JPS60128990A - Double stage rotary compressor - Google Patents

Double stage rotary compressor

Info

Publication number
JPS60128990A
JPS60128990A JP23618083A JP23618083A JPS60128990A JP S60128990 A JPS60128990 A JP S60128990A JP 23618083 A JP23618083 A JP 23618083A JP 23618083 A JP23618083 A JP 23618083A JP S60128990 A JPS60128990 A JP S60128990A
Authority
JP
Japan
Prior art keywords
compression element
rotary
pressure
compression
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23618083A
Other languages
Japanese (ja)
Inventor
Hirokatsu Kosokabe
香曾我部 弘勝
Akio Sakazume
坂爪 秋郎
Yasutaka Noguchi
泰孝 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23618083A priority Critical patent/JPS60128990A/en
Publication of JPS60128990A publication Critical patent/JPS60128990A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To reduce torque variation of compressor by making the displacement of high pressure side compression element of double stage rotary compressor lower than that at the low pressure side while shifting the phase of compression strokes of both compression elements by 180 deg.. CONSTITUTION:The compressor 3 is containing a motor 14 in the upper section of an enclosed container 3a while a rotary compression element where high and low pressure compression elements 5, 4 are laminated integrally through an intermediate partition is contained in the lower section of motor 14. The displacement of high pressure compression element 5 is made 0.45-0.65 times that of low pressure compression element while the phase of compression stroke of high pressure compression element 5 is shifted by 180 deg. from that of low pressure compression element.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はロータリ式2段圧縮機に係シ、特に。[Detailed description of the invention] [Field of application of the invention] The present invention relates to rotary two-stage compressors, and more particularly to rotary two-stage compressors.

ヒートポンプ給湯装置のように温度落差の大きい冷凍サ
イクル、ヒートポンプ式ルームニアコンディショナの冷
凍サイクルに好適力2段圧縮冷凍サイクルに使用される
ロータリ式2段圧縮機に関するものである。
The present invention relates to a rotary two-stage compressor used in a two-stage compression refrigeration cycle, which is suitable for a refrigeration cycle with a large temperature drop such as a heat pump water heater, and a refrigeration cycle of a heat pump room near conditioner.

〔発明の背景〕[Background of the invention]

従来、ヒートポンプ給湯装置のように、蒸発温度と凝縮
温度との温度差の大きい冷凍サイクルにおいて、一般に
単段圧縮冷凍サイクルが使用されている。ヒートポンプ
式ルームニアコンディショナにおいても、同様に単段圧
縮冷凍サイクルが使用されている。
Conventionally, a single-stage compression refrigeration cycle is generally used in a refrigeration cycle in which there is a large temperature difference between evaporation temperature and condensation temperature, such as in a heat pump water heater. A single-stage compression refrigeration cycle is also used in heat pump type room near conditioners.

しかし、ヒートポンプ給湯装置、ヒートポンプ式ルーム
エアコンディジ式すにおいては、2段圧縮冷凍サイクル
を使用Lfc方が、単段圧縮冷凍サイクルを使用するよ
りも冷凍サイクルの効高が向上し、特に、温度落差の大
きいヒートポンプ給湯装置の場合には圧縮機吐出温度を
下げることができるので、圧縮機の過熱を防止すること
もできる。
However, in heat pump water heaters and heat pump room air conditioners, LFC using a two-stage compression refrigeration cycle improves the efficiency of the refrigeration cycle compared to using a single-stage compression refrigeration cycle. In the case of a heat pump water heater with a large temperature, the compressor discharge temperature can be lowered, so overheating of the compressor can be prevented.

ところが、従来は、2段圧縮冷凍サイクルにロータリ式
2段圧縮機を使用した実績がほとんどないので、2段圧
縮冷凍サイクルの成績係数を−大にし、また当該ロータ
リ式2段圧縮機の負荷トルクの変動を小さく(す力わち
振動、騒音を小さく)することができるロータリ式2段
圧縮機の構成が不明であり、これがロータリ式2段圧縮
機を使用する2段圧縮冷凍サイクルの実用化を阻害して
いた。
However, in the past, there was almost no experience of using a rotary two-stage compressor in a two-stage compression refrigeration cycle, so the coefficient of performance of the two-stage compression refrigeration cycle was set to -large, and the load torque of the rotary two-stage compressor was The structure of a two-stage rotary compressor that can reduce fluctuations in power (that is, reduce vibration and noise) is unknown, and this is the key to the practical application of a two-stage compression refrigeration cycle that uses a two-stage rotary compressor. was inhibiting.

〔発明の目的〕[Purpose of the invention]

本発明は、上記17た従来技術の問題点を解決して% 
2段圧縮冷凍サイクルの成績係数を最大にすることがで
き、しかもそれ自体の負荷トルクの変動の小ζいロータ
リ式2段圧縮機の提供を、その目的とするものである。
The present invention solves the above-mentioned 17 problems of the prior art and achieves
The object of the present invention is to provide a rotary two-stage compressor that can maximize the coefficient of performance of a two-stage compression refrigeration cycle and has small fluctuations in its own load torque.

〔発明のW要〕[W essential of invention]

本発明に係るロータリ式2段圧縮機の構成は、V閉容器
内に、電動機を上部に収納し、中間仕切板を介して高圧
用圧縮要素と低圧用圧縮要素とを積層状に重ねて一体化
した回転圧縮要素を前記電動機の下部に連結して収納し
てなるロータリ式2段圧縮機において、高圧用圧a要素
の押のけ量を低圧用圧縮要素の押のけ量の045〜0.
60倍とし、且つ前記高圧用圧縮要素の圧縮行程の位相
と前記低圧用圧縮要素の圧縮行程の位相との位相差を1
80度にするようにしたものである。
The structure of the rotary two-stage compressor according to the present invention is such that the electric motor is housed in the upper part of the V-closed container, and the high-pressure compression element and the low-pressure compression element are stacked and integrated in a stacked manner with an intermediate partition plate interposed therebetween. In a rotary two-stage compressor in which a rotary compression element is connected and housed in the lower part of the electric motor, the displacement amount of the high-pressure pressure a element is 045 to 0 of the displacement amount of the low-pressure compression element. ..
60 times, and the phase difference between the phase of the compression stroke of the high pressure compression element and the phase of the compression stroke of the low pressure compression element is 1.
The angle is 80 degrees.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明のロータリ式2段圧縮機の一例を、ヒート
ポンプ給湯装置に適用した実施例によって説明する。
An example of the rotary two-stage compressor of the present invention will be described below using an example in which it is applied to a heat pump water heater.

第1図は1本発明の一実施例に係るロータリ式2段圧縮
機の縦断面図、第2図は、第1図に係るロータリ式2段
圧縮機を使用したヒートポンプ給湯装置のサイクル構成
図である。
FIG. 1 is a longitudinal sectional view of a rotary two-stage compressor according to an embodiment of the present invention, and FIG. 2 is a cycle configuration diagram of a heat pump water heater using the rotary two-stage compressor according to FIG. It is.

まず、第1図を使用して、ロータリ式2段圧縮機を説明
する。このロータリ式2段圧縮機3は、密閉容器3a内
に、電動機14を上部に収納し。
First, a rotary two-stage compressor will be explained using FIG. This rotary two-stage compressor 3 has an electric motor 14 housed in the upper part of the closed container 3a.

中間仕切板15を介して高圧用圧縮要素5と低圧用圧縮
要素4とを積層状に重ねて一体化した回転圧縮要素を前
記電動機14の下部に連結し、て収納し、前記高圧用圧
縮要素5の押のけ量V、ヲ低圧用圧縮要素4の押のけ*
’+00.45〜0.60倍としく第3.4図を使用し
て詳細後述)%1つ高圧用圧縮要素5の圧縮行程の位相
と低圧用圧縮要素4の圧縮行程の位相との位相差全18
0度にした(第5図を使用して詳細後述)ものである。
A rotary compression element made by laminating and integrating a high-pressure compression element 5 and a low-pressure compression element 4 via an intermediate partition plate 15 is connected to the lower part of the electric motor 14 and housed therein. Displacement amount V of 5, displacement of compression element 4 for low pressure *
+00.45 to 0.60 times (Details will be described later using Fig. 3.4) % 1 The phase of the compression stroke of the compression element 5 for high pressure and the phase of the compression stroke of the compression element 4 for low pressure Phase difference total 18
0 degree (details will be described later using FIG. 5).

さらに詳しく説明すると、18は、偏心部18α。To explain in more detail, 18 is an eccentric portion 18α.

18bf有するクランク軸であシ、前記低圧用圧縮要素
4は、シリンダ17と、このシリンダ17内をクランク
軸18の偏心部18Aによって偏心回転サセラれるロー
ラ20と、このロー220と当接してシリンダ17内を
高圧室と低圧室とに区画するベーン(図示せず)と、シ
リンダ17の下の開口部を閉塞し、クランク軸18の軸
受部22a’)−有する下端面板22と、この下端面板
22の下端面を閉塞し、密閉した吐出室22Aを形成す
るカバー23とからなっている。一方、前記高圧用圧縮
要素5は、シリンダ16と、このシリンダ16内全クラ
ンク軸18の偏心部18cLによって偏心回転させられ
るローラ19と、このローラ19と当接してシリンダ1
6内を高圧室と低圧室とに区画するベーン(図示せず)
と、シリンダ16の上の開口部を閉塞し、クランク軸1
Bの軸受部21αを有する上端面板21と、この上端面
板21の上面に取付けられた吐出カバー24とからなっ
ている。また1、4αは吸入管、4bは、低圧用圧縮要
素4の吐出管、5αは、高圧用圧縮要素5の吸入管、3
bは吐出管である。
The low-pressure compression element 4 is connected to a cylinder 17, a roller 20 which is eccentrically rotated inside the cylinder 17 by an eccentric portion 18A of the crankshaft 18, and a roller 220 that contacts the cylinder 17. a vane (not shown) that partitions the interior into a high pressure chamber and a low pressure chamber; a lower end face plate 22 that closes the opening below the cylinder 17 and has a bearing portion 22a' of the crankshaft 18; A cover 23 closes the lower end surface of the discharge chamber 22A to form a sealed discharge chamber 22A. On the other hand, the high-pressure compression element 5 includes a cylinder 16, a roller 19 eccentrically rotated by an eccentric portion 18cL of the entire crankshaft 18 in the cylinder 16, and a cylinder 19 in contact with the roller 19.
A vane (not shown) that divides the inside of 6 into a high pressure chamber and a low pressure chamber
, the opening above the cylinder 16 is closed, and the crankshaft 1 is closed.
It consists of an upper end face plate 21 having a bearing portion 21α of B, and a discharge cover 24 attached to the upper face of this upper end face plate 21. Further, 1 and 4α are suction pipes, 4b are discharge pipes of the low-pressure compression element 4, 5α are suction pipes of the high-pressure compression elements 5, and 3
b is a discharge pipe.

次に、このロータリ式2段圧縮機3を給湯ユニット2内
に収納したヒートポンプ給湯装置を、第2図を使用して
説明する。
Next, a heat pump hot water supply system in which this two-stage rotary compressor 3 is housed in the hot water supply unit 2 will be described using FIG. 2.

1は、給湯用の温水を貯える貯湯タンク、11は、との
貯湯タンク1内へ水を補給する給水弁、。
1 is a hot water storage tank for storing hot water for hot water supply, and 11 is a water supply valve for replenishing water into the hot water storage tank 1.

12は、貯湯タンク1内の水を、後述する給湯ユニット
2内の給湯用熱交換器6と熱交換したのち再び貯湯タン
ク1内へと循環させるポンプ、13は、給湯栓である。
12 is a pump that exchanges heat with the hot water supply heat exchanger 6 in the hot water supply unit 2 to be described later, and then circulates the water in the hot water storage tank 1 again into the hot water storage tank 1; 13 is a hot water tap.

給湯ユニット2の詳細について説明すると、6は、ロー
タリ式2段圧縮機3の吐出管3bからの高圧冷媒ガスを
放熱、液化し、凝縮器としての機能を有する給湯用熱交
換器、7a、7.bは、液冷媒を減圧および降温する凝
縮器側減圧器、蒸発器側減圧器であシ1両減圧器7a、
7h間に気液分離器8が接続されている。8aFi、気
液分離器8内に配設され、低圧用圧縮要素4から吐出さ
れた過熱冷媒ガスを冷却する中間冷却器、 Bbは、こ
の気液分離器8内で分離、蒸発されたガス冷媒全上部か
ら引き出すガス抽出配管で、このガス抽出配管8bの途
中に逆上弁8Cが配設され、その先が中間冷却器8Gの
出口側に接続されている。
To explain the details of the hot water supply unit 2, 6 is a hot water supply heat exchanger, 7a, 7, which radiates heat and liquefies the high-pressure refrigerant gas from the discharge pipe 3b of the rotary two-stage compressor 3, and has a function as a condenser. .. b is a condenser-side pressure reducer that reduces the pressure and temperature of the liquid refrigerant, and an evaporator-side pressure reducer 7a;
The gas-liquid separator 8 is connected for 7 hours. 8aFi is an intercooler disposed in the gas-liquid separator 8 and cools the superheated refrigerant gas discharged from the low-pressure compression element 4; Bb is the gas refrigerant separated and evaporated in the gas-liquid separator 8; This gas extraction pipe 8b is a gas extraction pipe drawn out from the top, and a reverse valve 8C is disposed in the middle of the gas extraction pipe 8b, and the tip thereof is connected to the outlet side of the intercooler 8G.

前記逆止弁8Cにより逆方向の流れ、つまり気液分離器
8内への冷媒の流れは阻止されることになる。9は、減
圧された二相冷媒を吸熱、ガス化し、蒸発器としての機
能を有する室外側熱交換器、 9aは、この室外側熱交
換器9へ送風する送風機、10は、ロータリ式2段圧縮
機3への液冷媒の吸入を防止するアキュムレータである
The check valve 8C prevents the refrigerant from flowing in the opposite direction, that is, into the gas-liquid separator 8. 9 is an outdoor heat exchanger that absorbs heat and gasifies the depressurized two-phase refrigerant and functions as an evaporator; 9a is a blower that blows air to the outdoor heat exchanger 9; 10 is a rotary two-stage This is an accumulator that prevents liquid refrigerant from being sucked into the compressor 3.

ここで、前述した高圧用圧縮要素5の押のけ:!t ’
* k低圧用圧#1要素4の押のけ童V、0045〜0
.60とした理由、および高圧用圧縮要素5の圧縮行程
と低圧用圧縮要素4の圧縮行程との位相差を180度に
した理由を、それぞれ第3.4図。
Here, the above-mentioned high pressure compression element 5 is pushed away:! t'
* k Low pressure pressure #1 element 4 displacement force V, 0045~0
.. 60 and the reason why the phase difference between the compression stroke of the high-pressure compression element 5 and the compression stroke of the low-pressure compression element 4 is set to 180 degrees are shown in FIG. 3.4, respectively.

および第5図を使用して説明する。This will be explained using FIG.

第3図は、第2図に係るヒートポンプ給湯装置によって
、給水温度15℃から沸き上がり温度80℃まで加熱し
たときの、ロータリ式2段圧縮機の押のけ量比と平均成
績係数上の関係を示すrμγ、−Cap線図、第4図は
、第1図に係るロータリ式2段圧縮機を組込んたヒート
ポンプ式ルームエアコンディジ叢すの、ロータリ式2段
圧縮機の押のけ量比と成績係数との関係を示す’t/’
I−□線図である。
Figure 3 shows the relationship between the displacement ratio of the rotary two-stage compressor and the average coefficient of performance when the heat pump water heater according to Figure 2 heats the water supply from a temperature of 15°C to a boiling temperature of 80°C. Figure 4 shows the displacement ratio of the rotary two-stage compressor in a heat pump room air conditioner system incorporating the rotary two-stage compressor shown in Figure 1. 't/' indicates the relationship between and the coefficient of performance.
It is an I-□ diagram.

本発明者等の研究によれば、第2図に係るヒートポンプ
給湯装置によって、東京地区の年平均的水温に相当する
15℃から家庭用の給湯として80℃まで沸き上げたと
きの平均成績係数乙)(15℃から80℃まで加熱する
ときの成績係数capの平均値)と、高圧用圧縮要素5
の押のけ量V、と低圧用圧縮要素4の押のけ量V、との
比すなわちロータリ式2段圧縮機の押のけ量比V、/V
According to the research conducted by the present inventors, the heat pump water heater shown in Figure 2 has an average coefficient of performance of ) (average value of coefficient of performance cap when heating from 15°C to 80°C) and high pressure compression element 5
and the displacement amount V of the low-pressure compression element 4, that is, the displacement ratio of the rotary two-stage compressor V, /V
.

との関係は、第3図のようになり、平均成績係数cap
が最大となる押のけ量比’t/’+は約053であるこ
とがわかった。
Figure 3 shows the relationship between the average performance coefficient cap
It has been found that the displacement ratio 't/'+ at which the maximum is approximately 053.

一方、第1図に係るロータリ式2段圧縮機3を組込んだ
ヒートポンフ式ルームエアコンディジ目す(図示せず)
の成績係数Copと、ロータリ式2段圧縮機の押のけ量
比V、/V、との関係は、第4図のようにカリ、凝縮器
(室内側熱変換器)の吹出し空気温度が45〜60℃と
なる暖房運転時には押のけ量比V* /’ 、が0.4
5〜0.55において成績係数が最大とカリ、また凝縮
器(室外側熱り換器)の吹出し空気温度が約37℃とな
る冷房j!!転時には押のけ量比Vt /V、が約06
0において成績係数が最大となることがわかった。
On the other hand, a heat pump type room air conditioner digital camera incorporating the rotary two-stage compressor 3 according to Fig. 1 (not shown)
The relationship between the coefficient of performance Cop of During heating operation at a temperature of 45 to 60°C, the displacement ratio V*/' is 0.4
5 to 0.55, the coefficient of performance is maximum, and the temperature of the air blown out of the condenser (outdoor heat exchanger) is approximately 37 degrees Celsius! ! When turning, the displacement ratio Vt/V is approximately 06
It was found that the coefficient of performance was maximum at 0.

第5図は、第1図に係るロータリ式2段圧縮機の、高圧
用圧縮要素の圧縮行程と低圧用圧縮要素の圧縮行程との
位相差と、トルク変動率との関係を示す位相差−トルク
変動率線図である。
FIG. 5 shows the phase difference between the compression stroke of the high-pressure compression element and the compression stroke of the low-pressure compression element of the rotary two-stage compressor according to FIG. 1, and the relationship between the torque fluctuation rate. It is a torque fluctuation rate diagram.

本発明者等が、高圧用圧縮要素5の圧縮行程の位相と低
圧用圧縮要素4の圧縮行程の位相との位相差をいろいろ
変えてトル〉変動率(位相差0度のときのトルクを10
0%としたときの。
The present inventors changed the phase difference between the phase of the compression stroke of the high-pressure compression element 5 and the phase of the compression stroke of the low-pressure compression element 4 to
When set to 0%.

トルク変動幅/平均トルク)を調べたところ。When examining the torque fluctuation range/average torque).

第5図のようになり1位相差が180度のとき最もトル
ク変動率が小ざいことがわかった。
As shown in Fig. 5, it was found that the torque fluctuation rate was the smallest when one phase difference was 180 degrees.

以上に述べた研究結果に基づいて、ヒートボンフ給湯装
置、ヒートポンプ式ルームエアコンディジ画す用の2段
圧縮冷凍サイクルに使用されるロータリ式2段圧縮機は
、当該冷沖サイクルの成績係数全最大にするために、押
のけ量比を045〜060にすればよく、また負荷トル
クの変動を最小にするために、圧縮行程の位相差を18
0度にすればよいわけである。
Based on the research results described above, the rotary two-stage compressor used in the two-stage compression refrigeration cycle for heat-bonf water heaters and heat-pump room air conditioners has been designed to maximize the overall coefficient of performance of the cold-water cycle. Therefore, the displacement ratio should be set to 045 to 060, and the phase difference of the compression stroke should be set to 18 to minimize the variation in load torque.
All you have to do is set it to 0 degrees.

ヒートポンプ給湯製蓋用としてのロータリ式2段圧縮機
6は、前述したように、押のけ量比V、/V、が約0.
55のとき平均成績係数畜が最大となるが、外気条件の
変化を考慮して7/’1=045〜0,60にしたもの
を使用すれば、舅が常に最大値近傍でヒートポンプ給湯
装置を運転することができる。
As mentioned above, the rotary two-stage compressor 6 for the heat pump hot water supply lid has a displacement ratio V, /V of approximately 0.
When the average coefficient of performance is 55, the average coefficient of performance is at its maximum, but if you use a coefficient of 7/'1 = 045 to 0.60, taking into account changes in outside air conditions, your father-in-law will always be able to operate the heat pump water heater near the maximum value. Can drive.

このようK11lt成された、ロータリ式2段圧縮機5
を用いたヒートポンプ給湯装置の動作を、再び第2図を
使用して説明する。
A rotary two-stage compressor 5 made of K11lt like this
The operation of the heat pump hot water supply system will be explained using FIG. 2 again.

給水弁11から貯湯タンク1内へ水を補給し、貯湯タン
ク−1内に水を充満する。ここで、ヒートポンプ給湯装
置fONにすると、ポンプ12゜ロータリ式2段圧縮機
3.送風機9αが道−転される。
Water is supplied from the water supply valve 11 into the hot water storage tank 1, and the hot water storage tank 1 is filled with water. Here, when the heat pump water heater fON is turned on, the pump 12° rotary two-stage compressor 3. The blower 9α is diverted.

まず、冷媒の流れを説明すると、冷媒は吸入管4aから
ロータリ式2段圧縮機もへ吸込まれ、低圧用圧縮要素4
により圧縮された過熱ガス冷媒は、中間冷却器8αによ
り冷却されたのち、気液分離器8内で分離、蒸発され逆
止弁8Cを通って抽出されたガス冷媒とともに、吸入管
5αから高圧用圧縮要素5に吸入され、さらに高圧用圧
縮要素5で圧縮されて密閉容器3α内へ吐出される。密
閉容器3αから吐出管31を通って吐出された冷媒は、
給湯用熱交換器6.凝縮器側減圧器7αから気液分離器
8に入シ、ここで分離された液冷媒は、蒸発器側減圧器
7b、室外側熱交換器9を経て低圧用圧縮要素4へ吸込
まれて循環するという2段圧縮冷凍サイクルである。
First, to explain the flow of the refrigerant, the refrigerant is sucked into the rotary two-stage compressor from the suction pipe 4a, and the low-pressure compression element 4
The superheated gas refrigerant compressed by It is sucked into the compression element 5, further compressed by the high-pressure compression element 5, and discharged into the closed container 3α. The refrigerant discharged from the closed container 3α through the discharge pipe 31 is
Heat exchanger for hot water supply6. The liquid refrigerant enters the gas-liquid separator 8 from the condenser-side pressure reducer 7α, and the liquid refrigerant separated here passes through the evaporator-side pressure reducer 7b and the outdoor heat exchanger 9, and is sucked into the low-pressure compression element 4 and circulated. It is a two-stage compression refrigeration cycle.

以上のサイクルをモリエル線図全使用して説明する。The above cycle will be explained using the entire Mollier diagram.

第6図は、第2図に係るヒートポンプ給湯装置の2段圧
縮冷凍サイクルのモリエル線図である。この第6図にお
いて、A−+Bが低圧用圧縮要素4による1段目の圧縮
過程、C−+Dが高圧用圧縮要素5による2段目の圧縮
過程、D −+ Eが給湯用熱交換器6による凝m過程
、E−+Fが凝縮器側減圧器7αによる膨張過程、G→
Hが蒸発器側減圧器7bによる膨張過程、H→Aが室外
側熱り換器9による蒸発過程である。E−pFの膨張過
程で高圧液冷媒から発生するガス冷媒を気液分離器8に
よシ分離し、中間圧力で抽気して高圧用圧縮要素5に吸
入させる。また、気液分離器8内の中間冷却器8aKよ
シ、低圧用圧縮要素4′!!−出たガス冷媒を冷却して
温度降下させ、2段目吸入ガスのエンタルピ’&下ケる
( E −+ C)。
FIG. 6 is a Mollier diagram of the two-stage compression refrigeration cycle of the heat pump water heater according to FIG. 2. In FIG. 6, A-+B is the first compression process by the low-pressure compression element 4, C-+D is the second-stage compression process by the high-pressure compression element 5, and D-+E is the hot water supply heat exchanger. 6, the condensation m process, E-+F is the expansion process due to the condenser side pressure reducer 7α, G→
H is the expansion process by the evaporator side pressure reducer 7b, and H→A is the evaporation process by the outdoor heat exchanger 9. The gas refrigerant generated from the high-pressure liquid refrigerant during the expansion process of E-pF is separated by the gas-liquid separator 8, extracted at intermediate pressure, and sucked into the high-pressure compression element 5. In addition, the intercooler 8aK in the gas-liquid separator 8 and the low-pressure compression element 4'! ! - The gas refrigerant that comes out is cooled to lower its temperature, and the enthalpy of the second-stage suction gas is lowered (E − + C).

ようになっている。It looks like this.

したがって、実線で示した、第2図に係るヒートポンプ
給湯装置の2段圧縮冷凍サイクルは、破線で示した単段
圧縮冷凍サイクルに比較して無駄な膨張、圧縮の仕事が
減少する。
Therefore, the two-stage compression refrigeration cycle of the heat pump water heater according to FIG. 2, shown by the solid line, reduces wasteful expansion and compression work compared to the single-stage compression refrigeration cycle shown by the broken line.

一方、水の流れについて説明すると、貯湯タンク1内の
水はポンプ12によって給湯用熱交換器6へ送られる。
On the other hand, to explain the flow of water, water in the hot water storage tank 1 is sent to the hot water supply heat exchanger 6 by the pump 12.

ここで、前記2段圧縮冷凍サイクルの放熱によシ水が加
熱され、温度上昇した水は再び貯湯タンク1内へ環流す
る。貯湯タンク1内の水温が所定の沸き上が多温度(給
湯用途では最高80℃程度)に達すると、ヒートポンプ
給湯装置がOFFになり、ポンプ12.ロータリ式2段
圧縮機3.送風機9aの運転が停止する。
Here, the water is heated by the heat radiation of the two-stage compression refrigeration cycle, and the water whose temperature has increased flows back into the hot water storage tank 1. When the water temperature in the hot water storage tank 1 reaches a predetermined boiling temperature (up to about 80°C for hot water supply applications), the heat pump water heater is turned off and the pump 12. Rotary two-stage compressor 3. The operation of the blower 9a is stopped.

沸き上がった温水は、必要に応じて貯湯タンク1の上部
から引き出され給湯栓13を通して利用される。
The boiled hot water is drawn out from the top of the hot water storage tank 1 and used through the hot water tap 13 as needed.

以上説明した実施例によれば、各圧#要素4゜5の圧縮
行程の位相全180度ずらせることにょシ、電動機14
に加わるトルク変動を最小にして振動、騒音を低減し、
且つ低圧用圧縮要素4の押のけ’JIFIと高圧用圧縮
要素5の押のけ童r、との比’t0.45〜0./lo
にすることにより、ロータリ式2段圧縮機3′ft使用
した、最適な性能(す々わち平均成績係数の大き−)の
ヒートポンプ給湯装置を実用化することができるという
効果がある。
According to the embodiment described above, it is possible to shift the phase of the compression stroke of each pressure element 4°5 by 180 degrees, and the electric motor 14
Reduces vibration and noise by minimizing torque fluctuations applied to
In addition, the ratio between the displacement 'JIFI of the low-pressure compression element 4 and the displacement R of the high-pressure compression element 5 't0.45 to 0. /lo
By doing so, it is possible to put into practical use a heat pump water heater with optimal performance (that is, a large average coefficient of performance) using a 3'ft rotary two-stage compressor.

なお、上記実施例は、本発明のロータリ式2段圧縮機を
ヒートポンプ給湯装置に使用したものであるが、上記構
成のロータリ式2段圧縮機を、ヒートポンプ式ルームエ
アコンディジ目すに使用しても、成績係数の優れたヒー
トポンプ式ルームエアコンディジ目すを実用化すること
ができる。
In the above embodiment, the rotary two-stage compressor of the present invention is used in a heat pump water heater, but the rotary two-stage compressor with the above configuration is used in a heat pump room air conditioner. It is also possible to put into practical use a heat pump type room air conditioner with an excellent coefficient of performance.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、2段圧縮冷
凍サイクルの成績係数を最大にすることができ、しかも
それ自体の負荷′トルクの変動の小さいロータリ式2段
圧縮機を提供することができる。
As explained in detail above, the present invention provides a rotary two-stage compressor that can maximize the coefficient of performance of a two-stage compression refrigeration cycle and has small fluctuations in its own load and torque. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係るロータリ式2段圧縮
機の縦断面図、第2図は、第1図に係るロータリ式2段
圧縮機全使用したヒートポンプ給湯装置のサイクル構成
図、第3図は、−第2図に係るヒートポンプ給湯装置に
よって、給水温度15℃から沸き上がり温度80℃まで
加熱したときの、ロータリ式2段圧縮機の押のけ量比と
平均成績係数との関係を示すV、/V、−〇線図、第4
図は、第1図に係るロータリ式2段圧縮機を組込んだヒ
ートポンプ式ルームニアコンディショナの、ロータリ式
2段圧縮機の押のけ量比と成績係数との関係を示すV、
/V、 −cap線図、第5図は、゛第1図に係るロー
タリ式2段圧縮機の、為圧用圧縮要素の圧縮行程と低圧
用圧m要素の圧縮行程との位相差と、トルク変動率との
関係を示す位相差−トルク変動率線図、第6図は、第2
図に係るヒートポンプ給湯装置の2段圧縮冷凍サイクル
のモリエル線図である。 3・・・ロータリ式2段圧縮機 3α・・・密閉容器 4・・・低圧用圧縮要素5・・・
高圧用圧縮要素 14・・・電動機15・・・中間仕切
板 V、・・・低圧用圧縮要素の押のけ量 V、・・・高圧用圧縮要素の押のけ量 比1図 第 2 図 do93套螢製憎R工+ dop m姿’HM
FIG. 1 is a vertical cross-sectional view of a rotary two-stage compressor according to an embodiment of the present invention, and FIG. 2 is a cycle configuration diagram of a heat pump water heater using all of the rotary two-stage compressors according to FIG. 1. , FIG. 3 shows the displacement ratio and average coefficient of performance of the rotary two-stage compressor when the heat pump water heater according to FIG. V, /V, -〇 diagram showing the relationship between
The figure shows the relationship between the displacement ratio of the rotary two-stage compressor and the coefficient of performance of the heat pump room near conditioner incorporating the rotary two-stage compressor shown in FIG.
/V, -cap diagram, Fig. 5 shows the phase difference between the compression stroke of the high pressure compression element and the compression stroke of the low pressure m element of the rotary two-stage compressor shown in Fig. 1, and the torque. The phase difference-torque fluctuation rate diagram showing the relationship with the fluctuation rate, FIG.
FIG. 2 is a Mollier diagram of a two-stage compression refrigeration cycle of the heat pump water heater according to the figure. 3... Rotary two-stage compressor 3α... Closed container 4... Low pressure compression element 5...
Compression element for high pressure 14...Electric motor 15...Intermediate partition plate V,...Displacement amount V of compression element for low pressure,...Displacement amount ratio of compression element for high pressure 1 Figure 2 do93 mantle firework R engineering + dop m figure 'HM

Claims (1)

【特許請求の範囲】[Claims] 1、 密閉容器内に、電動機を上部に収納し、中間仕切
板を介して高圧用圧縮要素と低圧用圧縮要素とを積層状
に重ねて一体化した回転圧縮要素を前記電動機の下部に
連結して収納してなるロータリ式2段圧縮機において、
高圧用圧縮要素の押のけ量を低圧用圧縮要素の押のけ量
の0.45〜0.60倍とし、且つ前記高圧用圧縮要素
の圧縮行程の位相と前記低圧用圧縮要素の圧縮行程の位
相との位相差を180度にしたことを特徴とするロータ
リ式2段圧縮機。
1. In a closed container, an electric motor is housed in the upper part, and a rotary compression element, which is an integrated structure in which a high-pressure compression element and a low-pressure compression element are laminated and integrated, is connected to the lower part of the electric motor via an intermediate partition plate. In a rotary two-stage compressor that is housed in
The displacement amount of the high-pressure compression element is set to 0.45 to 0.60 times the displacement amount of the low-pressure compression element, and the phase of the compression stroke of the high-pressure compression element and the compression stroke of the low-pressure compression element A rotary two-stage compressor characterized by having a phase difference of 180 degrees with respect to the phase of the rotary compressor.
JP23618083A 1983-12-16 1983-12-16 Double stage rotary compressor Pending JPS60128990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23618083A JPS60128990A (en) 1983-12-16 1983-12-16 Double stage rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23618083A JPS60128990A (en) 1983-12-16 1983-12-16 Double stage rotary compressor

Publications (1)

Publication Number Publication Date
JPS60128990A true JPS60128990A (en) 1985-07-10

Family

ID=16996952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23618083A Pending JPS60128990A (en) 1983-12-16 1983-12-16 Double stage rotary compressor

Country Status (1)

Country Link
JP (1) JPS60128990A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990073A (en) * 1988-10-31 1991-02-05 Kabushiki Kaisha Toshiba Two-cylinder rotary compressor having improved valve cover structure
US5322424A (en) * 1991-11-12 1994-06-21 Matsushita Electric Industrial Co., Ltd. Two stage gas compressor
EP0935106A3 (en) * 1998-02-06 2000-05-24 SANYO ELECTRIC Co., Ltd. Multi-stage compressing refrigeration device and refrigerator using the device
WO2001016490A1 (en) * 1999-08-31 2001-03-08 Sanyo Electric Co., Ltd. Internal intermediate pressure 2-stage compression type rotary compressor
WO2001022008A1 (en) * 1999-09-24 2001-03-29 Sanyo Electric Co., Ltd. Multi-stage compression refrigerating device
EP1316730A2 (en) * 2001-11-30 2003-06-04 Sanyo Electric Co. Ltd Rotary compressor
US6824367B2 (en) * 2002-08-27 2004-11-30 Sanyo Electric Co., Ltd. Multi-stage compression type rotary compressor and a setting method of displacement volume ratio for the same
JP2006177225A (en) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc Rotary compressor
JP2006177226A (en) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc Rotary compressor and air conditioner using the same
US7252487B2 (en) * 2005-02-17 2007-08-07 Sanyo Electric Co., Ltd. Multi-stage rotary compressor having rollers which are different in thickness
JP2008138534A (en) * 2006-11-30 2008-06-19 Hitachi Appliances Inc Closed rotary compressor
KR100879177B1 (en) 2006-11-10 2009-01-16 히타치 어플라이언스 가부시키가이샤 Two-stage rotary compressor
JP2009097485A (en) * 2007-10-19 2009-05-07 Mitsubishi Heavy Ind Ltd Compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846886B2 (en) * 1979-11-20 1983-10-19 日本電信電話株式会社 Operating state change control device for traveling wave tube device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846886B2 (en) * 1979-11-20 1983-10-19 日本電信電話株式会社 Operating state change control device for traveling wave tube device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2224778B (en) * 1988-10-31 1992-11-25 Toshiba Kk Two-cylinder rotary compressor having improved valve cover structure
US4990073A (en) * 1988-10-31 1991-02-05 Kabushiki Kaisha Toshiba Two-cylinder rotary compressor having improved valve cover structure
US5322424A (en) * 1991-11-12 1994-06-21 Matsushita Electric Industrial Co., Ltd. Two stage gas compressor
EP0935106A3 (en) * 1998-02-06 2000-05-24 SANYO ELECTRIC Co., Ltd. Multi-stage compressing refrigeration device and refrigerator using the device
CN1299006C (en) * 1999-08-31 2007-02-07 三洋电机株式会社 Internal intermediate pressure 2-stage compression type rotary compressor
WO2001016490A1 (en) * 1999-08-31 2001-03-08 Sanyo Electric Co., Ltd. Internal intermediate pressure 2-stage compression type rotary compressor
US6651458B1 (en) 1999-08-31 2003-11-25 Sanyo Electric Co., Ltd. Internal intermediate pressure 2-stage compression type rotary compressor
WO2001022008A1 (en) * 1999-09-24 2001-03-29 Sanyo Electric Co., Ltd. Multi-stage compression refrigerating device
US6568198B1 (en) 1999-09-24 2003-05-27 Sanyo Electric Co., Ltd. Multi-stage compression refrigerating device
EP1316730A2 (en) * 2001-11-30 2003-06-04 Sanyo Electric Co. Ltd Rotary compressor
EP1316730A3 (en) * 2001-11-30 2004-02-04 Sanyo Electric Co. Ltd Rotary compressor
US6892454B2 (en) * 2001-11-30 2005-05-17 Sanyo Electric Co., Ltd. Rotary compressor, method for manufacturing the same, and defroster for refrigerant circuit
US6824367B2 (en) * 2002-08-27 2004-11-30 Sanyo Electric Co., Ltd. Multi-stage compression type rotary compressor and a setting method of displacement volume ratio for the same
KR100985672B1 (en) * 2002-08-27 2010-10-05 산요덴키가부시키가이샤 Multi-stage compression type rotary compressor and a setting method of displacement volume ratio for the same
JP2006177226A (en) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc Rotary compressor and air conditioner using the same
JP2006177225A (en) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc Rotary compressor
US7252487B2 (en) * 2005-02-17 2007-08-07 Sanyo Electric Co., Ltd. Multi-stage rotary compressor having rollers which are different in thickness
KR100879177B1 (en) 2006-11-10 2009-01-16 히타치 어플라이언스 가부시키가이샤 Two-stage rotary compressor
JP2008138534A (en) * 2006-11-30 2008-06-19 Hitachi Appliances Inc Closed rotary compressor
JP2009097485A (en) * 2007-10-19 2009-05-07 Mitsubishi Heavy Ind Ltd Compressor

Similar Documents

Publication Publication Date Title
CN101720413B (en) Refrigeration cycle device
US5848537A (en) Variable refrigerant, intrastage compression heat pump
JP5711448B2 (en) Heat pump system
US5214932A (en) Hermetically sealed electric driven gas compressor - expander for refrigeration
EP2578886B1 (en) Scroll compressor and air conditioner including the same
US7225635B2 (en) Refrigerant cycle apparatus
EP1645818B1 (en) Air-conditioner with a dual-refrigerant circuit
JPS60128990A (en) Double stage rotary compressor
WO2010098074A1 (en) Heat pump system
WO2009147826A1 (en) Refrigeration cycle device
JP2004183913A (en) Air conditioner
US9222706B2 (en) Refrigeration cycle apparatus and operating method of same
CN208793221U (en) Scroll compressor and air conditioning system comprising same
KR20100059170A (en) Heat pump storage system
JPH02230995A (en) Compressor for heat pump and operating method thereof
US4528823A (en) Heat pump apparatus
JP4192904B2 (en) Refrigeration cycle equipment
JP5163161B2 (en) Auxiliary heating unit and air conditioner
JP2514936B2 (en) Refrigeration cycle
JP2004143951A (en) Scroll compressor
JP5988828B2 (en) Refrigeration cycle equipment
CN205536246U (en) Rotary compressor and use this rotary compressor's air conditioner
JP2004138316A (en) Combined refrigeration device
JP4997024B2 (en) Heat pump water heater
JPH10267433A (en) Heat-storage type air conditioner