process of the two compression elements is in opposite phase.

作動流体であるガス冷媒の流れを、図1の矢印で表す。配管31を通って供給される低圧Psのガス冷媒は、液戻り防止用のアキュムレータ61を流下して、アキュムレータ61の下流の吸込管67と接続する吸入口25aより低圧用圧縮要素20a内に吸入される。   The flow of the gas refrigerant which is a working fluid is represented by an arrow in FIG. The low-pressure Ps gas refrigerant supplied through the pipe 31 flows down the accumulator 61 for preventing liquid return, and is sucked into the low-pressure compression element 20a from the suction port 25a connected to the suction pipe 67 downstream of the accumulator 61. Is done.

吸込まれた冷媒は、ローラ11aが偏心回転することにより中間圧Pmまで圧縮される。圧縮室23a内の冷媒ガス圧力が予め設定された圧力(中間圧Pm)になると開口する吐出弁28aが開口して、中間圧Pmとなったガス冷媒が、吐出口26aと連通する吐出空間33に吐出される。   The sucked refrigerant is compressed to an intermediate pressure Pm when the roller 11a rotates eccentrically. When the refrigerant gas pressure in the compression chamber 23a reaches a preset pressure (intermediate pressure Pm), the discharge valve 28a that opens is opened, and the gas refrigerant having the intermediate pressure Pm communicates with the discharge port 26a. Discharged.

この吐出空間33は、中間容器19と平板状のカバー35とにより密閉容器13内の密閉空間29と隔離された空間であり、その内部圧力は基本的には中間圧Pmとなる。中間流路30は、吐出空間33からの排出口26cと吸入口25bを連通する流路である。   The discharge space 33 is a space separated from the sealed space 29 in the sealed container 13 by the intermediate container 19 and the flat cover 35, and the internal pressure thereof is basically the intermediate pressure Pm. The intermediate flow path 30 is a flow path that connects the discharge port 26c from the discharge space 33 and the suction port 25b.

吐出弁28aが開口した吐出口26aから吐出された圧力Pmのガス冷媒は、吐出空間33に吐出された後、中間流路30を通って高圧圧力要素20bの圧力室23bと連通する吸入口25bに至る。   The gas refrigerant having the pressure Pm discharged from the discharge port 26a opened by the discharge valve 28a is discharged into the discharge space 33, and then passes through the intermediate flow path 30 and communicates with the pressure chamber 23b of the high-pressure element 20b. To.

次に、中間流路30を通過して吸入口25bより高圧用圧縮要素20b内に吸入された中間圧Pmのガス冷媒は、ローラ11bが公転することにより高圧Pdまで圧縮される。圧縮室23b内の圧力が予め設定された圧力になると開口する吐出弁28bが高圧Pdで開口すると、ガス冷媒は吐出口26bから密閉容器13の内部空間である密閉空間29に吐出される。この密閉空間29に吐出された高圧Pdのガス冷媒は、電動機14の隙間を通過して吐出管27より吐出される。   Next, the gas refrigerant having the intermediate pressure Pm passing through the intermediate flow path 30 and sucked into the high pressure compression element 20b from the suction port 25b is compressed to the high pressure Pd by the revolution of the roller 11b. When the discharge valve 28b that opens when the pressure in the compression chamber 23b reaches a preset pressure opens at high pressure Pd, the gas refrigerant is discharged from the discharge port 26b to the sealed space 29 that is the internal space of the sealed container 13. The high-pressure Pd gas refrigerant discharged into the sealed space 29 passes through the gap of the electric motor 14 and is discharged from the discharge pipe 27.

図1から図3を用いて、中間流路30周りの配管構造を説明する。吸込管67と中間流路30は、予め胴部22に溶接接合した円管状の挿入管64に溶接して接合する。中間流路30は、図1に示すように銅管の一部に180゜の曲げ加工を施した略U字形状である。   The piping structure around the intermediate flow path 30 will be described with reference to FIGS. 1 to 3. The suction pipe 67 and the intermediate flow path 30 are welded and joined to a circular insertion pipe 64 that has been welded to the body portion 22 in advance. As shown in FIG. 1, the intermediate flow path 30 has a substantially U shape in which a part of a copper tube is bent by 180 °.

吸込管67は、中間流路30と干渉しないように、銅管の2箇所をL字状に曲げ加工したものである。すなわち吸込管67の入り口部と出口部は、ねじれの位置関係である。これらの加工により、中間流路30の入り口と出口と、吸込管67の出口は、胴部22の長手方向に沿って一列に設置した。つまり、密閉容器の外側に配された中間流路30の低圧用圧縮要素20a側と前記高圧用圧縮要素20b側との二つの密閉容器貫通部及びアキュムレータ61と接続する配管の密閉容器貫通部とが一列に並んでいる。   The suction pipe 67 is formed by bending two portions of the copper pipe into an L shape so as not to interfere with the intermediate flow path 30. That is, the inlet portion and the outlet portion of the suction pipe 67 have a twisted positional relationship. By these processes, the inlet and outlet of the intermediate flow path 30 and the outlet of the suction pipe 67 were installed in a line along the longitudinal direction of the trunk portion 22. That is, two closed vessel penetration portions on the low pressure compression element 20a side and the high pressure compression element 20b side of the intermediate flow path 30 arranged outside the closed vessel, and a closed vessel penetration portion of the pipe connected to the accumulator 61, Are in a row.

アキュムレータ61は、円筒の上下が半球形状の鉄製の容器で、胴部22の長手方向に長い。アキュムレータ61は、図1の矢視B(図3)のように中間流路30の右側に配置した。   The accumulator 61 is an iron container whose upper and lower cylinders are hemispherical, and is long in the longitudinal direction of the body portion 22. The accumulator 61 was disposed on the right side of the intermediate flow path 30 as shown by an arrow B (FIG. 3) in FIG.

図1、図3に示したように中間流路30の下方の壁面に穴を設け、インジェクション配管17を挿入し、その周方向を溶接した。インジェクション配管17は、長管部65と短管部66を備え、銅管を曲げて成型した。   As shown in FIGS. 1 and 3, a hole was provided in the lower wall surface of the intermediate flow path 30, the injection pipe 17 was inserted, and the circumferential direction was welded. The injection pipe 17 includes a long pipe portion 65 and a short pipe portion 66, and is formed by bending a copper pipe.

長管部65の開口側は、配管接続用に拡管した。短管部66の外壁には、短管部66の長手方向に沿って銅製の円筒形状の感熱管62を備えた。感熱管62は、その内部にインジェクションサイクル制御用の円柱上の温度センサ(図示せず)が内挿される温度センサ固定部材でもよい。感熱管62は、温度センサとの接触面積を増大することで取り付け誤差による温度検出誤差を低減する。   The opening side of the long pipe portion 65 was expanded for pipe connection. A cylindrical heat-sensitive tube 62 made of copper was provided on the outer wall of the short tube portion 66 along the longitudinal direction of the short tube portion 66. The thermosensitive tube 62 may be a temperature sensor fixing member in which a temperature sensor (not shown) on a cylinder for injection cycle control is inserted. The heat sensitive tube 62 reduces the temperature detection error due to the mounting error by increasing the contact area with the temperature sensor.

インジェクション配管17の接続口である短管部66は、中間流路30の下方で、排出口26cの中心線より上方、すなわち中間流路30の曲げ部に接続した。このとき長管部65は胴部22の長手方向に平行、短管部66は水平方向とした。中間流路30と、インジェクション配管17と、感熱管62とは、溶接により一体にした。短管部66と中間流路30の溶接位置は、中間流路30と挿入管64とを溶接する際に、熱伝導により既に接合していた短管部66周辺の溶接材が軟化しないようにするためである。   The short pipe portion 66 that is a connection port of the injection pipe 17 is connected to the bent portion of the intermediate flow path 30 below the intermediate flow path 30 and above the center line of the discharge port 26c. At this time, the long pipe portion 65 was parallel to the longitudinal direction of the trunk portion 22, and the short pipe portion 66 was horizontal. The intermediate flow path 30, the injection pipe 17, and the heat sensitive pipe 62 are integrated by welding. The welding position of the short pipe portion 66 and the intermediate flow path 30 is set so that the welding material around the short pipe section 66 already joined by heat conduction is not softened when the intermediate flow path 30 and the insertion pipe 64 are welded. It is to do.

図2に示すように、ロータリ2段圧縮機1は、空気調和機等へ設置するための脚63を3個備えている。脚63は鉄製部材をプレス加工で成型し、胴部22の下部に溶接して固定されている。脚63は胴部22の中心に対して、周方向均等の120゜ピッチで配置されている。   As shown in FIG. 2, the rotary two-stage compressor 1 includes three legs 63 for installation in an air conditioner or the like. The legs 63 are formed by pressing an iron member and are fixed to the lower portion of the body 22 by welding. The legs 63 are arranged at an equal 120 ° pitch in the circumferential direction with respect to the center of the trunk portion 22.

アキュムレータ61、吸込管67、中間流路30、インジェクション配管17は、所定の脚と脚との一区間(図2の区間c)のみに配置し、他の2区間には配管の接続はない。さらに図2で示したようにアキュムレータ61の外周を区間cの脚63の近傍に設置し、インジェクション配管17の外周と脚63との間隔を大きくした。すなわち角度θ2を、角度θ1よりも大きくした。   The accumulator 61, the suction pipe 67, the intermediate flow path 30, and the injection pipe 17 are arranged only in one section (section c in FIG. 2) between a predetermined leg and the leg, and there is no pipe connection in the other two sections. Further, as shown in FIG. 2, the outer periphery of the accumulator 61 is installed in the vicinity of the leg 63 in the section c, and the interval between the outer periphery of the injection pipe 17 and the leg 63 is increased. That is, the angle θ2 is set larger than the angle θ1.

図2に示したように、隣り合う脚63と脚63の一区間cに、アキュムレータ61や管部を集中して配置し、他の2区間は自由空間としている。そのため図4に示すように、保管や輸送時のように多数のロータリ2段圧縮機1を密集して配置が可能となる。つまり、あるロータリ2段圧縮機1の区間c以外の自由空間に、他の2台のアキュムレータ61等(区間c)を近接して配置でき、全体の占有面積を小さくできる。   As shown in FIG. 2, the accumulator 61 and the pipe portion are concentrated in one section c of the adjacent legs 63 and the legs 63, and the other two sections are free spaces. Therefore, as shown in FIG. 4, a large number of rotary two-stage compressors 1 can be densely arranged as in storage or transportation. That is, the other two accumulators 61 and the like (section c) can be arranged close to a free space other than the section c of a certain rotary two-stage compressor 1, and the entire occupied area can be reduced.

このときインジェクション配管17の長管部55を鉛直方向、短管部56を水平方向としたため、各圧縮機間の配置ピッチ円を小さくでき占有面積を小さくできた。すなわちアキュムレータ63やインジェクション配管17の干渉がなく、各圧縮機を密集して配置できる。   At this time, since the long pipe portion 55 of the injection pipe 17 is set in the vertical direction and the short pipe portion 56 is set in the horizontal direction, the arrangement pitch circle between the compressors can be reduced, and the occupied area can be reduced. That is, there is no interference between the accumulator 63 and the injection pipe 17, and the compressors can be arranged densely.

またアキュムレータ61を区間cにおける一方の脚63に近接しているため、ロータリ2段圧縮機1の溶接の作業性が向上する。すなわち、接続管64と中間流路30や吸込管67を溶接する際、区間cにおける他方の脚63の障害が少なく、図2の破線に示す方向から溶接作業を行える。インジェクション配管17の短管部66側を中間流路30と接続しているのも、作業空間の拡大に貢献している。   Further, since the accumulator 61 is close to the one leg 63 in the section c, the workability of welding of the rotary two-stage compressor 1 is improved. That is, when welding the connecting pipe 64, the intermediate flow path 30, and the suction pipe 67, the other leg 63 in the section c is less obstructed and the welding operation can be performed from the direction shown by the broken line in FIG. The fact that the short pipe portion 66 side of the injection pipe 17 is connected to the intermediate flow path 30 also contributes to the expansion of the work space.

さらにロータリ2段圧縮機1の運転時には、質量の大きいアキュムレータ61の重力に伴い振動が増幅しやすいが、アキュムレータ61を脚63の近傍部に配置したため振動増幅を抑制するという利点もある。   Further, when the rotary two-stage compressor 1 is operated, vibration is easily amplified due to the gravity of the accumulator 61 having a large mass. However, since the accumulator 61 is disposed in the vicinity of the leg 63, there is an advantage that vibration amplification is suppressed.

次に本実施形態の圧縮機1を用いた空気調和機について、図を用いて説明する。本実施形態の空気調和機の構成図を、図5に示す。   Next, the air conditioner using the compressor 1 of this embodiment is demonstrated using figures. The block diagram of the air conditioner of this embodiment is shown in FIG.

圧縮機1から吐出された高圧Pdの冷媒ガスは、凝縮器3で凝縮した後、第一の膨張機構4で膨張し、中間圧Pmまで圧力が減圧される。この減圧された冷媒ガスは、気液分離器6でガス冷媒と液冷媒に分離される。分離された液冷媒は、気液分離器6の下流にある第2の膨張機構4でさらに低圧Psまで減圧された後、蒸発器16で蒸発してガス冷媒となる。   The high-pressure Pd refrigerant gas discharged from the compressor 1 is condensed by the condenser 3 and then expanded by the first expansion mechanism 4 to reduce the pressure to the intermediate pressure Pm. The decompressed refrigerant gas is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator 6. The separated liquid refrigerant is further depressurized to a low pressure Ps by the second expansion mechanism 4 downstream of the gas-liquid separator 6 and then evaporated by the evaporator 16 to become a gas refrigerant.

低圧Psのガス冷媒は配管31、アキュムレータ61、吸込管67を経て、吸入口25aより低圧用圧縮要素20a内に吸入され、偏心部5aに嵌め合わされたローラ11aが公転することにより中間圧Pmまで圧縮され、中間流路30へ吐出される。   The low-pressure Ps gas refrigerant is sucked into the low-pressure compression element 20a from the suction port 25a via the pipe 31, the accumulator 61, and the suction pipe 67, and the roller 11a fitted to the eccentric part 5a revolves to the intermediate pressure Pm. Compressed and discharged to the intermediate flow path 30.

この中間流路30のガス冷媒は、気液分離器6から供給され中間流路30と連通したインジェクション配管17から導かれる中間圧Pmのガス冷媒と混合する。その後吸入口25bより高圧用圧縮要素20b内に吸入された中間圧Pmのガス冷媒は、偏心部5bに嵌め合わされたローラ11bが公転することにより高圧力Pdまで圧縮されて、吐出管27より吐出される。   The gas refrigerant in the intermediate flow path 30 is mixed with the gas refrigerant having an intermediate pressure Pm supplied from the gas-liquid separator 6 and guided from the injection pipe 17 communicating with the intermediate flow path 30. Thereafter, the gas refrigerant having the intermediate pressure Pm sucked into the high pressure compression element 20b from the suction port 25b is compressed to the high pressure Pd by the revolution of the roller 11b fitted to the eccentric portion 5b, and discharged from the discharge pipe 27. Is done.

このようなインジェクションサイクルは、蒸発器16において伝熱性能の低いガス冷媒を中間流路30へバイパスするため、低圧用圧縮要素20aへの余分な循環流量を減少して圧縮仕事を低減し、冷凍サイクルの成績係数COPを向上する。またインジェクション配管17の上流に、流路17を開閉する二方弁34を設け、二方弁34を開くとインジェクションサイクルとなり、二方弁34を閉じると図2に示した通常の冷凍サイクルとなる切り替え可能な構成としても良い。また二方弁34の変わりに、流量を調節できる電磁膨張弁を用いても良い。   In such an injection cycle, the gas refrigerant having low heat transfer performance is bypassed to the intermediate flow path 30 in the evaporator 16, so that the excessive circulation flow to the low pressure compression element 20 a is reduced to reduce the compression work, and the refrigeration Improve cycle performance coefficient COP. Further, a two-way valve 34 for opening and closing the flow path 17 is provided upstream of the injection pipe 17, and when the two-way valve 34 is opened, an injection cycle is established, and when the two-way valve 34 is closed, the ordinary refrigeration cycle shown in FIG. It is good also as a structure which can be switched. Instead of the two-way valve 34, an electromagnetic expansion valve capable of adjusting the flow rate may be used.

インジェクション配管17には、インジェクション配管を流下するガス冷媒の流量を膨張機構4の弁開度で制御するため、温度センサ68を備える。温度センサ68は円柱形状で、感熱管62の内側に内挿される。ただし温度センサ62は、短管部66に直接取り付けてもよい。   The injection pipe 17 is provided with a temperature sensor 68 in order to control the flow rate of the gas refrigerant flowing down the injection pipe with the valve opening degree of the expansion mechanism 4. The temperature sensor 68 has a cylindrical shape and is inserted inside the thermal tube 62. However, the temperature sensor 62 may be directly attached to the short pipe portion 66.

図6に、本実施形態の室外機の構成を示す。図6には組み立て作業時の作業者の位置と、ベルトコンベア等の量産ラインにおいて室外機を移動させる場合の移動方向も示した。   In FIG. 6, the structure of the outdoor unit of this embodiment is shown. FIG. 6 also shows the position of the worker during assembly work and the direction of movement when the outdoor unit is moved on a mass production line such as a belt conveyor.

室外機は鉄板をプレスで成型した基板69の上に、冷房運転時は凝縮器3となり暖房運転時は蒸発器16となる熱交換器70と、送風用電動機71で駆動される送風機72と、圧縮機1と風路とを遮蔽する圧縮機カバー73、本実施形態のロータリ2段圧縮機1、略円筒形状の気液分離器6、温度センサ68を順次設置して構成する。熱交換器70は、図6に示したように略L字形状である。ただし熱交換器70は、L字形状の長手側をさらに曲げた略U字形状でもよい。   The outdoor unit is formed on a substrate 69 formed by pressing an iron plate, a heat exchanger 70 serving as a condenser 3 during cooling operation and an evaporator 16 during heating operation, a blower 72 driven by a blower motor 71, The compressor cover 73 that shields the compressor 1 and the air path, the rotary two-stage compressor 1 of the present embodiment, the substantially cylindrical gas-liquid separator 6, and the temperature sensor 68 are sequentially installed and configured. The heat exchanger 70 is substantially L-shaped as shown in FIG. However, the heat exchanger 70 may have a substantially U shape in which the long side of the L shape is further bent.

熱交換器70は、銅管の内面を加工した伝熱管74と、アルミ材をプレス加工した平板状のフィンで構成され、圧縮機1等に連通するサイクル配管との接続部76を備えている。ここで伝熱管74は縦方向を1列としたが、2列以上でもよい。   The heat exchanger 70 includes a heat transfer tube 74 obtained by processing the inner surface of a copper tube, and a flat plate fin formed by pressing an aluminum material, and includes a connection portion 76 connected to a cycle pipe communicating with the compressor 1 and the like. . Here, the heat transfer tubes 74 are arranged in one row in the vertical direction, but may be two or more rows.

圧縮機カバー73は鉄板を曲げ成型してもので、送風機系の風路損失を低減するため、略くの字もしくは略円弧状である。   Since the compressor cover 73 is formed by bending an iron plate, the compressor cover 73 has a substantially square shape or a substantially arc shape in order to reduce the air path loss of the blower system.

圧縮機1は、アキュムレータ61が中間流路30やインジェクション配管17や気液分離器17よりも接続部76に近接するような向きで設置する。圧縮機1は、図6で示した様にアキュムレータ61等を備えた区間cを圧縮機カバー73の開放側とし、他の2区間を圧縮機カバー73の各面に対面させた。このため図4で示したのと同様に、圧縮機1の占有面積を小さくでき、室外機の占有面積を小さくできる。   The compressor 1 is installed in such a direction that the accumulator 61 is closer to the connecting portion 76 than the intermediate flow path 30, the injection pipe 17, and the gas-liquid separator 17. As shown in FIG. 6, the compressor 1 has the section c including the accumulator 61 and the like as the open side of the compressor cover 73, and the other two sections face each surface of the compressor cover 73. Therefore, the area occupied by the compressor 1 can be reduced and the area occupied by the outdoor unit can be reduced as in the case shown in FIG.

気液分離器6は、アキュムレータ61や中間流路30よりも接続部76から遠方に設置した。気液分離器6は、図7に示すようにその長手方向を鉛直方向とし、インジェクション配管17の短管部66よりも上方の空間に配置した(図3参照)。   The gas-liquid separator 6 was installed farther from the connecting portion 76 than the accumulator 61 and the intermediate flow path 30. As shown in FIG. 7, the gas-liquid separator 6 is disposed in a space above the short pipe portion 66 of the injection pipe 17 with the longitudinal direction thereof being the vertical direction (see FIG. 3).

インジェクション配管17の短管部66を中間流路30の下方に設置しているため、中間流路30の側面側に空間を確保でき、前述の気液分離器6を配置できる。したがって室外機の空間を有効に活用して、気液分離器6と圧縮機1の占有面積を小さくする。   Since the short pipe portion 66 of the injection pipe 17 is installed below the intermediate flow path 30, a space can be secured on the side surface side of the intermediate flow path 30, and the above-described gas-liquid separator 6 can be disposed. Therefore, the space occupied by the outdoor unit is effectively utilized to reduce the area occupied by the gas-liquid separator 6 and the compressor 1.

圧縮機1はアキュムレータ61の位置を熱交換器70の接続部76側に配置したため、インジェクション配管17や気液分離器6が作業者に近い配置となっている。したがって圧縮機カバー73や熱交換器70が障害とならず、温度センサ68や気液分離器6の組み付け作業性を向上する。温度センサ68や、気液分離器6の組み付け方向を、図6を矢印で示す。   In the compressor 1, the position of the accumulator 61 is arranged on the connection part 76 side of the heat exchanger 70, so that the injection pipe 17 and the gas-liquid separator 6 are arranged close to the operator. Therefore, the compressor cover 73 and the heat exchanger 70 do not become obstacles, and the assembly workability of the temperature sensor 68 and the gas-liquid separator 6 is improved. The assembling direction of the temperature sensor 68 and the gas-liquid separator 6 is indicated by arrows in FIG.

気液分離器6に連通する配管とインジェクション配管17との溶接時も同様に、接合箇所が作業者の近傍にあるため圧縮機カバー73、熱交換器70、アキュムレータ61、中間流路30が障害とならず溶接作業性を向上している。この溶接箇所は、図6と図7の破線で示す。   Similarly, at the time of welding between the pipe communicating with the gas-liquid separator 6 and the injection pipe 17, since the joint portion is in the vicinity of the operator, the compressor cover 73, the heat exchanger 70, the accumulator 61, and the intermediate flow path 30 are obstructed. However, welding workability is improved. This weld location is indicated by a broken line in FIGS.

またインジェクション配管17の短管部66に感熱管62を設けたため、インジェクション配管17と気液分離器6とを溶接する際に感熱管62へ熱が伝わりにくい。そのため短管部66と感熱管62の既存の溶接箇所や、温度センサ68を熱から保護できる。   Further, since the heat sensitive tube 62 is provided in the short pipe portion 66 of the injection pipe 17, heat is hardly transmitted to the heat sensitive pipe 62 when the injection pipe 17 and the gas-liquid separator 6 are welded. Therefore, the existing welding location of the short tube part 66 and the heat sensitive tube 62 and the temperature sensor 68 can be protected from heat.

かかる構成により本実施形態では、室外機内の圧縮機や気液分離器の占有面積を小さくしつつ、組み付けや溶接作業性を向上する。   With this configuration, in this embodiment, assembly and welding workability are improved while reducing the area occupied by the compressor and gas-liquid separator in the outdoor unit.

本発明の一実施形態を示すロータリ2段圧縮機の縦断面図。The longitudinal cross-sectional view of the rotary 2 stage compressor which shows one Embodiment of this invention. 図1のA方向の矢視図。The arrow view of the A direction of FIG. 図1のB方向の矢視図。The arrow view of the B direction of FIG. 本発明の一実施形態を示すロータリ2段圧縮機の配置図。The layout of a rotary 2 stage compressor which shows one embodiment of the present invention. 本発明の一実施形態を示す冷凍サイクルの構成図。The block diagram of the refrigerating cycle which shows one Embodiment of this invention. 本発明の一実施形態を示す室外機の構成図。The block diagram of the outdoor unit which shows one Embodiment of this invention. 本発明の一実施形態を示す室外機の斜視図。The perspective view of the outdoor unit which shows one Embodiment of this invention.

符号の説明Explanation of symbols

1…圧縮機、4…膨張機構、6…気液分離器、17…インジェクション配管、20…圧縮要素、22…胴部、30…中間流路、61…アキュムレータ、62…感熱管、68…温度センサ、70…熱交換器。 DESCRIPTION OF SYMBOLS 1 ... Compressor, 4 ... Expansion mechanism, 6 ... Gas-liquid separator, 17 ... Injection piping, 20 ... Compression element, 22 ... Body part, 30 ... Intermediate flow path, 61 ... Accumulator, 62 ... Thermal tube, 68 ... Temperature Sensor, 70 ... heat exchanger.

Claims (5)

密閉容器内に電動機と、その電動機で駆動され2つの偏心部を有する回転軸と、前記偏心部の偏心回転により圧縮する低圧用圧縮要素と高圧用圧縮要素とが設けられた回転圧縮要素と、前記低圧用圧縮要素の圧縮室と前記高圧用圧縮要素の圧縮室とに接続すると共に前記密閉容器の内部空間と隔てられその一部が前記密閉容器の外側に配された中間流路と、前記密閉容器の外周側の下部に設けられた3つの脚とを有し、前記低圧用圧縮要素と接続するアキュムレータと、前記密閉容器の外側に配された中間流路と、この密閉容器の外側に配された中間流路の途中に設けられインジェクション配管と接続するインジェクション用配管とが、隣り合う前記脚の間に設けられ、前記インジェクション配管と前記隣り合う脚の一方の脚との距離より、前記アキュムレータと前記隣り合う脚の他方の脚との距離のほうが短いロータリ2段圧縮機。   A rotary compression element provided with an electric motor in a hermetic container, a rotary shaft driven by the electric motor and having two eccentric parts, a low pressure compression element and a high pressure compression element that are compressed by eccentric rotation of the eccentric part; An intermediate flow path connected to the compression chamber of the compression element for low pressure and the compression chamber of the compression element for high pressure and separated from the internal space of the sealed container, and a part of which is disposed outside the sealed container; An accumulator connected to the compression element for low pressure, an intermediate flow path arranged outside the sealed container, and an outer side of the sealed container. An injection pipe that is provided in the middle of the arranged intermediate flow path and connected to the injection pipe is provided between the adjacent legs, and the distance between the injection pipe and one leg of the adjacent legs, Serial accumulator and a short rotary 2-stage compressor towards the distance between the other leg of the adjacent leg. 請求項1のロータリ2段圧縮機において、前記インジェクション配管が長管部と短管部からなる略L字状であり、前記短管部の端部が前記中間流路に接続されたロータリ2段圧縮機。   2. The rotary two-stage compressor according to claim 1, wherein the injection pipe is substantially L-shaped including a long pipe portion and a short pipe portion, and an end portion of the short pipe portion is connected to the intermediate flow path. Compressor. 請求項2のロータリ2段圧縮機において、前記インジェクション配管の短管部に温度センサ若しくは温度センサ固定部材を備えるロータリ2段圧縮機。   The rotary two-stage compressor according to claim 2, wherein a temperature sensor or a temperature sensor fixing member is provided in a short pipe portion of the injection pipe. 請求項1記載のロータリ2段圧縮機において、前記密閉容器の外側に配された中間流路の前記低圧用圧縮要素側と前記高圧用圧縮要素側との二つの密閉容器貫通部及び前記アキュムレータと接続する配管の密閉容器貫通部とが一列に並んでいるロータリ2段圧縮機。   2. The rotary two-stage compressor according to claim 1, wherein two closed container penetrating portions on the low pressure compression element side and the high pressure compression element side of the intermediate flow path disposed outside the closed container and the accumulator are provided. A rotary two-stage compressor in which the sealed container penetration part of the pipe to be connected is arranged in a line. 室外機に、ロータリ2段圧縮機と、サイクル配管との接続部を備えた熱交換器と、前記インジェクション配管に連通する気液分離器と、を備えた空気調和機において、
前記ロータリ2段圧縮機が、密閉容器内に電動機と、その電動機で駆動され2つの偏心部を有する回転軸と、前記偏心部の偏心回転により圧縮する低圧用圧縮要素と高圧用圧縮要素とが設けられた回転圧縮要素と、前記低圧用圧縮要素の圧縮室と前記高圧用圧縮要素の圧縮室とに接続する前記密閉容器の内部空間と隔てた中間流路と、前記密閉容器の外周側の下部に設けられた3つの脚とを有し、前記低圧用圧縮要素と接続するアキュムレータと、前記中間流路と、前記中間流路に接続されるインジェクション用の配管とが、隣り合う脚の間の一区間内に設けられ、前記インジェクション配管と前記区間を規定する一方の脚との距離より、前記アキュムレータと前記区間を規定する他方の脚との距離のほうが短く、空気調和機の上方から見てインジェクション配管や気液分離機よりもアキュムレータが前記熱交換器の接続部に近接するように配置したことを特徴とする空気調和機。
In an air conditioner provided with an outdoor unit, a rotary two-stage compressor, a heat exchanger provided with a connection part with a cycle pipe, and a gas-liquid separator communicating with the injection pipe,
The rotary two-stage compressor includes an electric motor in a hermetically sealed container, a rotating shaft driven by the electric motor and having two eccentric portions, a low pressure compression element and a high pressure compression element that are compressed by eccentric rotation of the eccentric portion. A rotary compression element provided; an intermediate flow path separated from the internal space of the sealed container connected to the compression chamber of the low pressure compression element and the compression chamber of the high pressure compression element; An accumulator connected to the compression element for low pressure, the intermediate flow path, and an injection pipe connected to the intermediate flow path between adjacent legs. The distance between the accumulator and the other leg that defines the section is shorter than the distance between the injection pipe and one leg that defines the section, and is viewed from above the air conditioner. The Njekushon air conditioner, characterized in that the accumulator than piping and the gas-liquid separator is disposed to be adjacent to the connecting portion of the heat exchanger.
JP2004370381A 2004-12-22 2004-12-22 Rotary compressor and air conditioner using the same Pending JP2006177226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004370381A JP2006177226A (en) 2004-12-22 2004-12-22 Rotary compressor and air conditioner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004370381A JP2006177226A (en) 2004-12-22 2004-12-22 Rotary compressor and air conditioner using the same

Publications (1)

Publication Number Publication Date
JP2006177226A true JP2006177226A (en) 2006-07-06

Family

ID=36731562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370381A Pending JP2006177226A (en) 2004-12-22 2004-12-22 Rotary compressor and air conditioner using the same

Country Status (1)

Country Link
JP (1) JP2006177226A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1908958A2 (en) * 2006-09-29 2008-04-09 Fujitsu General Limited Rotary compressor and heat pump system
EP1975413A1 (en) * 2007-03-28 2008-10-01 Fujitsu General Limited Multi stage rotary compressor
WO2009061038A1 (en) * 2007-11-09 2009-05-14 Lg Electronics, Inc. 2 stage rotary compressor
WO2009064042A1 (en) * 2007-11-13 2009-05-22 Lg Electronics, Inc. 2 stage rotary compressor
CN101666314A (en) * 2008-09-03 2010-03-10 富士通将军股份有限公司 Injectible two-stage rotary compressor
JP2010159714A (en) * 2009-01-09 2010-07-22 Mitsubishi Electric Corp Rotary two-stage compressor
JP2011220549A (en) * 2010-04-05 2011-11-04 Daikin Industries Ltd Structure for mounting of temperature sensor
JP2015040555A (en) * 2013-08-23 2015-03-02 東芝キヤリア株式会社 Multistage compressor and refrigeration cycle device
JP2017190710A (en) * 2016-04-13 2017-10-19 株式会社富士通ゼネラル Rotary Compressor
WO2018168345A1 (en) * 2017-03-17 2018-09-20 パナソニックIpマネジメント株式会社 Rotary compressor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089655A (en) * 1983-10-20 1985-05-20 三洋電機株式会社 Heat exchange unit
JPS60128990A (en) * 1983-12-16 1985-07-10 Hitachi Ltd Double stage rotary compressor
JPH04366369A (en) * 1991-06-13 1992-12-18 Daikin Ind Ltd Air conditioning apparatus
JPH05106575A (en) * 1991-08-23 1993-04-27 Hitachi Ltd Multi-cylinder rotary compressor
JPH05133368A (en) * 1991-11-12 1993-05-28 Matsushita Electric Ind Co Ltd Two-stage compression refrigerator provided with check valve device
JP2004285854A (en) * 2003-03-19 2004-10-14 Mitsubishi Electric Corp Multistage compression device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089655A (en) * 1983-10-20 1985-05-20 三洋電機株式会社 Heat exchange unit
JPS60128990A (en) * 1983-12-16 1985-07-10 Hitachi Ltd Double stage rotary compressor
JPH04366369A (en) * 1991-06-13 1992-12-18 Daikin Ind Ltd Air conditioning apparatus
JPH05106575A (en) * 1991-08-23 1993-04-27 Hitachi Ltd Multi-cylinder rotary compressor
JPH05133368A (en) * 1991-11-12 1993-05-28 Matsushita Electric Ind Co Ltd Two-stage compression refrigerator provided with check valve device
JP2004285854A (en) * 2003-03-19 2004-10-14 Mitsubishi Electric Corp Multistage compression device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1908958A3 (en) * 2006-09-29 2010-10-13 Fujitsu General Limited Rotary compressor and heat pump system
EP1908958A2 (en) * 2006-09-29 2008-04-09 Fujitsu General Limited Rotary compressor and heat pump system
EP1975413A1 (en) * 2007-03-28 2008-10-01 Fujitsu General Limited Multi stage rotary compressor
KR101299370B1 (en) 2007-11-09 2013-08-22 엘지전자 주식회사 2 stage rotary compressor
WO2009061038A1 (en) * 2007-11-09 2009-05-14 Lg Electronics, Inc. 2 stage rotary compressor
US8342825B2 (en) 2007-11-09 2013-01-01 Lg Electronics Inc. 2 stage rotary compressor
WO2009064042A1 (en) * 2007-11-13 2009-05-22 Lg Electronics, Inc. 2 stage rotary compressor
US20100284847A1 (en) * 2007-11-13 2010-11-11 Jeong-Min Han 2 stage rotary compressor
CN101835988B (en) * 2007-11-13 2012-11-21 Lg电子株式会社 2 stage rotary compressor
CN101666314A (en) * 2008-09-03 2010-03-10 富士通将军股份有限公司 Injectible two-stage rotary compressor
JP2010159714A (en) * 2009-01-09 2010-07-22 Mitsubishi Electric Corp Rotary two-stage compressor
JP2011220549A (en) * 2010-04-05 2011-11-04 Daikin Industries Ltd Structure for mounting of temperature sensor
JP2015040555A (en) * 2013-08-23 2015-03-02 東芝キヤリア株式会社 Multistage compressor and refrigeration cycle device
JP2017190710A (en) * 2016-04-13 2017-10-19 株式会社富士通ゼネラル Rotary Compressor
WO2018168345A1 (en) * 2017-03-17 2018-09-20 パナソニックIpマネジメント株式会社 Rotary compressor
JP2018155169A (en) * 2017-03-17 2018-10-04 パナソニックIpマネジメント株式会社 Rotary type compressor
CN110268166A (en) * 2017-03-17 2019-09-20 松下知识产权经营株式会社 Rotary compressor
CN110268166B (en) * 2017-03-17 2021-08-03 松下知识产权经营株式会社 Rotary compressor

Similar Documents

Publication Publication Date Title
KR20060060542A (en) Rotary type two stage compressor
JP2008286037A (en) Rotary compressor and heat pump system
JP2006177226A (en) Rotary compressor and air conditioner using the same
WO2007074631A1 (en) Rotary compressor
US20040211216A1 (en) Refrigerant cycle apparatus
KR101212642B1 (en) Mechanism for controlling and operating compressor capacity and air conditioner having the same
US9574561B2 (en) Scroll compressor and air conditioner including a scroll compressor
JP2003097468A (en) Rotary compressor
JP2003254276A (en) Rotary compressor
JP2004308968A (en) Heat exchanger
KR100646288B1 (en) Air conditioner
KR102461067B1 (en) Scroll compressor and air conditioner having this
JP4024056B2 (en) Rotary compressor
JP2003201982A (en) Rotary compressor
JP2003201981A (en) Rotary compressor
WO2023013340A1 (en) Scroll compressor
JP2003129958A (en) Rotary compressor
JP2007092738A (en) Compressor
JP2020090897A (en) Rotary compressor, manufacturing method of rotary compressor and refrigeration cycle device
JP2003106741A (en) Defrosting device of refrigerant circuit
JP2003120560A (en) Rotary compressor and manufacturing method thereof
JP2003097472A (en) Rotary compressor
KR101576227B1 (en) Valve assembly module of hermetic compressor
JP2003155987A (en) Defrosting device for refrigerant circuit and rotary compressor for refrigerant circuit
JP2003097469A (en) Rotary compressor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201