JP2012145307A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2012145307A
JP2012145307A JP2011005917A JP2011005917A JP2012145307A JP 2012145307 A JP2012145307 A JP 2012145307A JP 2011005917 A JP2011005917 A JP 2011005917A JP 2011005917 A JP2011005917 A JP 2011005917A JP 2012145307 A JP2012145307 A JP 2012145307A
Authority
JP
Japan
Prior art keywords
pipe
hermetic compressor
refrigerant
suction
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011005917A
Other languages
Japanese (ja)
Inventor
Hiroki Nagasawa
宏樹 長澤
Yoshinori Shirafuji
好範 白藤
Katsumi Endo
勝巳 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011005917A priority Critical patent/JP2012145307A/en
Priority to KR1020110108506A priority patent/KR101275921B1/en
Priority to CZ20110769A priority patent/CZ2011769A3/en
Priority to CN2011103910537A priority patent/CN102588289A/en
Publication of JP2012145307A publication Critical patent/JP2012145307A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hermetic compressor capable of minimizing a pressure loss of coolant gas when the coolant gas passes through a suction accumulator and, thereby improving the efficiency of the suction of the coolant gas.SOLUTION: The hermetic compressor 100 is characterized in that a suction accumulator 1 has the following elements: (1) an inflow pipe 2 being a straight pipe having a constant inside diameter to which a coolant pipe of a refrigeration cycle is connected; (2) a barrel 5 which has such a shape that the whole is cylindrical and both ends are narrowed, is configured in a prescribed diameter that gives such a volume to satisfy gas-liquid separation of suction coolant gas and function of storing liquid coolant containing separated refrigerator oil, and configured in such a diffuser shape that the end part of the inflow pipe side has a prescribed deployment angle, a diffuser shaped part 6 smoothly formed with an inwardly-convex curve and connected to the inflow pipe; and (3) at least one outflow pipe 3 in which the diameter of inflow port is larger than the diameter of the inflow pipe or the inflow port 7-1 is a bell mouth shape.

Description

この発明は、密閉型圧縮機に関する。詳しくは、吸入アキュムレータの圧力損失抑制に関する。   The present invention relates to a hermetic compressor. Specifically, it relates to suppression of pressure loss in the suction accumulator.

従来、吸入冷媒ガスの気液分離及び分離した冷凍機油を含む液冷媒を貯留する容積を確保するため、円筒形状の胴体部に流出管及び流入管を胴体内部にまで達するよう挿入した密閉型圧縮機の吸入アキュムレータが提案されている(例えば、特許文献1参照。)。   Conventionally, in order to secure a volume for storing liquid refrigerant including gas-liquid separation of the refrigerant refrigerant and separated refrigerating machine oil, hermetic compression in which an outflow pipe and an inflow pipe are inserted into the body to reach the inside of the body A suction accumulator for a machine has been proposed (see, for example, Patent Document 1).

特開2009−162222号公報(図8)JP2009-162222A (FIG. 8)

従来の密閉型圧縮機に設けられた、吸入冷媒ガスの気液分離及び分離した冷凍機油を含む液を貯留する機能を有する吸入アキュムレータは、その機能を満足できる胴体部容積と空気調和機本体の配管径と圧縮機の圧縮室吸入係合部の径に規制されるため、以下に示す課題があった。
(1)吸入アキュムレータに具備された流入管から吸入アキュムレータ胴体部を通過して、吸入アキュムレータに具備された流出管に流入され圧縮機の圧縮室吸入係合部より吸入される冷媒ガスの、前記流入管から吸入アキュムレータ胴体部に流入する際の急拡大損失が非常に大きくなる。
(2)前記冷媒ガスの、吸入アキュムレータ胴体部を通過して前記流出管に流入する際の急収縮損失が非常に大きくなる。
A suction accumulator provided in a conventional hermetic compressor and having a function of storing a liquid containing gas and liquid separation of suction refrigerant gas and separated refrigeration oil has a body volume and an air conditioner main body that can satisfy the functions. Since it is restricted by the pipe diameter and the diameter of the compression chamber suction engagement portion of the compressor, there are the following problems.
(1) The refrigerant gas that passes through the suction accumulator body from the inflow pipe provided in the suction accumulator, flows into the outflow pipe provided in the suction accumulator, and is sucked from the compression chamber suction engagement portion of the compressor, The sudden expansion loss when flowing from the inflow pipe into the suction accumulator body becomes very large.
(2) The sudden contraction loss of the refrigerant gas when passing through the suction accumulator body and flowing into the outflow pipe becomes very large.

そのため、冷媒ガス吸入効率が低下することで、圧縮機に吸入される冷媒ガスの圧力が低下して、冷凍サイクルの理想圧力状態よりも圧縮仕事が増加する。それにより圧縮機効率が低下し、さらに空気調和機本体に具備された蒸発器の圧力が低下して、冷凍サイクル効率が低下することにつながっていた。   For this reason, the refrigerant gas suction efficiency is reduced, the pressure of the refrigerant gas sucked into the compressor is lowered, and the compression work is increased as compared with the ideal pressure state of the refrigeration cycle. Thereby, the compressor efficiency is lowered, and further, the pressure of the evaporator provided in the air conditioner main body is lowered, leading to a reduction in the refrigeration cycle efficiency.

この発明は、上記のような課題を解決するためになされたもので、冷媒ガスが吸入アキュムレータを通過する際の冷媒ガスの圧力損失を極小化することによって冷媒ガス吸入効率を向上させることができる密閉型圧縮機を提供する。   The present invention has been made to solve the above-described problems, and can improve the refrigerant gas suction efficiency by minimizing the pressure loss of the refrigerant gas when the refrigerant gas passes through the suction accumulator. A hermetic compressor is provided.

この発明に係る密閉型圧縮機は、密閉容器の側部に、吸入アキュムレータを備える密閉型圧縮機であって、
吸入アキュムレータは、以下に示す要素を備えることを特徴とする。
(1)内径が一定の直管で、冷凍サイクルの冷媒配管が接続される流入管;
(2)全体が筒状で両端が絞られた形状であり、吸入冷媒ガスの気液分離及び分離した冷凍機油を含む液冷媒を貯留する機能を満足する容積を有する所定の径に構成され、流入管側の端部が所定の展開角度のディフューザー形状に構成されるとともに、ディフューザー形状部は内側に凸の曲線で滑らかに形成されて流入管に接続する胴体部;
(3)流入口の径が流入管の径より大きいか、もしくは流入口がベルマウス形状になっている少なくとも1本の流出管。
A hermetic compressor according to the present invention is a hermetic compressor including a suction accumulator on a side of a hermetic container,
The inhalation accumulator includes the following elements.
(1) An inflow pipe having a constant inner diameter and connected to a refrigerant pipe of a refrigeration cycle;
(2) The overall shape is cylindrical and both ends are squeezed, and is configured to have a predetermined diameter having a volume satisfying the function of storing liquid refrigerant including gas-liquid separation of suction refrigerant gas and separated refrigeration oil, A body portion that is configured to have a diffuser shape with a predetermined deployment angle at the end portion on the inflow pipe side, and the diffuser shape portion is smoothly formed with an inward convex curve and connected to the inflow pipe;
(3) At least one outflow pipe in which the diameter of the inflow port is larger than the diameter of the inflow pipe or the inflow port has a bell mouth shape.

この発明に係る密閉型圧縮機は、吸入アキュムレータの流入管が、流入管側の端部が所定の展開角度のディフューザー形状に構成されるとともに、ディフューザー形状部は内側に凸の曲線で滑らかに形成される胴体部に接続するとともに、流入口の径が流入管の径より大きいか、もしくは流入口がベルマウス形状になっている少なくとも1本の流出管を備えることにより、冷媒ガスが吸入アキュムレータを通過する際の冷媒ガスの圧力損失を極小化することによって冷媒ガス吸入効率が向上する。さらに、密閉型圧縮機に吸入される冷媒ガスの圧力が向上して、冷凍サイクルの理想圧力状態に近い圧縮仕事となることで圧縮機効率が向上し、また冷凍サイクルの蒸発器の圧力が向上することで、冷凍サイクル効率を向上させる効果を有する。   In the hermetic compressor according to the present invention, the inflow pipe of the suction accumulator is configured in a diffuser shape with a predetermined deployment angle at the end on the inflow pipe side, and the diffuser shape portion is smoothly formed with a convex curve inward. The refrigerant gas is provided with a suction accumulator by connecting at least one outflow pipe having a diameter larger than that of the inflow pipe or having a bell mouth shape. The refrigerant gas suction efficiency is improved by minimizing the pressure loss of the refrigerant gas when passing through. Furthermore, the pressure of the refrigerant gas sucked into the hermetic compressor is increased, and the compression work is close to the ideal pressure state of the refrigeration cycle, so that the compressor efficiency is improved and the evaporator pressure of the refrigeration cycle is also improved This has the effect of improving the refrigeration cycle efficiency.

実施の形態1を示す図で、密閉型圧縮機100の全体構成を示す縦断面図。FIG. 3 shows the first embodiment and is a longitudinal sectional view showing the overall configuration of the hermetic compressor 100. FIG. 実施の形態1を示す図で、吸入アキュムレータ1の一部を断面で示す図。FIG. 3 shows the first embodiment, and shows a part of the suction accumulator 1 in cross section. 図2のA部拡大図。The A section enlarged view of FIG. 実施の形態1を示す図で、変形例の吸入アキュムレータ1−1の一部を断面で示す図。FIG. 5 shows the first embodiment, and shows a cross section of a part of a modified inhalation accumulator 1-1. 実施の形態1を示す図で、緩やかな拡がり管における展開角度と圧力損失の関係を示した図。FIG. 5 shows the first embodiment, and shows a relationship between a deployment angle and a pressure loss in a gently expanding pipe. 実施の形態1を示す図で、流出管径と圧力損失の関係を示した図。FIG. 5 shows the first embodiment and shows the relationship between the outflow pipe diameter and the pressure loss. 実施の形態1を示す図で、空気調和機の冷媒回路図。FIG. 3 shows the first embodiment, and is a refrigerant circuit diagram of the air conditioner. 実施の形態1を示す図で、空気調和機の室外機300の分解斜視図。FIG. 3 is a diagram illustrating the first embodiment and is an exploded perspective view of the outdoor unit 300 of the air conditioner. 比較のために示す図で、一般的な密閉型圧縮機200の全体構成を示す縦断面図。It is a figure shown for a comparison and is a longitudinal cross-sectional view which shows the whole structure of the general hermetic compressor 200. 比較のために示す図で、一般的な密閉型圧縮機200の吸入アキュムレータ21の一部を断面で示す図。It is a figure shown for a comparison and is a figure which shows a part of the suction accumulator 21 of a general hermetic compressor 200 in cross section.

実施の形態1.
本実施の形態の密閉型圧縮機は、空気調和機本体に接続される直管で構成される流入管から、吸入冷媒ガスの気液分離及び分離した冷凍機油を含む液冷媒を貯留する機能を満足する容積をもつ任意の径の吸入アキュムレータ胴体部に、ディフューザ効果を有する展開角と内側に凸の滑らかな曲線形状でつながれ、流入口が好ましくは拡径され、且つ圧縮要素の圧縮室吸入口係合部にて縮管された流出管を少なくとも1本具備する吸入アキュムレータを有するものである。
Embodiment 1 FIG.
The hermetic compressor of the present embodiment has a function of storing liquid refrigerant including gas-liquid separation of suction refrigerant gas and separated refrigeration oil from an inflow pipe constituted by a straight pipe connected to the air conditioner body. A suction accumulator body of any diameter with a satisfactory volume is connected to a deployment angle having a diffuser effect and a smooth curved shape convex inward, the inlet is preferably enlarged, and the compression chamber inlet of the compression element A suction accumulator having at least one outflow pipe contracted by the engaging portion is provided.

また、本実施の形態の密閉型圧縮機は、空気調和機本体に接続される流入管が、空気調和機本体から接続される冷媒配管の位置を規制しながら圧力損失を極小化するために内側に向かった突起形状(ストッパ)を一つ具備する直管となっている。ディフューザ効果を有する展開角と内側に凸の滑らかな曲線形状は、そこを通過する冷媒ガスの拡大損失を極小化するために流入管出口部分より10°〜60°の展開角度を持ち、吸入アキュムレータ胴体部に滑らかにつながれている。その内側に凸の滑らかな曲線形状を通過した冷媒ガスが、吸入アキュムレータ流出管の入り口に流入する際の収縮損失を極小化し、且つ吸入冷媒ガスを分離した冷凍気油を含む液冷媒を貯留する機能を満足するために、吸入アキュムレータ流出管の入口外径は吸入アキュムレータ流入管径よりも大きく、吸入アキュムレータ流出管の入口径から圧縮機の圧縮室吸入口係合部に適合する径となるよう少なくとも1箇所の場所で縮径された流出管を少なくとも1本具備する吸入アキュムレータを持つ密閉型圧縮機である。   Further, the hermetic compressor according to the present embodiment has an inflow pipe connected to the air conditioner main body for minimizing pressure loss while regulating the position of the refrigerant pipe connected from the air conditioner main body. It is a straight pipe provided with one protrusion shape (stopper) facing toward. The expansion angle having a diffuser effect and the smooth curved shape convex inward have a expansion angle of 10 ° to 60 ° from the inlet pipe outlet portion in order to minimize the expansion loss of the refrigerant gas passing therethrough. Smoothly connected to the body. Refrigerant gas that has passed through a smooth curved shape that protrudes inward minimizes the contraction loss when flowing into the inlet of the suction accumulator outlet pipe, and stores liquid refrigerant containing frozen gas oil that has separated the suction refrigerant gas. In order to satisfy the function, the inlet outer diameter of the suction accumulator outlet pipe is larger than the inlet accumulator inlet pipe diameter, and the diameter of the inlet inlet of the suction accumulator outlet pipe is adapted to the compression chamber suction port engaging portion. A hermetic compressor having a suction accumulator having at least one outflow pipe reduced in diameter at least at one place.

さらに、本実施の形態の密閉型圧縮機は、吸入アキュムレータに少なくとも1本具備された流出管の先端(流入口)が、冷媒ガスが流出管に流入する際の急収縮損失を極小化するためにベルマウス形状の流入口でもよく、そのベルマウス形状は吸入アキュムレータ流入管径よりも大きい外径をもつ。   Further, in the hermetic compressor of the present embodiment, the tip (inlet) of the outflow pipe provided in at least one suction accumulator minimizes the sudden contraction loss when the refrigerant gas flows into the outflow pipe. A bell mouth-shaped inlet may be used, and the bell mouth shape has an outer diameter larger than the inlet accumulator inlet pipe diameter.

図1は実施の形態1を示す図で、密閉型圧縮機100の全体構成を示す縦断面図である。図1を参照しながら密閉型圧縮機100について説明する。   FIG. 1 shows the first embodiment, and is a longitudinal sectional view showing the overall configuration of the hermetic compressor 100. The hermetic compressor 100 will be described with reference to FIG.

図1に示す密閉型圧縮機100は、1シリンダのロータリ圧縮機である。密閉型圧縮機100は、密閉容器110内に、冷媒を圧縮する圧縮要素101、この圧縮要素101を駆動する電動要素102が収納され、密閉容器110底部に圧縮要素101の摺動部を潤滑する冷凍機油が貯留されている。   A hermetic compressor 100 shown in FIG. 1 is a one-cylinder rotary compressor. In the hermetic compressor 100, a compression element 101 that compresses a refrigerant and an electric element 102 that drives the compression element 101 are housed in a hermetic container 110, and the sliding portion of the compression element 101 is lubricated at the bottom of the hermetic container 110. Refrigerating machine oil is stored.

冷媒を圧縮する圧縮要素101は、軸方向の両端が上下の二つの軸受で閉塞されたシリンダ内を回転軸の偏心部に嵌合するローリングピストンが回転する。シリンダには、径方向に進退自在に設けられたベーンがローリングピストンに常に当接するように配置される。シリンダの内周面、ローリングピストンの外周面、ベーン、二つの軸受で囲まれた圧縮室で冷媒が圧縮される。   In the compression element 101 that compresses the refrigerant, a rolling piston that fits in an eccentric portion of the rotating shaft rotates in a cylinder in which both ends in the axial direction are closed by two upper and lower bearings. In the cylinder, a vane provided so as to be movable forward and backward in the radial direction is arranged so as to always contact the rolling piston. The refrigerant is compressed in a compression chamber surrounded by the inner peripheral surface of the cylinder, the outer peripheral surface of the rolling piston, the vane, and the two bearings.

圧縮要素101を回転軸を介して駆動する電動要素102には、ブラシレスDCモータ、誘導電動機等が用いられる。   A brushless DC motor, an induction motor, or the like is used for the electric element 102 that drives the compression element 101 via a rotating shaft.

圧縮要素101で圧縮された冷媒は、密閉容器110内に吐出され、電動要素102を通過し、吐出管130から図示しない冷媒回路の高圧側に流出する。   The refrigerant compressed by the compression element 101 is discharged into the sealed container 110, passes through the electric element 102, and flows out from the discharge pipe 130 to the high pressure side of the refrigerant circuit (not shown).

電動要素102には、密閉容器110に固定されたガラス端子120を介して商用電源から電力が供給される。   Electric power is supplied to the electric element 102 from a commercial power source through a glass terminal 120 fixed to the sealed container 110.

密閉型圧縮機100は、その側部に吸入アキュムレータ1を備える。本実施の形態は、この吸入アキュムレータ1の構造に特徴がある。従って、吸入アキュムレータ1について、以下詳述する。   The hermetic compressor 100 includes a suction accumulator 1 on a side portion thereof. This embodiment is characterized by the structure of the suction accumulator 1. Therefore, the suction accumulator 1 will be described in detail below.

図2は実施の形態1を示す図で、吸入アキュムレータ1の一部を断面で示す図、図3は図2のA部拡大図である。図1〜図3を参照しながら、吸入アキュムレータ1について説明する。   FIG. 2 is a diagram showing the first embodiment, and is a diagram showing a part of the suction accumulator 1 in cross section, and FIG. 3 is an enlarged view of a portion A in FIG. The suction accumulator 1 will be described with reference to FIGS.

吸入アキュムレータ1は、以下に示す要素で構成される。
(1)胴体部5:全体が筒状(例えば、断面が円形)であり、両端が絞られている形状である。胴体部5は、吸入冷媒ガスの気液分離及び分離した冷凍機油を含む液冷媒を貯留する機能を満足する容積をもつ任意の径に構成される。胴体部5の後述する流入管2側の端部は、ディフューザー(diffusor)形状になっている。断面積が徐々に大きくなる管である拡散筒では、亜音速(M<1、Mはマッハ数)の場合には、速度とマッハ数とは減少し、圧力は増加する。このような管をディフューザーという。さらに、本実施の形態の胴体部5のディフューザー形状部6は、内側に凸の曲線(例えば、円弧)で滑らかに形成されている。ディフューザー形状部6の展開角度(図2参照)は、詳しくは後述するが、10〜60°が好ましい。展開角度は、断面積の広がりを表す。断面積が、変化しない場合は0°である。また、図10に示す一般的な吸入アキュムレータ21のように、流入管から胴体部に流入する際に、断面積が急激に拡大する場合は、展開角度は、略180°である。
The suction accumulator 1 includes the following elements.
(1) Body part 5: The whole body is cylindrical (for example, the cross section is circular), and both ends are narrowed. The body portion 5 is configured to have an arbitrary diameter having a volume that satisfies the function of gas-liquid separation of the suction refrigerant gas and the storage of the liquid refrigerant including the separated refrigerating machine oil. An end portion on the inflow pipe 2 side, which will be described later, of the body portion 5 has a diffuser shape. In a diffusion cylinder that is a tube having a gradually increasing cross-sectional area, at subsonic speeds (M <1, M is the Mach number), the velocity and the Mach number are decreased, and the pressure is increased. Such a tube is called a diffuser. Furthermore, the diffuser-shaped portion 6 of the body portion 5 of the present embodiment is smoothly formed with an inwardly convex curve (for example, an arc). The expansion angle (see FIG. 2) of the diffuser-shaped portion 6 is described later in detail, but is preferably 10 to 60 °. The development angle represents the spread of the cross-sectional area. When the cross-sectional area does not change, it is 0 °. Further, when the cross-sectional area suddenly expands when flowing into the body portion from the inflow pipe as in the general suction accumulator 21 shown in FIG. 10, the deployment angle is approximately 180 °.

(2)流入管2:内径が一定の直管で、ユニット(例えば、空気調和機の室外機)の冷媒配管が接続される。流入管2から胴体部5にディフューザー形状部6(ディフューザ効果を有する展開角(10°〜60°)と内側に凸の滑らかな曲線(例えば、円弧))で滑らかにつながれる。流入管2は、内部に内側に向かって突出する突起形状部2aを少なくとも一つ備える。突起形状部2aにより、ユニット(例えば、空気調和機の室外機)の冷媒配管を規制する(位置決め)ことを満足しながら、流入管2を冷媒ガスが通過する際の圧力損失を極小化できる。一般的な吸入アキュムレータ21(図10参照)の流入管は、直管の一部を絞り(径を細くする)、ユニットの冷媒配管の位置を規制するので、流入管を冷媒ガスが通過する際の圧力損失がある。 (2) Inflow pipe 2: A straight pipe having a constant inner diameter, to which a refrigerant pipe of a unit (for example, an outdoor unit of an air conditioner) is connected. A diffuser-shaped portion 6 (a deployment angle (10 ° to 60 °) having a diffuser effect and a smooth curve (for example, an arc) inwardly convex) having a diffuser effect is smoothly connected from the inflow pipe 2 to the body portion 5. The inflow pipe 2 includes at least one protrusion-shaped portion 2a that protrudes inward. The protrusion-shaped portion 2a can minimize the pressure loss when the refrigerant gas passes through the inflow pipe 2 while satisfying that the refrigerant piping of the unit (for example, the outdoor unit of the air conditioner) is regulated (positioned). The inflow pipe of the general suction accumulator 21 (see FIG. 10) restricts the position of the refrigerant pipe of the unit by restricting a part of the straight pipe (thinning the diameter), so that the refrigerant gas passes through the inflow pipe. There is a pressure loss of.

(3)流出管3:吸入アキュムレータ1の流出管3の流出部8は、密閉型圧縮機100の圧縮室吸入口係合部4に適合するような径を持つ(縮管されている)。流出管3は、胴体部5内の下部に、冷凍機油を密閉型圧縮機100へ戻すための油戻し孔10が開けられている。流出管3の流入口7の径は、流入管2の径より大きい。 (3) Outflow pipe 3: The outflow part 8 of the outflow pipe 3 of the suction accumulator 1 has a diameter (contracted) so as to fit the compression chamber suction port engaging part 4 of the hermetic compressor 100. In the outflow pipe 3, an oil return hole 10 for returning the refrigeration oil to the hermetic compressor 100 is formed in the lower part of the body part 5. The diameter of the inlet 7 of the outflow pipe 3 is larger than the diameter of the inflow pipe 2.

(4)リング部材9:胴体部5の略中央部に嵌合し、胴体部5の強度を上げる効果を有すると共に、吸入アキュムレータ1を密閉容器110に固定する役目を持つ。 (4) Ring member 9: The ring member 9 is fitted to the substantially central part of the body part 5 and has the effect of increasing the strength of the body part 5, and also has the role of fixing the suction accumulator 1 to the sealed container 110.

密閉型圧縮機100は、例えば空気調和機本体の室外機に搭載され、熱交換器(室外熱交換器(暖房時)もしくは室内熱交換器(冷房時))内で蒸発し気体状態になった冷媒ガスが流れる配管(ユニットの配管)が密閉型圧縮機100の側面に取り付けられた吸入アキュムレータ1の流入管2に接続される(図3参照)。   The hermetic compressor 100 is mounted on, for example, an outdoor unit of an air conditioner main body, and is evaporated in a heat exchanger (outdoor heat exchanger (during heating) or indoor heat exchanger (during cooling)) to be in a gas state. A pipe (unit pipe) through which the refrigerant gas flows is connected to the inflow pipe 2 of the suction accumulator 1 attached to the side surface of the hermetic compressor 100 (see FIG. 3).

空気調和機の一例を、図7、図8を参照しながら説明しておく。   An example of an air conditioner will be described with reference to FIGS.

図7、図8は実施の形態1を示す図で、図7は空気調和機の冷媒回路図、図8は空気調和機の室外機300の分解斜視図である。   7 and 8 show the first embodiment, FIG. 7 is a refrigerant circuit diagram of the air conditioner, and FIG. 8 is an exploded perspective view of the outdoor unit 300 of the air conditioner.

図7に示すように、空気調和機の冷媒回路は、冷媒を圧縮する密閉型圧縮機100、冷房運転と暖房運転とで冷媒の流れる方向を切り替える四方弁52、冷房運転時は凝縮器、暖房運転時は蒸発器として動作する室外側熱交換器53、高圧の液冷媒を減圧して低圧の気液二相冷媒にする減圧装置54(電子制御式膨張弁)、冷房運転時は蒸発器、暖房運転時は凝縮器として動作する室内側熱交換器55を順次接続して冷凍サイクルを構成する。   As shown in FIG. 7, the refrigerant circuit of the air conditioner includes a hermetic compressor 100 that compresses the refrigerant, a four-way valve 52 that switches a refrigerant flow direction between the cooling operation and the heating operation, a condenser and a heating device during the cooling operation. An outdoor heat exchanger 53 that operates as an evaporator during operation, a decompression device 54 (electronically controlled expansion valve) that depressurizes high-pressure liquid refrigerant into a low-pressure gas-liquid two-phase refrigerant, an evaporator during cooling operation, During the heating operation, the indoor heat exchanger 55 operating as a condenser is sequentially connected to constitute a refrigeration cycle.

図7の実線矢印は、冷房運転時の冷媒の流れる方向を示す。また、図7の破線矢印は、暖房運転時の冷媒の流れる方向を示す。   The solid line arrows in FIG. 7 indicate the direction in which the refrigerant flows during the cooling operation. Moreover, the broken line arrow of FIG. 7 shows the direction through which the refrigerant flows during the heating operation.

室外側熱交換器53には室外側送風機56が設けられ、そして室内側熱交換器55には室内側送風機57(横流ファン)が設けられている。   The outdoor heat exchanger 53 is provided with an outdoor fan 56, and the indoor heat exchanger 55 is provided with an indoor fan 57 (cross flow fan).

冷房運転時は、密閉型圧縮機100から圧縮された高温高圧の冷媒が吐出し、四方弁52を介して室外側熱交換器53へ流入する。この室外側熱交換器53では、その風路に設けられた室外側送風機56により室外の空気が室外側熱交換器53のフィンとチューブ(伝熱管)の間を通過しながら冷媒と熱交換し、冷媒は冷却されて高圧の液状態になり、室外側熱交換器53は凝縮器として作用する。その後、減圧装置54を通過して減圧され低圧の気液二相冷媒となり室内側熱交換器55に流入する。室内側熱交換器55では、その風路に取り付けられた室内側送風機57(横流ファン)の駆動により室内空気が室内側熱交換器55のフィンとチューブ(伝熱管)の間を通過し冷媒と熱交換することにより、室内空間に吹き出される空気は冷やされ、一方冷媒は空気より熱を受け取り蒸発して気体状態となり(室内側熱交換器55は蒸発器として作用する)、冷媒はその後密閉型圧縮機100へ戻る。室内側熱交換器55で冷却された空気により、室内空間を空調(冷房)する。   During the cooling operation, the high-temperature and high-pressure refrigerant compressed from the hermetic compressor 100 is discharged and flows into the outdoor heat exchanger 53 via the four-way valve 52. In the outdoor heat exchanger 53, outdoor air is exchanged with the refrigerant while the outdoor air passes between the fins of the outdoor heat exchanger 53 and the tubes (heat transfer tubes) by the outdoor fan 56 provided in the air passage. The refrigerant is cooled to a high pressure liquid state, and the outdoor heat exchanger 53 functions as a condenser. Thereafter, the pressure is reduced through the decompression device 54, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 55. In the indoor side heat exchanger 55, the indoor air passes through between the fins and the tubes (heat transfer tubes) of the indoor side heat exchanger 55 by driving of the indoor side blower 57 (cross flow fan) attached to the air passage. By exchanging heat, the air blown into the indoor space is cooled, while the refrigerant receives heat from the air and evaporates into a gaseous state (the indoor heat exchanger 55 acts as an evaporator), and the refrigerant is then sealed. Return to the mold compressor 100. The indoor space is air-conditioned (cooled) by the air cooled by the indoor heat exchanger 55.

また、暖房運転時は、四方弁52が反転することより、冷凍サイクルにおいて上記冷房運転時の冷媒の流れと逆向きに冷媒が流れ、室内側熱交換器55が凝縮器として、室外側熱交換器53が蒸発器として作用する。室内側熱交換器55で暖められた空気により、室内空間を空調(暖房)する。   Further, during the heating operation, the four-way valve 52 is inverted, so that the refrigerant flows in the opposite direction to the refrigerant flow during the cooling operation in the refrigeration cycle, and the indoor heat exchanger 55 serves as a condenser to perform outdoor heat exchange. Vessel 53 acts as an evaporator. The indoor space is air-conditioned (heated) by the air heated by the indoor heat exchanger 55.

図8により空気調和機の室外機300の構成を説明する。空気調和機の室外機300は、平面視で略L字状の室外側熱交換器53、室外機300の筐体の底部を構成する底板68(ベース)、筐体の天面を構成する平板状のトップパネル59、筐体の前面と一側部を構成する平面視で略L字状のフロントパネル60、筐体の他側部を構成するサイドパネル61、風路(送風機室)と機械室を分けるセパレータ62、電気品が収納される電気品ボックス63、冷媒を圧縮する密閉型圧縮機100、冷媒回路を形成する冷媒配管・冷媒回路部品類64、室外側熱交換器53に送風を行う室外側送風機56等で構成されている。   The structure of the outdoor unit 300 of an air conditioner will be described with reference to FIG. The outdoor unit 300 of the air conditioner includes a substantially L-shaped outdoor heat exchanger 53 in a plan view, a bottom plate 68 (base) that forms the bottom of the casing of the outdoor unit 300, and a flat plate that forms the top surface of the casing. Top panel 59, a front panel 60 that is substantially L-shaped in plan view that constitutes the front and one side of the housing, a side panel 61 that constitutes the other side of the housing, an air passage (blower room), and a machine Air is sent to the separator 62 that separates the chamber, the electrical box 63 that stores electrical components, the hermetic compressor 100 that compresses the refrigerant, the refrigerant piping and refrigerant circuit components 64 that form the refrigerant circuit, and the outdoor heat exchanger 53. The outdoor blower 56 etc. to perform are comprised.

上記のように構成される空気調和機の室外機300に、本実施の形態の密閉型圧縮機100を搭載することにより、冷凍サイクルの理想圧力状態に近い圧縮仕事とすることで圧縮機効率が向上し、さらに空気調和機本体に具備された蒸発器の圧力が向上することで、冷凍サイクル効率を向上させる効果を有する。   By mounting the hermetic compressor 100 of the present embodiment on the outdoor unit 300 of the air conditioner configured as described above, the compressor efficiency is improved by making the compression work close to the ideal pressure state of the refrigeration cycle. Further, the pressure of the evaporator provided in the air conditioner main body is improved, and the refrigeration cycle efficiency is improved.

冷媒ガスは吸入アキュムレータ1の流入管2から吸入アキュムレータ1の内部を通過し、吸入アキュムレータの流出管3を通過して密閉型圧縮機100の圧縮室吸入口係合部4より密閉型圧縮機100に流入する。さらに密閉型圧縮機100の圧縮室にて断熱圧縮されて密閉型圧縮機100の空気調和機本体と接続される上部の吐出管130より吐出される。吐出された冷媒ガスは空気調和機本体内部の熱交換器にて、周囲空気との熱交換によって凝縮(室外熱交換器(冷房))と蒸発(室内熱交換器(暖房))を行い、再び密閉型圧縮機100の側面に具備された吸入アキュムレータ1の流入管2より流入するサイクルを繰り返している。   The refrigerant gas passes through the inside of the suction accumulator 1 from the inflow pipe 2 of the suction accumulator 1, passes through the outflow pipe 3 of the suction accumulator, and enters the hermetic compressor 100 from the compression chamber suction port engaging portion 4 of the hermetic compressor 100. Flow into. Further, it is adiabatically compressed in the compression chamber of the hermetic compressor 100 and discharged from the upper discharge pipe 130 connected to the air conditioner main body of the hermetic compressor 100. The discharged refrigerant gas is condensed (outdoor heat exchanger (cooling)) and evaporated (indoor heat exchanger (heating)) by heat exchange with ambient air in the heat exchanger inside the air conditioner body, and again The cycle of flowing in from the inflow pipe 2 of the suction accumulator 1 provided on the side surface of the hermetic compressor 100 is repeated.

また吸入アキュムレータ1に流入する冷媒は、熱交換器内で完全に蒸発されないことと、密閉型圧縮機100内部に貯留された圧縮要素101の機械部品(摺動部品)の潤滑に必要な冷凍機油が断熱圧縮工程の際に冷媒に混合して吐出されることで、ガス冷媒・液冷媒・冷凍機油が混合された状態になっている。   In addition, the refrigerant flowing into the suction accumulator 1 is not completely evaporated in the heat exchanger, and the refrigerating machine oil necessary for lubricating the mechanical parts (sliding parts) of the compression element 101 stored in the hermetic compressor 100. Is mixed with the refrigerant and discharged in the adiabatic compression step, so that the gas refrigerant, the liquid refrigerant, and the refrigerating machine oil are mixed.

ガス冷媒・液冷媒・冷凍機油が混合された混合流体の中の液冷媒成分が密閉型圧縮機100の圧縮室内へ多量に流入すると、圧縮要素101の機械部品(摺動部品)に付着している冷凍機油が液冷媒へ溶け込んでしまい、圧縮要素101の機械部品(摺動部品)の正常な潤滑が損なわれてしまう。   When a large amount of liquid refrigerant component in the mixed fluid in which gas refrigerant, liquid refrigerant, and refrigeration oil are mixed flows into the compression chamber of the hermetic compressor 100, the liquid refrigerant component adheres to the mechanical component (sliding component) of the compression element 101. The refrigerating machine oil that has been melted into the liquid refrigerant will impair normal lubrication of the mechanical parts (sliding parts) of the compression element 101.

そのために、密閉型圧縮機100はその側面に吸入アキュムレータ1を備える。吸入アキュムレータ1は、その内部に流入したガス冷媒・液冷媒・冷凍機油の混合流体を、ガス冷媒と液冷媒・冷凍機油とに分離する。ガス冷媒は、吸入アキュムレータ1の流出管3を通じて密閉型圧縮機100本体部へ流入される。液冷媒・冷凍機油は、吸入アキュムレータ1の胴体部5に貯留されることで液冷媒成分が密閉型圧縮機100の圧縮室内へ多量に流入することを防ぐ。   For this purpose, the hermetic compressor 100 is provided with a suction accumulator 1 on its side surface. The suction accumulator 1 separates the mixed fluid of gas refrigerant, liquid refrigerant, and refrigeration oil that has flowed into the interior into gas refrigerant, liquid refrigerant, and refrigeration oil. The gas refrigerant flows into the hermetic compressor 100 main body through the outflow pipe 3 of the suction accumulator 1. Liquid refrigerant / refrigeration oil is stored in the body portion 5 of the suction accumulator 1, thereby preventing a large amount of liquid refrigerant component from flowing into the compression chamber of the hermetic compressor 100.

また、貯留した冷凍機油は液冷媒より密度が高いことから下部に滞留するため、吸入アキュムレータ1の流出管3の下部の油戻し孔10より冷凍機油のみが密閉型圧縮機100本体部へ徐々に流入する。貯留した液冷媒は徐々に気化して吸入アキュムレータ1の上部に滞留するため、吸入アキュムレータ1の流出管3へ流入して行く。   Further, since the stored refrigeration oil has a higher density than the liquid refrigerant and stays in the lower part, only the refrigeration oil gradually enters the main body of the hermetic compressor 100 through the oil return hole 10 at the lower part of the outflow pipe 3 of the suction accumulator 1. Inflow. The stored liquid refrigerant is gradually vaporized and stays in the upper part of the suction accumulator 1, and therefore flows into the outflow pipe 3 of the suction accumulator 1.

吸入アキュムレータ1は、空気調和機本体に接続される直管である流入管2から、吸入冷媒ガスの気液分離及び分離した冷凍機油を含む液冷媒を貯留する機能を満足する容積をもつ任意の径の吸入アキュムレータ1の胴体部5にディフューザ効果を有する展開角度と、内側に凸の曲線(例えば、円弧)で滑らかにつながれる。   The suction accumulator 1 is an arbitrary volume having a volume satisfying the function of storing the liquid refrigerant including the gas-liquid separation of the suction refrigerant gas and the separated refrigerating machine oil from the inflow pipe 2 which is a straight pipe connected to the air conditioner body. The body portion 5 of the suction accumulator 1 having a diameter is smoothly connected with a deployment angle having a diffuser effect and an inwardly convex curve (for example, an arc).

吸入アキュムレータ1は、流入口7の径が流入管2の径より大きく、且つ圧縮室吸入口係合部4に係合する縮管された流出部8を有する流出管3を少なくとも1本備える。   The suction accumulator 1 includes at least one outflow pipe 3 having a diameter of the inflow port 7 larger than that of the inflow pipe 2 and having a contracted outflow portion 8 that engages with the compression chamber suction port engaging portion 4.

空気調和機本体(ユニットの冷媒配管)に接続される流入管2は、圧力損失を極小化するために直管となっている。ディフューザ効果を有する展開角度と内側に凸の曲線(例えば、円弧)を持つディフューザー形状部6は、そこを通過する冷媒ガスの拡大損失を極小化する。且つ、胴体部5の外径方向へ向かった積極的な流れを形成し気液分離をより効率化するために、流入管2出口部分より10°〜60°の展開角度を持ち、胴体部5に滑らかにつながれている。内側に凸の曲線(例えば、円弧)を持つディフューザー形状部6を通過した冷媒ガスが吸入アキュムレータ1の流出管3の流入口7に流入する際の収縮損失を極小化し、且つ吸入冷媒ガスを分離した冷凍機油を含む液冷媒を貯留する機能を満足するために、流出管3の流入口7は流入管2の径より大きい外径を持つ。流出管3は、流出管3の流入口7の径から圧縮室吸入口係合部4に適合する径となるように、流入口7の反対側の端部の圧縮室吸入口係合部4に係合する流出部8の少なくとも一箇所で縮管されている。吸入アキュムレータ1は、少なくとも1本の流出管3を備える。   The inflow pipe 2 connected to the air conditioner body (unit refrigerant pipe) is a straight pipe in order to minimize pressure loss. The diffuser-shaped portion 6 having a spread angle having a diffuser effect and a curved curve (for example, an arc) on the inside minimizes the expansion loss of the refrigerant gas passing therethrough. In addition, in order to form a positive flow toward the outer diameter direction of the body portion 5 and to make gas-liquid separation more efficient, the body portion 5 has a deployment angle of 10 ° to 60 ° from the outlet portion of the inflow pipe 2. It is connected smoothly. Minimizes contraction loss when refrigerant gas that has passed through the diffuser-shaped portion 6 having an inwardly convex curve (for example, an arc) flows into the inlet 7 of the outlet pipe 3 of the suction accumulator 1, and separates the refrigerant refrigerant In order to satisfy the function of storing the liquid refrigerant containing the refrigerating machine oil, the inflow port 7 of the outflow pipe 3 has an outer diameter larger than the diameter of the inflow pipe 2. The outflow pipe 3 has a diameter that matches the compression chamber suction port engagement portion 4 from the diameter of the inflow port 7 of the outflow tube 3, and the compression chamber suction port engagement portion 4 at the opposite end of the inflow port 7. It is contracted in at least one place of the outflow part 8 which engages. The suction accumulator 1 includes at least one outflow pipe 3.

図4は実施の形態1を示す図で、変形例の吸入アキュムレータ1−1の一部を断面で示す図である。変形例の吸入アキュムレータ1−1は、図2に示す吸入アキュムレータ1と比較すると、流出管3−1だけが異なり、その他は同じである。変形例の吸入アキュムレータ1−1の流出管3−1は、流入口7−1がベルマウス形状になっている。流出管3−1の流入口7−1をベルマウス形状にすることで、ガス冷媒成分はその滑らかな流れを損なうことなく流出管3−1に流入する。   FIG. 4 is a diagram showing the first embodiment, and is a diagram showing a part of a suction accumulator 1-1 according to a modified example in cross section. The suction accumulator 1-1 of the modification is different from the suction accumulator 1 shown in FIG. 2 only in the outflow pipe 3-1, and the others are the same. In the outflow pipe 3-1 of the suction accumulator 1-1 of the modified example, the inflow port 7-1 has a bell mouth shape. By making the inlet 7-1 of the outflow pipe 3-1 into a bell mouth shape, the gas refrigerant component flows into the outflow pipe 3-1 without impairing the smooth flow.

次に、動作について説明する。本実施の形態の吸入アキュムレータ1,1−1では、上記の構成により、空気調和機本体から密閉型圧縮機100に設けられた吸入アキュムレータ1へ流れ込む冷媒ガスは、吸入アキュムレータ1に設けられた流入管2から吸入アキュムレータ1の胴体部5にディフューザ効果を有する展開角と内側に凸の曲線(例えば、円弧)を持つディフューザー形状部6で滑らかにつながれ、冷媒ガス流れの剥離を最小限に抑えながら通過する。   Next, the operation will be described. In the suction accumulators 1, 1-1 according to the present embodiment, the refrigerant gas flowing from the air conditioner body into the suction accumulator 1 provided in the hermetic compressor 100 flows into the suction accumulator 1 by the above configuration. Smoothly connected from the pipe 2 to the body portion 5 of the suction accumulator 1 by a diffuser-shaped portion 6 having a spread angle having a diffuser effect and a convex curve (for example, an arc) on the inside, while minimizing the separation of the refrigerant gas flow pass.

さらに吸入アキュムレータ1の胴体部5の外径側に向かう積極的な流れができることで、効率的に吸入冷媒ガスの気液分離が行われる。冷凍機油を含む液冷媒成分は、吸入アキュムレータ1の胴体部5の外径側に倣って吸入アキュムレータ1の胴体部5の下部に貯留される。ガス冷媒成分は、滑らかな流れを保ちながら吸入アキュムレータ1に設けられた流出管3の流入口7に向かう流れが形成される。   Further, since the positive flow toward the outer diameter side of the body portion 5 of the suction accumulator 1 can be performed, the gas-liquid separation of the suction refrigerant gas is performed efficiently. The liquid refrigerant component including the refrigerating machine oil is stored in the lower part of the body part 5 of the suction accumulator 1 along the outer diameter side of the body part 5 of the suction accumulator 1. The gas refrigerant component forms a flow toward the inlet 7 of the outflow pipe 3 provided in the suction accumulator 1 while maintaining a smooth flow.

さらに吸入アキュムレータ1に設けられた流出管3の流入口7は、流入管2の径より大きな外径をもつ円形状もしくはベルマウス形状である。そのため、ガス冷媒成分はその滑らかな流れを損なうことなく流出管3に流入する。流出管3の内部は管摩擦損失を最小限に抑え、且つ流出管3の流出部8が密閉型圧縮機100の圧縮室吸入口係合部4に適合するよう縮径されている。そのため、冷媒ガスの滑らかな流れは維持されて密閉型圧縮機100の圧縮室吸入口係合部4に流入する。   Further, the inflow port 7 of the outflow pipe 3 provided in the suction accumulator 1 has a circular shape or a bell mouth shape having an outer diameter larger than the diameter of the inflow pipe 2. Therefore, the gas refrigerant component flows into the outflow pipe 3 without impairing the smooth flow. The inside of the outflow pipe 3 is reduced in diameter so that the friction loss of the pipe is minimized and the outflow portion 8 of the outflow pipe 3 is fitted to the compression chamber suction port engaging portion 4 of the hermetic compressor 100. Therefore, the smooth flow of the refrigerant gas is maintained and flows into the compression chamber suction port engaging portion 4 of the hermetic compressor 100.

また、吸入アキュムレータ1に設けられた直管である流入管2の内部には内側に向かった突起形状部2aを少なくとも一つ備える。そのため、空気調和機本体に接続される冷媒配管の挿入位置を規制することを満足しながら、流入管2を冷媒ガスが通過する際の圧力損失を極小化できる。   The inflow pipe 2 that is a straight pipe provided in the suction accumulator 1 is provided with at least one protrusion-shaped portion 2a facing inward. Therefore, the pressure loss when the refrigerant gas passes through the inflow pipe 2 can be minimized while satisfying that the insertion position of the refrigerant pipe connected to the air conditioner body is regulated.

本実施の形態の効果について説明するが、先ず一般的な密閉型圧縮機200、吸入アキュムレータ21について説明する。   The effects of the present embodiment will be described. First, a general hermetic compressor 200 and a suction accumulator 21 will be described.

図9、図10は比較のために示す図で、図9は一般的な密閉型圧縮機200の全体構成を示す縦断面図、図10は一般的な密閉型圧縮機200の吸入アキュムレータ21の一部を断面で示す図である。   FIGS. 9 and 10 are diagrams for comparison, FIG. 9 is a longitudinal sectional view showing the entire configuration of a general hermetic compressor 200, and FIG. 10 is a diagram of a suction accumulator 21 of the general hermetic compressor 200. It is a figure which shows a part in a cross section.

図9に示す一般的な密閉型圧縮機200は、図1の密閉型圧縮機100とは、吸入アキュムレータ21のみが異なる。密閉型圧縮機200の圧縮要素201、電動要素202、密閉容器210、ガラス端子220、吐出管230、圧縮室吸入口係合部24は、夫々密閉型圧縮機100の圧縮要素101、電動要素102、密閉容器110、ガラス端子120、吐出管130、圧縮室吸入口係合部4に相当する。   The general hermetic compressor 200 shown in FIG. 9 is different from the hermetic compressor 100 of FIG. 1 only in the suction accumulator 21. The compression element 201 of the hermetic compressor 200, the electric element 202, the hermetic container 210, the glass terminal 220, the discharge pipe 230, and the compression chamber suction port engaging part 24 are respectively connected to the compression element 101 and the electric element 102 of the hermetic compressor 100. These correspond to the sealed container 110, the glass terminal 120, the discharge pipe 130, and the compression chamber suction port engaging portion 4.

一般的な密閉型圧縮機200の吸入アキュムレータ21は、以下の点が本実施の形態の吸入アキュムレータ1と異なる。
a.吸入アキュムレータ21に設けられた流入管22は、胴体部25内にまで挿入されていて、胴体部25の流入管22の出口より上部は冷媒流れの観点からは無効な容積となる(図10参照)。
b.流入管22から胴体部25へ冷媒流路が急拡大するために(展開角度略180°)、急拡大損失が非常に大きい。
c.流出管23の流出部28が密閉型圧縮機200の圧縮室吸入口係合部4に適合するよう縮径されていない直管である。そのため、冷媒ガスの滑らかな流れは、密閉型圧縮機200の圧縮室吸入口係合部24にて乱れる。
d.流出管23の流入口27は、ベルマウス形状になっていない。
A suction accumulator 21 of a general hermetic compressor 200 is different from the suction accumulator 1 of the present embodiment in the following points.
a. The inflow pipe 22 provided in the suction accumulator 21 is inserted into the body part 25, and the upper part from the outlet of the inflow pipe 22 of the body part 25 has an invalid volume from the viewpoint of refrigerant flow (see FIG. 10). ).
b. Since the refrigerant flow path suddenly expands from the inflow pipe 22 to the body part 25 (deployment angle is approximately 180 °), the rapid expansion loss is very large.
c. The outflow portion 28 of the outflow tube 23 is a straight tube that is not reduced in diameter so as to fit the compression chamber suction port engaging portion 4 of the hermetic compressor 200. Therefore, the smooth flow of the refrigerant gas is disturbed at the compression chamber suction port engaging portion 24 of the hermetic compressor 200.
d. The inlet 27 of the outflow pipe 23 does not have a bell mouth shape.

図5、図6は実施の形態1を示す図で、図5は緩やかな拡がり管における展開角度と圧力損失の関係を示した図、図6は流出管径と圧力損失の関係を示した図である。   5 and 6 are diagrams showing the first embodiment, FIG. 5 is a diagram showing the relationship between the expansion angle and the pressure loss in the gently expanding pipe, and FIG. 6 is a diagram showing the relationship between the outlet pipe diameter and the pressure loss. It is.

既に述べたように、本実施の形態の吸入アキュムレータ1は、一般的な密閉型圧縮機200の吸入アキュムレータ21とは異なり、吸入アキュムレータ1に設けられた流入管2から胴体部5への展開角度が小さく(10°〜60)、且つ内側に凸の曲線(例えば、円弧)を持つディフューザー形状部6で滑らかに接続されている。そのため、一般的な密閉型圧縮機200の吸入アキュムレータ21に存在する流路としての無効な容積は存在しない。また、流入管2から胴体部5への展開角度が小さい(10°〜60)ので、急拡大損失は非常に小さくなる(図5参照)。   As already described, the suction accumulator 1 of the present embodiment is different from the suction accumulator 21 of the general hermetic compressor 200 in that the deployment angle from the inflow pipe 2 provided in the suction accumulator 1 to the body portion 5 is as follows. Is smoothly connected by a diffuser-shaped portion 6 having a small (10 ° to 60) and a convex curve (for example, an arc) inside. Therefore, there is no invalid volume as a flow path that exists in the suction accumulator 21 of the general hermetic compressor 200. Moreover, since the expansion | deployment angle from the inflow pipe 2 to the trunk | drum 5 is small (10 degrees-60), sudden expansion loss becomes very small (refer FIG. 5).

さらに、吸入アキュムレータ1に設けられた流出管3の流入口7は流入管2の径より大きな外径をもつ円形状もしくはベルマウス形状である。そのため、流出管3の流入口7に冷媒ガスが流入する際の急収縮損失や流出管3内部を冷媒ガスが通過する際の管摩擦損失が、図6に示すように非常に小さくなる。   Further, the inlet 7 of the outflow pipe 3 provided in the suction accumulator 1 has a circular shape or a bell mouth shape having an outer diameter larger than the diameter of the inflow pipe 2. Therefore, the sudden contraction loss when the refrigerant gas flows into the inlet 7 of the outflow pipe 3 and the pipe friction loss when the refrigerant gas passes through the inside of the outflow pipe 3 become very small as shown in FIG.

以上のように、本実施の形態における吸入アキュムレータ1,1−1を備えた密閉型圧縮機100は、吸入冷媒ガスの気液分離及び分離した冷凍機油を含む液冷媒を貯留する機能を満足できる胴体部5容積を確保する範囲で吸入アキュムレータ1の胴体部5、流入管2及び流出管3の形状を選択し、ディフューザ効果を有する展開角度と、内側に凸の曲線(例えば、円弧)を持つディフューザー形状部6で滑らかに接続することで、冷媒ガスが吸入アキュムレータ1を通過する際の冷媒ガスの圧力損失を極小化する。それにより、冷媒ガス吸入効率を向上させ、密閉型圧縮機100の圧縮室吸入口係合部4に吸入される冷媒ガスの圧力を向上させて、冷凍サイクルの理想圧力状態に近い圧縮仕事とすることで圧縮機効率が向上し、さらに空気調和機本体に具備された蒸発器の圧力が向上することで、冷凍サイクル効率を向上させる効果を有する。   As described above, the hermetic compressor 100 including the suction accumulators 1, 1-1 according to the present embodiment can satisfy the function of storing the liquid refrigerant including the gas-liquid separation of the suction refrigerant gas and the separated refrigerating machine oil. The shape of the body part 5, the inflow pipe 2 and the outflow pipe 3 of the suction accumulator 1 is selected within a range to ensure the volume of the body part 5, and has a deployment angle having a diffuser effect and a convex curve (for example, an arc) on the inside. By connecting smoothly with the diffuser shape part 6, the pressure loss of the refrigerant gas when the refrigerant gas passes through the suction accumulator 1 is minimized. Thereby, the refrigerant gas suction efficiency is improved, and the pressure of the refrigerant gas sucked into the compression chamber suction port engaging portion 4 of the hermetic compressor 100 is improved, so that the compression work is close to the ideal pressure state of the refrigeration cycle. Thus, the compressor efficiency is improved, and further, the pressure of the evaporator provided in the air conditioner main body is improved, thereby improving the refrigeration cycle efficiency.

1 吸入アキュムレータ、1−1 吸入アキュムレータ、2 流入管、2a 突起形状部、3 流出管、3−1 流出管、4 圧縮室吸入口係合部、5 胴体部、6 ディフューザー形状部、7 流入口、7−1 流入口、8 流出部、9 リング部材、10 油戻し孔、21 吸入アキュムレータ、22 流入管、23 流出管、24 圧縮室吸入口係合部、25 胴体部、27 流入口、28 流出部、52 四方弁、53 室外側熱交換器、54 減圧装置、55 室内側熱交換器、56 室外側送風機、57 室内側送風機、59 トップパネル、60 フロントパネル、61 サイドパネル、62 セパレータ、63 電気品ボックス、64 冷媒配管・冷媒回路部品類、68 底板、100 密閉型圧縮機、102 電動要素、110 密閉容器、120 ガラス端子、130 吐出管、200 密閉型圧縮機、201 圧縮要素、202 電動要素、21 吸入アキュムレータ、210 密閉容器、220 ガラス端子、230 吐出管、300 室外機。   DESCRIPTION OF SYMBOLS 1 Inhalation accumulator, 1-1 Inhalation accumulator, 2 Inflow pipe, 2a Projection shape part, 3 Outflow pipe, 3-1 Outflow pipe, 4 Compression chamber suction port engaging part, 5 Body part, 6 Diffuser shape part, 7 Inlet 7-1 Inlet, 8 Outlet, 9 Ring member, 10 Oil return hole, 21 Inlet accumulator, 22 Inlet pipe, 23 Outlet pipe, 24 Compression chamber inlet engaging part, 25 Body part, 27 Inlet, 28 Outflow part, 52 four-way valve, 53 outdoor heat exchanger, 54 pressure reducing device, 55 indoor heat exchanger, 56 outdoor fan, 57 indoor fan, 59 top panel, 60 front panel, 61 side panel, 62 separator, 63 Electrical box, 64 Refrigerant piping / refrigerant circuit parts, 68 Bottom plate, 100 Hermetic compressor, 102 Electric element, 110 Hermetic container, 120 Glass terminal, 130 discharge pipe, 200 hermetic compressor, 201 compression element, 202 electric element, 21 suction accumulator, 210 airtight container, 220 glass terminal, 230 discharge pipe, 300 outdoor unit.

Claims (5)

密閉容器の側部に、吸入アキュムレータを備える密閉型圧縮機であって、
前記吸入アキュムレータは、以下に示す要素を備えることを特徴とする密閉型圧縮機,
(1)内径が一定の直管で、冷凍サイクルの冷媒配管が接続される流入管;
(2)全体が筒状で両端が絞られた形状であり、吸入冷媒ガスの気液分離及び分離した冷凍機油を含む液冷媒を貯留する機能を満足する容積を有する所定の径に構成され、前記流入管側の端部が所定の展開角度のディフューザー形状に構成されるとともに、ディフューザー形状部は内側に凸の曲線で滑らかに形成されて前記流入管に接続する胴体部;
(3)流入口の径が前記流入管の径より大きいか、もしくは前記流入口がベルマウス形状になっている少なくとも1本の流出管。
A hermetic compressor having a suction accumulator on the side of the hermetic container,
The suction accumulator comprises the following elements, a hermetic compressor,
(1) An inflow pipe having a constant inner diameter and connected to a refrigerant pipe of a refrigeration cycle;
(2) The overall shape is cylindrical and both ends are squeezed, and is configured to have a predetermined diameter having a volume satisfying the function of storing liquid refrigerant including gas-liquid separation of suction refrigerant gas and separated refrigeration oil, A body portion connected to the inflow pipe, the end portion on the inflow pipe side being configured in a diffuser shape with a predetermined deployment angle, and the diffuser shape portion being smoothly formed with a convex curve inside;
(3) At least one outflow pipe in which the diameter of the inlet is larger than the diameter of the inflow pipe or the inlet has a bell mouth shape.
前記流入管は、内部に内側に向かって突出し、前記冷凍サイクルの冷媒配管の位置決めとなる突起形状部を備えることを特徴とする請求項1記載の密閉型圧縮機。   2. The hermetic compressor according to claim 1, wherein the inflow pipe protrudes inwardly and includes a protrusion-shaped portion for positioning a refrigerant pipe of the refrigeration cycle. 前記流出管の流出部は、当該密閉型圧縮機の圧縮室吸入口係合部に適合するように縮管されていることを特徴とする請求項1又は請求項2記載の密閉型圧縮機。   3. The hermetic compressor according to claim 1, wherein the outflow part of the outflow pipe is contracted to fit the compression chamber suction port engaging part of the hermetic compressor. 前記流出管は、前記胴体部内の下部に、冷凍機油を当該密閉型圧縮機へ戻すための油戻し孔を備えることを特徴とする請求項1乃至3のいずれかに記載の密閉型圧縮機。   4. The hermetic compressor according to claim 1, wherein the outflow pipe includes an oil return hole for returning the refrigeration oil to the hermetic compressor at a lower portion in the body part. 前記所定の展開角度は、10°〜60°であることを特徴とする請求項1乃至4のいずれかに記載の密閉型圧縮機。   The hermetic compressor according to any one of claims 1 to 4, wherein the predetermined deployment angle is 10 ° to 60 °.
JP2011005917A 2011-01-14 2011-01-14 Hermetic compressor Pending JP2012145307A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011005917A JP2012145307A (en) 2011-01-14 2011-01-14 Hermetic compressor
KR1020110108506A KR101275921B1 (en) 2011-01-14 2011-10-24 Hermetic type compressor
CZ20110769A CZ2011769A3 (en) 2011-01-14 2011-11-25 Hermetic compressor
CN2011103910537A CN102588289A (en) 2011-01-14 2011-11-30 Hermetic type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011005917A JP2012145307A (en) 2011-01-14 2011-01-14 Hermetic compressor

Publications (1)

Publication Number Publication Date
JP2012145307A true JP2012145307A (en) 2012-08-02

Family

ID=46477393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005917A Pending JP2012145307A (en) 2011-01-14 2011-01-14 Hermetic compressor

Country Status (4)

Country Link
JP (1) JP2012145307A (en)
KR (1) KR101275921B1 (en)
CN (1) CN102588289A (en)
CZ (1) CZ2011769A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166705A1 (en) * 2022-03-04 2023-09-07 三菱電機株式会社 Refrigerant storage container and refrigeration cycle device provided with said refrigerant storage container

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5665829B2 (en) * 2012-10-25 2015-02-04 三菱電機株式会社 Compressor manufacturing method and compressor manufactured by the manufacturing method
CN106403343B (en) * 2016-09-30 2019-02-15 青岛海信日立空调系统有限公司 A kind of air source cold-hot hydro-thermal pumping system
KR20180118397A (en) * 2017-04-21 2018-10-31 엘지전자 주식회사 Accumulator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127368U (en) * 1985-01-29 1986-08-09
JPS62276377A (en) * 1986-05-23 1987-12-01 松下電器産業株式会社 Accumulator for compressor
JPH0486465A (en) * 1990-07-30 1992-03-19 Matsushita Electric Ind Co Ltd Accumulator for closed type rotary compressor
JP2000111210A (en) * 1998-10-08 2000-04-18 Matsushita Refrig Co Ltd Accumulator
JP2004101132A (en) * 2002-09-12 2004-04-02 Denso Corp Heat exchanger
JP2004169965A (en) * 2002-11-19 2004-06-17 Toshikazu Okuno Method of manufacturing accumulator for cooler compressor and product of the accumulator
JP2006266524A (en) * 2005-03-22 2006-10-05 Denso Corp Accumulator
JP2008144665A (en) * 2006-12-08 2008-06-26 Daikin Ind Ltd Hermetic compressor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204083A (en) * 1987-02-19 1988-08-23 松下電器産業株式会社 Accumulator for sealing type rotary compressor
KR940000195Y1 (en) * 1991-11-25 1994-01-19 주식회사 금성사 Compressor of accumulater
US5850743A (en) * 1996-11-13 1998-12-22 Tecumseh Products Company Suction accumulator assembly
US5868001A (en) * 1997-12-05 1999-02-09 Carrier Corporation Suction accumulator with oil reservoir
KR200217614Y1 (en) 2000-09-02 2001-03-15 주식회사은성산업 A accumulator of cooling equipment
CN1205414C (en) * 2001-12-18 2005-06-08 乐金电子(天津)电器有限公司 Oil recovery device of closed type compressor liquid storage tank
JP4222261B2 (en) 2004-06-17 2009-02-12 パナソニック株式会社 Welding structure and welding method of aluminum accumulator and heat exchanger
JP2006023018A (en) * 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd Welding structure and welding method for aluminum accumulator, and heat exchanger
KR200410768Y1 (en) 2005-12-28 2006-03-08 주식회사 효산 Structure of accumulator for cold equipment
KR101311710B1 (en) * 2006-12-28 2013-09-25 엘지전자 주식회사 Hermetic compressor
JP2008240666A (en) * 2007-03-28 2008-10-09 Fujitsu General Ltd Rotary compressor and heat pump system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127368U (en) * 1985-01-29 1986-08-09
JPS62276377A (en) * 1986-05-23 1987-12-01 松下電器産業株式会社 Accumulator for compressor
JPH0486465A (en) * 1990-07-30 1992-03-19 Matsushita Electric Ind Co Ltd Accumulator for closed type rotary compressor
JP2000111210A (en) * 1998-10-08 2000-04-18 Matsushita Refrig Co Ltd Accumulator
JP2004101132A (en) * 2002-09-12 2004-04-02 Denso Corp Heat exchanger
JP2004169965A (en) * 2002-11-19 2004-06-17 Toshikazu Okuno Method of manufacturing accumulator for cooler compressor and product of the accumulator
JP2006266524A (en) * 2005-03-22 2006-10-05 Denso Corp Accumulator
JP2008144665A (en) * 2006-12-08 2008-06-26 Daikin Ind Ltd Hermetic compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166705A1 (en) * 2022-03-04 2023-09-07 三菱電機株式会社 Refrigerant storage container and refrigeration cycle device provided with said refrigerant storage container

Also Published As

Publication number Publication date
KR101275921B1 (en) 2013-06-17
CZ2011769A3 (en) 2012-07-25
KR20120082803A (en) 2012-07-24
CN102588289A (en) 2012-07-18

Similar Documents

Publication Publication Date Title
US20090007590A1 (en) Refrigeration System
JP5103952B2 (en) Refrigeration equipment
JP2007285680A (en) Refrigerating appliance
JP2012145307A (en) Hermetic compressor
JP2004137979A (en) Expansion machine
KR20040084978A (en) Refrigerant cycle apparatus
CN104632617A (en) Scroll compressor and air conditioner including the same
JP5599514B2 (en) Two-stage compressor and heat pump device
JP2010156498A (en) Refrigerating device
JP2011012630A (en) Scroll compressor
JP4963971B2 (en) Heat pump type equipment
JP6004004B2 (en) Turbo refrigerator
JP2013096602A (en) Refrigeration cycle device
WO2021106198A1 (en) Compressor and refrigeration cycle device
JP2022054729A (en) Oil separator and air conditioner
JP5988828B2 (en) Refrigeration cycle equipment
JP5738030B2 (en) Rotary compressor and refrigeration cycle apparatus
JP2018179353A (en) Refrigeration cycle device and rotary compressor
WO2023233838A1 (en) Compressor and refrigeration cycle device
JP5981860B2 (en) Air conditioner
JP2005226913A (en) Transient critical refrigerant cycle device
JP7229348B2 (en) refrigerator
JP5836890B2 (en) Rotary compressor and vapor compression refrigeration cycle apparatus
JP2023023120A (en) Compressor and heat exchange system
WO2020057452A1 (en) Scroll compressor and air-conditioning system comprising same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140729