JP2514936B2 - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JP2514936B2
JP2514936B2 JP61232318A JP23231886A JP2514936B2 JP 2514936 B2 JP2514936 B2 JP 2514936B2 JP 61232318 A JP61232318 A JP 61232318A JP 23231886 A JP23231886 A JP 23231886A JP 2514936 B2 JP2514936 B2 JP 2514936B2
Authority
JP
Japan
Prior art keywords
stage
compressor
refrigerant
refrigeration cycle
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61232318A
Other languages
Japanese (ja)
Other versions
JPS6387559A (en
Inventor
正一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61232318A priority Critical patent/JP2514936B2/en
Publication of JPS6387559A publication Critical patent/JPS6387559A/en
Application granted granted Critical
Publication of JP2514936B2 publication Critical patent/JP2514936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は冷凍サイクルに係り、特に冷媒を2段圧縮す
る冷凍サイクルに関する。
The present invention relates to a refrigerating cycle, and more particularly to a refrigerating cycle in which a refrigerant is compressed in two stages.

(従来の技術) 圧縮機を2台直列に設けて冷媒を2段圧縮する2段圧
縮冷凍サイクルは圧縮効率の向上を目的として採用され
ている。
(Prior Art) A two-stage compression refrigeration cycle in which two compressors are provided in series to compress a refrigerant in two stages is adopted for the purpose of improving compression efficiency.

第5図及び第6図は従来の2段圧縮冷凍サイクルを示
すものであり、第5図及び第6図において符号1は低段
側圧縮機、2は高段側圧縮機、3は凝縮器、4は蒸発
器、5は中間冷却器、6,7は減圧装置(6は高段側、7
は低段側)である。第5図の冷凍サイクルでは、圧縮機
1より吐出された冷媒と凝縮器3を経て減圧装置6を出
た冷媒とは中間冷却器5で混合されて一方は蒸発器4側
へ流れ、他方は圧縮機2の吸込側へ流れる。また、第6
図の冷凍サイクルでは、圧縮機1より吐出された冷媒と
凝縮器3を経て減圧装置6を出た冷媒は中間冷却器5で
混合されて圧縮機2の吸込側へ流れる一方、凝縮器3よ
り中間冷却器5内を貫通する配管により蒸発器4側へ流
れる。第5-(a)図及び第6-(a)図の冷凍サイクルの
モリエル線図はそれぞれ第5-(b)図及び第6-(b)図
に示され、第5-(b)図におけるA〜Fは第5-(a)図
における各部所A〜Fに対応したものであり、第6-
(b)図におけるA〜Fは第6-(a)図における各部所
A〜Fに対応したものである。
5 and 6 show a conventional two-stage compression refrigeration cycle. In FIGS. 5 and 6, reference numeral 1 is a low-stage compressor, 2 is a high-stage compressor, and 3 is a condenser. 4 is an evaporator, 5 is an intercooler, 6 and 7 are pressure reducing devices (6 is a high-stage side, 7
Is the lower stage). In the refrigeration cycle of FIG. 5, the refrigerant discharged from the compressor 1 and the refrigerant discharged from the decompression device 6 via the condenser 3 are mixed in the intercooler 5 so that one flows to the evaporator 4 side and the other flows. It flows to the suction side of the compressor 2. Also, the sixth
In the refrigeration cycle shown in the figure, the refrigerant discharged from the compressor 1 and the refrigerant leaving the decompression device 6 via the condenser 3 are mixed in the intercooler 5 and flow to the suction side of the compressor 2, while being discharged from the condenser 3. It flows to the evaporator 4 side through a pipe penetrating the inside of the intercooler 5. The Mollier diagrams of the refrigeration cycle of Fig. 5- (a) and Fig. 6- (a) are shown in Fig. 5- (b) and Fig. 6- (b), respectively, and Fig. 5- (b). A to F in Fig. 5- (a) correspond to each part A to F in Fig. 5- (a), and
A to F in FIG. 6B correspond to respective parts A to F in FIG. 6-A.

第7図は従来の1段圧縮のガスインジェクションサイ
クルを示すものであり、圧縮機1より吐出された冷媒を
凝縮器3に導き熱交換させた後、気液分離器5を介して
圧縮機1のシリンダ内へ噴射するように構成したもので
ある。第7-(a)図の冷凍サイクルのモリエル線図は第
7-(b)図に示され、第7-(b)図のA〜Fは第7-
(a)図の各部所A〜Fに対応している。
FIG. 7 shows a conventional one-stage compression gas injection cycle, in which the refrigerant discharged from the compressor 1 is introduced into the condenser 3 for heat exchange, and then the compressor 1 is passed through the gas-liquid separator 5. It is configured to inject into the cylinder. The Mollier diagram of the refrigeration cycle in Fig. 7- (a) is
It is shown in Fig. 7- (b), and A to F in Fig. 7- (b) are shown in Fig. 7-.
(A) Corresponds to each part AF of the figure.

また、第8図は2段圧縮冷凍サイクルに蓄熱器を設け
た蓄熱サイクルの従来例を示すものであり、同図におい
て符号8は蓄熱器を示し、この蓄熱器8内には圧縮機2
より出た吐出ガスにより蓄熱材9に蓄熱する蓄熱用熱交
換器10aと、凝縮器3を出た配管より分岐した放熱用熱
交換器10bとが設けられ、この放熱用熱交換器10bで熱交
換された冷媒は圧縮機2の吸込側に戻されるように構成
されている。
Further, FIG. 8 shows a conventional example of a heat storage cycle in which a heat storage device is provided in a two-stage compression refrigeration cycle. In FIG. 8, reference numeral 8 denotes a heat storage device, and the compressor 2 is provided in the heat storage device 8.
A heat storage heat exchanger 10a that stores heat in the heat storage material 9 by the discharged gas that comes out and a heat radiation heat exchanger 10b that is branched from the pipe that exits the condenser 3 are provided. The exchanged refrigerant is configured to be returned to the suction side of the compressor 2.

さらに、第9図は従来の給湯ヒートポンプの冷凍サイ
クルを示す図であり、同図において符号11は四方弁、12
は室内熱交換器、13は室外熱交換器、14は給湯用熱交換
器であり、圧縮機1で1台で1段サイクルである。第9-
(b)図は第9-(a)図の冷凍サイクルのモリエル線図
を示し、第9-(b)図のA〜Dは第9-(a)図の各部所
A〜Dに対応している。
Further, FIG. 9 is a view showing a refrigerating cycle of a conventional hot water supply heat pump, in which reference numeral 11 is a four-way valve, 12
Is an indoor heat exchanger, 13 is an outdoor heat exchanger, and 14 is a hot water supply heat exchanger. One compressor 1 is a one-stage cycle. 9th-
Fig. 9 (b) shows the Mollier diagram of the refrigeration cycle in Fig. 9- (a), and A to D in Fig. 9- (b) correspond to the parts A to D in Fig. 9- (a). ing.

(発明が解決しようとする問題点) しかしながら、上述の第5図乃至第9図に図示した各
冷凍サイクルにはそれぞれ以下のような問題点がある。
(Problems to be Solved by the Invention) However, the refrigeration cycles shown in FIGS. 5 to 9 have the following problems.

即ち、第5図の2段圧縮冷凍サイクルにあっては、モ
リエル線図から明らかなように中間冷却器5で中間液冷
媒を飽和状態まで冷却する場合であるが、油の回収に問
題があり、次第に低段側へ片寄る恐れがあり、効率向上
及び能力向上を図った冷凍サイクルであるにもかかわら
ず、その効果は極くわずかであるという問題点がある。
一方、第6図の2段圧縮冷凍サイクルにあっては、モリ
エル線図から明らかなように中間冷却器5で中間液冷媒
を飽和状態まで冷却できず蒸発器側エンタルピの損失が
伴い(第6-(b)図においてF′とFとの差で示され
る)、効率向上及び能力向上の点で同様に問題がある。
That is, in the two-stage compression refrigeration cycle of FIG. 5, when the intermediate liquid cooler 5 cools the intermediate liquid refrigerant to a saturated state as is clear from the Mollier diagram, there is a problem in oil recovery. However, there is a possibility that the temperature gradually shifts to the lower stage side, and there is a problem that the effect is very small, though the refrigeration cycle has improved efficiency and capacity.
On the other hand, in the two-stage compression refrigeration cycle of FIG. 6, as is clear from the Mollier diagram, the intermediate liquid refrigerant cannot be cooled to the saturated state by the intercooler 5, and the enthalpy on the evaporator side is lost (see -(B) shows the difference between F'and F), and there is a similar problem in terms of efficiency improvement and capacity improvement.

また、第7図のガスインジェクションサイクルにあっ
ては、モリエル線図で示すように蒸発器側エンタルピは
大きくなるが、高段側吸込エンタルピが飽和状態になら
ず(第7-(b)図においてB′となる)、即ち、吐出温
度が高くなり効率向上及び能力向上の観点から問題があ
る。
Further, in the gas injection cycle of FIG. 7, the enthalpy on the evaporator side becomes large as shown in the Mollier diagram, but the enthalpy on the high-stage side does not become saturated (see FIG. 7- (b). B '), that is, the discharge temperature becomes high, and there is a problem from the viewpoint of efficiency improvement and capacity improvement.

一方、第8図の蓄熱器を設けた2段圧縮冷凍サイクル
にあっては、蓄熱用熱交換器と放熱用熱交換器が必要と
なり、構造が複雑でコスト高になるという問題があり、
又、両熱交換器間の熱伝達リークが生ずるという効率上
の問題点もある。
On the other hand, in the two-stage compression refrigeration cycle provided with the heat accumulator of FIG. 8, there is a problem that the heat exchanger for heat storage and the heat exchanger for heat radiation are required, and the structure is complicated and the cost is high.
There is also a problem in efficiency that a heat transfer leak occurs between both heat exchangers.

さらに、第9図の給湯ヒートポンプの冷凍サイクルに
あっては、モリエル線図に示されるように給湯と暖房が
同一凝縮温度のため不必要に暖房の凝縮温度が上がり効
率が悪くなるという問題があり、又、冷房給湯時も給湯
に必要な凝縮温度まで圧力を上昇させねばならず、効率
が悪いという問題がある。
Further, in the refrigeration cycle of the hot water supply heat pump shown in FIG. 9, there is a problem that the condensation temperature of the heating rises unnecessarily and the efficiency deteriorates because the hot water supply and the heating have the same condensation temperature as shown in the Mollier diagram. In addition, the pressure must be raised to the condensing temperature required for hot water supply during cooling hot water supply as well, resulting in poor efficiency.

本発明は、上記事情に鑑み創案されたもので、その目
的とする処は、上述した従来の各冷凍サイクルが有する
問題点を解消し、簡易な構成で圧縮効率向上及び能力向
上を図ることができる冷凍サイクルを提供することにあ
る。
The present invention has been made in view of the above circumstances, and an object thereof is to solve the problems of the above-described conventional refrigeration cycles and to improve the compression efficiency and the capacity with a simple configuration. It is to provide a refrigeration cycle that can.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) 本発明の冷凍サイクルは、冷媒を2段階に亘って圧縮
する低段側圧縮機及び高段側圧縮機と冷媒を2段階に亘
って減圧する高段側減圧装置及び低段側減圧装置とを備
えた2段圧縮冷凍サイクルにおいて、一端を上記低段側
圧縮機と高段側圧縮機との間に接続し、他端を上記高段
側減圧装置と低段側減圧装置との間に接続した中間圧力
部の冷媒の流れ方向を可逆となるように構成したことを
特徴とする。
(Means for Solving the Problems) The refrigeration cycle of the present invention includes a low-stage compressor that compresses a refrigerant in two stages and a high-stage compressor that decompresses the refrigerant in two stages. In a two-stage compression refrigeration cycle provided with a pressure reducing device and a low pressure reducing device, one end is connected between the low pressure compressor and the high pressure compressor, and the other end is the high pressure reducing device. It is characterized in that the flow direction of the refrigerant in the intermediate pressure portion connected to the low-pressure reducing device is reversible.

(作用) 本発明の冷凍サイクルでは、低段側圧縮機と高段側圧
縮機の間と高段側減圧装置と低段側減圧装置の間に中間
圧力部を設け、この中間圧力部における冷媒の流れを、
圧縮機から減圧装置側へ流れる方向とこの逆方向との可
逆とすることで、簡易な構成で圧縮効率向上及び能力向
上を図る。
(Operation) In the refrigeration cycle of the present invention, an intermediate pressure portion is provided between the low-stage side compressor and the high-stage side compressor and between the high-stage side pressure reducing device and the low-stage side pressure reducing device, and the refrigerant in this intermediate pressure portion is provided. The flow of
By reversing the direction of flow from the compressor to the pressure reducing device side and the opposite direction, it is possible to improve compression efficiency and capacity with a simple configuration.

(実施例) 以下、本発明に係る冷凍サイクルの実施例を第1図乃
至第2図を参照して説明する。
(Embodiment) An embodiment of the refrigeration cycle according to the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明の冷凍サイクルを示すものであり、符
号1は低段側圧縮機、2は高段側圧縮機、3は凝縮器、
4は蒸発器、6,7は減圧装置(6は高段側、7は低段
側)である。そして、圧縮機1,2間の中間圧力部には熱
交換器が設けられているが、ここでは熱交換器として蓄
熱器8を用いた場合を示す。
FIG. 1 shows a refrigeration cycle of the present invention. Reference numeral 1 is a low-stage compressor, 2 is a high-stage compressor, 3 is a condenser,
4 is an evaporator, and 6 and 7 are pressure reducing devices (6 is a high-stage side, 7 is a low-stage side). Although a heat exchanger is provided in the intermediate pressure portion between the compressors 1 and 2, here, the case where the heat storage device 8 is used as the heat exchanger is shown.

上記蓄熱器8は、その内部に蓄熱材9を充填したもの
からなっており、この中間熱交換器を構成する蓄熱器8
は、その管路の一端を圧縮機1,2間の配管に接続し、他
端を減圧装置6,7間の配管に接続している。
The heat storage unit 8 is composed of a heat storage material 9 filled inside the heat storage unit 8 and constitutes the intermediate heat exchanger.
Has one end connected to the pipe between the compressors 1 and 2 and the other end connected to the pipe between the pressure reducing devices 6 and 7.

次に前述のように構成された冷凍サイクルの動作につ
いて説明する。
Next, the operation of the refrigeration cycle configured as described above will be described.

第1-(a)図は蓄熱サイクル、即ち中間熱交換器を凝
縮器として使う場合を示し、このとき中間圧力Pil(液
側出力)とPig(ガス側圧力)の関係はPil<Pigとなる
ようにコントロールする。このコントロールは、圧縮機
1は大容量に、圧縮機2は小容量にコントロールするこ
とによりガス側中間圧力Pigを上昇させる一方、減圧装
置6を高めに絞り、減圧装置7を低めに絞ることにより
液側中間圧力Pilを下降させることにより行う。
Figure 1- (a) shows the heat storage cycle, that is, the case where the intermediate heat exchanger is used as a condenser. At this time, the relationship between the intermediate pressure Pil (liquid side output) and Pig (gas side pressure) is Pil <Pig. To control. This control is performed by increasing the gas-side intermediate pressure Pig by controlling the compressor 1 to a large capacity and the compressor 2 to a small capacity, while squeezing the decompression device 6 higher and the decompression device 7 lower. This is done by lowering the liquid side intermediate pressure Pil.

しかして、上記コントロールによりPil<Pigの関係と
なり、矢印Iで示すように凝縮器としての流れ方向が設
定され、中間熱交換器にて冷媒は熱交換が行われて蓄熱
材9に蓄熱される。このときのモリエル線図は第1-
(b)図に示され、この場合中間熱交換器に流入する冷
媒の温度Tiは、蓄熱材9の温度よりも高く設定されてい
る。また、圧縮機の吐出容量を変える方法は種々あり、
例えば圧縮機が独立している場合はインバータによる回
転数可変が都合良く、又、一軸に2つの圧縮機構が設け
られている2シリンダコンプレッサなどは一方又は両方
にバイパス弁を介装して容量制御をする。
Then, the relation of Pil <Pig is established by the above control, the flow direction as the condenser is set as shown by the arrow I, and the refrigerant exchanges heat in the intermediate heat exchanger and is stored in the heat storage material 9. . The Mollier diagram at this time is No. 1-
As shown in the figure (b), in this case, the temperature Ti of the refrigerant flowing into the intermediate heat exchanger is set higher than the temperature of the heat storage material 9. Also, there are various ways to change the discharge capacity of the compressor,
For example, when the compressor is independent, it is convenient to change the rotation speed by an inverter, and for a 2-cylinder compressor having two compression mechanisms on one shaft, one or both of which has a bypass valve to control the capacity. do.

一方、第2図は、上述とは逆の冷媒の流れであり、即
ち、中間圧力Pil>Pigとなるようにコントロールする。
このコントロールは、圧縮機1は小容量に、圧縮機2は
大容量にコントロールすることによりガス側中間圧力Pi
gを下降させる一方、減圧装置6を低めに絞り、減圧装
置7を高めに絞ることにより液側中間圧力Pilを上昇さ
せることにより行う。そして、上記コントロールにより
Pil>Pigの関係となり、矢印IIで示すように蒸発器とし
ての流れ方向が設定され、中間熱交換器にて冷媒は蓄熱
材から熱を吸収して蒸発し暖房能力を向上させる。この
ときのモリエル線図は第1-(b)図に示される。
On the other hand, in FIG. 2, the flow of the refrigerant is opposite to that described above, that is, the intermediate pressure Pil> Pig is controlled.
This control is carried out by controlling the compressor 1 to a small capacity and the compressor 2 to a large capacity so that the gas side intermediate pressure Pi
While decreasing g, the pressure reducing device 6 is squeezed to a low level and the pressure reducing device 7 is squeezed to a high level to increase the liquid-side intermediate pressure Pil. And by the above control
The relationship of Pil> Pig is established, and the flow direction of the evaporator is set as shown by arrow II, and the refrigerant absorbs heat from the heat storage material and evaporates in the intermediate heat exchanger to improve the heating capacity. The Mollier diagram at this time is shown in Fig. 1- (b).

上述のように第1図および第2図に示す実施例におい
ては、2段圧縮冷凍サイクルの中間圧力を制御し、中間
熱交換器における冷媒の流れ方向を可逆とし、流れ方向
を圧縮機から減圧装置にしたときに蓄熱し、逆方向とし
たときに放熱することにより冷凍サイクルの高能力、高
効率化が可能となる。また、熱交換器が1個で済み、同
一スペースで能力が大きくできるとともにコストが安価
になる。しかも熱交換器間の熱移動がなくなり熱損失が
減少する。
As described above, in the embodiment shown in FIG. 1 and FIG. 2, the intermediate pressure of the two-stage compression refrigeration cycle is controlled, the flow direction of the refrigerant in the intermediate heat exchanger is reversible, and the flow direction is reduced from the compressor. By storing heat when the device is used and radiating heat when the device is used in the opposite direction, high capacity and high efficiency of the refrigeration cycle can be achieved. Further, since only one heat exchanger is required, the capacity can be increased in the same space and the cost can be reduced. Moreover, heat transfer between heat exchangers is eliminated, and heat loss is reduced.

次に、本発明の冷凍サイクルの別実施例を第3図乃至
第4図を参照して説明する。
Next, another embodiment of the refrigeration cycle of the present invention will be described with reference to FIGS.

第3図は別実施例の冷凍サイクルを示すものであり、
第1図の実施例と同一構成部品には同一符号を付し説明
を省略する。第3図において符号11は四方弁、12は室内
熱交換器、13は室外熱交換器、14は給湯用熱交換器、15
は減圧装置、16,17は逆止弁である。本実施例において
は、中間圧力部に室内外熱交換器12,13を設け、高圧側
に給湯用熱交換器14を設けた構成である。そして、暖房
給湯時は、中間圧力はPil<Pigで、且つ室内温度より高
くなるように第1図と同様の方法でコントロールし、こ
のときのモリエル線図が第4-(a)図に示される。ま
た、冷房給湯時は中間圧力がPil>Pigで、且つ室外温度
より低くするようにコントロールし、このときのモリエ
ル線図が第4-(b)図に示される。このように、本実施
例においては暖房給湯時は暖房と給湯にそれぞれ凝縮温
度を設定できるので無駄な圧縮を行うことがなく効率が
向上する。また、冷房給湯時は室内からの吸熱ばかりで
なく室外からも吸熱できるため従来の給湯ヒートポンプ
の冷凍サイクルに比し高能力、高効率の運転が可能とな
る。
FIG. 3 shows a refrigeration cycle of another embodiment,
The same components as those of the embodiment shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. In FIG. 3, reference numeral 11 is a four-way valve, 12 is an indoor heat exchanger, 13 is an outdoor heat exchanger, 14 is a hot water heat exchanger, and 15
Is a pressure reducing device, and 16 and 17 are check valves. In this embodiment, the indoor and outdoor heat exchangers 12 and 13 are provided at the intermediate pressure portion, and the hot water supply heat exchanger 14 is provided at the high pressure side. Then, during heating and hot water supply, the intermediate pressure is Pil <Pig and is controlled to be higher than the room temperature in the same manner as in Fig. 1, and the Mollier diagram at this time is shown in Fig. 4- (a). Be done. Further, during cooling hot water supply, the intermediate pressure is controlled to be Pil> Pig and lower than the outdoor temperature, and the Mollier diagram at this time is shown in Fig. 4- (b). As described above, in the present embodiment, the condensing temperature can be set for each of the heating and the hot water during heating and hot water supply, so that the efficiency is improved without performing unnecessary compression. Further, during cooling and hot water supply, heat can be absorbed not only from the inside of the room but also from the outside, so that high-performance and high-efficiency operation can be performed as compared with the refrigeration cycle of the conventional hot-water supply heat pump.

また、更に別の実施例として、第1図の中間熱交換器
を冷媒加熱器とすれば冷媒加熱ヒートポンプに応用でき
る。さらに、中間熱交換器を室内機としたマルチ・エア
コンにも応用できる。
As another embodiment, if the intermediate heat exchanger in FIG. 1 is a refrigerant heater, it can be applied to a refrigerant heating heat pump. Furthermore, it can be applied to a multi-air conditioner that uses an intermediate heat exchanger as an indoor unit.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、冷媒を2段階に
亘って圧縮する低段側圧縮機及び高段側圧縮機と冷媒を
2段階に亘って減圧する高段側減圧装置及び低段側減圧
装置とを備えた2段圧縮冷凍サイクルにおいて、一端を
上記低段側圧縮機と高段側圧縮機との間に接続し、他端
を上記高段側減圧装置と低段側減圧装置との間に接続し
た中間圧力部の冷媒の流れ方向を可逆となるように構成
したことで、熱交換器が1個で済み、同一スペースで能
力が大きくできるとともにコストが安価になり、しかも
熱交換器間の熱移動がなくなり熱損失が減少し、簡易な
構成で圧縮効率向上及び能力向上を図ることができる。
As described above, according to the present invention, the low-stage compressor and the high-stage compressor that compress the refrigerant in two stages, and the high-stage pressure reducing device and the low stage that decompress the refrigerant in two stages. In a two-stage compression refrigeration cycle including a side pressure reducing device, one end is connected between the low pressure side compressor and the high pressure side compressor, and the other end is connected to the high pressure side pressure reducing device and the low pressure side pressure reducing device. Since the flow direction of the refrigerant in the intermediate pressure part connected between and is reversible, only one heat exchanger is required, the capacity can be increased in the same space, the cost is low, and the heat Since heat transfer between the exchangers is eliminated and heat loss is reduced, it is possible to improve compression efficiency and capacity with a simple configuration.

また、中間圧力部に蓄熱器を設けることで、冷媒が圧
縮機から減圧装置へ流れるときに蓄熱器に蓄熱し、逆方
向へ流れるときに蓄熱器から放熱し、可逆の冷媒の流れ
により蓄熱及び放熱を行なうことができる。
Further, by providing a heat accumulator in the intermediate pressure section, heat is stored in the heat accumulator when the refrigerant flows from the compressor to the pressure reducing device, and heat is radiated from the heat accumulator when flowing in the opposite direction, and heat is accumulated and stored by the reversible flow of the refrigerant. Can dissipate heat.

さらに、中間圧力部に室内外熱交換器を設け、高段側
圧縮機の吐出側である高圧側に給湯用熱交換器を設ける
ことで、給湯ヒートポンプに適用すれば、暖房給湯時の
圧縮効率向上と、冷房給湯時の圧縮効率向上及び能力向
上が可能となり、また、冷媒加熱ヒートポンプに適用す
れば、室外で吸熱しながら冷媒加熱が可能となり能力及
び効果が向上する。
Furthermore, by providing an indoor / outdoor heat exchanger in the intermediate pressure part and a hot water supply heat exchanger on the high pressure side, which is the discharge side of the high-stage side compressor, if applied to a hot water supply heat pump, the compression efficiency during heating and hot water supply is improved. In addition, it is possible to improve and improve the compression efficiency and capacity at the time of cooling hot water supply, and when applied to the refrigerant heating heat pump, it is possible to heat the refrigerant while absorbing heat outside the room, and the capacity and effect are improved.

また、本発明の冷凍サイクルを給湯ヒートポンプに適
用すれば、暖房給湯時の圧縮効率向上と、冷房給湯時の
圧縮効率向上及び能力向上が可能となる。
Further, if the refrigeration cycle of the present invention is applied to a hot water supply heat pump, it is possible to improve compression efficiency during heating and hot water supply, and compression efficiency and capacity during cooling and hot water supply.

さらに、本発明の冷凍サイクルを冷媒加熱ヒートポン
プに適用すれば、室外で吸熱しながら冷媒加熱が可能と
なり能力及び効率が向上する。
Furthermore, when the refrigeration cycle of the present invention is applied to a refrigerant heating heat pump, refrigerant heating is possible while absorbing heat outside the room, and the capacity and efficiency are improved.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本発明に係る冷凍サイクルの実施例
を示す冷凍サイクル図とモリエル線図、第3図は本発明
の別実施例を示す冷凍サイクル図、第4図は第3図に示
す実施例のモリエル線図、第5図乃至第9図は従来の冷
凍サイクルの冷凍サイクル図及びモリエル線図である。 1……低段側圧縮機、2……高段側圧縮機、3……凝縮
器、4……蒸発器、6……高段側減圧装置、7……低段
側減圧装置、8……蓄熱器、9……蓄熱材、12……室内
熱交換器、13……室外熱交換器、14……給湯用熱交換
器。
1 and 2 are a refrigeration cycle diagram and a Mollier diagram showing an embodiment of the refrigeration cycle according to the present invention, FIG. 3 is a refrigeration cycle diagram showing another embodiment of the present invention, and FIG. 4 is a FIG. 5 and 9 are the refrigerating cycle diagram and the Mollier diagram of the conventional refrigerating cycle. 1 ... Low-stage compressor, 2 ... High-stage compressor, 3 ... Condenser, 4 ... Evaporator, 6 ... High-stage pressure reducing device, 7 ... Low-stage pressure reducing device, 8 ... … Heat storage unit, 9 …… Heat storage material, 12 …… Indoor heat exchanger, 13 …… Outdoor heat exchanger, 14 …… Hot water heat exchanger.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】冷媒を2段階に亘って圧縮する低段側圧縮
機及び高段側圧縮機と冷媒を2段階に亘って減圧する高
段側減圧装置及び低段側減圧装置とを備えた2段圧縮冷
凍サイクルにおいて、一端を上記低段側圧縮機と高段側
圧縮機との間に接続し、他端を上記高段側減圧装置と低
段側減圧装置との間に接続した中間圧力部の冷媒の流れ
方向を可逆となるように構成したことを特徴とする冷凍
サイクル。
1. A low-stage compressor and a high-stage compressor for compressing a refrigerant in two stages, and a high-stage decompressor and a low-stage decompressor for decompressing the refrigerant in two stages. In a two-stage compression refrigeration cycle, one end is connected between the low-stage side compressor and the high-stage side compressor and the other end is connected between the high-stage side pressure reducing device and the low-stage side reducing device. A refrigerating cycle characterized in that the flow direction of the refrigerant in the pressure section is reversible.
【請求項2】上記中間圧力部の冷媒の流れ方向を可逆と
する手段として、低段側減圧装置と高段側減圧装置の絞
り比を変化させたことを特徴とする特許請求の範囲第1
項記載の冷凍サイクル。
2. A means for reversing the flow direction of the refrigerant in the intermediate pressure section, wherein the throttle ratio of the low-stage pressure reducing device and the high-stage pressure reducing device is changed.
Refrigeration cycle according to item.
【請求項3】上記中間圧力部の冷媒の流れ方向を可逆と
する手段として、低段側圧縮機と高段側圧縮機の吐出容
量比を変化させたことを特徴とする特許請求の範囲第1
項記載の冷凍サイクル。
3. The discharge capacity ratio of the low-stage side compressor and the high-stage side compressor is changed as means for reversing the flow direction of the refrigerant in the intermediate pressure portion. 1
Refrigeration cycle according to item.
【請求項4】上記中間圧力部に蓄熱器を設け、冷媒が圧
縮機から減圧装置へ流れるときに上記蓄熱器に蓄熱し、
逆方向へ流れるときに上記蓄熱器から放熱するようにし
たことを特徴とする特許請求の範囲第1項記載の冷凍サ
イクル。
4. A heat accumulator is provided in the intermediate pressure section, and heat is accumulated in the heat accumulator when the refrigerant flows from the compressor to the pressure reducing device,
The refrigeration cycle according to claim 1, wherein heat is radiated from the regenerator when flowing in the reverse direction.
【請求項5】上記中間圧力部に室内外熱交換器を設け、
上記高段側圧縮機の吐出側である高圧側に給湯用熱交換
器を設けたことを特徴とする特許請求の範囲第1項記載
の冷凍サイクル。
5. An indoor / outdoor heat exchanger is provided in the intermediate pressure section,
The refrigeration cycle according to claim 1, further comprising a heat exchanger for hot water supply provided on a high pressure side which is a discharge side of the high-pressure stage compressor.
JP61232318A 1986-09-30 1986-09-30 Refrigeration cycle Expired - Fee Related JP2514936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61232318A JP2514936B2 (en) 1986-09-30 1986-09-30 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61232318A JP2514936B2 (en) 1986-09-30 1986-09-30 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS6387559A JPS6387559A (en) 1988-04-18
JP2514936B2 true JP2514936B2 (en) 1996-07-10

Family

ID=16937322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61232318A Expired - Fee Related JP2514936B2 (en) 1986-09-30 1986-09-30 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP2514936B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2709073B2 (en) * 1987-04-28 1998-02-04 財団法人電力中央研究所 Cooling / heating hot water supply cycle and heating / hot water supply cycle
JP4061820B2 (en) * 1999-10-20 2008-03-19 株式会社デンソー Refrigeration cycle equipment
JP5375919B2 (en) * 2011-09-30 2013-12-25 ダイキン工業株式会社 heat pump
JP5966364B2 (en) * 2011-12-28 2016-08-10 ダイキン工業株式会社 Refrigeration equipment
JP2014029237A (en) * 2012-07-31 2014-02-13 Mitsubishi Heavy Ind Ltd Two-stage-compression heat pump system
JP5790675B2 (en) * 2013-02-12 2015-10-07 ダイキン工業株式会社 heat pump
JP2020118317A (en) * 2019-01-21 2020-08-06 パナソニックIpマネジメント株式会社 Air conditioner

Also Published As

Publication number Publication date
JPS6387559A (en) 1988-04-18

Similar Documents

Publication Publication Date Title
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
US6460358B1 (en) Flash gas and superheat eliminator for evaporators and method therefor
CN102147126B (en) Air conditioner and control method thereof
US7464563B2 (en) Air-conditioner having a dual-refrigerant cycle
KR20100059170A (en) Heat pump storage system
JP2514936B2 (en) Refrigeration cycle
KR20100059176A (en) Storage system
JPS60128990A (en) Double stage rotary compressor
JP4407000B2 (en) Refrigeration system using CO2 refrigerant
CN113154566A (en) Fluorine pump air conditioner control method, device, equipment and system
JP2001296068A (en) Regenerative refrigerating device
US11906226B2 (en) Dual compressor heat pump
WO2002025179A1 (en) Refrigeration cycle
KR20100005734U (en) Heat pump storage system
KR20100005735U (en) storage system
JP3666264B2 (en) Air conditioner
JP2004143951A (en) Scroll compressor
JP2808899B2 (en) Two-stage compression refrigeration cycle device
KR100304583B1 (en) Heat pump unit with injection cycle
CN114402171A (en) Heat pump
JP2615496B2 (en) Two-stage compression refrigeration cycle
JP2698175B2 (en) Air conditioner
JP3084918B2 (en) Heat pump water heater
KR100554566B1 (en) Heat pump cycle for excessive low temperature
JP4157027B2 (en) Heat pump refrigeration system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees