JP2008240666A - Rotary compressor and heat pump system - Google Patents

Rotary compressor and heat pump system Download PDF

Info

Publication number
JP2008240666A
JP2008240666A JP2007083332A JP2007083332A JP2008240666A JP 2008240666 A JP2008240666 A JP 2008240666A JP 2007083332 A JP2007083332 A JP 2007083332A JP 2007083332 A JP2007083332 A JP 2007083332A JP 2008240666 A JP2008240666 A JP 2008240666A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
stage
low
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007083332A
Other languages
Japanese (ja)
Inventor
Naoya Morozumi
尚哉 両角
Takeshi Ueda
健史 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2007083332A priority Critical patent/JP2008240666A/en
Priority to US12/073,483 priority patent/US20080236192A1/en
Priority to EP08250948A priority patent/EP1975370A1/en
Priority to CNA2008100905319A priority patent/CN101275563A/en
Publication of JP2008240666A publication Critical patent/JP2008240666A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/804Accumulators for refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary compressor for improving compression efficiency by reducing a pressure loss in a refrigerant suction pipe for connecting the compressor and an accumulator. <P>SOLUTION: An inner diameter D2 of the refrigerant suction pipe 64 on the outlet side of the accumulator 6, is formed larger than an inner diameter D1 of an inlet side refrigerant return pipe 62 (D2 > D1). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空気調和機用などのヒートポンプシステムの冷凍サイクルに用いられるロータリ圧縮機に関し、さらに詳しく言えば、圧縮機本体とアキュムレータとの接続配管における圧力損失の低減に関する。   The present invention relates to a rotary compressor used in a refrigeration cycle of a heat pump system such as for an air conditioner, and more particularly to reduction of pressure loss in a connecting pipe between a compressor body and an accumulator.

空気調和機などのヒートポンプシステムに用いられるロータリ圧縮機には、圧縮部の信頼性上、過渡状態において圧縮部に液冷媒が流入することを防止するため、システムの冷凍サイクルから戻る冷媒を気液分離するためのアキュムレータが圧縮機本体の側方に設けられている。   In a rotary compressor used in a heat pump system such as an air conditioner, in order to prevent the liquid refrigerant from flowing into the compression section in a transient state, the refrigerant returning from the system refrigeration cycle is gas-liquid for the reliability of the compression section. An accumulator for separation is provided on the side of the compressor body.

アキュムレータの上部には冷凍サイクルから戻る冷媒が流入する冷媒戻り管と、アキュムレータの下部にはL字状の一端がアキュムレータ内部の上方まで延長され他端が圧縮機の側面から低段側圧縮部の吸入室に接続する冷媒吸入管を有している。   A refrigerant return pipe into which the refrigerant returning from the refrigeration cycle flows into the upper part of the accumulator, and an L-shaped one end extends to the upper part inside the accumulator and the other end extends from the side of the compressor to the lower stage compression part. A refrigerant suction pipe connected to the suction chamber is provided.

ここで、従来のロータリ圧縮機に設けられたアキュムレータにおいて、冷媒戻り管と冷媒吸入管の内径について詳細に考慮されている例はなく、例えば特許文献1に示すように、冷媒戻り管と冷媒吸入管を流れる冷媒の流量は安定連続運転時において同じであることから、ほぼ同じ内径としていた。   Here, in the accumulator provided in the conventional rotary compressor, there is no example in which the inner diameters of the refrigerant return pipe and the refrigerant suction pipe are considered in detail. For example, as shown in Patent Document 1, the refrigerant return pipe and the refrigerant suction pipe Since the flow rate of the refrigerant flowing through the pipe is the same during the stable continuous operation, the inner diameter is almost the same.

しかしながら、従来よりロータリ圧縮機とアキュムレータとを接続する冷媒吸入管には、次のような課題があった。すなわち、ロータリ圧縮機は、1回転中の吸入容積の変化率が一定ではないため、冷媒吸入管内では冷媒の流速変動が生じる。   However, conventionally, the refrigerant suction pipe connecting the rotary compressor and the accumulator has the following problems. That is, in the rotary compressor, since the rate of change of the suction volume during one rotation is not constant, the flow rate fluctuation of the refrigerant occurs in the refrigerant suction pipe.

これに対して、アキュムレータと冷凍サイクルとを接続する低圧冷媒配管および冷媒戻り管内においては、アキュムレータに圧縮部の吸入室の容積の30〜100倍の容積があるため、流速変動は大幅に低減される。したがって、冷媒戻り管と冷媒吸入管の管内の平均流速が仮に同じであったとしても、圧力損失はおよそ流速の2乗に比例するため、流速変動が大きくなると圧力損失が大きくなり、結果、圧縮効率が悪くなる。   On the other hand, in the low-pressure refrigerant pipe and the refrigerant return pipe connecting the accumulator and the refrigeration cycle, the accumulator has a volume 30 to 100 times the volume of the suction chamber of the compression unit, so the flow rate fluctuation is greatly reduced. The Therefore, even if the average flow velocity in the refrigerant return pipe and the refrigerant suction pipe is the same, the pressure loss is approximately proportional to the square of the flow velocity. Therefore, if the flow velocity fluctuation increases, the pressure loss increases, resulting in compression. Inefficiency.

特開平5−195954号公報Japanese Unexamined Patent Publication No. Hei 5-19554

そこで、本発明は、上述した課題を解決するため、圧縮機とアキュムレータとを接続する冷媒吸入管の圧力損失を低減し、圧縮効率を高めたロータリ圧縮機を提供することにある。   SUMMARY OF THE INVENTION In order to solve the above-described problems, an object of the present invention is to provide a rotary compressor in which the pressure loss of a refrigerant suction pipe connecting a compressor and an accumulator is reduced and the compression efficiency is increased.

上述した目的を達成するため、本発明は以下に示すいくつかの特徴を備えている。請求項1に記載の発明は、密閉シェルの内部に電動機およびロータリ式の圧縮部を含む圧縮機本体と、圧縮機本体の側方にアキュムレータを備え、アキュムレータの上部には、冷凍サイクルと接続される冷媒戻り管と、下部には圧縮部に接続される1本の冷媒吸入管が接続されるロータリ圧縮機において、冷媒戻り管の内径をD1、冷媒吸入管の内径をD2としたとき、D2>D1であることを特徴としている。   In order to achieve the above-described object, the present invention has several features described below. The invention according to claim 1 is provided with a compressor main body including an electric motor and a rotary type compression portion inside the hermetic shell, and an accumulator on the side of the compressor main body, and an upper part of the accumulator is connected to the refrigeration cycle. In the rotary compressor in which the refrigerant return pipe and the one refrigerant suction pipe connected to the compression section are connected to the lower part, when the inner diameter of the refrigerant return pipe is D1 and the inner diameter of the refrigerant suction pipe is D2, D2 > D1.

請求項2に記載の発明は、請求項1において、冷媒吸入管は、アキュムレータの中心軸に対して圧縮機本体と離反する方向にずれて配置されていることを特徴としている。   The invention according to claim 2 is characterized in that, in claim 1, the refrigerant suction pipe is arranged so as to be shifted in a direction away from the compressor main body with respect to the central axis of the accumulator.

請求項3に記載の発明は、請求項1または2において、圧縮機の回転数が可変であることを特徴としている。   According to a third aspect of the present invention, in the first or second aspect, the rotational speed of the compressor is variable.

請求項4に記載の発明は、請求項1ないし3のいずれか1項において、ロータリ式の圧縮部は、低段側圧縮部と高段側圧縮部とを備え、低段側圧縮部の吐出側と高段側圧縮部の吸入側を連通する手段を有して2段圧縮部を構成したことを特徴としている。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the rotary compression section includes a low-stage compression section and a high-stage compression section, and discharge from the low-stage compression section. The two-stage compression section is configured to include means for communicating the suction side of the high-stage compression section and the suction side of the high-stage compression section.

本発明には、請求項1ないし4のいずれか1項に記載のロータリ圧縮機を含むヒートポンプシステムも含まれる。すなわち、請求項6に記載の発明は、圧縮機、凝縮器、膨張機構および蒸発器を含む冷凍サイクルを有し、圧縮機のアキュムレータと蒸発器とを接続する低圧冷媒配管を備えたヒートポンプシステムにおいて、圧縮機として請求項1ないし5のいずれか1項に記載の圧縮機を使用し、低圧冷媒配管の内径をD0として、D2>D0であることを特徴としている。   The present invention also includes a heat pump system including the rotary compressor according to any one of claims 1 to 4. That is, the invention according to claim 6 is a heat pump system having a refrigeration cycle including a compressor, a condenser, an expansion mechanism, and an evaporator, and having a low-pressure refrigerant pipe connecting the accumulator and the evaporator of the compressor. The compressor according to any one of claims 1 to 5 is used as the compressor, and the inner diameter of the low-pressure refrigerant pipe is D0, and D2> D0.

請求項1に記載の発明によれば、アキュムレータの入口側の冷媒戻り管の内径D1より出口側の冷媒吸入管の内径D2を大きく(D2>D1)することにより、圧縮機本体とアキュムレータとを接続する冷媒吸入管内の流速変動を抑えて圧力損失を低減でき、圧縮機の圧縮効率を向上できる。   According to the first aspect of the present invention, by increasing the inner diameter D2 of the refrigerant suction pipe on the outlet side from the inner diameter D1 of the refrigerant return pipe on the inlet side of the accumulator (D2> D1), the compressor body and the accumulator can be connected. The pressure loss can be reduced by suppressing the flow velocity fluctuation in the connected refrigerant suction pipe, and the compression efficiency of the compressor can be improved.

請求項2に記載の発明によれば、冷媒吸入管の内径を大きくすると、配管の耐圧強度上および配管の加工性から曲げ半径を大きくする必要がある。そこで、冷媒吸入管を圧縮機本体と離反する方向にアキュムレータの中心軸に対してずらして配置することにより、管径が太い配管でも無理なくアキュムレータに取り付けることができる。   According to the invention described in claim 2, when the inner diameter of the refrigerant suction pipe is increased, it is necessary to increase the bending radius in view of the pressure resistance of the pipe and the workability of the pipe. Therefore, by disposing the refrigerant suction pipe in a direction away from the compressor body with respect to the central axis of the accumulator, even a pipe having a large pipe diameter can be attached to the accumulator without difficulty.

請求項3に記載の発明によれば、電動機の回転数が可変なインバータ方式を用いて高回転で運転した場合、冷媒吸入管での流速が速くなり、圧力損失が大きくなるため、より作用効果が大きくなる。   According to the third aspect of the present invention, when the inverter is operated at a high speed using an inverter system in which the rotation speed of the electric motor is variable, the flow velocity in the refrigerant suction pipe is increased and the pressure loss is increased. Becomes larger.

請求項4に記載の発明によれば、2つの圧縮室の圧縮位相を180°ずらし、これらを直列に接続して、低段側圧縮部と高段側圧縮部とに分担させた2段圧縮部を用いることにより、圧縮トルクのバランスや偏心部分の遠心力バランスが優れることから、より高回転で運転でき、流速が早くなるため、その作用効果がさらに大きくなる。   According to the invention described in claim 4, the two-stage compression in which the compression phases of the two compression chambers are shifted by 180 ° and these are connected in series to share the low-stage compression section and the high-stage compression section. By using the portion, the balance of the compression torque and the centrifugal force balance of the eccentric portion are excellent, so that the operation can be performed at a higher speed and the flow velocity becomes faster, and thus the effect is further increased.

ロータリ圧縮機1は、円筒状の密閉容器2を縦方向に配置し、密閉容器2内部の上方に電動機4と下方に圧縮部3を備えている。   The rotary compressor 1 includes a cylindrical sealed container 2 arranged in the vertical direction, and includes an electric motor 4 above the sealed container 2 and a compression unit 3 below.

密閉容器2は、円筒状のメインシェル21とメインシェル21の上部および下部を閉塞するドーム状のトップシェル22およびボトムシェル23とから成り、トップシェル22およびボトムシェル23はメインシェル21に溶接固定されている。   The hermetic container 2 includes a cylindrical main shell 21 and a dome-shaped top shell 22 and a bottom shell 23 that close the upper and lower portions of the main shell 21. The top shell 22 and the bottom shell 23 are fixed to the main shell 21 by welding. Has been.

トップシェル22には、圧縮部3から密閉容器2内部に吐出された冷媒を密閉容器2外部に吐出するための冷媒吐出管24が設けられている。   The top shell 22 is provided with a refrigerant discharge pipe 24 for discharging the refrigerant discharged from the compression unit 3 into the sealed container 2 to the outside of the sealed container 2.

電動機4のステータ41はメインシェル21に焼きバメされ、電動機4のロータ42は電動機4と圧縮部2を機械的に接続するシャフト7に焼きバメ固定されている。また、ロータ42の上下には回転部品全体の遠心力のバランスを取るため、上部バランサ43および下部バランサ44が取り付けられている。   The stator 41 of the electric motor 4 is shrunk to the main shell 21, and the rotor 42 of the motor 4 is shrunk and fixed to the shaft 7 that mechanically connects the motor 4 and the compression unit 2. An upper balancer 43 and a lower balancer 44 are attached above and below the rotor 42 to balance the centrifugal force of the entire rotating component.

圧縮部3は、上方に高段側圧縮部32と下方に低段側圧縮部31を有し、低段側圧縮部31の吐出側と高段側圧縮部32の吸入側とを密閉容器2外部の中間連絡管26によって接続することにより、2段圧縮部を構成している。   The compression unit 3 includes a high-stage compression unit 32 on the upper side and a low-stage compression unit 31 on the lower side. The discharge side of the low-stage compression unit 31 and the suction side of the high-stage compression unit 32 are hermetically sealed. By connecting with an external intermediate connecting pipe 26, a two-stage compression section is configured.

次に、各圧縮部31,32の構成を図2を用いて説明する。図2は、図1における低段側圧縮部31の横断面である。高段側圧縮部32もピストンの位相が180°異なるだけで、構成は同じである。   Next, the structure of each compression part 31 and 32 is demonstrated using FIG. FIG. 2 is a cross-sectional view of the lower stage compression unit 31 in FIG. The high-stage compression section 32 has the same configuration except that the phase of the piston differs by 180 °.

各圧縮部31,32は、シリンダ200,400と、シリンダ200,400の内側に形成される円筒状のシリンダボア200a,400aの内部に収納される円筒状のピストン220,420とを有し、シリンダボア200a,400a内壁とピストン220,420の外周面との間に冷媒の作動空間を形成している。   Each compression part 31 and 32 has cylinders 200 and 400 and cylindrical pistons 220 and 420 accommodated inside cylindrical cylinder bores 200a and 400a formed inside the cylinders 200 and 400, respectively. A working space for the refrigerant is formed between the inner walls of 200a and 400a and the outer peripheral surfaces of the pistons 220 and 420.

シリンダ200,400にはシリンダボア200a,400aから外周方向に向けてシリンダ溝200b,400bが設けられ、シリンダ溝200b,400b内に平板状のベーン230,430を有している。   The cylinders 200 and 400 are provided with cylinder grooves 200b and 400b from the cylinder bores 200a and 400a toward the outer circumferential direction, and plate-like vanes 230 and 430 are provided in the cylinder grooves 200b and 400b.

ベーン230,430と密閉容器2の内壁の間にはスプリング240,440を有し、スプリング240,440の付勢力によってベーン230,430の先端がピストン220,420の外壁と摺接することによって、作動空間を吸入室V1,V2と圧縮室C1,C2とに区画している。   Springs 240 and 440 are provided between the vanes 230 and 430 and the inner wall of the sealed container 2, and the tip of the vanes 230 and 430 is brought into sliding contact with the outer wall of the pistons 220 and 420 by the biasing force of the springs 240 and 440. The space is partitioned into suction chambers V1, V2 and compression chambers C1, C2.

次に再び図1を用いて、圧縮機1全体の説明をする。高段側シリンダ200の上にメインフレーム100と、高段側シリンダ200と低段側シリンダ400との間に中間仕切り板300と、低段側シリンダ400の下にサブフレーム500とを有し、メインフレーム100、中間仕切り板300、サブフレーム500によって2つの作動空間の上下を閉塞して、それぞれを密閉した空間としている。   Next, the whole compressor 1 is demonstrated using FIG. 1 again. A main frame 100 on the high-stage cylinder 200, an intermediate partition plate 300 between the high-stage cylinder 200 and the low-stage cylinder 400, and a subframe 500 under the low-stage cylinder 400; The upper and lower sides of the two working spaces are closed by the main frame 100, the intermediate partition plate 300, and the sub-frame 500, thereby forming a sealed space.

メインフレーム100の上およびサブフレーム500の下に、それぞれ高段側吐出マフラーカバー130、低段側吐出マフラーカバー510を有し、吐出冷媒の圧力脈動を低減するための高段側吐出マフラー室M2および低段側吐出マフラー室M1が形成される。   A high-stage discharge muffler cover 130 and a low-stage discharge muffler cover 510 are provided above the main frame 100 and under the subframe 500, respectively, and a high-stage discharge muffler chamber M2 for reducing pressure pulsation of discharged refrigerant. In addition, a low-stage discharge muffler chamber M1 is formed.

高段側吐出マフラーカバー130、メインフレーム100、高段側シリンダ200、中間仕切り板300、低段側シリンダ400、サブフレーム500、低段側吐出マフラーカバー510はボルト(図示せず)によって一体に固定され、さらにメインフレーム100外周部が密閉容器2にスポット溶接にて固定されている。   The high-stage discharge muffler cover 130, the main frame 100, the high-stage cylinder 200, the intermediate partition plate 300, the low-stage cylinder 400, the subframe 500, and the low-stage discharge muffler cover 510 are integrated with bolts (not shown). Further, the outer periphery of the main frame 100 is fixed to the sealed container 2 by spot welding.

メインフレーム100およびサブフレーム500は、軸受け部110,502を有し、軸受け部110,502にシャフト7を嵌合することによってシャフト7を回転自在に支持している。   The main frame 100 and the sub frame 500 have bearing portions 110 and 502, and the shaft 7 is rotatably supported by fitting the shaft 7 to the bearing portions 110 and 502.

シャフト7は、180°異なる方向に偏芯した2つのクランク軸72,73を有し、一方のクランク軸72が高段側圧縮部32のピストン220と嵌合し、他方のクランク軸73が、低段側圧縮部31のピストン420と嵌合している。   The shaft 7 has two crankshafts 72 and 73 eccentric in directions different from each other by 180 °. One crankshaft 72 is fitted to the piston 220 of the high-stage side compression portion 32, and the other crankshaft 73 is The piston 420 of the low-stage compression unit 31 is fitted.

シャフト7の回転に伴い、ピストン220,420はそれぞれのシリンダボア200a,400a内壁に摺接しながら旋回運動し、これに追随してベーン230,430が往復運動することによって、それぞれの吸入室V1,V2および圧縮室C1,C2の容積が連続的に変化する。これによって圧縮部3は冷媒の吸入と圧縮を繰り返す。   As the shaft 7 rotates, the pistons 220 and 420 revolve while slidingly contacting the inner walls of the cylinder bores 200a and 400a, and the vanes 230 and 430 reciprocate following the reciprocating movements. And the volume of the compression chambers C1, C2 changes continuously. Thereby, the compression unit 3 repeats the suction and compression of the refrigerant.

低段側圧縮部31の吸入室V1は、シリンダ400に設けられた低段側吸入孔410を介して冷媒吸入管64に接続されている。低段側圧縮部31の圧縮室C1は、サブフレーム500に設けられた低段側吐出孔520および低段側吐出マフラー室M1を介して中間連絡管26に接続される。   The suction chamber V <b> 1 of the low-stage compression unit 31 is connected to the refrigerant suction pipe 64 via a low-stage suction hole 410 provided in the cylinder 400. The compression chamber C1 of the low-stage compression unit 31 is connected to the intermediate connecting pipe 26 via a low-stage discharge hole 520 and a low-stage discharge muffler chamber M1 provided in the subframe 500.

さらに詳しくは、低段側吐出孔520には逆止弁540が設けられ、また冷媒吸入管64は低段側吸入接続管411を介して低段側吸入孔410に接続され、中間連絡管26は中間吐出接続管521を介して低段側吐出マフラー室M1に接続される。   More specifically, a check valve 540 is provided in the low-stage side discharge hole 520, and the refrigerant suction pipe 64 is connected to the low-stage side suction hole 410 via the low-stage side suction connection pipe 411, and the intermediate connection pipe 26. Is connected to the low-stage discharge muffler chamber M1 through an intermediate discharge connection pipe 521.

高段側圧縮部32の吸入室V2は、シリンダ200に設けられた高段側吸入孔210を介して中間連絡管26に接続されている。高段側圧縮部32の圧縮室C2はメインフレーム100に設けられた高段側吐出孔120および高段側吐出マフラー室M2を介して密閉容器2内部に開口される。   The suction chamber V <b> 2 of the high stage side compression unit 32 is connected to the intermediate connecting pipe 26 via a high stage side suction hole 210 provided in the cylinder 200. The compression chamber C2 of the high-stage compression section 32 is opened inside the hermetic container 2 through a high-stage discharge hole 120 and a high-stage discharge muffler chamber M2 provided in the main frame 100.

さらに詳しくは、高段側吐出孔120には逆止弁140が設けられ、また中間連絡管26は中間吸入接続管211を介して高段側吸入孔210に接続される。   More specifically, the high-stage discharge hole 120 is provided with a check valve 140, and the intermediate communication pipe 26 is connected to the high-stage suction hole 210 via the intermediate suction connection pipe 211.

圧縮機本体1の側面には、独立した密閉容器61から成るアキュムレータ6を有している。アキュムレータ6の上部には、図示しないヒートポンプシステム側と接続する冷媒戻り管62を有し、アキュムレータ6の下部にはL字状の一端がアキュムレータ6内部の上方まで延長され、他端が圧縮機1の側面から低段側圧縮部31の吸入室V1と接続する冷媒吸入管64を有している。   On the side surface of the compressor body 1, an accumulator 6 including an independent sealed container 61 is provided. A refrigerant return pipe 62 connected to the heat pump system side (not shown) is provided at the upper part of the accumulator 6, and an L-shaped one end extends to the upper part inside the accumulator 6 at the lower part of the accumulator 6, and the other end is the compressor 1. The refrigerant suction pipe 64 is connected to the suction chamber V1 of the low-stage compression section 31 from the side surface.

冷媒吸入管64は、アキュムレータ6の密閉容器61の中心軸に対して反圧縮機本体側にオフセットして配置されており、冷媒吸入管64の内径D2は、冷媒戻り管62の内径D1より大きく(D2>D1:より好ましくはD2≧1.2×D1)なっている。反圧縮機本体側に冷媒吸入管64をオフセットする構成は、圧縮機本体1の中心とアキュムレータ6の中心を結ぶ仮装線上にオフセットする構成に限らず、図6に示すように圧縮機本体1からの距離が大きくなる位置であればよい。   The refrigerant suction pipe 64 is arranged to be offset toward the anti-compressor main body side with respect to the central axis of the sealed container 61 of the accumulator 6, and the inner diameter D2 of the refrigerant suction pipe 64 is larger than the inner diameter D1 of the refrigerant return pipe 62. (D2> D1: more preferably D2 ≧ 1.2 × D1). The configuration in which the refrigerant suction pipe 64 is offset to the anti-compressor main body side is not limited to the configuration in which the refrigerant suction pipe 64 is offset on the temporary line connecting the center of the compressor main body 1 and the center of the accumulator 6, but from the compressor main body 1 as shown in FIG. Any position where the distance becomes larger is acceptable.

次に、以上の構成による冷媒の流れを図1および図2を参照して説明する。システム側から冷媒戻り管62を通ってアキュムレータ6内に流入した冷媒は、液冷媒がアキュムレータ6の下部に、ガス冷媒がアキュムレータ6の上部に分離される。   Next, the flow of the refrigerant having the above configuration will be described with reference to FIGS. 1 and 2. The refrigerant flowing from the system side into the accumulator 6 through the refrigerant return pipe 62 is separated into a liquid refrigerant at the lower part of the accumulator 6 and a gas refrigerant at the upper part of the accumulator 6.

低段側ピストン420が旋回運動して低段側吸入室V1の容積が拡大することによって、アキュムレータ6内のガス冷媒は、冷媒吸入管64を通って圧縮機本体1の低段側吸入室V1に吸入される。   As the low stage side piston 420 pivots and the volume of the low stage side suction chamber V1 expands, the gas refrigerant in the accumulator 6 passes through the refrigerant suction pipe 64 and the low stage side suction chamber V1 of the compressor body 1. Inhaled.

一回転後に低段側吸入室V1は低段側吸入孔410と遮断された位置となり、そのまま低段側圧縮室C1に切り替わることによって、冷媒は圧縮される。   After one revolution, the low-stage suction chamber V1 becomes a position that is blocked from the low-stage suction hole 410, and the refrigerant is compressed by switching to the low-stage compression chamber C1 as it is.

圧縮された冷媒は、圧力が低段側吐出孔520に設けられた逆止弁540の外側となる低段側吐出マフラー室M1の圧力すなわち中間圧力に達すると逆止弁540が開放し、低段側吐出マフラー室M1に吐出される。   When the compressed refrigerant reaches the pressure in the low-stage discharge muffler chamber M1, which is the outside of the check valve 540 provided in the low-stage discharge hole 520, that is, the intermediate pressure, the check valve 540 opens and the low pressure is reduced. It is discharged into the stage side discharge muffler chamber M1.

冷媒は、低段側吐出マフラー室M1で騒音の原因となる圧力流速変動を低減したあと、中間連絡管26を通って高段側圧縮部32の吸入室V2に導かれる。   The refrigerant is introduced into the suction chamber V <b> 2 of the high-stage compression section 32 through the intermediate connecting pipe 26 after reducing the pressure flow velocity fluctuation that causes noise in the low-stage discharge muffler chamber M <b> 1.

高段側圧縮部32の吸入室V2に導かれた冷媒は、低段側圧縮部31と同様の原理により高段側圧縮部32で吸入、圧縮、吐出され、高段側吐出マフラー室M2で圧力流速変動を低減したあと、密閉容器2の内部に吐出される。   The refrigerant guided to the suction chamber V2 of the high-stage compression section 32 is sucked, compressed, and discharged by the high-stage compression section 32 according to the same principle as that of the low-stage compression section 31, and is stored in the high-stage discharge muffler chamber M2. After the pressure flow rate fluctuation is reduced, it is discharged into the closed container 2.

さらに電動機4のステータ41のコア切り欠き(図示せず)やコアと巻き線の隙間を通って電動機4の上部に導かれ、吐出管24を通ってシステム側に吐出される。   Further, it is guided to the upper part of the motor 4 through a core notch (not shown) of the stator 41 of the motor 4 and a gap between the core and the winding, and discharged to the system side through the discharge pipe 24.

以上の流れにおいて、低段側吸入室V1の容積変化率は1回転中において一定ではないため、冷媒吸入管64内では冷媒の流速変動が発生する。これに対して、冷媒戻り管62内ではアキュムレータ6に低段側吸入室V1の容積の30〜100倍の容積があるため、流速変動は大幅に低減される。   In the above flow, since the volume change rate of the low-stage suction chamber V1 is not constant during one rotation, the flow rate fluctuation of the refrigerant occurs in the refrigerant suction pipe 64. On the other hand, in the refrigerant return pipe 62, the accumulator 6 has a volume that is 30 to 100 times the volume of the low-stage suction chamber V1, so that the flow rate fluctuation is greatly reduced.

したがって、流速変動の大きい冷媒吸入管64の内径D2を冷媒戻り管62の内径D1よりも大きく(D2>D1)することによって冷媒吸入管64内の流速が遅くなり、吸入過程の圧力損失が低減し、これによって圧縮機の圧縮効率が向上する。   Therefore, by making the inner diameter D2 of the refrigerant suction pipe 64 having a large flow rate fluctuation larger than the inner diameter D1 of the refrigerant return pipe 62 (D2> D1), the flow speed in the refrigerant suction pipe 64 becomes slower, and the pressure loss in the suction process is reduced. This improves the compression efficiency of the compressor.

以上の効果を図3,4,5を用いて説明する。図3は、ピストンの回転角に対する冷媒吸入管64内の吸入流速を示したグラフである。回転角はピストンが最もシリンダのベーン溝寄りの位置を0°とした。また吸入流速は、冷媒吸入管64の内径D1を冷媒戻り管62の内径D2と同じとして流速変動がない場合(1)、すなわち時間的な平均流速を1としている。(1)に対して実際の流速(3),(4)は1回転中に変動する。   The above effect will be described with reference to FIGS. FIG. 3 is a graph showing the suction flow velocity in the refrigerant suction pipe 64 with respect to the rotation angle of the piston. The rotation angle was 0 ° at the position where the piston was closest to the vane groove of the cylinder. The suction flow rate is set to 1 when the inner diameter D1 of the refrigerant suction pipe 64 is the same as the inner diameter D2 of the refrigerant return pipe 62 and there is no flow rate fluctuation, that is, the temporal average flow speed is 1. In contrast to (1), the actual flow speeds (3) and (4) vary during one revolution.

図4は、図3の吸入流速に対して、圧力損失が吸入流速の2乗に比例するとしたときの吸入圧力を示したグラフである。圧力損失が全く無い場合を1.0MPaとしている。グラフに示されるように、吸入流速の変動によって、吸入圧力は1回転中に変動する。冷媒吸入管64の内径D2が冷媒戻り管62の内径D1と同じ場合(3)に対して、冷媒吸入管64の内径D2を1.2倍とした場合(4)は、圧力の変動幅がおよそ1/2に低減される。   FIG. 4 is a graph showing the suction pressure when the pressure loss is proportional to the square of the suction flow rate with respect to the suction flow rate of FIG. The case where there is no pressure loss is 1.0 MPa. As shown in the graph, the suction pressure fluctuates during one rotation due to fluctuations in the suction flow velocity. When the inner diameter D2 of the refrigerant suction pipe 64 is 1.2 times the case (3) where the inner diameter D2 of the refrigerant suction pipe 64 is the same as the inner diameter D1 of the refrigerant return pipe 62 (3), the pressure fluctuation range is It is reduced to about 1/2.

図5は、図4の横軸の回転角を吸入室の容積に変換したグラフである。横軸を容積にすることで、吸入圧力1.0MPaの直線と各曲線で囲まれる部分の面積が、吸入過程における損失すなわち圧縮機の消費電力の増加となって表される。   FIG. 5 is a graph in which the rotation angle on the horizontal axis in FIG. 4 is converted into the volume of the suction chamber. By making the horizontal axis the volume, the area surrounded by the straight line of suction pressure 1.0 MPa and each curve is expressed as a loss in the suction process, that is, an increase in power consumption of the compressor.

グラフに示されるように、冷媒吸入管内径D2が冷媒戻り管内径D1と同じ場合(3)に対して、冷媒吸入管内径D2を1.2倍とした場合(4)は、損失を示す面積はおよそ1/2に低減され、これは、冷媒吸入管内径D2が冷媒戻り管内径D1と同じ場合における流速変動がない場合(1)の面積に相当する。   As shown in the graph, when the refrigerant suction pipe inner diameter D2 is the same as the refrigerant return pipe inner diameter D1 (3), when the refrigerant suction pipe inner diameter D2 is 1.2 times (4), the area indicating the loss is shown. Is reduced to about ½, which corresponds to the area of (1) when there is no flow rate fluctuation when the refrigerant suction pipe inner diameter D2 is the same as the refrigerant return pipe inner diameter D1.

以上から、冷媒吸入管内径D2を冷媒戻り管内径D1より大きくすることによって、消費電力を低減できることがわかり、さらにD2≧1.2×D1とすることで、冷媒吸入管64で流速変動がないレベルにまで消費電力を低減できることがわかる。   From the above, it can be seen that the power consumption can be reduced by making the refrigerant suction pipe inner diameter D2 larger than the refrigerant return pipe inner diameter D1, and further by setting D2 ≧ 1.2 × D1, there is no flow rate fluctuation in the refrigerant suction pipe 64. It can be seen that the power consumption can be reduced to the level.

また、冷媒吸入管64をアキュムレータ6の密閉容器61に対して反圧縮機本体1よりにオフセットして固定したことにより、冷媒吸入管64が従来よりも太い場合でもアキュムレータ6を圧縮機本体1のより近くに配置することができ、システムに搭載する上でコンパクトな形状とすることができる。   Further, the refrigerant suction pipe 64 is fixed to the sealed container 61 of the accumulator 6 by being offset from the anti-compressor main body 1, so that the accumulator 6 can be connected to the compressor main body 1 even when the refrigerant suction pipe 64 is thicker than before. It can be arranged closer and can be made compact when mounted on the system.

この実施例において、ロータリ圧縮機1は、低段側圧縮部31と高段側圧縮部32とを有する2段圧縮式の圧縮部3を備えた圧縮機を好ましい形態として例示したが、冷凍サイクルとしてガスインジェクションサイクルを利用し、低段側圧縮部31と高段側圧縮部32との間の中間圧力部にインジェクション冷媒を流入できるように構成した2段圧縮式のロータリ圧縮機でもよい。   In this embodiment, the rotary compressor 1 is exemplified as a compressor including a two-stage compression type compression unit 3 having a low-stage side compression unit 31 and a high-stage side compression unit 32, but the refrigeration cycle is illustrated. Alternatively, a two-stage compression rotary compressor configured to use a gas injection cycle so that the injection refrigerant can flow into an intermediate pressure section between the low-stage compression section 31 and the high-stage compression section 32 may be used.

また、1つの圧縮室を有する単段圧縮のロータリ圧縮機に適用してもよい。また圧縮部3の圧縮機構として、クランク軸72,73によってピストン220,420を旋回運動させて吸入室V1,V2および圧縮室C1,C2の容積が変化することを利用した圧縮機であれば本実施例の圧縮機構に限定することはない。   Further, the present invention may be applied to a single-stage compression rotary compressor having one compression chamber. In addition, as a compression mechanism of the compression unit 3, if the compressor utilizes the fact that the pistons 220, 420 are swung by the crankshafts 72, 73 and the volumes of the suction chambers V 1, V 2 and the compression chambers C 1, C 2 are changed. The compression mechanism is not limited to the embodiment.

本発明の一実施形態におけるロータリ圧縮機の縦断面図。The longitudinal cross-sectional view of the rotary compressor in one Embodiment of this invention. 本発明の一実施形態におけるロータリ圧縮機の圧縮部の横断面図。The cross-sectional view of the compression part of the rotary compressor in one Embodiment of this invention. 本発明の一実施形態におけるロータリ圧縮機の1回転中の回転角に対する吸入流速の変化を示したグラフ。The graph which showed the change of the suction flow velocity with respect to the rotation angle in 1 rotation of the rotary compressor in one Embodiment of this invention. 本発明の一実施形態におけるロータリ圧縮機の1回転中の回転角に対する吸入圧力の変化を示したグラフ。The graph which showed the change of the suction pressure with respect to the rotation angle in 1 rotation of the rotary compressor in one Embodiment of this invention. 本発明の一実施形態におけるロータリ圧縮機の1回転中の吸入容積に対する吸入圧力の変化を示したグラフ。The graph which showed the change of the suction pressure with respect to the suction volume in 1 rotation of the rotary compressor in one Embodiment of this invention. 本発明の一実施形態におけるロータリー圧縮機を上から見た状態の透視図。The perspective view of the state which looked at the rotary compressor in one Embodiment of this invention from the top.

符号の説明Explanation of symbols

1 ロータリ圧縮機
2 密閉シェル
3 圧縮部(2段圧縮部)
4 電動機
41 ステータ
42 ロータ
6 アキュムレータ
62 冷媒戻り管
64 冷媒吸入管
7 シャフト
72 高段側クランク軸
73 低段側クランク軸
100 メインフレーム
110 主軸受け
200 高段側シリンダ
220 高段側ロータリピストン
300 仕切板
400 低段側シリンダ
420 低段側ロータリピストン
500 サブフレーム
C1 低段側圧縮室
C2 高段側圧縮室
V1 低段側吸入室
V2 高段側吸入室
DESCRIPTION OF SYMBOLS 1 Rotary compressor 2 Sealing shell 3 Compression part (two-stage compression part)
DESCRIPTION OF SYMBOLS 4 Electric motor 41 Stator 42 Rotor 6 Accumulator 62 Refrigerant return pipe 64 Refrigerant suction pipe 7 Shaft 72 High stage side crankshaft 73 Low stage side crankshaft 100 Main frame 110 Main bearing 200 High stage side cylinder 220 High stage side rotary piston 300 Partition plate 400 Low-stage cylinder 420 Low-stage rotary piston 500 Subframe C1 Low-stage compression chamber C2 High-stage compression chamber V1 Low-stage suction chamber V2 High-stage suction chamber

Claims (5)

密閉シェルの内部に電動機およびロータリ式の圧縮部を含む圧縮機本体と、前記圧縮機本体の側方にアキュムレータを備え、前記アキュムレータの上部には、冷凍サイクルと接続される冷媒戻り管と、下部には前記圧縮部に接続される1本の冷媒吸入管が接続されるロータリ圧縮機において、
前記冷媒戻り管の内径をD1、前記冷媒吸入管の内径をD2としたとき、D2>D1であることを特徴とするロータリ圧縮機。
A compressor main body including an electric motor and a rotary type compression unit inside the hermetic shell, an accumulator is provided on a side of the compressor main body, a refrigerant return pipe connected to a refrigeration cycle at an upper part of the accumulator, and a lower part In the rotary compressor to which one refrigerant suction pipe connected to the compression unit is connected,
A rotary compressor characterized in that D2> D1, where D1 is an inner diameter of the refrigerant return pipe and D2 is an inner diameter of the refrigerant suction pipe.
前記冷媒吸入管は、前記アキュムレータの中心軸に対して前記圧縮機本体と離反する方向にずれて配置されていることを特徴とする請求項1に記載のロータリ圧縮機。   2. The rotary compressor according to claim 1, wherein the refrigerant suction pipe is arranged so as to be shifted in a direction away from the compressor body with respect to a central axis of the accumulator. 前記圧縮部の回転数が可変であることを特徴とする請求項1または2に記載のロータリ圧縮機。   The rotary compressor according to claim 1 or 2, wherein the number of rotations of the compression unit is variable. 前記ロータリ式の圧縮部は、低段側圧縮部と高段側圧縮部とを備え、前記低段側圧縮部の吐出側と前記高段側圧縮部の吸入側を連通する手段を有して2段圧縮部を構成したことを特徴とする請求項1ないし3のいずれか1項に記載のロータリ圧縮機。   The rotary compression unit includes a low-stage compression unit and a high-stage compression unit, and has means for communicating the discharge side of the low-stage compression unit and the suction side of the high-stage compression unit. The rotary compressor according to any one of claims 1 to 3, wherein a two-stage compression unit is configured. 圧縮機、凝縮器、膨張機構および蒸発器を含む冷凍サイクルを有し、前記圧縮機のアキュムレータと前記蒸発器とを接続する低圧冷媒配管を備えたヒートポンプシステムにおいて、
前記圧縮機として請求項1ないし4のいずれか1項に記載の圧縮機を使用し、前記低圧冷媒配管の内径をD0として、D2>D0であることを特徴とするヒートポンプシステム。
In a heat pump system having a refrigeration cycle including a compressor, a condenser, an expansion mechanism and an evaporator, and having a low-pressure refrigerant pipe connecting the accumulator of the compressor and the evaporator,
A heat pump system using the compressor according to any one of claims 1 to 4 as the compressor, wherein D2> D0, where D0 is an inner diameter of the low-pressure refrigerant pipe.
JP2007083332A 2007-03-28 2007-03-28 Rotary compressor and heat pump system Pending JP2008240666A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007083332A JP2008240666A (en) 2007-03-28 2007-03-28 Rotary compressor and heat pump system
US12/073,483 US20080236192A1 (en) 2007-03-28 2008-03-06 Rotary compressor and heat pump system
EP08250948A EP1975370A1 (en) 2007-03-28 2008-03-18 Rotary compressor with accumulator and heat pump system
CNA2008100905319A CN101275563A (en) 2007-03-28 2008-03-27 Rotary compressor with accumulator and heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083332A JP2008240666A (en) 2007-03-28 2007-03-28 Rotary compressor and heat pump system

Publications (1)

Publication Number Publication Date
JP2008240666A true JP2008240666A (en) 2008-10-09

Family

ID=39561950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083332A Pending JP2008240666A (en) 2007-03-28 2007-03-28 Rotary compressor and heat pump system

Country Status (4)

Country Link
US (1) US20080236192A1 (en)
EP (1) EP1975370A1 (en)
JP (1) JP2008240666A (en)
CN (1) CN101275563A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159714A (en) * 2009-01-09 2010-07-22 Mitsubishi Electric Corp Rotary two-stage compressor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145307A (en) * 2011-01-14 2012-08-02 Mitsubishi Electric Corp Hermetic compressor
MY164285A (en) * 2011-06-08 2017-11-30 Toshiba Carrier Corp Sealed Compressor and Refrigeration Cycle Device
KR20130081107A (en) * 2012-01-06 2013-07-16 엘지전자 주식회사 Hemetic compressor
CN104747408A (en) * 2013-12-25 2015-07-01 珠海凌达压缩机有限公司 Compressor
CN113550904B (en) * 2021-08-23 2024-04-26 广东美芝制冷设备有限公司 Compressor and air conditioner

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2501337B2 (en) * 1987-07-07 1996-05-29 株式会社日立製作所 Supercharged compressor
JPH02123295A (en) * 1988-10-31 1990-05-10 Toshiba Corp Compressor
JPH0462359A (en) * 1990-06-29 1992-02-27 Toshiba Corp Oil separator for air conditioner
JP2768004B2 (en) * 1990-11-21 1998-06-25 松下電器産業株式会社 Rotary multi-stage gas compressor
JPH05195954A (en) 1992-01-22 1993-08-06 Daikin Ind Ltd Compressor
US5507159A (en) * 1994-04-25 1996-04-16 Tecumseh Products Company Suction accumulator vibration damper
US5868001A (en) * 1997-12-05 1999-02-09 Carrier Corporation Suction accumulator with oil reservoir
US6220050B1 (en) * 1998-11-24 2001-04-24 Tecumseh Products Company Suction accumulator
US6178771B1 (en) * 1999-03-29 2001-01-30 Carrier Corporation Suction accumulator
US6202437B1 (en) * 1999-05-19 2001-03-20 Carrier Corporation Suction accumulator pre-charged with oil
JP2001066021A (en) * 1999-08-25 2001-03-16 Izumi Giken:Kk Accumulator
JP2002350013A (en) * 2001-05-29 2002-12-04 Denso Corp Accumulator
JP2005127175A (en) * 2003-10-22 2005-05-19 Matsushita Electric Ind Co Ltd Rotary compressor
JP2006152931A (en) * 2004-11-30 2006-06-15 Hitachi Home & Life Solutions Inc Rotary two-stage compressor
CN100424448C (en) * 2006-06-02 2008-10-08 松下·万宝(广州)压缩机有限公司 Compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159714A (en) * 2009-01-09 2010-07-22 Mitsubishi Electric Corp Rotary two-stage compressor

Also Published As

Publication number Publication date
US20080236192A1 (en) 2008-10-02
EP1975370A1 (en) 2008-10-01
CN101275563A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP5040907B2 (en) Refrigeration equipment
KR101316247B1 (en) 2 stage rotary compressor
US9004888B2 (en) Rotary compressor having discharge groove to communicate compression chamber with discharge port near vane groove
US8353693B2 (en) Fluid machine
KR20090048255A (en) 2 stage rotary compressor
JP2008240667A (en) Rotary compressor
JP5758221B2 (en) Scroll compressor
JP2008240666A (en) Rotary compressor and heat pump system
JP6548915B2 (en) Compressor
JP6324091B2 (en) Hermetic compressor
JP5338314B2 (en) Compressor and refrigeration equipment
JP2009085027A (en) Two-stage compression rotary compressor
JP2003227485A (en) Multi-cylinder compressors
JP2011032958A (en) Rotary fluid machine
JP5401899B2 (en) Refrigeration equipment
JP5228719B2 (en) Two-stage compressor
US10968911B2 (en) Oscillating piston-type compressor
JP4948557B2 (en) Multistage compressor and refrigeration air conditioner
JP2008196343A (en) Multistage compressor
JP2015001197A (en) Rotary compressor
KR101340164B1 (en) Two stage rotary compressor
JP5595324B2 (en) Compressor
JP5423538B2 (en) Rotary compressor
JP2007092738A (en) Compressor
JP5181463B2 (en) Fluid machinery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090903