WO2023166705A1 - Refrigerant storage container and refrigeration cycle device provided with said refrigerant storage container - Google Patents

Refrigerant storage container and refrigeration cycle device provided with said refrigerant storage container Download PDF

Info

Publication number
WO2023166705A1
WO2023166705A1 PCT/JP2022/009404 JP2022009404W WO2023166705A1 WO 2023166705 A1 WO2023166705 A1 WO 2023166705A1 JP 2022009404 W JP2022009404 W JP 2022009404W WO 2023166705 A1 WO2023166705 A1 WO 2023166705A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
container body
storage container
outflow
refrigerant
Prior art date
Application number
PCT/JP2022/009404
Other languages
French (fr)
Japanese (ja)
Inventor
亮 築山
拓未 西山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/009404 priority Critical patent/WO2023166705A1/en
Publication of WO2023166705A1 publication Critical patent/WO2023166705A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present disclosure relates to a refrigerant storage container having an oil return mechanism, and a refrigeration cycle device including the refrigerant storage container.
  • Patent Literature 1 discloses a U-shaped outflow pipe provided with an oil return hole.
  • the oil return hole is positioned at the bottom of the refrigerant reservoir so that the distance between the oil return hole and the bottom of the refrigerant reservoir is short.
  • Patent Document 1 refrigerating machine oil flows out from an oil return hole provided in an outflow pipe and returns to the compressor.
  • the refrigerating cycle device when the compressor sucks the liquid refrigerant, the refrigerating machine oil in the compressor shell is diluted, which causes seizure of the sliding parts of the compressor.
  • the outflow pipe since it is necessary to provide an oil return hole in the lower portion of the refrigerant storage container, the outflow pipe has a U-shape, and the outflow port of the outflow pipe is provided so as to be positioned in the upper portion of the refrigerant storage container. It is In Patent Document 1, the outflow port of the outflow pipe opens upward.
  • the present disclosure has been made against the background of the problems described above, and provides a refrigerant storage container having an oil return mechanism for flowing out refrigerating machine oil and a structure for suppressing the outflow of liquid refrigerant from the outflow pipe, and the refrigerant.
  • a refrigeration cycle device having a storage container is provided.
  • a refrigerant storage container includes a container body that stores liquid, an inflow pipe that has an inlet and allows refrigerant to flow into the container body, an outflow pipe that has an outlet and allows the refrigerant to flow out of the container body, An oil return mechanism for flowing out the refrigerating machine oil from the container body is provided, and the outflow port of the outflow pipe opens toward the bottom of the container body.
  • a refrigeration cycle device includes the above refrigerant storage container, and a compressor connected to the refrigerant storage container through an outflow pipe of the refrigerant storage container, and the oil return mechanism extends from the bottom of the container body to the container body. Refrigerant oil flowing out from the oil return pipe of the refrigerant storage container flows into the compressor.
  • the refrigerant storage container according to the present disclosure has an oil return mechanism. Therefore, the refrigerating machine oil remaining in the refrigerant reservoir can flow out of the refrigerant reservoir and return to the compressor by the oil return mechanism. Further, the outflow port of the outflow pipe inserted into the container body of the refrigerant storage container opens toward the bottom of the container body. That is, the outflow port of the outflow pipe opens downward. Therefore, the liquid droplets floating inside the container body are less likely to be sucked into the outlet of the outflow pipe, and the outflow of the liquid refrigerant from the outflow pipe can be suppressed. Therefore, it is possible to provide a refrigerant storage container that includes an oil return mechanism and a structure that suppresses the outflow of liquid refrigerant from the outlet of the outflow pipe, and a refrigeration cycle device that includes the refrigerant storage container.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle device having a refrigerant storage container according to Embodiment 1.
  • FIG. 1 is a schematic diagram showing a refrigerant storage container according to Embodiment 1;
  • FIG. 4 is a schematic diagram showing a refrigerant storage container according to Modification 1 of Embodiment 1;
  • FIG. 8 is a schematic diagram showing a refrigerant storage container according to Modification 2 of Embodiment 1;
  • FIG. 8 is a schematic diagram showing a refrigerant storage container and a compressor of a refrigeration cycle device according to Modification 3 of Embodiment 1;
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle device having a refrigerant storage container according to Embodiment 1.
  • FIG. 1 is a schematic diagram showing a refrigerant storage container according to Embodiment 1;
  • FIG. 4 is a schematic diagram showing a refrigerant storage container according to Modification 1 of Embod
  • FIG. 9 is a schematic diagram showing a refrigerant storage container and a compressor of a refrigeration cycle device according to Modification 4 of Embodiment 1;
  • FIG. 5 is a schematic diagram showing a refrigerant storage container according to Embodiment 2;
  • FIG. 9 is a schematic diagram showing a refrigerant storage container according to Modification 1 of Embodiment 2;
  • FIG. 9 is a schematic diagram showing a refrigerant storage container according to Modification 2 of Embodiment 2;
  • FIG. 11 is a schematic diagram showing a refrigerant storage container according to Embodiment 3;
  • FIG. 11 is a schematic diagram showing a refrigerant storage container according to Modification 1 of Embodiment 3;
  • FIG. 11 is a schematic diagram showing a refrigerant storage container according to Embodiment 4;
  • FIG. 11 is a schematic diagram showing a refrigerant storage container according to Modification 1 of Embodiment 4;
  • FIG. 11 is a schematic diagram showing a refrigerant storage container according to Embodiment 5;
  • FIG. 11 is a schematic diagram showing a refrigerant storage container according to Modification 1 of Embodiment 5;
  • FIG. 11 is a schematic diagram showing a refrigerant storage container according to Modification 2 of Embodiment 5;
  • FIG. 11 is a schematic view showing a refrigerant storage container according to Embodiment 6 from the top side;
  • FIG. 11 is a schematic diagram showing a refrigerant storage container according to Embodiment 4 from the top side;
  • FIG. 11 is a schematic diagram showing a refrigerant storage container according to Embodiment 4;
  • FIG. 11 is a schematic diagram showing a refrigerant storage container according
  • FIG. 11 is a schematic diagram showing a refrigerant storage container according to Embodiment 6 from the front side;
  • FIG. 12 is a schematic top view of a refrigerant storage container according to Modification 1 of Embodiment 6;
  • FIG. 11 is a schematic front view of a refrigerant storage container according to Modification 1 of Embodiment 6;
  • FIG. 11 is a schematic diagram showing a refrigerant storage container according to Embodiment 7 from the front side;
  • FIG. 22 is a schematic diagram of the refrigerant storage container viewed from direction A shown in FIG. 21;
  • a refrigerant storage container according to the present embodiment and a refrigeration cycle apparatus including the refrigerant storage container will be described below with reference to the drawings.
  • the present disclosure is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present disclosure.
  • terms representing directions for example, “up”, “down”, “right”, “left”, “front”, “back”, etc.) are used as appropriate for ease of understanding. They are intended to be illustrative and not limiting of the present disclosure.
  • the same reference numerals are the same or equivalent, and this is common throughout the specification.
  • the relative dimensional relationship, shape, etc. of each component may differ from the actual one.
  • the X direction indicates the horizontal direction of the refrigerant storage container, and the arrow indicates the direction from right to left.
  • the Y direction indicates the front-to-rear direction of the refrigerant storage container, and the arrow indicates the front-to-rear direction.
  • the Z direction indicates the vertical direction of the refrigerant storage container, and the arrow indicates the upward direction from the bottom.
  • the Z direction is the vertical direction.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle device 100 having a refrigerant storage container 101 according to Embodiment 1.
  • a refrigeration cycle apparatus 100 according to Embodiment 1 includes a compressor 10 , a condenser 12 , an expansion mechanism 13 , an evaporator 14 and a refrigerant storage container 101 .
  • Compressor 10 , condenser 12 , expansion mechanism 13 , evaporator 14 , and refrigerant storage container 101 are connected by refrigerant pipe 15 .
  • a refrigerant circuit 200 is formed in which the refrigerant containing the refrigerator oil circulates through the refrigerant pipe 15 .
  • refrigerant when referring to refrigerant, it is assumed that refrigerant and refrigerating machine oil are mixed unless otherwise specified.
  • the refrigerant storage container 101 and the compressor 10 are connected.
  • the outflow pipe 3 provided in the refrigerant storage container 101 is connected to the suction port 10 a of the compressor 10 .
  • Outflow pipe 3 of refrigerant storage container 101 may be connected to refrigerant pipe 15 .
  • the refrigerant pipe 15 connected to the suction port 10a of the compressor 10 and the outflow pipe 3 may be connected by a joint.
  • the compressor 10 compresses the refrigerant sucked from the suction port 10a and discharges the refrigerant in a high-temperature and high-pressure state.
  • Compressor 10 is, for example, an inverter compressor.
  • Refrigerant discharged from the compressor 10 flows into the condenser 12 .
  • the refrigerant that has flowed into the condenser 12 exchanges heat with the air that passes through the condenser 12 to become high-pressure liquid refrigerant and flows out of the condenser 12 .
  • the high-pressure liquid refrigerant that has flowed out of the condenser 12 flows into the expansion mechanism 13 .
  • the expansion mechanism 13 is a decompression device that decompresses and expands the refrigerant flowing through the refrigerant circuit 200 .
  • the expansion mechanism 13 is, for example, an electronic expansion valve whose opening is variably controlled.
  • the high-pressure liquid refrigerant that has flowed into the expansion mechanism 13 is decompressed to become a low-pressure gas-liquid two-phase refrigerant, and flows into the evaporator 14 .
  • the low-pressure gas-liquid two-phase refrigerant that has flowed into the evaporator 14 exchanges heat with the air passing through the evaporator 14 and flows out of the evaporator 14 .
  • the refrigerant sucked into the compressor 10 is ideally a superheated gas, but the state of the refrigerant depends on the refrigerant distribution within the refrigerant circuit 200 . Therefore, the refrigerant flowing out of the evaporator 14 may be gas-liquid two-phase refrigerant.
  • the refrigerant storage container 101 is installed on the upstream side of the compressor 10 in the refrigerant flow direction.
  • the refrigerant that has flowed out of the evaporator 14 flows into the refrigerant storage container 101 through the inflow pipe 2 provided in the refrigerant storage container 101 .
  • the inflow pipe 2 may be connected to the refrigerant pipe 15 connected to the outflow side of the evaporator 14 or may be directly connected to the outflow side of the evaporator 14 .
  • the refrigerant that has flowed into the refrigerant storage container 101 is separated into gas refrigerant and liquid refrigerant, and the liquid refrigerant stays in the refrigerant storage container 101 .
  • Gas refrigerant flows out of the refrigerant storage container 101 through the outflow pipe 3 and is sucked into the compressor 10 . Therefore, in the refrigeration cycle apparatus 100 according to the present embodiment, the liquid refrigerant is separated from the gas-liquid two-phase refrigerant and stored in the refrigerant storage container 101, so that the suction of the liquid refrigerant into the compressor 10 can be suppressed. .
  • the refrigerant storage container 101 has an oil return mechanism for causing the refrigerating machine oil remaining in the refrigerant storage container 101 to flow out.
  • an oil return pipe 4 which is an oil return mechanism, is indicated by a broken line.
  • the oil return pipe 4 only needs to allow the refrigerating machine oil to flow out from the refrigerant storage container 101 .
  • the oil return line 4 is connected to the outflow line 3 . Therefore, the refrigerating machine oil flowing out from the oil return pipe 4 flows into the suction port 10 a of the compressor 10 together with the gas refrigerant flowing out from the outflow pipe 3 .
  • the oil return pipe 4 does not have to be connected to the outflow pipe 3 .
  • the oil return pipe 4 may not be connected to the outflow pipe 3 but may be connected to the compressor 10 via the oil regulator 20 . Also, the oil return mechanism may not be the oil return pipe 4 . As will be described later, the oil return mechanism may be an oil return hole 3 b provided in the outflow pipe 3 .
  • the refrigeration cycle device 100 can be applied to dehumidifiers, refrigerator-freezers, air conditioners, and the like. Further, although not shown, by providing a flow path switching device capable of switching the flow path of the refrigerant on the discharge side of the compressor 10 of the refrigerant circuit 200, the air conditioner capable of switching between cooling and heating operation can be provided with a refrigeration cycle device. 100 may be applied. In cooling operation, the outdoor heat exchanger functions as the condenser 12 and the indoor heat exchanger functions as the evaporator 14 . In heating operation, the indoor heat exchanger functions as the condenser 12 and the outdoor heat exchanger functions as the evaporator 14 .
  • the channel switching device is, for example, a four-way valve. Also, the channel switching device may be configured by combining two-way valves or three-way valves.
  • FIG. 2 is a schematic diagram showing the refrigerant storage container 101 according to the first embodiment. Solid-line arrows shown in FIG. 2 conceptually indicate the flow of the refrigerant.
  • the refrigerant storage container 101 includes a container body 1 , an inflow pipe 2 , an outflow pipe 3 and an oil return pipe 4 .
  • the container main body 1 has a closed cylindrical shape and stores a liquid inside.
  • the container main body 1 of the refrigerant storage container 101 is of a vertical type installed so that the axial direction of the cylindrical shape is vertical. Refrigerant oil and liquid refrigerant flowing in from the inflow pipe 2 are stored in the bottom portion 1 b of the container body 1 .
  • the refrigerant mixed with the refrigerating machine oil flows in a gas-liquid two-phase state through the inflow pipe 2 and into the container body 1 from the inflow port 2 a of the inflow pipe 2 .
  • the liquid refrigerant includes those in the state of fine droplets.
  • the liquid refrigerant that has flowed in from the inlet 2 a falls to the bottom 1 b of the container body 1 due to gravity and stays inside the container body 1 .
  • the gas refrigerant that has flowed into the container body 1 from the inlet 2a flows into the outlet pipe 3 from the outlet 3a.
  • the gas refrigerant that has flowed into the outflow pipe 3 flows out of the container body 1 through the outflow pipe 3 and is sucked into the compressor 10 (see FIG. 1).
  • the inflow pipe 2 is inserted from the side wall 1c of the container body 1, as shown in FIG.
  • the inflow pipe 2 has a straight pipe shape inside the container body 1 .
  • An inflow port 2 a opens toward the inner surface of the side wall 1 c of the container body 1 at the tip of the straight inflow pipe 2 .
  • the inflow pipe 2 is provided such that the inflow port 2 a is positioned above the container body 1 .
  • the inflow pipe 2 may be provided so that the inflow port 2a is positioned above the center of the container body 1 in the vertical direction.
  • the inflow pipe 2 may be inserted from any of the upper, lower, front, rear, left, and right surfaces of the container body 1 .
  • the inlet 2a may be oriented horizontally, or may be oriented obliquely upward or obliquely downward with respect to the horizontal direction. Furthermore, the shape of the inflow pipe 2 is not limited to a straight pipe shape, and may have a U shape.
  • the outflow pipe 3 is inserted from the ceiling 1a of the container body 1, as shown in FIG.
  • the outflow pipe 3 has a straight pipe shape inside the container body 1 .
  • An outflow port 3 a opens toward the bottom portion 1 b of the container body 1 at the tip of the straight outflow pipe 3 .
  • the outflow port 3a of the outflow pipe 3 opens downward.
  • the outflow pipe 3 of the container body 1 is provided so that the outflow port 3a is positioned above the center of the container body 1 in the vertical direction.
  • the liquid refrigerant in the state of fine droplets that flows in from the inlet 2 a may float inside the container body 1 .
  • the shape of the outflow pipe 3 is not limited to a straight pipe shape, and may have a U shape. Also, the outflow pipe 3 may be inserted from any of the upper, lower, front, rear, left, and right surfaces of the container body 1 .
  • the inflow pipe 2 is positioned below the outflow pipe 3.
  • the outflow pipe 3 is provided such that the outflow port 3a is positioned above the inflow port 2a of the inflow pipe 2 .
  • the positional relationship between the inflow pipe 2 and the outflow pipe 3 is not limited to that shown in FIG.
  • the inflow pipe 2 may be provided such that the inflow port 2a is positioned above the outflow port 3a of the outflow pipe 3 .
  • the positional relationship between the inflow pipe 2 and the outflow pipe 3 is not limited in any of the vertical, front, rear, left, and right directions.
  • the outflow pipe 3 in the refrigerant storage container 101 can be made straight. length can be shortened. Therefore, the pressure loss of the refrigerant flowing out from the outflow pipe 3 can be suppressed inside the container body 1 . Therefore, the energy saving performance of the refrigeration cycle device 100 can be improved.
  • the refrigerant storage container 101 is provided with an oil return pipe 4 through which refrigerating machine oil flows out from the container body 1 . Refrigerant oil stays in the bottom portion 1b of the container body 1 . The accumulated refrigerating machine oil flows out of the container main body 1 through the oil return pipe 4 . That is, the oil return pipe 4 is an oil return mechanism for causing the refrigerating machine oil to flow out from the refrigerant storage container 101 to the compressor 10 . In this embodiment, the oil return mechanism refers to the oil return pipe 4 .
  • the oil return pipe 4 is provided so that the refrigerating machine oil staying in the bottom portion 1 b of the container body 1 flows out from the refrigerant storage container 101 . As shown in FIG. 2, the oil return pipe 4 is inserted into the container body 1 from the bottom portion 1b of the container body 1. As shown in FIG.
  • a refrigerant storage container 101 has a container body 1 for storing liquid, an inlet 2a, an inflow pipe 2 for allowing refrigerant to flow into the container body 1, and an outlet 3a.
  • An outlet 3a of the outlet pipe 3 opens toward the bottom 1b of the container body 1.
  • the refrigerating machine oil remaining in the container body 1 flows out of the refrigerant storage container 101 by the oil return mechanism.
  • the outflow port 3a of the outflow pipe 3 opens downward toward the bottom portion 1b of the container body 1, the liquid refrigerant that floats inside the container body 1 and falls due to gravity is sucked into the outflow port 3a. Hateful. Therefore, it is possible to suppress the outflow of the liquid refrigerant from the outflow pipe 3 . Therefore, the refrigerant storage container 101 can return the refrigerating machine oil to the compressor 10 by the oil return mechanism, and can suppress the outflow of the liquid refrigerant from the outflow port 3 a of the outflow pipe 3 .
  • the oil return mechanism is the oil return pipe 4 inserted into the container body 1 from the bottom portion 1b of the container body 1 . Therefore, the refrigerating machine oil remaining in the bottom portion 1 b of the container body 1 can flow out of the refrigerant storage container 101 through the oil return pipe 4 .
  • the outflow pipe 3 is provided such that the outflow port 3a is located above the inflow port 2a of the inflow pipe 2. Therefore, the liquid refrigerant flowing from the inflow port 2a is suppressed from being directly sucked into the outflow port 3a. Therefore, it is possible to suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
  • the refrigeration cycle apparatus 100 includes the refrigerant storage container 101 described above, and the compressor 10 connected to the refrigerant storage container 101 via the outflow pipe 3 of the refrigerant storage container 101.
  • the return mechanism is an oil return pipe 4 inserted into the container body 1 from the bottom 1 b of the container body 1 , and refrigerating machine oil flowing out of the oil return pipe 4 of the refrigerant storage container 101 flows into the compressor 10 .
  • the refrigerating machine oil that has flowed out of the refrigerant storage container 101 can return to the compressor 10 . Therefore, depletion of the refrigerating machine oil in the compressor 10 can be avoided, and damage to the compressor 10 can be suppressed.
  • the outflow of the liquid refrigerant from the outflow pipe 3 of the refrigerant storage container 101 is suppressed, it is possible to restrain the liquid refrigerant from being sucked into the compressor 10 through the outflow pipe 3 . Therefore, it is possible to reduce the possibility that the refrigerating machine oil of the compressor 10 is diluted and seizure of the sliding portion of the compressor occurs. For this reason, it is possible to suppress troubles of the compressor 10 caused by depletion of the refrigerating machine oil of the compressor 10 and dilution of the refrigerating machine oil. Therefore, the reliability of the refrigeration cycle device 100 can be improved.
  • FIG. 3 is a schematic diagram showing a refrigerant storage container 101 according to Modification 1 of Embodiment 1. As shown in FIG. Solid-line arrows shown in FIG. 3 conceptually indicate the flow of the refrigerant.
  • the shape of the outflow pipe 3 is different from the shape of the outflow pipe 3 in the first embodiment.
  • the outflow pipe 3 in this modification includes a first U-shaped portion 3e that protrudes downward from the container body 1 and a second U-shaped portion that protrudes upward. 3f.
  • the outflow pipe 3 is inserted from the ceiling 1a of the container body 1, extends toward the bottom portion 1b of the container body 1, and is folded back toward the ceiling 1a near the bottom portion 1b. This folded portion forms the first U-shaped portion 3e. Further, the outflow pipe 3 is folded back toward the ceiling 1a at the first U-shaped portion 3e, extends to the vicinity of the ceiling 1a, and is folded back toward the bottom portion 1b near the ceiling 1a. A portion folded back near the ceiling 1a forms a second U-shaped portion 3f.
  • the first U-shaped portion 3e of the outflow pipe 3 is provided with an oil return hole 3b. Therefore, the refrigerating machine oil remaining in the bottom portion 1b of the container body 1 flows into the outflow pipe 3 through the oil return hole 3b. The refrigerating machine oil that has flowed into the outflow pipe 3 flows out of the refrigerant storage container 101 together with the gas refrigerant.
  • the oil return hole 3b of the outflow pipe 3 serves as an oil return mechanism. Therefore, unlike the first embodiment, the oil return pipe 4 is not provided.
  • the outflow port 3a of the outflow pipe 3 opens toward the bottom portion 1b, as in the first embodiment. That is, the outflow port 3a opens downward. Therefore, droplets floating inside the container body 1 are less likely to be sucked into the outflow port 3a of the outflow pipe 3, and the outflow of the liquid refrigerant from the outflow pipe 3 can be suppressed, as in the first embodiment.
  • the difference between this modification and the first embodiment is the shape of the outflow pipe 3 and the oil return hole 3b, and the rest of the configuration and action are the same as those of the first embodiment, so the description will be omitted.
  • the refrigerating machine oil flows out of the refrigerant storage container 101 through the oil return hole 3b. That is, the oil return mechanism is the oil return hole 3 b provided in the outflow pipe 3 . Therefore, the refrigerating machine oil can flow out from the refrigerant storage container 101 without providing the oil return pipe 4 in the refrigerant storage container 101 .
  • the outflow pipe 3 has a first U-shaped portion 3e that protrudes downward within the container body 1 and a second U-shaped portion 3f that protrudes upward within the container body 1.
  • the first U-shaped portion 3e is located below the second U-shaped portion 3f, and the oil return hole 3b is provided in the first U-shaped portion 3e.
  • the oil return hole 3b is positioned below the inside of the container body 1, the refrigerating machine oil staying in the bottom portion 1b of the container body 1 easily flows into the oil return hole 3b.
  • FIG. 4 is a schematic diagram showing a refrigerant storage container 101 according to Modification 2 of Embodiment 1. As shown in FIG. Solid-line arrows shown in FIG. 4 conceptually indicate the flow of the refrigerant.
  • the shape of the outflow pipe 3 is different from the shape of the outflow pipe 3 in the first embodiment and the first modification.
  • the outflow pipe 3 in Modification 2 is inserted into the container body 1 from the bottom portion 1b of the container body 1, as shown in FIG.
  • the outflow pipe 3 inserted from the bottom portion 1b of the container body 1 has a U-shaped portion 3d that protrudes upward.
  • the outflow pipe 3 extends from the bottom portion 1b of the container body 1 to near the ceiling 1a and turns back toward the bottom portion 1b near the ceiling 1a. A portion near the ceiling 1a that is folded toward the bottom 1b forms a U-shaped portion 3d.
  • an oil return hole 3b is provided in a portion of the outflow pipe 3 near the bottom 1b. As shown in FIG. 4, the oil return hole 3b is provided in the immediate vicinity of the portion where the outflow pipe 3 contacts the inner surface of the bottom portion 1b. Therefore, the refrigerating machine oil remaining in the bottom portion 1b of the container body 1 flows into the outflow pipe 3 through the oil return hole 3b. The refrigerating machine oil that has flowed into the outflow pipe 3 flows out of the refrigerant storage container 101 together with the gas refrigerant.
  • the oil return hole 3b of the outflow pipe 3 serves as an oil return mechanism. Therefore, unlike the first embodiment, the oil return pipe 4 is not provided.
  • the outflow port 3a of the outflow pipe 3 opens toward the bottom portion 1b, as in the first embodiment. That is, the outflow port 3a opens downward. For this reason, as in the first embodiment, droplets that float inside the container body 1 and fall by gravity are less likely to be sucked into the outlet 3a of the outflow pipe 3, thereby preventing the liquid refrigerant from flowing out from the outflow pipe 3. can be suppressed.
  • the difference between this modification and the first embodiment is the shape of the outflow pipe 3 and the oil return hole 3b, and the rest of the configuration and action are the same as those of the first embodiment, so the description will be omitted.
  • the refrigerating machine oil flows out of the refrigerant storage container 101 through the oil return hole 3b. That is, the oil return mechanism is the oil return hole 3 b provided in the outflow pipe 3 . Therefore, the refrigerating machine oil can flow out from the refrigerant storage container 101 without providing the oil return pipe 4 in the refrigerant storage container 101 .
  • the outflow pipe 3 is inserted into the container body 1 from the bottom portion 1b of the container body 1 and has a U-shaped portion 3d that protrudes upward within the container body.
  • the oil return hole 3b is provided below the U-shaped portion 3d.
  • the outflow pipe 3 is inserted from the bottom portion 1b of the container body 1 . Therefore, even if the refrigerant storage container 101 having the outflow pipe 3 inserted through the ceiling 1a of the container body 1 cannot be installed due to the installation location, the refrigerant storage container 101 according to Modification 2 can be installed.
  • FIG. 5 is a schematic diagram showing refrigerant storage container 101 and compressor 10 of refrigeration cycle device 100 according to Modification 3 of Embodiment 1. As shown in FIG. Solid-line arrows shown in FIG. 5 conceptually indicate the flow of the refrigerant.
  • oil regulator 20 is provided between oil return pipe 4 and compressor 10 .
  • the compressor 10 and the oil regulator 20 are connected by a pressure equalizing pipe 21 and a suction pipe 22 .
  • a refrigeration cycle device 100 includes an oil regulator 20 that is connected to a compressor 10 and adjusts the amount of refrigeration oil supplied to the compressor 10 . is connected to the oil regulator 20 . Therefore, the refrigerating machine oil that has flowed out of the refrigerant storage container 101 through the oil return pipe 4 flows into the oil regulator 20 .
  • the oil regulator 20 and the compressor 10 are connected by a pressure equalizing pipe 21 through which gas flows to equalize the pressure between the oil regulator 20 and the compressor 10 and a suction pipe 22 through which refrigerating machine oil flows. Therefore, the refrigerating machine oil that has flowed into the oil regulator 20 flows into the compressor 10 through the suction pipe 22 . That is, the refrigerating machine oil that has flowed out of the refrigerant storage container 101 flows into the compressor 10 via the oil regulator 20 .
  • the refrigeration cycle device 100 includes the oil regulator 20, the amount of refrigeration oil supplied to the compressor 10 can be adjusted. That is, the amount of refrigerating machine oil in the compressor 10 is adjusted to an appropriate amount, and the refrigerating machine oil in the compressor 10 can be prevented from running out. Therefore, the occurrence of damage to the compressor 10 is suppressed, and the reliability of the refrigeration cycle apparatus 100 can be improved.
  • FIG. 6 is a schematic diagram showing refrigerant storage container 101 and compressor 10 of refrigeration cycle device 100 according to Modification 4 of Embodiment 1. As shown in FIG. Solid-line arrows shown in FIG. 6 conceptually indicate the flow of the refrigerant.
  • the oil return pipe 4 is provided with the electromagnetic valve 30 .
  • the compressor 10 is provided with an oil level sensor 31 .
  • the configuration and operation are the same as those of Embodiment 1 except for the configuration that the oil return pipe 4 is provided with the solenoid valve 30 and the compressor 10 is provided with the oil level sensor 31 . Therefore, descriptions of the same points as in the first embodiment are omitted.
  • the refrigeration cycle apparatus 100 includes an oil level sensor 31 provided in the compressor 10 and an electromagnetic valve 30 provided in the oil return pipe 4. is connected to the inflow pipe 2 . Therefore, the refrigerating machine oil flowing out of the refrigerant storage container 101 through the oil return pipe 4 flows into the outflow pipe 3 and into the compressor 10 from the suction port 10 a of the compressor 10 .
  • the solenoid valve 30 and the oil level sensor 31 are provided to keep the amount of refrigerating machine oil in the compressor 10 at an appropriate level.
  • the oil level sensor 31 is a sensor that detects the position of the oil level of the refrigerating machine oil in the compressor 10 . Oil level sensor 31 is an example of a sensor that detects the amount of refrigerating machine oil in compressor 10 .
  • the solenoid valve 30 opens and closes according to the value detected by the oil level sensor 31 provided in the compressor 10 .
  • the refrigeration cycle device 100 includes the solenoid valve 30 provided in the oil return pipe 4 and the oil level sensor 31 provided in the compressor 10, the amount of refrigeration oil supplied to the compressor 10 is can be adjusted. In other words, it is possible to prevent the refrigerating machine oil of the compressor 10 from running out by adjusting the amount of the refrigerating machine oil of the compressor 10 to an appropriate amount. Therefore, the occurrence of damage to the compressor 10 is suppressed, and the reliability of the refrigeration cycle apparatus 100 can be improved.
  • Embodiment 2 A refrigerant storage container 101 according to Embodiment 2 will be described.
  • a difference between the present embodiment and the first embodiment is the positional relationship between the inflow pipe 2 and the outflow pipe 3 .
  • the following description focuses on differences from the first embodiment. Except for the positional relationship between the inflow pipe 2 and the outflow pipe 3, the configurations and functions of the refrigerant storage container 101 and the refrigeration cycle device 100 of the present embodiment are the same as those of the first embodiment, and thus description thereof is omitted.
  • FIG. 7 is a schematic diagram showing the refrigerant storage container 101 according to the second embodiment. Solid-line arrows shown in FIG. 7 conceptually indicate the flow of the refrigerant.
  • the inflow pipe 2 and the outflow pipe 3 are provided so that the distance between the inflow port 2a and the outflow port 3a is large.
  • the inflow pipe 2 and the outflow pipe 3 are provided with the inflow port 2a and the outflow port 3a on opposite sides of each other with the center axis CL of the container body 1 interposed therebetween.
  • Each of the inlet 2a and the outlet 3a is located near the inner surface of the side wall 1c of the container body 1 .
  • the distance between the inlet 2a and the outlet 3a is preferably 20% or more of the inner diameter of the container body 1.
  • the shape of the inflow pipe 2 and the outflow pipe 3 is not limited as long as the distance between the inflow port 2a and the outflow port 3a is 20% or more of the inner diameter. Also, the positions where the inflow pipe 2 and the outflow pipe 3 are inserted into the container body 1 are not limited.
  • the distance between the inlet port 2a of the inflow pipe 2 and the outlet port 3a of the outflow pipe 3 is 20% or more of the inner diameter of the container body 1. That is, the outflow port 3a is provided at a position distant from the inflow port 2a. Therefore, the liquid refrigerant that has flowed into the container body 1 from the inlet 2a is prevented from being directly sucked into the outlet 3a. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
  • FIG. 8 is a schematic diagram showing a refrigerant storage container 101 according to Modification 1 of Embodiment 2. As shown in FIG. Solid-line arrows shown in FIG. 8 conceptually indicate the flow of the refrigerant.
  • the difference between this modification and the first and second embodiments is the positional relationship between the inflow pipe 2 and the outflow pipe 3 .
  • differences from the first embodiment and the second embodiment will be mainly described. Except for the positional relationship between the inflow pipe 2 and the outflow pipe 3, the configuration and operation of the refrigerant storage container 101 and the refrigeration cycle device 100 of this modified example are the same as those of the first and second embodiments, so the description is omitted. .
  • the inflow pipe 2 and the outflow pipe 3 are provided side by side in the vertical direction.
  • the outflow pipe 3 is provided directly above the inflow pipe 2 .
  • the outflow pipe 3 partially overlaps the inflow pipe 2.
  • the inflow pipe 2 is inserted from the side wall 1c of the container body 1, and the outflow pipe 3 is inserted from the ceiling 1a of the container body 1.
  • An inflow pipe 2 is present between an outflow port 3 a of the outflow pipe 3 and the bottom portion 1 b of the container body 1 .
  • the outflow port 3 a opens toward the bottom portion 1 b of the container body 1 , it opens toward the upper outer circumference of the inflow pipe 2 .
  • both the inflow pipe 2 and the outflow pipe 3 have a straight pipe shape. In the horizontal direction, the distance between the inlet 2a and the central axis CL of the container body 1 is greater than the distance between the outlet 3a and the central axis CL of the container body 1 . In other words, comparing the inflow port 2a and the outflow port 3a, the outflow port 3a is located closer to the inner surface of the side wall 1c of the container body 1. As shown in FIG.
  • the inflow pipe 2 is inserted from the side wall 1c of the container main body 1, and the outflow pipe 3 has an outflow port 3a that extends into the inflow pipe 2 when the container main body 1 is seen through from the ceiling 1a.
  • the outflow port 3 a of the outflow pipe 3 is located above the inflow pipe 2 .
  • the outflow port 3a of the outflow pipe 3 is located right above the inflow pipe 2, so that the inflow pipe 2 itself separates the inflow port 2a and the outflow port 3a. Therefore, the liquid refrigerant that has flowed into the container body 1 from the inlet 2a is prevented from being directly sucked into the outlet 3a. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
  • FIG. 9 is a schematic diagram showing a refrigerant storage container 101 according to Modification 2 of Embodiment 2. As shown in FIG. Solid-line arrows shown in FIG. 9 conceptually indicate the flow of the refrigerant.
  • the differences between this modification and the first and second embodiments are the positional relationship between the inflow pipe 2 and the outflow pipe 3 and the shape of the inflow pipe 2 . In the following, differences from the first embodiment and the second embodiment will be mainly described. Except for the positional relationship between the inflow pipe 2 and the outflow pipe 3 and the shape of the inflow pipe 2, the configuration and operation of the refrigerant storage container 101 and the refrigeration cycle device 100 of this modification are the same as those of the first and second embodiments. Therefore, the explanation is omitted.
  • the outflow pipe 3 is provided such that the outflow port 3a is located above the inflow port 2a of the inflow pipe 2.
  • the inflow pipe 2 and the outflow pipe 3 are provided side by side in the vertical direction.
  • the outflow pipe 3 has an inclined portion 2b that inclines downward, and the outflow port 3a is provided at the tip of the inclined portion 2b.
  • the inflow pipe 2 is inserted from the side wall 1c of the container body 1. As shown in FIG.
  • the inlet 2a opens obliquely downward as shown in FIG.
  • the inlet 2a may be provided so as to open toward the bottom 1b of the container body 1 .
  • the inflow pipe 2 has an inclined portion 2b that inclines downward inside the container body 1, and the inflow port 2a of the inflow pipe 2 is at the tip of the inclined portion 2b and obliquely downward. open towards.
  • the inflow port 2a of the inflow pipe 2 opens obliquely downward, droplets of the liquid refrigerant flowing from the inflow port 2a are suppressed from scattering upward.
  • the outflow port 3a of the outflow pipe 3 is located above the inflow port 2a. Therefore, the liquid refrigerant flowing from the inlet 2a is prevented from being directly sucked into the outlet 3a. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
  • Embodiment 3 A refrigerant storage container 101 according to Embodiment 3 will be described.
  • the difference between the present embodiment and Embodiments 1 and 2 is the shape of the inflow pipe 2 .
  • differences from the first embodiment and the second embodiment will be mainly described.
  • the configurations and functions of the refrigerant storage container 101 and the refrigeration cycle device 100 of the present embodiment are the same as those of the first and second embodiments except for the shape of the inflow pipe 2, so the description is omitted.
  • FIG. 10 is a schematic diagram showing a refrigerant storage container 101 according to Embodiment 3.
  • FIG. Solid-line arrows shown in FIG. 10 conceptually indicate the flow of the refrigerant.
  • the inflow pipe 2 has an enlarged-diameter portion 2c having an inner cross-sectional area that gradually increases inside the container body 1 as the inner diameter gradually widens toward the outflow port 3a.
  • the outer diameter of the enlarged diameter portion 2c is shown to gradually widen inside the container body 1, but the inner diameter of the enlarged diameter portion 2c also gradually widens along with the outer diameter.
  • the inflow pipe 2 gradually widens from a position a little away from the inner surface of the side wall 1c of the container body 1. As shown in FIG.
  • the inflow pipe 2 may have a shape that gradually expands from the portion in contact with the inner surface of the side wall 1 c of the container body 1 .
  • the inflow pipe 2 has the enlarged-diameter portion 2c where the inner diameter gradually widens, and the position where the inner diameter starts to expand is not limited.
  • the inflow pipe 2 has an enlarged diameter portion 2c having a cross-sectional area that gradually increases toward the inflow port 2a within the container body 1 . Therefore, the flow velocity of the gas refrigerant and the liquid refrigerant flowing into the container body 1 from the inlet 2a decreases at the enlarged diameter portion 2c. As a result, the force of the gas refrigerant to attract fine droplets of the liquid refrigerant is weakened, and the amount of the fine droplets of the liquid refrigerant that are attracted by the gas refrigerant and rise up in the container body 1 is also reduced.
  • FIG. 11 is a schematic diagram showing a refrigerant storage container 101 according to Modification 1 of Embodiment 3. As shown in FIG. Solid-line arrows shown in FIG. 11 conceptually indicate the flow of the refrigerant.
  • the difference between this modified example and Embodiments 1 to 3 is the shape of the inflow pipe 2 .
  • the following description focuses on differences from the first to third embodiments. Except for the shape of the inflow pipe 2, the configuration and operation of the refrigerant storage container 101 and the refrigeration cycle device 100 of this modified example are the same as those of the first to third embodiments, so the description is omitted.
  • a plurality of inflow pipes 2 are provided. As shown in FIG. 11, two inflow pipes 2 may be provided, or three or more inflow pipes 2 may be provided. In FIG. 11, two inflow pipes 2 are inserted from opposite portions of the side wall 1c of the container body 1, respectively. However, each of the two inflow pipes 2 may be inserted from any of the upper, lower, front, rear, left, and right surfaces of the container body 1 . Moreover, in this modification, it is sufficient that a plurality of inflow pipes 2 are provided, and the position and shape of each inflow pipe 2 are not limited.
  • a plurality of inflow pipes 2 are provided in the refrigerant storage container 101 according to this modification, and the refrigerant flows into the container main body 1 from the inflow ports 2 a of the plurality of inflow pipes 2 . That is, since the refrigerant flows into the container body 1 from a plurality of inflow pipes 2, the amount of refrigerant flowing from each inflow port 2a is the same as that of one inflow pipe 2 having the same inner cross-sectional area as the inflow pipe 2 of this modification. It is less than the amount of refrigerant flowing in from the inlet 2a. Therefore, the flow velocity of the gas refrigerant and the liquid refrigerant flowing into the container main body 1 from each inlet 2a is reduced.
  • the force of the gas refrigerant to attract fine droplets of the liquid refrigerant is weakened, and the amount of the fine droplets of the liquid refrigerant that are attracted by the gas refrigerant and rise up in the container body 1 is also reduced. Therefore, the amount of liquid refrigerant that is directly sucked into the outlet 3a by being attracted by the gas refrigerant flowing from the inlet 2a is reduced. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
  • Embodiment 4 A refrigerant storage container 101 according to Embodiment 4 will be described.
  • the difference between this embodiment and Embodiments 1 to 3 is the shape of the outflow pipe 3 .
  • the following description focuses on differences from the first to third embodiments.
  • the configurations and functions of the refrigerant storage container 101 and the refrigeration cycle device 100 of the present embodiment are the same as those of the first to third embodiments except for the shape of the outflow pipe 3, so description thereof will be omitted.
  • FIG. 12 is a schematic diagram showing a refrigerant storage container 101 according to Embodiment 4.
  • FIG. Solid-line arrows shown in FIG. 12 conceptually indicate the flow of the refrigerant.
  • the outflow pipe 3 has an enlarged diameter portion 3c in which the inner cross-sectional area gradually increases inside the container body 1 as the inner diameter gradually widens toward the outflow port 3a.
  • the outer diameter of the enlarged diameter portion 3c is shown to gradually widen inside the container body 1, but the inner diameter of the enlarged diameter portion 3c also gradually widens along with the outer diameter.
  • the outflow pipe 3 gradually widens from a position a little away from the inner surface of the ceiling 1 a of the container body 1 .
  • the outflow pipe 3 may have a shape that gradually widens from a portion in contact with the inner surface of the ceiling 1 a of the container body 1 .
  • the outflow pipe 3 has the enlarged-diameter portion 3c where the inner diameter gradually widens, and the position where the inner diameter starts to expand is not limited.
  • the outflow pipe 3 has an enlarged diameter portion 3c in which the cross-sectional area gradually increases toward the outflow port 3a within the container body 1 . Therefore, the flow velocity of the gas refrigerant flowing out from the outlet 3a decreases at the enlarged diameter portion 3c. Therefore, the force of the gas refrigerant to attract fine droplets of the liquid refrigerant floating inside the container body 1 is weakened. Therefore, the liquid refrigerant that is directly sucked into the outlet 3a by being attracted by the gas refrigerant flowing out from the outlet 3a is reduced. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
  • FIG. 13 is a schematic diagram showing a refrigerant storage container 101 according to Modification 1 of Embodiment 4. As shown in FIG. Solid-line arrows shown in FIG. 13 conceptually indicate the flow of the refrigerant.
  • the difference between this modification and Embodiments 1 to 4 is the shape of the outflow pipe 3 .
  • the following description focuses on the differences from the first to fourth embodiments. Except for the shape of the outflow pipe 3, the configurations of the refrigerant storage container 101 and the refrigeration cycle device 100 of this modification are the same as those of Embodiments 1 to 4, so description thereof will be omitted.
  • a plurality of outflow pipes 3 are provided. As shown in FIG. 13, two outflow pipes 3 may be provided, or three or more outflow pipes 3 may be provided. In FIG. 13, two outflow pipes 3 are inserted from the ceiling 1a of the container body 1 so as to be adjacent to each other. However, each of the two outflow pipes 3 may be inserted from any of the upper, lower, front, rear, left, and right surfaces of the container body 1 . In addition, in this modification, it is sufficient that a plurality of outflow pipes 3 having outflow ports 3a opening toward the bottom portion 1b of the container body 1 are provided, and the position and shape of each outflow pipe 3 are not limited.
  • a plurality of outflow pipes 3 are provided in the refrigerant storage container 101 according to this modified example. That is, the total value of the opening areas of the outflow ports 3a of the plurality of outflow pipes 3 is larger than the opening area of the outflow port 3a of one outflow pipe 3 having the same inner cross-sectional area as the outflow pipe 3 of this modification. big. Therefore, the flow velocity of the refrigerant flowing out from each outlet 3a of the plurality of outflow pipes 3 is the same as that of the refrigerant flowing out from the outlet 3a of one outflow pipe 3 having the same inner cross-sectional area as the outflow pipe 3 of this modification. slower than the current velocity.
  • the total value of the opening areas of the outflow ports 3 a of the plurality of outflow pipes 3 is larger than the opening area of the inflow ports 2 a of the inflow pipe 2 . Therefore, the flow velocity of the gas refrigerant flowing out from each outlet 3a of the plurality of outflow pipes 3 is slower than the flow velocity of the refrigerant flowing in from the inlet 2a. Therefore, the force of attracting fine droplets of the liquid refrigerant floating inside the container body 1 is greater for the refrigerant flowing in from the inlet 2a than for the gas refrigerant flowing out from each outlet 3a. Therefore, the liquid refrigerant that is directly sucked into the outlet 3a by being attracted by the gas refrigerant flowing out from the outlet 3a is reduced. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
  • Embodiment 5 A refrigerant storage container 101 according to Embodiment 5 will be described.
  • the differences between this embodiment and Embodiments 1 to 4 are that the refrigerant storage container 101 has a baffle plate 5 and the positional relationship between the outlet 3a and the inlet 2a.
  • the following description focuses on the differences from the first to fourth embodiments.
  • the configurations of the refrigerant storage container 101 and the refrigeration cycle device 100 of this embodiment are the same as those of Embodiments 1 to 4, except for the positional relationship between the baffle plate 5 and the outlet 3a and the inlet 2a. Description is omitted.
  • FIG. 14 is a schematic diagram showing a refrigerant storage container 101 according to Embodiment 5.
  • the outflow port 3a of the outflow pipe 3 is located above the inflow port 2a of the inflow pipe 2.
  • the outflow port 3a of the outflow pipe 3 opens downward toward the bottom portion 1b of the container body 1 .
  • the liquid refrigerant flowing from the inflow port 2a drops due to gravity. Since the outflow port 3a is located above the inflow port 2a, the liquid refrigerant flowing in from the inflow port 2a is suppressed from being directly sucked into the outflow port 3a.
  • the baffle plate 5 has a flat plate shape.
  • the baffle plate 5 is cantilevered on the inner surface of the container body 1 .
  • the state in which the baffle plate 5 is supported in a cantilever manner on the inner surface of the container body 1 means that a part of the plate thickness surface of the baffle plate 5 is connected to the inner surface of the container body 1 and the other end of the connected plate thickness surface is a free end.
  • the baffle plate 5 is cantilevered on the inner surface of the side wall 1c of the container body 1 facing the inlet 2a of the inflow pipe 2.
  • the baffle plate 5 is provided so as to incline upward from the inner surface of the side wall 1c of the container body 1 .
  • the baffle plate 5 is provided so that the plate surface having the largest area of the baffle plate 5 faces the inlet 2a. Therefore, the liquid refrigerant flowing into the container body 1 from the inlet 2a collides with the plate surface of the baffle plate 5 having the largest area and flows downward. In addition, fine droplets of liquid refrigerant that flow into the container main body 1 from the inlet 2a and float inside the container main body 1 collide with the plate surface of the baffle plate 5 having the largest area, and the droplets collide with each other. gather and flow downwards.
  • the plate surface having the maximum area of the baffle plate 5 with which the liquid refrigerant flowing from the inlet 2a collides is referred to as a collision surface 5a.
  • the baffle plate 5 is provided below the outflow port 3a of the outflow pipe 3. Since the liquid refrigerant flowing into the container main body 1 from the inlet 2a flows downward by the baffle plate 5, the liquid refrigerant flowing from the inlet 2a reaches the outlet 3a located above the baffle plate 5 and the inlet 2a. Absorption is suppressed.
  • the baffle plate 5 is provided at a position where the liquid refrigerant flowing from the inlet 2 a collides with the baffle plate 5 .
  • the baffle plate 5 may extend from the inner surface of the side wall 1c of the container body 1 to near the inlet 2a, or the inflow pipe 2 may be provided so that the inlet 2a is positioned near the baffle plate 5. good.
  • a refrigerant storage container 101 has a baffle plate 5 that is cantilevered on the inner surface of the side wall 1c of the container body 1, and the baffle plate 5 faces the inlet port 2a of the inflow pipe 2. It is provided so as to be inclined upward from the inner surface portion of the side wall 1c. Therefore, the liquid refrigerant flowing from the inlet 2a collides with the baffle plate 5 extending obliquely upward from the inner surface of the facing side wall 1c. The liquid refrigerant that collides with the baffle plate 5 flows downward. Further, fine droplets of liquid refrigerant that flow into the container body 1 from the inlet 2a and float inside the container body 1 also collide with the baffle plate 5, collect the droplets, and flow downward.
  • the outflow port 3a of the outflow pipe 3 is positioned above the inflow port 2a of the inflow pipe 2 . Therefore, the liquid refrigerant containing fine droplets that has flowed into the container body 1 from the inlet 2a is suppressed from being sucked into the outlet 3a positioned above. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
  • FIG. 15 is a schematic diagram showing a refrigerant storage container 101 according to Modification 1 of Embodiment 5.
  • the baffle plate 5 described above with reference to FIG. 14 has a flat plate shape
  • the baffle plate 5 may have a curved surface shape as shown in FIG. 15 .
  • the baffle plate 5 has an arcuate longitudinal cross-section that is upwardly convex.
  • the collision surface 5a of the baffle plate 5 is curved to have an upwardly convex curved shape. Therefore, when the liquid refrigerant flowing from the inlet 2a collides with the baffle plate 5, scattering of the liquid refrigerant is suppressed.
  • the collision surface 5a is curved, the liquid refrigerant that has collided with the baffle plate 5 easily flows downward along the collision surface 5a and the inner surface of the container body 1. As shown in FIG. Therefore, the liquid refrigerant that has collided with the collision surface 5a is guided downward more reliably.
  • the curved collision surface 5a has a component extending in the horizontal direction, the liquid refrigerant containing fine droplets flowing into the container body 1 from the inlet 2a can be covered from above, and the fine droplets can be prevented from rising. Therefore, the liquid refrigerant that has flowed into the container body 1 from the inlet 2a is prevented from being sucked into the outlet 3a positioned above. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
  • FIG. 16 is a schematic diagram showing a refrigerant storage container 101 according to Modification 2 of Embodiment 5.
  • the baffle plate 5 has a flat plate shape.
  • the baffle plate 5 extends downward from a portion of the inner surface of the container body 1 that is the inner surface of the ceiling 1 a of the container body 1 .
  • the baffle plate 5 is cantilevered on the inner surface of the ceiling 1a of the container body 1 .
  • the baffle plate 5 is provided so as to separate the inner surface of the side wall 1 c of the container body 1 facing the inflow port 2 a of the inflow pipe 2 from the outflow port 3 a of the outflow pipe 3 .
  • the scattered liquid refrigerant has the maximum area of the baffle plate 5. collide with the board.
  • the plate surface having the maximum area of the baffle plate 5 with which the liquid refrigerant collides with the inner surface of the container body 1 and scatters is referred to as a collision surface 5b.
  • the liquid refrigerant that flows into the container body 1 from the inlet 2a collides with the inner surface of the side wall 1c of the container body 1 and scatters, collides with the collision surface 5b of the baffle plate 5 and drops. Therefore, when the liquid refrigerant flowing from the inlet 2a collides with the inner surface of the container body 1 and scatters, the baffle plate 5 can prevent the scattered droplets from being sucked into the outlet 3a. Further, the liquid refrigerant in the form of fine droplets flowing into the container main body 1 from the inlet 2a collides with the collision surface 5b of the baffle plate 5, and the droplets gather together and flow downward. Therefore, fine droplets of the liquid refrigerant can be prevented from floating inside the container body 1 and being sucked into the outflow port 3 a of the outflow pipe 3 .
  • the baffle plate 5 preferably separates the inlet 2a and the outlet 3a in all of the X, Y and Z directions. By doing so, fine liquid refrigerant droplets that have flowed into the container body 1 from the inlet 2a are blocked by the baffle plate 5 and are less likely to flow directly into the outlet 3a. Further, even if the liquid refrigerant collides with the baffle plate 5 and scatters, the scattered droplets are less likely to be sucked into the outlet 3a.
  • Embodiment 6 A refrigerant storage container 101 according to Embodiment 6 will be described.
  • the difference between this embodiment and Embodiments 1 to 5 is that the refrigerant storage container 101 is a cyclone-type refrigerant storage container 101 that utilizes centrifugal force.
  • the following description focuses on the differences from the first to fifth embodiments.
  • the configurations and functions of the refrigerant storage container 101 and the refrigeration cycle device 100 of the present embodiment are the same as those of the first to fifth embodiments except that the refrigerant storage container 101 is of the cyclone type. omitted.
  • FIG. 17 is a schematic diagram showing the refrigerant storage container 101 according to Embodiment 6 from the top side.
  • FIG. 18 is a schematic diagram showing the refrigerant storage container 101 according to Embodiment 6 from the front side. Solid-line arrows shown in FIGS. 17 and 18 conceptually indicate the flow of the refrigerant.
  • a refrigerant storage container 101 of the present embodiment has a cylindrical container body 1 .
  • the container main body 1 is of a vertical type installed so that the axial direction of the cylindrical shape is vertical.
  • the inflow pipe 2 has an inflow port 2a that opens toward the tangential direction of the curved inner surface of the side wall 1c of the container body 1 . Therefore, as shown in FIG. 18, the liquid refrigerant flowing from the inflow port 2a of the inflow pipe 2 flows downward along the inner surface of the side wall 1c of the container body 1 while swirling in the circumferential direction.
  • the liquid refrigerant that has flowed in from the inlet 2a flows downward along the inner surface of the side wall 1c of the container body 1, thereby suppressing scattering of the liquid refrigerant. Therefore, the liquid refrigerant flowing from the inflow port 2a is suppressed from being sucked into the outflow port 3a.
  • FIG. 19 is a schematic top view of the refrigerant storage container 101 according to Modification 1 of Embodiment 6.
  • FIG. 20 is a schematic front view of the refrigerant storage container 101 according to Modification 1 of Embodiment 6.
  • Solid-line arrows shown in FIGS. 19 and 20 conceptually indicate the flow of the refrigerant.
  • the shape of the inflow pipe 2 of this modified example will be described below, focusing on the differences from the sixth embodiment. Except for the shape of the inflow pipe 2, the configurations of the refrigerant storage container 101 and the refrigerating cycle device 100 of this modified example are the same as those of the sixth embodiment, so the description thereof is omitted.
  • the inflow pipe 2 has a sloped portion 2b that slopes downward.
  • the inlet 2a is provided at the tip of the inclined portion 2b.
  • the inlet 2a opens in a tangential direction to the curved inner surface of the side wall 1c of the container body 1 . Since the inclined portion 2b of the inflow pipe 2 is inclined downward, the shape of the inflow pipe 2 does not differ between the sixth embodiment and this modified example when the refrigerant storage container 101 is viewed from above. Therefore, FIGS. 17 and 19 are not different.
  • the inlet 2a opens obliquely downward as shown in FIG.
  • the inflow pipe 2 has an inclined portion 2b that inclines downward inside the container body 1, and the inflow port 2a of the inflow pipe 2 is at the tip of the inclined portion 2b and obliquely downward. open towards. Therefore, droplets of the liquid refrigerant flowing from the inlet 2a are prevented from scattering upward. Therefore, the liquid refrigerant flowing from the inflow port 2a is suppressed from being directly sucked into the outflow port 3a. Therefore, it is possible to suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
  • FIG. 21 is a schematic diagram showing the refrigerant storage container 101 according to Embodiment 7 from the front side. Solid line arrows shown in FIG. 21 conceptually indicate the flow of the refrigerant.
  • FIG. 22 is a schematic diagram of the refrigerant storage container 101 viewed from direction A shown in FIG. Note that the A direction corresponds to the longitudinal direction of the container body 1 .
  • the shape of the container body 1 is different from the shape of the container body 1 in the first to fifth embodiments.
  • the container body 1 of the refrigerant storage container 101 is of the vertical type.
  • the container body 1 according to the present embodiment is of a horizontal type which is installed so that the axial direction of the cylindrical shape is horizontal.
  • the configuration and operation of the refrigerant storage container 101 and the refrigeration cycle device 100 of the present embodiment are the same as those of the first to fifth embodiments except that the container body 1 is of a horizontal type, so description thereof will be omitted. omitted.
  • Embodiment 6 is a cyclone-type refrigerant storage container 101, this Embodiment and Embodiment 6 cannot be combined.
  • 21 and 22 show the horizontal container body 1 having a perfect circular shape when viewed from the side.
  • the shape of the container body 1 when viewed from the side is not limited to a perfect circle.
  • the shape of the container body 1 when viewed from the side may be an ellipse.
  • the inflow pipe 2 and the outflow pipe 3 are inserted into the container main body 1 from the ceiling 1a of the container main body 1.
  • the inflow pipe 2 and the outflow pipe 3 are connected to the container. It may be inserted from any of the upper, lower, front, rear, left, and right surfaces of the main body 1 .
  • the positional relationship between the inflow pipe 2 and the outflow pipe 3 inside the container body 1 is not limited in any of the vertical, front, rear, left, and right directions.
  • the container body 1 of the refrigerant storage container 101 according to the present embodiment is of a horizontal type, the height of the refrigerant storage container 101 can be reduced. Therefore, even if the refrigerant storage container 101 having the vertical container body 1 cannot be installed due to the installation location, the refrigerant storage container 101 according to this modification can be installed.
  • Embodiments 1 to 7 and Embodiments 1 to 6 have been described above.
  • the refrigerant storage container 101 and the refrigeration cycle device 100 are not limited to the modifications of the first to seventh embodiments and the modifications of the first to sixth embodiments described above, and are within the scope of the gist.
  • Various modifications and applications are possible. That is, the refrigerant storage container 101 and the refrigeration cycle device 100 include a range of design changes and application variations that are normally made by those skilled in the art without departing from the technical idea thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)

Abstract

Provided is a refrigerant storage container comprising a container body which stores liquid, an inflow pipe which includes an inflow opening and which allows a refrigerant to flow into the container body, an outflow pipe which includes an outflow opening and which allows the refrigerant to flow out from the container body, and an oil return mechanism which allows refrigerator oil to flow out from the container body, wherein the outflow opening of the outflow pipe is opened toward a bottom portion of the container body.

Description

冷媒貯留容器及び該冷媒貯留容器を備えた冷凍サイクル装置Refrigerant storage container and refrigeration cycle device provided with the refrigerant storage container
 本開示は、油戻し機構を有する冷媒貯留容器、及び該冷媒貯留容器を備えた冷凍サイクル装置に関する。 The present disclosure relates to a refrigerant storage container having an oil return mechanism, and a refrigeration cycle device including the refrigerant storage container.
 冷媒貯留容器を備えた冷凍サイクル装置において、冷媒貯留容器に冷凍機油が滞留した場合、圧縮機内の冷凍機油が枯渇し、圧縮機の破損の発生の原因となる。そこで、冷媒貯留容器に滞留した冷凍機油を冷媒と共に流出させるために、油戻し穴を設けた流出管を備えた冷媒貯留容器が提案されている。例えば特許文献1には、油戻し穴が設けられた、U字形状を有する流出管が開示されている。特許文献1では、油戻し穴と冷媒貯留容器の底部との距離が短くなるように、油戻し穴は、冷媒貯留容器の下部に位置している。 In a refrigeration cycle device equipped with a refrigerant storage container, if refrigeration oil stays in the refrigerant storage container, the refrigeration oil in the compressor will be depleted, causing damage to the compressor. Therefore, a refrigerant storage container having an outflow pipe with an oil return hole has been proposed in order to cause the refrigerating machine oil staying in the refrigerant storage container to flow out together with the refrigerant. For example, Patent Literature 1 discloses a U-shaped outflow pipe provided with an oil return hole. In Patent Document 1, the oil return hole is positioned at the bottom of the refrigerant reservoir so that the distance between the oil return hole and the bottom of the refrigerant reservoir is short.
特許第5425221号公報Japanese Patent No. 5425221
 特許文献1では、流出管に設けられた油戻し穴から冷凍機油が流出して、冷凍機油が圧縮機に戻る。ここで、冷凍サイクル装置において、圧縮機が液冷媒を吸入した場合、圧縮機シェル内の冷凍機油が希釈し、圧縮機摺動部の焼き付き発生の原因となる。特許文献1では、油戻し穴を冷媒貯留容器の下部に設ける必要があるため、流出管はU字形状を有しており、流出管の流出口は冷媒貯留容器の上部に位置するように設けられている。特許文献1では、流出管の流出口が上向きに開口している。ここで、冷媒貯留容器には、ガスと微細な液滴とが混合した状態の冷媒が流入管から勢いよく流入してくるため、冷媒貯留容器内には液冷媒が液滴状或いは霧状に浮遊し、この冷媒は重力により落下する。このため、特許文献1では、上向きに開口する流出管の流出口に、流入管から流入する液冷媒の液滴が吸い込まれやすく、液冷媒がガス冷媒と共に圧縮機に流入するおそれがある。すなわち、冷媒貯留容器は冷凍機油を流出させるための油戻し穴を備えるが、流出口が上向けに開口しているため、流出管から液冷媒が流出しやすくなる、という課題がある。 In Patent Document 1, refrigerating machine oil flows out from an oil return hole provided in an outflow pipe and returns to the compressor. Here, in the refrigerating cycle device, when the compressor sucks the liquid refrigerant, the refrigerating machine oil in the compressor shell is diluted, which causes seizure of the sliding parts of the compressor. In Patent Document 1, since it is necessary to provide an oil return hole in the lower portion of the refrigerant storage container, the outflow pipe has a U-shape, and the outflow port of the outflow pipe is provided so as to be positioned in the upper portion of the refrigerant storage container. It is In Patent Document 1, the outflow port of the outflow pipe opens upward. Here, since the refrigerant in a state in which gas and fine droplets are mixed flows vigorously into the refrigerant storage container from the inflow pipe, the liquid refrigerant is in the form of droplets or mist in the refrigerant storage container. Floating, this refrigerant falls due to gravity. For this reason, in Patent Document 1, droplets of the liquid refrigerant flowing from the inflow pipe are likely to be sucked into the outlet of the upwardly opening outflow pipe, and the liquid refrigerant may flow into the compressor together with the gas refrigerant. That is, although the refrigerant storage container is provided with an oil return hole for letting the refrigerator oil flow out, there is a problem that the liquid refrigerant tends to flow out from the outflow pipe because the outlet is open upward.
 本開示は、上記のような課題を背景としてなされたものであり、冷凍機油を流出させる油戻し機構と流出管からの液冷媒の流出を抑制する構造とを備えた冷媒貯留容器、及び該冷媒貯留容器を備えた冷凍サイクル装置を提供するものである。 The present disclosure has been made against the background of the problems described above, and provides a refrigerant storage container having an oil return mechanism for flowing out refrigerating machine oil and a structure for suppressing the outflow of liquid refrigerant from the outflow pipe, and the refrigerant. A refrigeration cycle device having a storage container is provided.
 本開示に係る冷媒貯留容器は、液体を溜める容器本体と、流入口を有し、容器本体に冷媒を流入させる流入配管と、流出口を有し、容器本体から冷媒を流出させる流出配管と、容器本体から冷凍機油を流出させる油戻し機構とを備え、流出配管の流出口は、容器本体の底部に向かって開口している。 A refrigerant storage container according to the present disclosure includes a container body that stores liquid, an inflow pipe that has an inlet and allows refrigerant to flow into the container body, an outflow pipe that has an outlet and allows the refrigerant to flow out of the container body, An oil return mechanism for flowing out the refrigerating machine oil from the container body is provided, and the outflow port of the outflow pipe opens toward the bottom of the container body.
 本開示に係る冷凍サイクル装置は、上記冷媒貯留容器と、冷媒貯留容器に、冷媒貯留容器の流出配管を介して接続された圧縮機とを備え、油戻し機構は、容器本体の底部から容器本体に挿入された油戻し配管であり、冷媒貯留容器の油戻し配管から流出する冷凍機油が、圧縮機に流入する。 A refrigeration cycle device according to the present disclosure includes the above refrigerant storage container, and a compressor connected to the refrigerant storage container through an outflow pipe of the refrigerant storage container, and the oil return mechanism extends from the bottom of the container body to the container body. Refrigerant oil flowing out from the oil return pipe of the refrigerant storage container flows into the compressor.
 本開示に係る冷媒貯留容器は、油戻し機構を有している。このため、冷媒貯留容器に滞留する冷凍機油は、油戻し機構により冷媒貯留容器から流出して、圧縮機に戻ることができる。また、冷媒貯留容器の容器本体に挿入される流出配管の流出口は、容器本体の底部に向かって開口している。つまり、流出配管の流出口は下向きに開口している。このため、容器本体の内部を浮遊する液滴が、流出配管の流出口に吸い込まれにくく、流出配管からの液冷媒の流出を抑制できる。したがって、油戻し機構と、流出配管の流出口からの液冷媒の流出を抑制する構造とを備えた冷媒貯留容器、及び該冷媒貯留容器を備えた冷凍サイクル装置を提供することができる。 The refrigerant storage container according to the present disclosure has an oil return mechanism. Therefore, the refrigerating machine oil remaining in the refrigerant reservoir can flow out of the refrigerant reservoir and return to the compressor by the oil return mechanism. Further, the outflow port of the outflow pipe inserted into the container body of the refrigerant storage container opens toward the bottom of the container body. That is, the outflow port of the outflow pipe opens downward. Therefore, the liquid droplets floating inside the container body are less likely to be sucked into the outlet of the outflow pipe, and the outflow of the liquid refrigerant from the outflow pipe can be suppressed. Therefore, it is possible to provide a refrigerant storage container that includes an oil return mechanism and a structure that suppresses the outflow of liquid refrigerant from the outlet of the outflow pipe, and a refrigeration cycle device that includes the refrigerant storage container.
実施の形態1に係る冷媒貯留容器を備えた冷凍サイクル装置の冷媒回路図である。1 is a refrigerant circuit diagram of a refrigeration cycle device having a refrigerant storage container according to Embodiment 1. FIG. 実施の形態1に係る冷媒貯留容器を示した概略図である。1 is a schematic diagram showing a refrigerant storage container according to Embodiment 1; FIG. 実施の形態1の変形例1に係る冷媒貯留容器を示した概略図である。FIG. 4 is a schematic diagram showing a refrigerant storage container according to Modification 1 of Embodiment 1; 実施の形態1の変形例2に係る冷媒貯留容器を示した概略図である。FIG. 8 is a schematic diagram showing a refrigerant storage container according to Modification 2 of Embodiment 1; 実施の形態1の変形例3に係る冷凍サイクル装置の冷媒貯留容器と圧縮機を示した概略図である。FIG. 8 is a schematic diagram showing a refrigerant storage container and a compressor of a refrigeration cycle device according to Modification 3 of Embodiment 1; 実施の形態1の変形例4に係る冷凍サイクル装置の冷媒貯留容器と圧縮機を示した概略図である。FIG. 9 is a schematic diagram showing a refrigerant storage container and a compressor of a refrigeration cycle device according to Modification 4 of Embodiment 1; 実施の形態2に係る冷媒貯留容器を示した概略図である。FIG. 5 is a schematic diagram showing a refrigerant storage container according to Embodiment 2; 実施の形態2の変形例1に係る冷媒貯留容器を示した概略図である。FIG. 9 is a schematic diagram showing a refrigerant storage container according to Modification 1 of Embodiment 2; 実施の形態2の変形例2に係る冷媒貯留容器を示した概略図である。FIG. 9 is a schematic diagram showing a refrigerant storage container according to Modification 2 of Embodiment 2; 実施の形態3に係る冷媒貯留容器を示した概略図である。FIG. 11 is a schematic diagram showing a refrigerant storage container according to Embodiment 3; 実施の形態3の変形例1に係る冷媒貯留容器を示した概略図である。FIG. 11 is a schematic diagram showing a refrigerant storage container according to Modification 1 of Embodiment 3; 実施の形態4に係る冷媒貯留容器を示した概略図である。FIG. 11 is a schematic diagram showing a refrigerant storage container according to Embodiment 4; 実施の形態4の変形例1に係る冷媒貯留容器を示した概略図である。FIG. 11 is a schematic diagram showing a refrigerant storage container according to Modification 1 of Embodiment 4; 実施の形態5に係る冷媒貯留容器を示した概略図である。FIG. 11 is a schematic diagram showing a refrigerant storage container according to Embodiment 5; 実施の形態5の変形例1に係る冷媒貯留容器を示した概略図である。FIG. 11 is a schematic diagram showing a refrigerant storage container according to Modification 1 of Embodiment 5; 実施の形態5の変形例2に係る冷媒貯留容器を示した概略図である。FIG. 11 is a schematic diagram showing a refrigerant storage container according to Modification 2 of Embodiment 5; 実施の形態6に係る冷媒貯留容器を上面側から示した概略図である。FIG. 11 is a schematic view showing a refrigerant storage container according to Embodiment 6 from the top side; 実施の形態6に係る冷媒貯留容器を正面側から示した概略図である。FIG. 11 is a schematic diagram showing a refrigerant storage container according to Embodiment 6 from the front side; 実施の形態6の変形例1に係る冷媒貯留容器を上面側から示した概略図である。FIG. 12 is a schematic top view of a refrigerant storage container according to Modification 1 of Embodiment 6; 実施の形態6の変形例1に係る冷媒貯留容器を正面側から示した概略図である。FIG. 11 is a schematic front view of a refrigerant storage container according to Modification 1 of Embodiment 6; 実施の形態7に係る冷媒貯留容器を正面側から示した概略図である。FIG. 11 is a schematic diagram showing a refrigerant storage container according to Embodiment 7 from the front side; 図21に示したA方向から見た冷媒貯留容器の概略図である。FIG. 22 is a schematic diagram of the refrigerant storage container viewed from direction A shown in FIG. 21;
 以下、本実施の形態に係る冷媒貯留容器及び該冷媒貯留容器を備えた冷凍サイクル装置について、図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、以下の説明において、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、これらは説明のためのものであって、本開示を限定するものではない。 A refrigerant storage container according to the present embodiment and a refrigeration cycle apparatus including the refrigerant storage container will be described below with reference to the drawings. The present disclosure is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present disclosure. Also, in the following description, terms representing directions (for example, "up", "down", "right", "left", "front", "back", etc.) are used as appropriate for ease of understanding. They are intended to be illustrative and not limiting of the present disclosure.
 また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係又は形状等が実際のものとは異なる場合がある。また、各図において、X方向は、冷媒貯留容器の左右方向を示し、矢印により右から左方向を示すこととする。Y方向は、冷媒貯留容器の前後方向を示し、矢印により前から後ろ方向を示すこととする。Z方向は、冷媒貯留容器の上下方向を示し、矢印により下から上方向を示すこととする。Z方向は、鉛直方向である。 Also, in each figure, the same reference numerals are the same or equivalent, and this is common throughout the specification. In each drawing, the relative dimensional relationship, shape, etc. of each component may differ from the actual one. Also, in each figure, the X direction indicates the horizontal direction of the refrigerant storage container, and the arrow indicates the direction from right to left. The Y direction indicates the front-to-rear direction of the refrigerant storage container, and the arrow indicates the front-to-rear direction. The Z direction indicates the vertical direction of the refrigerant storage container, and the arrow indicates the upward direction from the bottom. The Z direction is the vertical direction.
実施の形態1.
(冷凍サイクル装置100)
 図1を参照して、実施の形態1に係る冷媒貯留容器101を備えた冷凍サイクル装置100について説明する。図1は、実施の形態1に係る冷媒貯留容器101を備えた冷凍サイクル装置100の冷媒回路図である。図1に示すように、実施の形態1に係る冷凍サイクル装置100は、圧縮機10と、凝縮器12と、膨張機構13と、蒸発器14と、冷媒貯留容器101とを備えている。圧縮機10と、凝縮器12と、膨張機構13と、蒸発器14と、冷媒貯留容器101とは冷媒配管15で接続されている。これにより、冷凍機油を含む冷媒が冷媒配管15を循環する冷媒回路200が形成されている。なお、以下の説明において、冷媒と称する場合に、特に区別しない限りは、冷媒と冷凍機油とが混合されているものとする。
Embodiment 1.
(Refrigeration cycle device 100)
A refrigeration cycle apparatus 100 including a refrigerant storage container 101 according to Embodiment 1 will be described with reference to FIG. FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle device 100 having a refrigerant storage container 101 according to Embodiment 1. FIG. As shown in FIG. 1 , a refrigeration cycle apparatus 100 according to Embodiment 1 includes a compressor 10 , a condenser 12 , an expansion mechanism 13 , an evaporator 14 and a refrigerant storage container 101 . Compressor 10 , condenser 12 , expansion mechanism 13 , evaporator 14 , and refrigerant storage container 101 are connected by refrigerant pipe 15 . Thereby, a refrigerant circuit 200 is formed in which the refrigerant containing the refrigerator oil circulates through the refrigerant pipe 15 . In the following description, when referring to refrigerant, it is assumed that refrigerant and refrigerating machine oil are mixed unless otherwise specified.
 冷凍サイクル装置100において、冷媒貯留容器101と圧縮機10とは接続されている。図1では、冷媒貯留容器101が備える流出配管3が、圧縮機10の吸込口10aに接続されている。冷媒貯留容器101の流出配管3は、冷媒配管15に接続されてもよい。図示しないが、圧縮機10の吸込口10aに接続された冷媒配管15と、流出配管3とを、継手で接続してもよい。圧縮機10は、吸込口10aから吸入した冷媒を圧縮し、高温高圧の状態にして吐出する。圧縮機10は、例えば、インバータ圧縮機である。圧縮機10から吐出された冷媒は、凝縮器12に流入する。凝縮器12に流入した冷媒は、凝縮器12を通過する空気と熱交換して高圧液冷媒となって、凝縮器12から流出する。凝縮器12から流出した高圧液冷媒は、膨張機構13に流入する。 In the refrigeration cycle device 100, the refrigerant storage container 101 and the compressor 10 are connected. In FIG. 1 , the outflow pipe 3 provided in the refrigerant storage container 101 is connected to the suction port 10 a of the compressor 10 . Outflow pipe 3 of refrigerant storage container 101 may be connected to refrigerant pipe 15 . Although not shown, the refrigerant pipe 15 connected to the suction port 10a of the compressor 10 and the outflow pipe 3 may be connected by a joint. The compressor 10 compresses the refrigerant sucked from the suction port 10a and discharges the refrigerant in a high-temperature and high-pressure state. Compressor 10 is, for example, an inverter compressor. Refrigerant discharged from the compressor 10 flows into the condenser 12 . The refrigerant that has flowed into the condenser 12 exchanges heat with the air that passes through the condenser 12 to become high-pressure liquid refrigerant and flows out of the condenser 12 . The high-pressure liquid refrigerant that has flowed out of the condenser 12 flows into the expansion mechanism 13 .
 膨張機構13は、冷媒回路200内を流れる冷媒を減圧して膨張させる減圧装置である。膨張機構13は、一例として、開度が可変に制御される電子膨張弁で構成される。膨張機構13に流入した高圧液冷媒は、減圧されて低圧の気液二相冷媒となり、蒸発器14に流入する。 The expansion mechanism 13 is a decompression device that decompresses and expands the refrigerant flowing through the refrigerant circuit 200 . The expansion mechanism 13 is, for example, an electronic expansion valve whose opening is variably controlled. The high-pressure liquid refrigerant that has flowed into the expansion mechanism 13 is decompressed to become a low-pressure gas-liquid two-phase refrigerant, and flows into the evaporator 14 .
 蒸発器14に入流した低圧の気液二相冷媒は、蒸発器14を通過する空気と熱交換し、蒸発器14から流出する。ここで、冷凍サイクル装置100において、圧縮機10に吸入される冷媒は、過熱ガスが理想であるが、冷媒の状態は冷媒回路200内の冷媒分布に依存する。よって、蒸発器14から流出する冷媒が気液二相冷媒である場合がある。しかし、液冷媒を含んだ状態の冷媒が圧縮機10に吸入されると、圧縮機10のシェル内部の冷凍機油が希釈し、圧縮機10の摺動部に焼き付きが発生するおそれがある。そこで、冷凍サイクル装置100では、冷媒の流れ方向において、圧縮機10の上流側に冷媒貯留容器101が設置される。蒸発器14から流出した冷媒は、冷媒貯留容器101が備える流入配管2を通って冷媒貯留容器101に流入する。流入配管2は、蒸発器14の流出側に接続された冷媒配管15に接続されてもよいし、蒸発器14の流出側に直接接続されてもよい。 The low-pressure gas-liquid two-phase refrigerant that has flowed into the evaporator 14 exchanges heat with the air passing through the evaporator 14 and flows out of the evaporator 14 . Here, in the refrigeration cycle device 100 , the refrigerant sucked into the compressor 10 is ideally a superheated gas, but the state of the refrigerant depends on the refrigerant distribution within the refrigerant circuit 200 . Therefore, the refrigerant flowing out of the evaporator 14 may be gas-liquid two-phase refrigerant. However, when the refrigerant containing the liquid refrigerant is sucked into the compressor 10, the refrigerating machine oil inside the shell of the compressor 10 is diluted, and the sliding parts of the compressor 10 may be seized. Therefore, in the refrigeration cycle device 100, the refrigerant storage container 101 is installed on the upstream side of the compressor 10 in the refrigerant flow direction. The refrigerant that has flowed out of the evaporator 14 flows into the refrigerant storage container 101 through the inflow pipe 2 provided in the refrigerant storage container 101 . The inflow pipe 2 may be connected to the refrigerant pipe 15 connected to the outflow side of the evaporator 14 or may be directly connected to the outflow side of the evaporator 14 .
 冷媒貯留容器101に流入した冷媒は、ガス冷媒と液冷媒とに分離し、液冷媒が冷媒貯留容器101内に滞留する。ガス冷媒は流出配管3を通って冷媒貯留容器101から流出し、圧縮機10に吸入される。したがって、本実施の形態に係る冷凍サイクル装置100では、冷媒貯留容器101において気液二相冷媒から液冷媒が分離して貯留されるため、液冷媒が圧縮機10に吸入されることを抑制できる。 The refrigerant that has flowed into the refrigerant storage container 101 is separated into gas refrigerant and liquid refrigerant, and the liquid refrigerant stays in the refrigerant storage container 101 . Gas refrigerant flows out of the refrigerant storage container 101 through the outflow pipe 3 and is sucked into the compressor 10 . Therefore, in the refrigeration cycle apparatus 100 according to the present embodiment, the liquid refrigerant is separated from the gas-liquid two-phase refrigerant and stored in the refrigerant storage container 101, so that the suction of the liquid refrigerant into the compressor 10 can be suppressed. .
 冷媒貯留容器101は、冷媒貯留容器101に滞留する冷凍機油を流出させるための油戻し機構を備える。図1では、油戻し機構である油戻し配管4が破線で示されている。油戻し配管4は、冷媒貯留容器101から冷凍機油を流出させることができればよい。例えば、図1では、油戻し配管4が流出配管3に接続されている。このため、油戻し配管4から流出した冷凍機油は、流出配管3から流出するガス冷媒とともに、圧縮機10の吸込口10aに流入する。しかし、油戻し配管4が流出配管3に接続されなくてもよい。後述するように、油戻し配管4が流出配管3に接続されず、オイルレギュレータ20を介して、圧縮機10に接続されてもよい。また、油戻し機構は、油戻し配管4ではなくてもよい。後述するように、油戻し機構が、流出配管3に設けられた油戻し穴3bであってもよい。 The refrigerant storage container 101 has an oil return mechanism for causing the refrigerating machine oil remaining in the refrigerant storage container 101 to flow out. In FIG. 1, an oil return pipe 4, which is an oil return mechanism, is indicated by a broken line. The oil return pipe 4 only needs to allow the refrigerating machine oil to flow out from the refrigerant storage container 101 . For example, in FIG. 1 the oil return line 4 is connected to the outflow line 3 . Therefore, the refrigerating machine oil flowing out from the oil return pipe 4 flows into the suction port 10 a of the compressor 10 together with the gas refrigerant flowing out from the outflow pipe 3 . However, the oil return pipe 4 does not have to be connected to the outflow pipe 3 . As will be described later, the oil return pipe 4 may not be connected to the outflow pipe 3 but may be connected to the compressor 10 via the oil regulator 20 . Also, the oil return mechanism may not be the oil return pipe 4 . As will be described later, the oil return mechanism may be an oil return hole 3 b provided in the outflow pipe 3 .
 冷凍サイクル装置100は、除湿機、冷蔵冷凍庫、及び空気調和機などに適用することができる。また、図示しないが、冷媒回路200の圧縮機10の吐出側に冷媒の流路を切り替えることができる流路切替装置を設けることで、冷暖房運転の切り替えが可能な空気調和機に、冷凍サイクル装置100を適用してもよい。冷房運転では、室外熱交換器が凝縮器12として機能し、室内熱交換器が蒸発器14として機能する。また、暖房運転では、室内熱交換器が凝縮器12として機能し、室外熱交換器が蒸発器14として機能する。流路切替装置は、例えば四方弁である。また、流路切替装置は、二方弁又は三方弁を組み合わせて構成してもよい。 The refrigeration cycle device 100 can be applied to dehumidifiers, refrigerator-freezers, air conditioners, and the like. Further, although not shown, by providing a flow path switching device capable of switching the flow path of the refrigerant on the discharge side of the compressor 10 of the refrigerant circuit 200, the air conditioner capable of switching between cooling and heating operation can be provided with a refrigeration cycle device. 100 may be applied. In cooling operation, the outdoor heat exchanger functions as the condenser 12 and the indoor heat exchanger functions as the evaporator 14 . In heating operation, the indoor heat exchanger functions as the condenser 12 and the outdoor heat exchanger functions as the evaporator 14 . The channel switching device is, for example, a four-way valve. Also, the channel switching device may be configured by combining two-way valves or three-way valves.
[冷媒貯留容器101]
 本実施の形態に係る冷媒貯留容器101について、図2を参照しながら説明する。図2は、実施の形態1に係る冷媒貯留容器101を示した概略図である。図2に示す実線の矢印は、冷媒の流れを概念的に示すものである。図2に示すように、冷媒貯留容器101は、容器本体1と、流入配管2と、流出配管3と、油戻し配管4とを備える。容器本体1は、密閉された筒形状であり、内部に液体を溜める。冷媒貯留容器101の容器本体1は、筒形状の軸方向が鉛直になるように設置される縦置き型である。容器本体1の底部1bには、流入配管2から流入する、冷凍機油と液冷媒とが貯留される。
[Refrigerant storage container 101]
Refrigerant storage container 101 according to the present embodiment will be described with reference to FIG. FIG. 2 is a schematic diagram showing the refrigerant storage container 101 according to the first embodiment. Solid-line arrows shown in FIG. 2 conceptually indicate the flow of the refrigerant. As shown in FIG. 2 , the refrigerant storage container 101 includes a container body 1 , an inflow pipe 2 , an outflow pipe 3 and an oil return pipe 4 . The container main body 1 has a closed cylindrical shape and stores a liquid inside. The container main body 1 of the refrigerant storage container 101 is of a vertical type installed so that the axial direction of the cylindrical shape is vertical. Refrigerant oil and liquid refrigerant flowing in from the inflow pipe 2 are stored in the bottom portion 1 b of the container body 1 .
 冷凍機油が混合された冷媒は気液二相状態で、流入配管2を通って、流入配管2の流入口2aから容器本体1に流入する。液冷媒には、微細な液滴の状態のものが含まれる。流入口2aから流入した液冷媒は、重力により容器本体1の底部1bに落下し、容器本体1の内部に滞留する。流入口2aから容器本体1に流入したガス冷媒は、流出口3aから流出配管3に流入する。流出配管3に流入したガス冷媒は、流出配管3を通って容器本体1から流出して圧縮機10(図1参照)に吸入される。 The refrigerant mixed with the refrigerating machine oil flows in a gas-liquid two-phase state through the inflow pipe 2 and into the container body 1 from the inflow port 2 a of the inflow pipe 2 . The liquid refrigerant includes those in the state of fine droplets. The liquid refrigerant that has flowed in from the inlet 2 a falls to the bottom 1 b of the container body 1 due to gravity and stays inside the container body 1 . The gas refrigerant that has flowed into the container body 1 from the inlet 2a flows into the outlet pipe 3 from the outlet 3a. The gas refrigerant that has flowed into the outflow pipe 3 flows out of the container body 1 through the outflow pipe 3 and is sucked into the compressor 10 (see FIG. 1).
 流入配管2は、図2に示すように、容器本体1の側壁1cから挿入される。流入配管2は、容器本体1の内部では、直管形状を有している。直管形状の流入配管2の先端には、容器本体1の側壁1cの内面に向かって、流入口2aが開口している。流入配管2は、流入口2aが容器本体1の上部に位置するように設けられている。なお、流入配管2は、流入口2aが容器本体1の上下方向の中央よりも上部に位置するように設けられればよい。また、流入配管2は、容器本体1の上下前後左右のいずれの面から挿入されてもよい。流入口2aは、水平方向に向いてもよいし、水平方向に対して斜め上又は斜め下に向いてもよい。さらに、流入配管2の形状は直管形状に限定されず、U字形状を有していてもよい。 The inflow pipe 2 is inserted from the side wall 1c of the container body 1, as shown in FIG. The inflow pipe 2 has a straight pipe shape inside the container body 1 . An inflow port 2 a opens toward the inner surface of the side wall 1 c of the container body 1 at the tip of the straight inflow pipe 2 . The inflow pipe 2 is provided such that the inflow port 2 a is positioned above the container body 1 . The inflow pipe 2 may be provided so that the inflow port 2a is positioned above the center of the container body 1 in the vertical direction. Also, the inflow pipe 2 may be inserted from any of the upper, lower, front, rear, left, and right surfaces of the container body 1 . The inlet 2a may be oriented horizontally, or may be oriented obliquely upward or obliquely downward with respect to the horizontal direction. Furthermore, the shape of the inflow pipe 2 is not limited to a straight pipe shape, and may have a U shape.
 流出配管3は、図2に示すように、容器本体1の天井1aから挿入される。流出配管3は、容器本体1の内部では、直管形状を有している。直管形状の流出配管3の先端には、流出口3aが容器本体1の底部1bに向かって開口している。言い換えると、流出配管3の流出口3aは、下向きに開口する。容器本体1の流出配管3は、流出口3aが容器本体1の上下方向の中央よりも上部に位置するように設けられている。流入口2aから流入する、微細な液滴の状態にある液冷媒は、容器本体1の内部を浮遊することがある。流出口3aは下向きに開口しているため、こうした容器本体1を浮遊する液冷媒を吸い込みにくい。しかし、流出配管3の形状は直管形状に限定されず、U字形状を有していていもよい。また、流出配管3は、容器本体1の上下前後左右のいずれの面から挿入されてもよい。 The outflow pipe 3 is inserted from the ceiling 1a of the container body 1, as shown in FIG. The outflow pipe 3 has a straight pipe shape inside the container body 1 . An outflow port 3 a opens toward the bottom portion 1 b of the container body 1 at the tip of the straight outflow pipe 3 . In other words, the outflow port 3a of the outflow pipe 3 opens downward. The outflow pipe 3 of the container body 1 is provided so that the outflow port 3a is positioned above the center of the container body 1 in the vertical direction. The liquid refrigerant in the state of fine droplets that flows in from the inlet 2 a may float inside the container body 1 . Since the outflow port 3a is open downward, it is difficult for the liquid refrigerant floating in the container body 1 to be sucked. However, the shape of the outflow pipe 3 is not limited to a straight pipe shape, and may have a U shape. Also, the outflow pipe 3 may be inserted from any of the upper, lower, front, rear, left, and right surfaces of the container body 1 .
 図2では、流入配管2が、流出配管3よりも下方に位置する。流出配管3は、流出口3aが、流入配管2の流入口2aより上方に位置するように設けられている。しかし、流入配管2と流出配管3の位置関係は、図2に限定されない。流入配管2は、流入口2aが流出配管3の流出口3aよりも上方に位置するように設けられてもよい。容器本体1の内部において、流入配管2と流出配管3との位置関係は、上下前後左右のいずれの方向においても限定されない。  In FIG. 2, the inflow pipe 2 is positioned below the outflow pipe 3. The outflow pipe 3 is provided such that the outflow port 3a is positioned above the inflow port 2a of the inflow pipe 2 . However, the positional relationship between the inflow pipe 2 and the outflow pipe 3 is not limited to that shown in FIG. The inflow pipe 2 may be provided such that the inflow port 2a is positioned above the outflow port 3a of the outflow pipe 3 . Inside the container body 1, the positional relationship between the inflow pipe 2 and the outflow pipe 3 is not limited in any of the vertical, front, rear, left, and right directions.
 なお、図2に示すように、下向きに開口した流出口3aを有する流出配管3を容器本体1の天井1aから挿入することで、冷媒貯留容器101内における流出配管3を直線状にでき、また長さを短くすることができる。このため、容器本体1の内部で、流出配管3から流出する冷媒の圧力損失を抑えることができる。したがって、冷凍サイクル装置100の省エネルギー性能が向上できる。 As shown in FIG. 2, by inserting an outflow pipe 3 having an outflow port 3a opening downward from the ceiling 1a of the container body 1, the outflow pipe 3 in the refrigerant storage container 101 can be made straight. length can be shortened. Therefore, the pressure loss of the refrigerant flowing out from the outflow pipe 3 can be suppressed inside the container body 1 . Therefore, the energy saving performance of the refrigeration cycle device 100 can be improved.
 冷媒貯留容器101は、冷凍機油が、容器本体1から流出するための油戻し配管4を備える。冷凍機油は容器本体1の底部1bに滞留する。滞留した冷凍機油は、油戻し配管4を通って容器本体1から流出する。すなわち、油戻し配管4は、冷媒貯留容器101から圧縮機10へ冷凍機油を流出させるための油戻し機構である。本実施の形態では、油戻し機構とは、油戻し配管4を指すこととする。油戻し配管4は、容器本体1の底部1bに滞留する冷凍機油が、冷媒貯留容器101から流出するように設けられる。図2に示すように、油戻し配管4は、容器本体1の底部1bから容器本体1に挿入される。 The refrigerant storage container 101 is provided with an oil return pipe 4 through which refrigerating machine oil flows out from the container body 1 . Refrigerant oil stays in the bottom portion 1b of the container body 1 . The accumulated refrigerating machine oil flows out of the container main body 1 through the oil return pipe 4 . That is, the oil return pipe 4 is an oil return mechanism for causing the refrigerating machine oil to flow out from the refrigerant storage container 101 to the compressor 10 . In this embodiment, the oil return mechanism refers to the oil return pipe 4 . The oil return pipe 4 is provided so that the refrigerating machine oil staying in the bottom portion 1 b of the container body 1 flows out from the refrigerant storage container 101 . As shown in FIG. 2, the oil return pipe 4 is inserted into the container body 1 from the bottom portion 1b of the container body 1. As shown in FIG.
 本実施の形態に係る冷媒貯留容器101は、液体を溜める容器本体1と、流入口2aを有し、容器本体1に冷媒を流入させる流入配管2と、流出口3aを有し、容器本体1から冷媒を流出させる流出配管3と、容器本体1内から冷凍機油を流出させる油戻し機構とを備え、流出配管3の流出口3aは、容器本体1の底部1bに向かって開口している。 A refrigerant storage container 101 according to the present embodiment has a container body 1 for storing liquid, an inlet 2a, an inflow pipe 2 for allowing refrigerant to flow into the container body 1, and an outlet 3a. An outlet 3a of the outlet pipe 3 opens toward the bottom 1b of the container body 1.
 当該構成によれば、容器本体1に滞留する冷凍機油は、油戻し機構により、冷媒貯留容器101から流出する。また、流出配管3の流出口3aが、容器本体1の底部1bに向かって、下向きに開口しているため、容器本体1の内部を浮遊し重力により落下する液冷媒が流出口3aに吸い込まれにくい。よって、流出配管3から液冷媒が流出することを抑制できる。したがって、冷媒貯留容器101は、油戻し機構によって冷凍機油を圧縮機10に戻すことができ、また、流出配管3の流出口3aからの液冷媒の流出を抑制することができる。 According to this configuration, the refrigerating machine oil remaining in the container body 1 flows out of the refrigerant storage container 101 by the oil return mechanism. In addition, since the outflow port 3a of the outflow pipe 3 opens downward toward the bottom portion 1b of the container body 1, the liquid refrigerant that floats inside the container body 1 and falls due to gravity is sucked into the outflow port 3a. Hateful. Therefore, it is possible to suppress the outflow of the liquid refrigerant from the outflow pipe 3 . Therefore, the refrigerant storage container 101 can return the refrigerating machine oil to the compressor 10 by the oil return mechanism, and can suppress the outflow of the liquid refrigerant from the outflow port 3 a of the outflow pipe 3 .
 また、本実施の形態に係る冷媒貯留容器101の構成では、油戻し機構は、容器本体1の底部1bから容器本体1に挿入された油戻し配管4である。このため、容器本体1の底部1bに滞留する冷凍機油は、油戻し配管4を通って冷媒貯留容器101から流出することができる。 In addition, in the configuration of the refrigerant storage container 101 according to the present embodiment, the oil return mechanism is the oil return pipe 4 inserted into the container body 1 from the bottom portion 1b of the container body 1 . Therefore, the refrigerating machine oil remaining in the bottom portion 1 b of the container body 1 can flow out of the refrigerant storage container 101 through the oil return pipe 4 .
 また、本実施の形態に係る冷媒貯留容器101の構成では、流出配管3は、流出口3aが、流入配管2の流入口2aよりも上方に位置するように設けられている。このため、流入口2aから流入する液冷媒が、直接流出口3aに吸い込まれることが抑制される。よって、流出配管3から液冷媒が流出することを抑制できる。 In addition, in the configuration of the refrigerant storage container 101 according to the present embodiment, the outflow pipe 3 is provided such that the outflow port 3a is located above the inflow port 2a of the inflow pipe 2. Therefore, the liquid refrigerant flowing from the inflow port 2a is suppressed from being directly sucked into the outflow port 3a. Therefore, it is possible to suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
 また、本実施の形態に係る冷凍サイクル装置100は、上記の冷媒貯留容器101と、冷媒貯留容器101に、冷媒貯留容器101の流出配管3を介して接続された圧縮機10とを備え、油戻し機構は、容器本体1の底部1bから容器本体1に挿入された油戻し配管4であり、冷媒貯留容器101の油戻し配管4から流出する冷凍機油が、圧縮機10に流入する。当該構成によれば、冷媒貯留容器101から流出した冷凍機油が、圧縮機10に戻ることができる。このため、圧縮機10の冷凍機油が枯渇することが回避され、圧縮機10の破損の発生を抑制することができる。また、冷媒貯留容器101の流出配管3から液冷媒が流出することが抑制されているため、流出配管3を介して圧縮機10に液冷媒が吸入されることを抑制できる。したがって、圧縮機10の冷凍機油が希釈し、圧縮機摺動部の焼き付きが発生する可能性を低減できる。このため、圧縮機10の冷凍機油の枯渇及び冷凍機油の希釈により発生する圧縮機10の不具合を抑制できる。したがって、冷凍サイクル装置100の信頼性を向上することができる。 Further, the refrigeration cycle apparatus 100 according to the present embodiment includes the refrigerant storage container 101 described above, and the compressor 10 connected to the refrigerant storage container 101 via the outflow pipe 3 of the refrigerant storage container 101. The return mechanism is an oil return pipe 4 inserted into the container body 1 from the bottom 1 b of the container body 1 , and refrigerating machine oil flowing out of the oil return pipe 4 of the refrigerant storage container 101 flows into the compressor 10 . According to this configuration, the refrigerating machine oil that has flowed out of the refrigerant storage container 101 can return to the compressor 10 . Therefore, depletion of the refrigerating machine oil in the compressor 10 can be avoided, and damage to the compressor 10 can be suppressed. Further, since the outflow of the liquid refrigerant from the outflow pipe 3 of the refrigerant storage container 101 is suppressed, it is possible to restrain the liquid refrigerant from being sucked into the compressor 10 through the outflow pipe 3 . Therefore, it is possible to reduce the possibility that the refrigerating machine oil of the compressor 10 is diluted and seizure of the sliding portion of the compressor occurs. For this reason, it is possible to suppress troubles of the compressor 10 caused by depletion of the refrigerating machine oil of the compressor 10 and dilution of the refrigerating machine oil. Therefore, the reliability of the refrigeration cycle device 100 can be improved.
(実施の形態1の変形例1)
 図3は、実施の形態1の変形例1に係る冷媒貯留容器101を示した概略図である。図3に示す実線の矢印は、冷媒の流れを概念的に示すものである。本変形例に係る冷媒貯留容器101では、流出配管3の形状が、実施の形態1における流出配管3の形状と異なる。本変形における流出配管3は、図3に示すように、容器本体1の下方に凸となるU字形状を有する第1U字部3eと、上方に凸となるU字形状を有する第2U字部3fとを有する。流出配管3は、容器本体1の天井1aから挿入され、容器本体1の底部1bに向かって延び、底部1bの近くで天井1aに向かって折り返す。この折り返し部分が第1U字部3eを形成する。また、流出配管3は、第1U字部3eで天井1aに向かって折り返し、天井1a近くまで延びて、天井1aの近くで、底部1bに向かって折り返す。この天井1aの近くで折り返す部分が第2U字部3fを形成する。
(Modification 1 of Embodiment 1)
FIG. 3 is a schematic diagram showing a refrigerant storage container 101 according to Modification 1 of Embodiment 1. As shown in FIG. Solid-line arrows shown in FIG. 3 conceptually indicate the flow of the refrigerant. In the refrigerant storage container 101 according to this modified example, the shape of the outflow pipe 3 is different from the shape of the outflow pipe 3 in the first embodiment. As shown in FIG. 3, the outflow pipe 3 in this modification includes a first U-shaped portion 3e that protrudes downward from the container body 1 and a second U-shaped portion that protrudes upward. 3f. The outflow pipe 3 is inserted from the ceiling 1a of the container body 1, extends toward the bottom portion 1b of the container body 1, and is folded back toward the ceiling 1a near the bottom portion 1b. This folded portion forms the first U-shaped portion 3e. Further, the outflow pipe 3 is folded back toward the ceiling 1a at the first U-shaped portion 3e, extends to the vicinity of the ceiling 1a, and is folded back toward the bottom portion 1b near the ceiling 1a. A portion folded back near the ceiling 1a forms a second U-shaped portion 3f.
 本変形例では、流出配管3の第1U字部3eに油戻し穴3bが設けられる。このため、容器本体1の底部1bに滞留する冷凍機油は、油戻し穴3bを通って、流出配管3に流入する。流出配管3に流入した冷凍機油は、ガス冷媒とともに冷媒貯留容器101から流出する。本変形例では、流出配管3の油戻し穴3bが油戻し機構となる。このため、実施の形態1とは異なり、油戻し配管4が設けられない。 In this modified example, the first U-shaped portion 3e of the outflow pipe 3 is provided with an oil return hole 3b. Therefore, the refrigerating machine oil remaining in the bottom portion 1b of the container body 1 flows into the outflow pipe 3 through the oil return hole 3b. The refrigerating machine oil that has flowed into the outflow pipe 3 flows out of the refrigerant storage container 101 together with the gas refrigerant. In this modification, the oil return hole 3b of the outflow pipe 3 serves as an oil return mechanism. Therefore, unlike the first embodiment, the oil return pipe 4 is not provided.
 本変形例に係る流出配管3の流出口3aは、実施の形態1と同様に、底部1bに向かって開口している。つまり、流出口3aは下向きに開口している。このため、実施の形態1と同様に容器本体1の内部を浮遊する液滴が、流出配管3の流出口3aに吸い込まれにくく、流出配管3から液冷媒が流出することを抑制できる。なお、本変形例と実施の形態1との相違点は、流出配管3の形状及び油戻し穴3bであり、他の構成および作用については実施の形態1と同じであるため説明を省略する。 The outflow port 3a of the outflow pipe 3 according to this modified example opens toward the bottom portion 1b, as in the first embodiment. That is, the outflow port 3a opens downward. Therefore, droplets floating inside the container body 1 are less likely to be sucked into the outflow port 3a of the outflow pipe 3, and the outflow of the liquid refrigerant from the outflow pipe 3 can be suppressed, as in the first embodiment. Note that the difference between this modification and the first embodiment is the shape of the outflow pipe 3 and the oil return hole 3b, and the rest of the configuration and action are the same as those of the first embodiment, so the description will be omitted.
 本変形例に係る冷媒貯留容器101の構成では、冷凍機油は、油戻し穴3bを通って、冷媒貯留容器101から流出する。すなわち、油戻し機構は、流出配管3に設けられた油戻し穴3bである。このため、冷媒貯留容器101に油戻し配管4を設けなくても、冷媒貯留容器101から冷凍機油を流出させることができる。 In the configuration of the refrigerant storage container 101 according to this modified example, the refrigerating machine oil flows out of the refrigerant storage container 101 through the oil return hole 3b. That is, the oil return mechanism is the oil return hole 3 b provided in the outflow pipe 3 . Therefore, the refrigerating machine oil can flow out from the refrigerant storage container 101 without providing the oil return pipe 4 in the refrigerant storage container 101 .
 また、本変形例では、流出配管3は、容器本体1内で下方に凸となる第1U字部3eと、容器本体1内で上方に凸となる第2U字部3fとを有し、第1U字部3eは第2U字部3fよりも下方に位置し、油戻し穴3bは、第1U字部3eに設けられている。当該構成では、油戻し穴3bは、容器本体1の内部の下方に位置することになるため、容器本体1の底部1bに滞留する冷凍機油が油戻し穴3bに流入しやすい。 In addition, in this modified example, the outflow pipe 3 has a first U-shaped portion 3e that protrudes downward within the container body 1 and a second U-shaped portion 3f that protrudes upward within the container body 1. The first U-shaped portion 3e is located below the second U-shaped portion 3f, and the oil return hole 3b is provided in the first U-shaped portion 3e. In this configuration, since the oil return hole 3b is positioned below the inside of the container body 1, the refrigerating machine oil staying in the bottom portion 1b of the container body 1 easily flows into the oil return hole 3b.
(実施の形態1の変形例2)
 図4は、実施の形態1の変形例2に係る冷媒貯留容器101を示した概略図である。図4に示す実線の矢印は、冷媒の流れを概念的に示すものである。変形例2に係る冷媒貯留容器101では、流出配管3の形状が、実施の形態1及び変形例1における流出配管3の形状と異なる。変形例2における流出配管3は、図4に示すように、容器本体1の底部1bから容器本体1に挿入される。容器本体1の底部1bから挿入された流出配管3は、上方に凸となるU字形状を有するU字部3dを有する。流出配管3は、容器本体1の底部1bから天井1aの近くまで延びて、天井1aの近くで底部1bに向かって折り返す。この天井1aの近くで底部1bに向かって折り返す部分がU字部3dを形成する。
(Modification 2 of Embodiment 1)
FIG. 4 is a schematic diagram showing a refrigerant storage container 101 according to Modification 2 of Embodiment 1. As shown in FIG. Solid-line arrows shown in FIG. 4 conceptually indicate the flow of the refrigerant. In the refrigerant storage container 101 according to Modification 2, the shape of the outflow pipe 3 is different from the shape of the outflow pipe 3 in the first embodiment and the first modification. The outflow pipe 3 in Modification 2 is inserted into the container body 1 from the bottom portion 1b of the container body 1, as shown in FIG. The outflow pipe 3 inserted from the bottom portion 1b of the container body 1 has a U-shaped portion 3d that protrudes upward. The outflow pipe 3 extends from the bottom portion 1b of the container body 1 to near the ceiling 1a and turns back toward the bottom portion 1b near the ceiling 1a. A portion near the ceiling 1a that is folded toward the bottom 1b forms a U-shaped portion 3d.
 本変形例では、流出配管3の底部1bに近い部分に油戻し穴3bが設けられる。図4に示すように、油戻し穴3bは、流出配管3が底部1bの内面と接する部分のすぐ近くに設けられている。このため、容器本体1の底部1bに滞留する冷凍機油は、油戻し穴3bを通って、流出配管3に流入する。流出配管3に流入した冷凍機油は、ガス冷媒とともに冷媒貯留容器101から流出する。本変形例では、流出配管3の油戻し穴3bが油戻し機構となる。このため、実施の形態1とは異なり、油戻し配管4が設けられない。 In this modified example, an oil return hole 3b is provided in a portion of the outflow pipe 3 near the bottom 1b. As shown in FIG. 4, the oil return hole 3b is provided in the immediate vicinity of the portion where the outflow pipe 3 contacts the inner surface of the bottom portion 1b. Therefore, the refrigerating machine oil remaining in the bottom portion 1b of the container body 1 flows into the outflow pipe 3 through the oil return hole 3b. The refrigerating machine oil that has flowed into the outflow pipe 3 flows out of the refrigerant storage container 101 together with the gas refrigerant. In this modification, the oil return hole 3b of the outflow pipe 3 serves as an oil return mechanism. Therefore, unlike the first embodiment, the oil return pipe 4 is not provided.
 本変形例に係る流出配管3の流出口3aは、実施の形態1と同様に、底部1bに向かって開口している。つまり、流出口3aは下向きに開口している。このため、実施の形態1と同様に容器本体1の内部を浮遊して重力で落下する液滴が、流出配管3の流出口3aに吸い込まれにくく、流出配管3から液冷媒が流出することを抑制できる。なお、本変形例と実施の形態1との相違点は、流出配管3の形状及び油戻し穴3bであり、他の構成および作用については実施の形態1と同じであるため説明を省略する。 The outflow port 3a of the outflow pipe 3 according to this modified example opens toward the bottom portion 1b, as in the first embodiment. That is, the outflow port 3a opens downward. For this reason, as in the first embodiment, droplets that float inside the container body 1 and fall by gravity are less likely to be sucked into the outlet 3a of the outflow pipe 3, thereby preventing the liquid refrigerant from flowing out from the outflow pipe 3. can be suppressed. Note that the difference between this modification and the first embodiment is the shape of the outflow pipe 3 and the oil return hole 3b, and the rest of the configuration and action are the same as those of the first embodiment, so the description will be omitted.
 本変形例に係る冷媒貯留容器101の構成では、冷凍機油は、油戻し穴3bを通って、冷媒貯留容器101から流出する。すなわち、油戻し機構は、流出配管3に設けられた油戻し穴3bである。このため、冷媒貯留容器101に油戻し配管4を設けなくても、冷媒貯留容器101から冷凍機油を流出させることができる。 In the configuration of the refrigerant storage container 101 according to this modified example, the refrigerating machine oil flows out of the refrigerant storage container 101 through the oil return hole 3b. That is, the oil return mechanism is the oil return hole 3 b provided in the outflow pipe 3 . Therefore, the refrigerating machine oil can flow out from the refrigerant storage container 101 without providing the oil return pipe 4 in the refrigerant storage container 101 .
 また、本変形例に係る冷媒貯留容器101の構成では、流出配管3は、容器本体1の底部1bから容器本体1に挿入され、容器本体内で上方に凸となるU字部3dを有し、油戻し穴3bは、U字部3dより下方に設けられている。当該構成では、油戻し穴3bは、容器本体1の内部の下方に位置することになるため、容器本体1の底部1bに滞留する冷凍機油が油戻し穴3bに流入しやすい。また、本変形例では、流出配管3が容器本体1の底部1bから挿入される。このため、設置場所の問題で、容器本体1の天井1aから流出配管3を挿入された冷媒貯留容器101を設置出来ない場合でも、変形例2に係る冷媒貯留容器101を設置できる。 In addition, in the configuration of the refrigerant storage container 101 according to this modification, the outflow pipe 3 is inserted into the container body 1 from the bottom portion 1b of the container body 1 and has a U-shaped portion 3d that protrudes upward within the container body. , the oil return hole 3b is provided below the U-shaped portion 3d. In this configuration, since the oil return hole 3b is positioned below the inside of the container body 1, the refrigerating machine oil staying in the bottom portion 1b of the container body 1 easily flows into the oil return hole 3b. Further, in this modified example, the outflow pipe 3 is inserted from the bottom portion 1b of the container body 1 . Therefore, even if the refrigerant storage container 101 having the outflow pipe 3 inserted through the ceiling 1a of the container body 1 cannot be installed due to the installation location, the refrigerant storage container 101 according to Modification 2 can be installed.
(実施の形態1の変形例3)
 図5は、実施の形態1の変形例3に係る冷凍サイクル装置100の冷媒貯留容器101と圧縮機10を示した概略図である。図5に示す実線の矢印は、冷媒の流れを概念的に示すものである。変形例3に係る冷凍サイクル装置100の冷媒貯留容器101では、油戻し配管4と圧縮機10の間にオイルレギュレータ20が設けられる。圧縮機10とオイルレギュレータ20は、均圧管21及び吸入管22で接続される。変形例3において、油戻し配管4がオイルレギュレータ20に接続され、オイルレギュレータ20と圧縮機10が均圧管21及び吸入管22で接続されるという構成を除いた他の構成及び作用については、実施の形態1と同じである。そのため、実施の形態1と同様の点については説明を省略する。
(Modification 3 of Embodiment 1)
FIG. 5 is a schematic diagram showing refrigerant storage container 101 and compressor 10 of refrigeration cycle device 100 according to Modification 3 of Embodiment 1. As shown in FIG. Solid-line arrows shown in FIG. 5 conceptually indicate the flow of the refrigerant. In refrigerant storage container 101 of refrigeration cycle device 100 according to Modification 3, oil regulator 20 is provided between oil return pipe 4 and compressor 10 . The compressor 10 and the oil regulator 20 are connected by a pressure equalizing pipe 21 and a suction pipe 22 . Except for the configuration in which the oil return pipe 4 is connected to the oil regulator 20 and the oil regulator 20 and the compressor 10 are connected by the pressure equalizing pipe 21 and the suction pipe 22 in the modification 3, is the same as form 1 of Therefore, descriptions of the same points as in the first embodiment are omitted.
 図5に示すように、変形例3に係る冷凍サイクル装置100は、圧縮機10に接続され、圧縮機10に供給される冷凍機油の油量を調整するオイルレギュレータ20を備え、油戻し配管4がオイルレギュレータ20に接続されている。このため、油戻し配管4を通って冷媒貯留容器101から流出した冷凍機油は、オイルレギュレータ20に流入する。オイルレギュレータ20と圧縮機10は、ガスが流れオイルレギュレータ20と圧縮機10とを均圧させる均圧管21及び冷凍機油が流れるための吸入管22で接続される。このため、オイルレギュレータ20に流入した冷凍機油は、吸入管22を通って圧縮機10に流入する。つまり、冷媒貯留容器101から流出した冷凍機油は、オイルレギュレータ20を介して圧縮機10に流入する。 As shown in FIG. 5 , a refrigeration cycle device 100 according to Modification 3 includes an oil regulator 20 that is connected to a compressor 10 and adjusts the amount of refrigeration oil supplied to the compressor 10 . is connected to the oil regulator 20 . Therefore, the refrigerating machine oil that has flowed out of the refrigerant storage container 101 through the oil return pipe 4 flows into the oil regulator 20 . The oil regulator 20 and the compressor 10 are connected by a pressure equalizing pipe 21 through which gas flows to equalize the pressure between the oil regulator 20 and the compressor 10 and a suction pipe 22 through which refrigerating machine oil flows. Therefore, the refrigerating machine oil that has flowed into the oil regulator 20 flows into the compressor 10 through the suction pipe 22 . That is, the refrigerating machine oil that has flowed out of the refrigerant storage container 101 flows into the compressor 10 via the oil regulator 20 .
 変形例3に係る冷凍サイクル装置100は、オイルレギュレータ20を備えるため、圧縮機10に供給される冷凍機油の油量を調整することができる。つまり、圧縮機10の冷凍機油が適正な油量に調整されて、圧縮機10の冷凍機油が枯渇することを防ぐことができる。したがって、圧縮機10の破損の発生が抑制され、冷凍サイクル装置100の信頼性を向上することができる。 Since the refrigeration cycle device 100 according to Modification 3 includes the oil regulator 20, the amount of refrigeration oil supplied to the compressor 10 can be adjusted. That is, the amount of refrigerating machine oil in the compressor 10 is adjusted to an appropriate amount, and the refrigerating machine oil in the compressor 10 can be prevented from running out. Therefore, the occurrence of damage to the compressor 10 is suppressed, and the reliability of the refrigeration cycle apparatus 100 can be improved.
(実施の形態1の変形例4)
 図6は、実施の形態1の変形例4に係る冷凍サイクル装置100の冷媒貯留容器101と圧縮機10を示した概略図である。図6に示す実線の矢印は、冷媒の流れを概念的に示すものである。変形例4に係る冷凍サイクル装置100の冷媒貯留容器101では、油戻し配管4に電磁弁30が設けられる。また、圧縮機10には油面センサ31が設けられる。変形例4において、油戻し配管4に電磁弁30が設けられ、圧縮機10に油面センサ31が設けられるという構成を除いた他の構成及び作用については、実施の形態1と同じである。そのため、実施の形態1と同様の点については説明を省略する。
(Modification 4 of Embodiment 1)
FIG. 6 is a schematic diagram showing refrigerant storage container 101 and compressor 10 of refrigeration cycle device 100 according to Modification 4 of Embodiment 1. As shown in FIG. Solid-line arrows shown in FIG. 6 conceptually indicate the flow of the refrigerant. In the refrigerant storage container 101 of the refrigeration cycle device 100 according to Modification 4, the oil return pipe 4 is provided with the electromagnetic valve 30 . Further, the compressor 10 is provided with an oil level sensor 31 . In Modified Example 4, the configuration and operation are the same as those of Embodiment 1 except for the configuration that the oil return pipe 4 is provided with the solenoid valve 30 and the compressor 10 is provided with the oil level sensor 31 . Therefore, descriptions of the same points as in the first embodiment are omitted.
 図6に示すように、変形例4に係る冷凍サイクル装置100は、圧縮機10に設けられた油面センサ31と、油戻し配管4に設けられた電磁弁30とを備え、油戻し配管4が流入配管2に接続されている。このため、油戻し配管4を通って冷媒貯留容器101から流出した冷凍機油は、流出配管3に流入し、圧縮機10の吸込口10aから圧縮機10に流入する。電磁弁30及び油面センサ31は、圧縮機10の冷凍機油の油量を適正に保つために設けられている。油面センサ31は、圧縮機10内の冷凍機油の油面の位置を検知するセンサである。油面センサ31は、圧縮機10内の冷凍機油の量を検知するセンサの一例である。電磁弁30は、圧縮機10に設けられた油面センサ31が検知する値に応じて開閉する。 As shown in FIG. 6, the refrigeration cycle apparatus 100 according to Modification 4 includes an oil level sensor 31 provided in the compressor 10 and an electromagnetic valve 30 provided in the oil return pipe 4. is connected to the inflow pipe 2 . Therefore, the refrigerating machine oil flowing out of the refrigerant storage container 101 through the oil return pipe 4 flows into the outflow pipe 3 and into the compressor 10 from the suction port 10 a of the compressor 10 . The solenoid valve 30 and the oil level sensor 31 are provided to keep the amount of refrigerating machine oil in the compressor 10 at an appropriate level. The oil level sensor 31 is a sensor that detects the position of the oil level of the refrigerating machine oil in the compressor 10 . Oil level sensor 31 is an example of a sensor that detects the amount of refrigerating machine oil in compressor 10 . The solenoid valve 30 opens and closes according to the value detected by the oil level sensor 31 provided in the compressor 10 .
 変形例4に係る冷凍サイクル装置100は、油戻し配管4に設けられた電磁弁30及び圧縮機10に設けられた油面センサ31を備えるため、圧縮機10に供給される冷凍機油の油量を調整することができる。つまり、圧縮機10の冷凍機油を適正な油量に調整して、圧縮機10の冷凍機油が枯渇することを防ぐことができる。したがって、圧縮機10の破損の発生が抑制され、冷凍サイクル装置100の信頼性を向上することができる。 Since the refrigeration cycle device 100 according to Modification 4 includes the solenoid valve 30 provided in the oil return pipe 4 and the oil level sensor 31 provided in the compressor 10, the amount of refrigeration oil supplied to the compressor 10 is can be adjusted. In other words, it is possible to prevent the refrigerating machine oil of the compressor 10 from running out by adjusting the amount of the refrigerating machine oil of the compressor 10 to an appropriate amount. Therefore, the occurrence of damage to the compressor 10 is suppressed, and the reliability of the refrigeration cycle apparatus 100 can be improved.
実施の形態2.
 実施の形態2に係る冷媒貯留容器101について説明する。本実施の形態と実施の形態1との相違点は、流入配管2と流出配管3の位置関係である。以下、実施の形態1との相違点を中心に説明する。流入配管2と流出配管3の位置関係を除いて、本実施の形態の冷媒貯留容器101及び冷凍サイクル装置100の構成及び作用は実施の形態1と同様であるため説明を省略する。
Embodiment 2.
A refrigerant storage container 101 according to Embodiment 2 will be described. A difference between the present embodiment and the first embodiment is the positional relationship between the inflow pipe 2 and the outflow pipe 3 . The following description focuses on differences from the first embodiment. Except for the positional relationship between the inflow pipe 2 and the outflow pipe 3, the configurations and functions of the refrigerant storage container 101 and the refrigeration cycle device 100 of the present embodiment are the same as those of the first embodiment, and thus description thereof is omitted.
 図7は、実施の形態2に係る冷媒貯留容器101を示した概略図である。図7に示す実線の矢印は、冷媒の流れを概念的に示すものである。流入配管2と流出配管3は、流入口2aと流出口3aの間の距離が大きくなるように設けられる。例えば、図7に示すように、流入配管2と流出配管3は、容器本体1の中心軸線CLを挟んで、流入口2aと流出口3aとが互いに反対側に設けられる。流入口2aと流出口3aのそれぞれは、容器本体1の側壁1cの内面の近くに位置する。流入口2aと流出口3aとの間の距離は、容器本体1の内径の20%以上であることが好ましい。なお、流入口2aと流出口3aの間の距離が内径の20%以上であればよいので、流入配管2及び流出配管3の形状は限定されない。また、流入配管2及び流出配管3が容器本体1に挿入される位置も限定されない。 FIG. 7 is a schematic diagram showing the refrigerant storage container 101 according to the second embodiment. Solid-line arrows shown in FIG. 7 conceptually indicate the flow of the refrigerant. The inflow pipe 2 and the outflow pipe 3 are provided so that the distance between the inflow port 2a and the outflow port 3a is large. For example, as shown in FIG. 7, the inflow pipe 2 and the outflow pipe 3 are provided with the inflow port 2a and the outflow port 3a on opposite sides of each other with the center axis CL of the container body 1 interposed therebetween. Each of the inlet 2a and the outlet 3a is located near the inner surface of the side wall 1c of the container body 1 . The distance between the inlet 2a and the outlet 3a is preferably 20% or more of the inner diameter of the container body 1. The shape of the inflow pipe 2 and the outflow pipe 3 is not limited as long as the distance between the inflow port 2a and the outflow port 3a is 20% or more of the inner diameter. Also, the positions where the inflow pipe 2 and the outflow pipe 3 are inserted into the container body 1 are not limited.
 本実施の形態に係る冷媒貯留容器101の構成では、流入配管2の流入口2aと流出配管3の流出口3aとの間の距離は、容器本体1の内径の20%以上である。つまり、流出口3aは、流入口2aから離れた位置に設けられている。このため、流入口2aから容器本体1に流入した液冷媒が、流出口3aに直接吸い込まれることが抑制される。よって、流出配管3から液冷媒が流出することをさらに抑制できる。 In the configuration of the refrigerant storage container 101 according to the present embodiment, the distance between the inlet port 2a of the inflow pipe 2 and the outlet port 3a of the outflow pipe 3 is 20% or more of the inner diameter of the container body 1. That is, the outflow port 3a is provided at a position distant from the inflow port 2a. Therefore, the liquid refrigerant that has flowed into the container body 1 from the inlet 2a is prevented from being directly sucked into the outlet 3a. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
(実施の形態2の変形例1)
 図8は、実施の形態2の変形例1に係る冷媒貯留容器101を示した概略図である。図8に示す実線の矢印は、冷媒の流れを概念的に示すものである。本変形例と実施の形態1及び実施の形態2との相違点は、流入配管2と流出配管3の位置関係である。以下、実施の形態1及び実施の形態2との相違点を中心に説明する。流入配管2と流出配管3の位置関係を除いて、本変形例の冷媒貯留容器101及び冷凍サイクル装置100の構成及び作用は実施の形態1及び実施の形態2と同様であるため説明を省略する。
(Modification 1 of Embodiment 2)
FIG. 8 is a schematic diagram showing a refrigerant storage container 101 according to Modification 1 of Embodiment 2. As shown in FIG. Solid-line arrows shown in FIG. 8 conceptually indicate the flow of the refrigerant. The difference between this modification and the first and second embodiments is the positional relationship between the inflow pipe 2 and the outflow pipe 3 . In the following, differences from the first embodiment and the second embodiment will be mainly described. Except for the positional relationship between the inflow pipe 2 and the outflow pipe 3, the configuration and operation of the refrigerant storage container 101 and the refrigeration cycle device 100 of this modified example are the same as those of the first and second embodiments, so the description is omitted. .
 図8に示されるように、流入配管2と流出配管3は、鉛直方向に並んで設けられる。別の言い方をすると、流出配管3は流入配管2の真上に設けられている。図示しないが、容器本体1を天井1aから透視した場合、流出配管3は流入配管2の一部に重複する。流入配管2は容器本体1の側壁1cから挿入され、流出配管3は容器本体1の天井1aから挿入される。流出配管3の流出口3aと容器本体1の底部1bとの間には、流入配管2が存在する。流出口3aは、容器本体1の底部1bに向かって開口しているため、流入配管2の上部外周に向かって開口していることになる。また、流入配管2及び流出配管3のいずれも直管形状を有する。また、水平方向において、流入口2aと容器本体1の中心軸線CLとの間の距離は、流出口3aと容器本体1の中心軸線CLとの間の距離よりも大きい。別の言い方をすると、流入口2aと流出口3aとを比べると、流出口3aの方が容器本体1の側壁1cの内面の近くに位置する。 As shown in FIG. 8, the inflow pipe 2 and the outflow pipe 3 are provided side by side in the vertical direction. In other words, the outflow pipe 3 is provided directly above the inflow pipe 2 . Although not shown, when the container body 1 is seen through from the ceiling 1a, the outflow pipe 3 partially overlaps the inflow pipe 2. As shown in FIG. The inflow pipe 2 is inserted from the side wall 1c of the container body 1, and the outflow pipe 3 is inserted from the ceiling 1a of the container body 1. As shown in FIG. An inflow pipe 2 is present between an outflow port 3 a of the outflow pipe 3 and the bottom portion 1 b of the container body 1 . Since the outflow port 3 a opens toward the bottom portion 1 b of the container body 1 , it opens toward the upper outer circumference of the inflow pipe 2 . Moreover, both the inflow pipe 2 and the outflow pipe 3 have a straight pipe shape. In the horizontal direction, the distance between the inlet 2a and the central axis CL of the container body 1 is greater than the distance between the outlet 3a and the central axis CL of the container body 1 . In other words, comparing the inflow port 2a and the outflow port 3a, the outflow port 3a is located closer to the inner surface of the side wall 1c of the container body 1. As shown in FIG.
 本変形例に係る冷媒貯留容器101では、流入配管2は、容器本体1の側壁1cから挿入され、流出配管3は、容器本体1を天井1aから透視した場合に、流出口3aが流入配管2の一部に重複するように設けられ、流出配管3の流出口3aは、流入配管2よりも上方に位置する。当該構成では、流出配管3の流出口3aが、流入配管2の真上に位置するため、流入口2aと流出口3aとの間を、流入配管2自身が隔てることとなる。このため、流入口2aから容器本体1内に流入した液冷媒が、流出口3aに直接吸い込まれることが抑制される。よって、流出配管3から液冷媒が流出することをさらに抑制できる。 In the refrigerant storage container 101 according to this modification, the inflow pipe 2 is inserted from the side wall 1c of the container main body 1, and the outflow pipe 3 has an outflow port 3a that extends into the inflow pipe 2 when the container main body 1 is seen through from the ceiling 1a. , and the outflow port 3 a of the outflow pipe 3 is located above the inflow pipe 2 . In this configuration, the outflow port 3a of the outflow pipe 3 is located right above the inflow pipe 2, so that the inflow pipe 2 itself separates the inflow port 2a and the outflow port 3a. Therefore, the liquid refrigerant that has flowed into the container body 1 from the inlet 2a is prevented from being directly sucked into the outlet 3a. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
(実施の形態2の変形例2)
 図9は、実施の形態2の変形例2に係る冷媒貯留容器101を示した概略図である。図9に示す実線の矢印は、冷媒の流れを概念的に示すものである。本変形例と実施の形態1及び実施の形態2との相違点は、流入配管2と流出配管3の位置関係及び流入配管2の形状である。以下、実施の形態1及び実施の形態2との相違点を中心に説明する。流入配管2と流出配管3の位置関係及び流入配管2の形状を除いて、本変形例の冷媒貯留容器101及び冷凍サイクル装置100の構成及び作用は実施の形態1及び実施の形態2と同様であるため説明を省略する。
(Modification 2 of Embodiment 2)
FIG. 9 is a schematic diagram showing a refrigerant storage container 101 according to Modification 2 of Embodiment 2. As shown in FIG. Solid-line arrows shown in FIG. 9 conceptually indicate the flow of the refrigerant. The differences between this modification and the first and second embodiments are the positional relationship between the inflow pipe 2 and the outflow pipe 3 and the shape of the inflow pipe 2 . In the following, differences from the first embodiment and the second embodiment will be mainly described. Except for the positional relationship between the inflow pipe 2 and the outflow pipe 3 and the shape of the inflow pipe 2, the configuration and operation of the refrigerant storage container 101 and the refrigeration cycle device 100 of this modification are the same as those of the first and second embodiments. Therefore, the explanation is omitted.
 本変形例では、流出配管3は、流出口3aが、流入配管2の流入口2aよりも上方に位置するように設けられる。図9では、流入配管2と流出配管3が鉛直方向に並んで設けられている。なお、容器本体1を天井1aから透視した場合、流入配管2と流出配管3が重複する必要はない。流出配管3は、下方に向かって傾斜する傾斜部2bを有し、流出口3aは、傾斜部2bの先端に設けられる。流入配管2は容器本体1の側壁1cから挿入される。流入口2aは、図9に示すように、斜め下方に向かって開口する。また、図示しないが、流入口2aが、容器本体1の底部1bに向かって開口するように設けられてもよい。 In this modified example, the outflow pipe 3 is provided such that the outflow port 3a is located above the inflow port 2a of the inflow pipe 2. In FIG. 9, the inflow pipe 2 and the outflow pipe 3 are provided side by side in the vertical direction. In addition, when the container body 1 is seen through from the ceiling 1a, the inflow pipe 2 and the outflow pipe 3 do not need to overlap. The outflow pipe 3 has an inclined portion 2b that inclines downward, and the outflow port 3a is provided at the tip of the inclined portion 2b. The inflow pipe 2 is inserted from the side wall 1c of the container body 1. As shown in FIG. The inlet 2a opens obliquely downward as shown in FIG. Also, although not shown, the inlet 2a may be provided so as to open toward the bottom 1b of the container body 1 .
 本変形例に係る冷媒貯留容器101では、流入配管2は、容器本体1内で下方に傾斜する傾斜部2bを有し、流入配管2の流入口2aは、傾斜部2bの先端で、斜め下方に向かって開口している。当該構成では、流入配管2の流入口2aが斜め下方に向かって開口しているため、流入口2aから流入する液冷媒の液滴が上方に飛散することが抑制される。また、流出配管3の流出口3aは、流入口2aよりも上方に位置する。このため、流入口2aから流入する液冷媒が、流出口3aに直接吸い込まれることが抑制される。よって、流出配管3から液冷媒が流出することをさらに抑制できる。 In the refrigerant storage container 101 according to this modified example, the inflow pipe 2 has an inclined portion 2b that inclines downward inside the container body 1, and the inflow port 2a of the inflow pipe 2 is at the tip of the inclined portion 2b and obliquely downward. open towards. In this configuration, since the inflow port 2a of the inflow pipe 2 opens obliquely downward, droplets of the liquid refrigerant flowing from the inflow port 2a are suppressed from scattering upward. Also, the outflow port 3a of the outflow pipe 3 is located above the inflow port 2a. Therefore, the liquid refrigerant flowing from the inlet 2a is prevented from being directly sucked into the outlet 3a. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
実施の形態3.
 実施の形態3に係る冷媒貯留容器101について説明する。本実施の形態と実施の形態1及び実施の形態2との相違点は、流入配管2の形状である。以下、実施の形態1及び実施の形態2との相違点を中心に説明する。本実施の形態の冷媒貯留容器101及び冷凍サイクル装置100の構成及び作用は、流入配管2の形状を除いて、実施の形態1及び実施の形態2と同様であるため説明を省略する。
Embodiment 3.
A refrigerant storage container 101 according to Embodiment 3 will be described. The difference between the present embodiment and Embodiments 1 and 2 is the shape of the inflow pipe 2 . In the following, differences from the first embodiment and the second embodiment will be mainly described. The configurations and functions of the refrigerant storage container 101 and the refrigeration cycle device 100 of the present embodiment are the same as those of the first and second embodiments except for the shape of the inflow pipe 2, so the description is omitted.
 図10は、実施の形態3に係る冷媒貯留容器101を示した概略図である。図10に示す実線の矢印は、冷媒の流れを概念的に示すものである。流入配管2は、容器本体1の内部で、流出口3aに向かって内径が徐々に広がることにより内断面積が徐々に大きくなっている拡径部2cを有する。図10では、拡径部2cの外径が容器本体1の内部で徐々に広がっているように図示されているが、この外径とあわせて拡径部2cの内径も徐々に広がっている。図10では、流入配管2は、容器本体1の側壁1c内面から少し離れた位置から徐々に広がっている。しかし、流入配管2は、容器本体1の側壁1cの内面と接する部分から徐々に広がる形状としてもよい。言い換えると、本実施の形態では、流入配管2の内径が徐々に広がる拡径部2cを有していればよく、内径の拡大が開始する位置については限定されない。 FIG. 10 is a schematic diagram showing a refrigerant storage container 101 according to Embodiment 3. FIG. Solid-line arrows shown in FIG. 10 conceptually indicate the flow of the refrigerant. The inflow pipe 2 has an enlarged-diameter portion 2c having an inner cross-sectional area that gradually increases inside the container body 1 as the inner diameter gradually widens toward the outflow port 3a. In FIG. 10, the outer diameter of the enlarged diameter portion 2c is shown to gradually widen inside the container body 1, but the inner diameter of the enlarged diameter portion 2c also gradually widens along with the outer diameter. In FIG. 10, the inflow pipe 2 gradually widens from a position a little away from the inner surface of the side wall 1c of the container body 1. As shown in FIG. However, the inflow pipe 2 may have a shape that gradually expands from the portion in contact with the inner surface of the side wall 1 c of the container body 1 . In other words, in the present embodiment, it is sufficient that the inflow pipe 2 has the enlarged-diameter portion 2c where the inner diameter gradually widens, and the position where the inner diameter starts to expand is not limited.
 本実施の形態に係る冷媒貯留容器101の構成では、流入配管2は、容器本体1内で、流入口2aに向かって断面積が徐々に大きくなっている拡径部2cを有する。このため、流入口2aから容器本体1に流入するガス冷媒及び液冷媒の流速が、拡径部2cで減少する。このため、ガス冷媒が、液冷媒の微細な液滴を誘引する力が弱くなり、ガス冷媒に誘引されて容器本体1内で舞い上がる液冷媒の微細な液滴の量も減少する。したがって、流入口2aから流入するガス冷媒に誘引されて流出口3aに直接吸い込まれる液冷媒が減少する。よって、流出配管3から液冷媒が流出することをさらに抑制できる。 In the configuration of the refrigerant storage container 101 according to the present embodiment, the inflow pipe 2 has an enlarged diameter portion 2c having a cross-sectional area that gradually increases toward the inflow port 2a within the container body 1 . Therefore, the flow velocity of the gas refrigerant and the liquid refrigerant flowing into the container body 1 from the inlet 2a decreases at the enlarged diameter portion 2c. As a result, the force of the gas refrigerant to attract fine droplets of the liquid refrigerant is weakened, and the amount of the fine droplets of the liquid refrigerant that are attracted by the gas refrigerant and rise up in the container body 1 is also reduced. Therefore, the amount of liquid refrigerant that is directly sucked into the outlet 3a by being attracted by the gas refrigerant flowing from the inlet 2a is reduced. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
 (実施の形態3の変形例1)
 図11は、実施の形態3の変形例1に係る冷媒貯留容器101を示した概略図である。図11に示す実線の矢印は、冷媒の流れを概念的に示すものである。本変形例と実施の形態1~実施の形態3との相違点は、流入配管2の形状である。以下、実施の形態1~実施の形態3との相違点を中心に説明する。流入配管2の形状を除いて、本変形例の冷媒貯留容器101及び冷凍サイクル装置100の構成及び作用は実施の形態1~実施の形態3と同様であるため説明を省略する。
(Modification 1 of Embodiment 3)
FIG. 11 is a schematic diagram showing a refrigerant storage container 101 according to Modification 1 of Embodiment 3. As shown in FIG. Solid-line arrows shown in FIG. 11 conceptually indicate the flow of the refrigerant. The difference between this modified example and Embodiments 1 to 3 is the shape of the inflow pipe 2 . The following description focuses on differences from the first to third embodiments. Except for the shape of the inflow pipe 2, the configuration and operation of the refrigerant storage container 101 and the refrigeration cycle device 100 of this modified example are the same as those of the first to third embodiments, so the description is omitted.
 本変形例では、流入配管2は、複数設けられる。図11に示すように、流入配管2を2本設けてもよいし、流入配管2を3本以上設けてもよい。図11では、2本の流入配管2は、容器本体1の側壁1cの対向する部分からそれぞれ挿入されている。しかし、2本の流入配管2はそれぞれ、容器本体1の上下前後左右のいずれの面から挿入されてもよい。また、本変形例では、流入配管2が複数設けられればよく、それぞれの流入配管2の位置及び形状については限定されない。 In this modified example, a plurality of inflow pipes 2 are provided. As shown in FIG. 11, two inflow pipes 2 may be provided, or three or more inflow pipes 2 may be provided. In FIG. 11, two inflow pipes 2 are inserted from opposite portions of the side wall 1c of the container body 1, respectively. However, each of the two inflow pipes 2 may be inserted from any of the upper, lower, front, rear, left, and right surfaces of the container body 1 . Moreover, in this modification, it is sufficient that a plurality of inflow pipes 2 are provided, and the position and shape of each inflow pipe 2 are not limited.
 本変形例に係る冷媒貯留容器101では、流入配管2が複数設けられており、冷媒は、複数の流入配管2のそれぞれの流入口2aから容器本体1に流入する。つまり、複数の流入配管2から容器本体1に冷媒が流入するため、各流入口2aから流入する冷媒の量は、本変形例の流入配管2と同じ内断面積を有する1つの流入配管2の流入口2aから流入する冷媒の量よりも減少する。よって、各流入口2aから容器本体1に流入するガス冷媒及び液冷媒の流速が減少する。このため、ガス冷媒が、液冷媒の微細な液滴を誘引する力が弱くなり、ガス冷媒に誘引されて容器本体1内で舞い上がる液冷媒の微細な液滴の量も減少する。したがって、流入口2aから流入するガス冷媒に誘引されて流出口3aに直接吸い込まれる液冷媒が減少する。よって、流出配管3から液冷媒が流出することをさらに抑制できる。 A plurality of inflow pipes 2 are provided in the refrigerant storage container 101 according to this modification, and the refrigerant flows into the container main body 1 from the inflow ports 2 a of the plurality of inflow pipes 2 . That is, since the refrigerant flows into the container body 1 from a plurality of inflow pipes 2, the amount of refrigerant flowing from each inflow port 2a is the same as that of one inflow pipe 2 having the same inner cross-sectional area as the inflow pipe 2 of this modification. It is less than the amount of refrigerant flowing in from the inlet 2a. Therefore, the flow velocity of the gas refrigerant and the liquid refrigerant flowing into the container main body 1 from each inlet 2a is reduced. As a result, the force of the gas refrigerant to attract fine droplets of the liquid refrigerant is weakened, and the amount of the fine droplets of the liquid refrigerant that are attracted by the gas refrigerant and rise up in the container body 1 is also reduced. Therefore, the amount of liquid refrigerant that is directly sucked into the outlet 3a by being attracted by the gas refrigerant flowing from the inlet 2a is reduced. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
実施の形態4.
 実施の形態4に係る冷媒貯留容器101について説明する。本実施の形態と実施の形態1~実施の形態3との相違点は、流出配管3の形状である。以下、実施の形態1~実施の形態3との相違点を中心に説明する。本実施の形態の冷媒貯留容器101及び冷凍サイクル装置100の構成及び作用は、流出配管3の形状を除いて、実施の形態1~実施の形態3と同様であるため説明を省略する。
Embodiment 4.
A refrigerant storage container 101 according to Embodiment 4 will be described. The difference between this embodiment and Embodiments 1 to 3 is the shape of the outflow pipe 3 . The following description focuses on differences from the first to third embodiments. The configurations and functions of the refrigerant storage container 101 and the refrigeration cycle device 100 of the present embodiment are the same as those of the first to third embodiments except for the shape of the outflow pipe 3, so description thereof will be omitted.
 図12は、実施の形態4に係る冷媒貯留容器101を示した概略図である。図12に示す実線の矢印は、冷媒の流れを概念的に示すものである。流出配管3は、容器本体1の内部で、流出口3aに向かって内径が徐々に広がることにより内断面積が徐々に大きくなっている拡径部3cを有する。図12では、拡径部3cの外径が容器本体1の内部で徐々に広がっているように図示されているが、この外径とあわせて拡径部3cの内径も徐々に広がっている。図12では、流出配管3は、容器本体1の天井1aの内面から少し離れた位置から徐々に広がっている。しかし、流出配管3は、容器本体1の天井1aの内面と接する部分から徐々に広がる形状としてもよい。言い換えると、本実施の形態では、流出配管3の内径が徐々に広がる拡径部3cを有していればよく、内径の拡大が開始する位置については限定されない。 FIG. 12 is a schematic diagram showing a refrigerant storage container 101 according to Embodiment 4. FIG. Solid-line arrows shown in FIG. 12 conceptually indicate the flow of the refrigerant. The outflow pipe 3 has an enlarged diameter portion 3c in which the inner cross-sectional area gradually increases inside the container body 1 as the inner diameter gradually widens toward the outflow port 3a. In FIG. 12, the outer diameter of the enlarged diameter portion 3c is shown to gradually widen inside the container body 1, but the inner diameter of the enlarged diameter portion 3c also gradually widens along with the outer diameter. In FIG. 12 , the outflow pipe 3 gradually widens from a position a little away from the inner surface of the ceiling 1 a of the container body 1 . However, the outflow pipe 3 may have a shape that gradually widens from a portion in contact with the inner surface of the ceiling 1 a of the container body 1 . In other words, in the present embodiment, it is sufficient that the outflow pipe 3 has the enlarged-diameter portion 3c where the inner diameter gradually widens, and the position where the inner diameter starts to expand is not limited.
 本実施の形態に係る冷媒貯留容器101の構成では、流出配管3は、容器本体1内で、流出口3aに向かって断面積が徐々に大きくなっている拡径部3cを有する。このため、流出口3aから流出するガス冷媒の流速が、拡径部3cで減少する。このため、ガス冷媒が、容器本体1の内部を浮遊する液冷媒の微細な液滴を誘引する力が弱くなる。したがって、流出口3aから流出するガス冷媒に誘引されて流出口3aに直接吸い込まれる液冷媒が減少する。よって、流出配管3から液冷媒が流出することをさらに抑制できる。 In the configuration of the refrigerant storage container 101 according to the present embodiment, the outflow pipe 3 has an enlarged diameter portion 3c in which the cross-sectional area gradually increases toward the outflow port 3a within the container body 1 . Therefore, the flow velocity of the gas refrigerant flowing out from the outlet 3a decreases at the enlarged diameter portion 3c. Therefore, the force of the gas refrigerant to attract fine droplets of the liquid refrigerant floating inside the container body 1 is weakened. Therefore, the liquid refrigerant that is directly sucked into the outlet 3a by being attracted by the gas refrigerant flowing out from the outlet 3a is reduced. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
 (実施の形態4の変形例1)
 図13は、実施の形態4の変形例1に係る冷媒貯留容器101を示した概略図である。図13に示す実線の矢印は、冷媒の流れを概念的に示すものである。本変形例と実施の形態1~実施の形態4との相違点は、流出配管3の形状である。以下、実施の形態1~実施の形態4との相違点を中心に説明する。流出配管3の形状を除いて、本変形例の冷媒貯留容器101及び冷凍サイクル装置100の構成は実施の形態1~実施の形態4と同様であるため説明を省略する。
(Modification 1 of Embodiment 4)
FIG. 13 is a schematic diagram showing a refrigerant storage container 101 according to Modification 1 of Embodiment 4. As shown in FIG. Solid-line arrows shown in FIG. 13 conceptually indicate the flow of the refrigerant. The difference between this modification and Embodiments 1 to 4 is the shape of the outflow pipe 3 . The following description focuses on the differences from the first to fourth embodiments. Except for the shape of the outflow pipe 3, the configurations of the refrigerant storage container 101 and the refrigeration cycle device 100 of this modification are the same as those of Embodiments 1 to 4, so description thereof will be omitted.
 本変形例では、流出配管3は、複数設けられる。図13に示すように、流出配管3を2本設けてもよいし、流出配管3を3本以上設けてもよい。図13では、2本の流出配管3が、容器本体1の天井1aから、隣り合うように挿入されている。しかし、2本の流出配管3はそれぞれ、容器本体1の上下前後左右のいずれの面から挿入されてもよい。また、本変形例では、容器本体1の底部1bに向かって開口する流出口3aを有する流出配管3が、複数設けられればよく、それぞれの流出配管3の位置及び形状については限定されない。 In this modified example, a plurality of outflow pipes 3 are provided. As shown in FIG. 13, two outflow pipes 3 may be provided, or three or more outflow pipes 3 may be provided. In FIG. 13, two outflow pipes 3 are inserted from the ceiling 1a of the container body 1 so as to be adjacent to each other. However, each of the two outflow pipes 3 may be inserted from any of the upper, lower, front, rear, left, and right surfaces of the container body 1 . In addition, in this modification, it is sufficient that a plurality of outflow pipes 3 having outflow ports 3a opening toward the bottom portion 1b of the container body 1 are provided, and the position and shape of each outflow pipe 3 are not limited.
 本変形例に係る冷媒貯留容器101では、流出配管3が複数設けられている。つまり、複数の流出配管3のそれぞれの流出口3aの開口面積の合計値は、本変形例の流出配管3と同じ内断面積を有する1本の流出配管3の流出口3aの開口面積よりも大きい。このため、複数の流出配管3の各流出口3aから流出する冷媒の流速は、本変形例の流出配管3と同じ内断面積を有する1本の流出配管3の流出口3aから流出する冷媒の流速よりも遅くなる。このため、各流出口3aから流出するガス冷媒が、容器本体1の内部を浮遊する液冷媒の微細な液滴を誘引する力が弱くなる。したがって、流出口3aから流出するガス冷媒に誘引されて流出口3aに直接吸い込まれる液冷媒が減少する。よって、流出配管3から液冷媒が流出することをさらに抑制できる。 A plurality of outflow pipes 3 are provided in the refrigerant storage container 101 according to this modified example. That is, the total value of the opening areas of the outflow ports 3a of the plurality of outflow pipes 3 is larger than the opening area of the outflow port 3a of one outflow pipe 3 having the same inner cross-sectional area as the outflow pipe 3 of this modification. big. Therefore, the flow velocity of the refrigerant flowing out from each outlet 3a of the plurality of outflow pipes 3 is the same as that of the refrigerant flowing out from the outlet 3a of one outflow pipe 3 having the same inner cross-sectional area as the outflow pipe 3 of this modification. slower than the current velocity. Therefore, the force of the gas refrigerant flowing out from each outlet 3a to attract fine droplets of the liquid refrigerant floating inside the container body 1 is weakened. Therefore, the liquid refrigerant that is directly sucked into the outlet 3a by being attracted by the gas refrigerant flowing out from the outlet 3a is reduced. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
 また、複数の流出配管3のそれぞれの流出口3aの開口面積の合計値は、流入配管2の流入口2aの開口面積よりも大きい。このため、複数の流出配管3の各流出口3aから流出するガス冷媒の流速は、流入口2aから流入する冷媒の流速よりも遅くなる。よって、容器本体1の内部を浮遊する液冷媒の微細な液滴を誘引する力は、各流出口3aから流出するガス冷媒よりも、流入口2aから流入する冷媒の方が大きくなる。したがって、流出口3aから流出するガス冷媒に誘引されて流出口3aに直接吸い込まれる液冷媒が減少する。よって、流出配管3から液冷媒が流出することをさらに抑制できる。 Also, the total value of the opening areas of the outflow ports 3 a of the plurality of outflow pipes 3 is larger than the opening area of the inflow ports 2 a of the inflow pipe 2 . Therefore, the flow velocity of the gas refrigerant flowing out from each outlet 3a of the plurality of outflow pipes 3 is slower than the flow velocity of the refrigerant flowing in from the inlet 2a. Therefore, the force of attracting fine droplets of the liquid refrigerant floating inside the container body 1 is greater for the refrigerant flowing in from the inlet 2a than for the gas refrigerant flowing out from each outlet 3a. Therefore, the liquid refrigerant that is directly sucked into the outlet 3a by being attracted by the gas refrigerant flowing out from the outlet 3a is reduced. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
実施の形態5.
 実施の形態5に係る冷媒貯留容器101について説明する。本実施の形態と実施の形態1~実施の形態4との相違点は、冷媒貯留容器101がバッフル板5を備える点及び流出口3aと流入口2aの位置関係である。以下、実施の形態1~実施の形態4との相違点を中心に説明する。本実施の形態の冷媒貯留容器101及び冷凍サイクル装置100の構成は、バッフル板5及び流出口3aと流入口2aの位置関係を除いて、実施の形態1~実施の形態4と同様であるため説明を省略する。
Embodiment 5.
A refrigerant storage container 101 according to Embodiment 5 will be described. The differences between this embodiment and Embodiments 1 to 4 are that the refrigerant storage container 101 has a baffle plate 5 and the positional relationship between the outlet 3a and the inlet 2a. The following description focuses on the differences from the first to fourth embodiments. The configurations of the refrigerant storage container 101 and the refrigeration cycle device 100 of this embodiment are the same as those of Embodiments 1 to 4, except for the positional relationship between the baffle plate 5 and the outlet 3a and the inlet 2a. Description is omitted.
 図14は、実施の形態5に係る冷媒貯留容器101を示した概略図である。図14に示すように、本実施の形態では、流出配管3の流出口3aは流入配管2の流入口2aよりも上方に位置する。実施の形態1で説明したように、流出配管3の流出口3aは、容器本体1の底部1bに向かって、下向きに開口している。流入口2aから流入する液冷媒は、重力により落下する。流出口3aは流入口2aよりも上方に位置するため、流入口2aから流入する液冷媒が、流出口3aに直接吸い込まれることが抑制される。 FIG. 14 is a schematic diagram showing a refrigerant storage container 101 according to Embodiment 5. FIG. As shown in FIG. 14, in this embodiment, the outflow port 3a of the outflow pipe 3 is located above the inflow port 2a of the inflow pipe 2. As shown in FIG. As described in Embodiment 1, the outflow port 3a of the outflow pipe 3 opens downward toward the bottom portion 1b of the container body 1 . The liquid refrigerant flowing from the inflow port 2a drops due to gravity. Since the outflow port 3a is located above the inflow port 2a, the liquid refrigerant flowing in from the inflow port 2a is suppressed from being directly sucked into the outflow port 3a.
 バッフル板5は平板形状を有する。バッフル板5は、容器本体1の内面に片持ち状に支持される。バッフル板5が容器本体1の内面に片持ち状に支持された状態とは、バッフル板5の板厚面の一部が容器本体1の内面に接続され、接続された板厚面の他端が自由端となっている状態のことをいう。図14に示すように、バッフル板5は、容器本体1の側壁1cの内面のうち、流入配管2の流入口2aに対面する側壁1cの内面の部分に、片持ち状に支持される。バッフル板5は、容器本体1の側壁1cの内面から、上方に向かって傾斜して設けられる。バッフル板5は、バッフル板5の最大の面積を有する板面が流入口2aと対面するように設けられる。このため、流入口2aから容器本体1に流入する液冷媒は、バッフル板5の最大の面積を有する板面に衝突して下方に流れる。また、流入口2aから容器本体1に流入して、容器本体1の内部を浮遊する微細な液滴状の液冷媒も、バッフル板5の最大の面積を有する板面に衝突して液滴同士が集まって下方に流れる。以下、流入口2aから流入する液冷媒が衝突する、バッフル板5の最大面積を有する板面を、衝突面5aと称する。 The baffle plate 5 has a flat plate shape. The baffle plate 5 is cantilevered on the inner surface of the container body 1 . The state in which the baffle plate 5 is supported in a cantilever manner on the inner surface of the container body 1 means that a part of the plate thickness surface of the baffle plate 5 is connected to the inner surface of the container body 1 and the other end of the connected plate thickness surface is a free end. As shown in FIG. 14, the baffle plate 5 is cantilevered on the inner surface of the side wall 1c of the container body 1 facing the inlet 2a of the inflow pipe 2. As shown in FIG. The baffle plate 5 is provided so as to incline upward from the inner surface of the side wall 1c of the container body 1 . The baffle plate 5 is provided so that the plate surface having the largest area of the baffle plate 5 faces the inlet 2a. Therefore, the liquid refrigerant flowing into the container body 1 from the inlet 2a collides with the plate surface of the baffle plate 5 having the largest area and flows downward. In addition, fine droplets of liquid refrigerant that flow into the container main body 1 from the inlet 2a and float inside the container main body 1 collide with the plate surface of the baffle plate 5 having the largest area, and the droplets collide with each other. gather and flow downwards. Hereinafter, the plate surface having the maximum area of the baffle plate 5 with which the liquid refrigerant flowing from the inlet 2a collides is referred to as a collision surface 5a.
 バッフル板5は、流出配管3の流出口3aよりも下方に設けられる。流入口2aから容器本体1に流入する液冷媒は、バッフル板5により下方に流れるため、バッフル板5及び流入口2aよりも上方に位置する流出口3aに、流入口2aから流入する液冷媒が吸い込まれることが抑制される。なお、バッフル板5は、流入口2aから流入する液冷媒が、バッフル板5に衝突する位置に設けられる。バッフル板5を、容器本体1の側壁1cの内面から流入口2aの近くにまで延在させてもよいし、流入口2aがバッフル板5の近くに位置するように流入配管2を設けてもよい。 The baffle plate 5 is provided below the outflow port 3a of the outflow pipe 3. Since the liquid refrigerant flowing into the container main body 1 from the inlet 2a flows downward by the baffle plate 5, the liquid refrigerant flowing from the inlet 2a reaches the outlet 3a located above the baffle plate 5 and the inlet 2a. Absorption is suppressed. The baffle plate 5 is provided at a position where the liquid refrigerant flowing from the inlet 2 a collides with the baffle plate 5 . The baffle plate 5 may extend from the inner surface of the side wall 1c of the container body 1 to near the inlet 2a, or the inflow pipe 2 may be provided so that the inlet 2a is positioned near the baffle plate 5. good.
 本実施の形態に係る冷媒貯留容器101は、容器本体1の側壁1cの内面に片持ち状に支持されたバッフル板5を有し、バッフル板5は、流入配管2の流入口2aに対面する側壁1cの内面の部分から上方に傾斜して設けられている。このため、流入口2aから流入する液冷媒が、対面する側壁1cの内面から斜め上方に延在するバッフル板5に衝突する。バッフル板5に衝突した液冷媒は下方に流れる。また、流入口2aから容器本体1に流入して容器本体1の内部を浮遊する微細な液滴状の液冷媒も、バッフル板5に衝突して液滴同士が集まって下方に流れる。本実施の形態では、流出配管3の流出口3aは、流入配管2の流入口2aよりも上方に位置する。したがって、流入口2aから容器本体1に流入した微細な液滴を含む液冷媒が、上方に位置する流出口3aに吸い込まれることが抑制される。よって、流出配管3から液冷媒が流出することをさらに抑制できる。 A refrigerant storage container 101 according to this embodiment has a baffle plate 5 that is cantilevered on the inner surface of the side wall 1c of the container body 1, and the baffle plate 5 faces the inlet port 2a of the inflow pipe 2. It is provided so as to be inclined upward from the inner surface portion of the side wall 1c. Therefore, the liquid refrigerant flowing from the inlet 2a collides with the baffle plate 5 extending obliquely upward from the inner surface of the facing side wall 1c. The liquid refrigerant that collides with the baffle plate 5 flows downward. Further, fine droplets of liquid refrigerant that flow into the container body 1 from the inlet 2a and float inside the container body 1 also collide with the baffle plate 5, collect the droplets, and flow downward. In the present embodiment, the outflow port 3a of the outflow pipe 3 is positioned above the inflow port 2a of the inflow pipe 2 . Therefore, the liquid refrigerant containing fine droplets that has flowed into the container body 1 from the inlet 2a is suppressed from being sucked into the outlet 3a positioned above. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
(実施の形態5の変形例1)
 図15は、実施の形態5の変形例1に係る冷媒貯留容器101を示した概略図である。上述の図14で説明したバッフル板5は、平板形状を有しているが、図15に示すように、バッフル板5が曲面形状を有していてもよい。本変形例では、図15に示すように、バッフル板5は、縦断面が上に凸の円弧状を有する。別の言い方をすると、バッフル板5の衝突面5aが上方に凸となる曲面形状を有するように湾曲している。このため、流入口2aから流入する液冷媒がバッフル板5に衝突した際の液冷媒の飛散が抑制される。また、衝突面5aが湾曲しているため、バッフル板5に衝突した液冷媒が衝突面5a及び容器本体1の内面を伝って下方に流れやすい。このため、衝突面5aに衝突した液冷媒がより確実に下方に導かれる。また、湾曲した衝突面5aは水平方向に延びる成分を有するため、流入口2aから容器本体1に流入した微細な液滴を含む液冷媒を上から覆い、微細な液滴の舞い上がりを抑制できる。したがって、流入口2aから容器本体1に流入した液冷媒が、上方に位置する流出口3aに吸い込まれることが抑制される。よって、流出配管3から液冷媒が流出することをさらに抑制できる。
(Modification 1 of Embodiment 5)
FIG. 15 is a schematic diagram showing a refrigerant storage container 101 according to Modification 1 of Embodiment 5. As shown in FIG. Although the baffle plate 5 described above with reference to FIG. 14 has a flat plate shape, the baffle plate 5 may have a curved surface shape as shown in FIG. 15 . In this modified example, as shown in FIG. 15, the baffle plate 5 has an arcuate longitudinal cross-section that is upwardly convex. In other words, the collision surface 5a of the baffle plate 5 is curved to have an upwardly convex curved shape. Therefore, when the liquid refrigerant flowing from the inlet 2a collides with the baffle plate 5, scattering of the liquid refrigerant is suppressed. Further, since the collision surface 5a is curved, the liquid refrigerant that has collided with the baffle plate 5 easily flows downward along the collision surface 5a and the inner surface of the container body 1. As shown in FIG. Therefore, the liquid refrigerant that has collided with the collision surface 5a is guided downward more reliably. In addition, since the curved collision surface 5a has a component extending in the horizontal direction, the liquid refrigerant containing fine droplets flowing into the container body 1 from the inlet 2a can be covered from above, and the fine droplets can be prevented from rising. Therefore, the liquid refrigerant that has flowed into the container body 1 from the inlet 2a is prevented from being sucked into the outlet 3a positioned above. Therefore, it is possible to further suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
(実施の形態5の変形例2)
 図16は、実施の形態5の変形例2に係る冷媒貯留容器101を示した概略図である。バッフル板5は、平板形状を有する。バッフル板5は、容器本体1の内面のうち、容器本体1の天井1aの内面の部分から下方に延びる。バッフル板5は、容器本体1の天井1aの内面に片持ち状に支持される。バッフル板5は、流入配管2の流入口2aが対面する容器本体1の側壁1cの内面と、流出配管3の流出口3aとを隔てるように設けられる。このため、流入口2aから流入する液冷媒が、流入口2aに対面する容器本体1の側壁1cの内面に衝突して飛散した場合、飛散した液冷媒が、バッフル板5の最大の面積を有する板面に衝突する。以下、容器本体1の内面に衝突して飛散した液冷媒が衝突する、バッフル板5の最大面積を有する板面を衝突面5bと称する。
(Modification 2 of Embodiment 5)
FIG. 16 is a schematic diagram showing a refrigerant storage container 101 according to Modification 2 of Embodiment 5. As shown in FIG. The baffle plate 5 has a flat plate shape. The baffle plate 5 extends downward from a portion of the inner surface of the container body 1 that is the inner surface of the ceiling 1 a of the container body 1 . The baffle plate 5 is cantilevered on the inner surface of the ceiling 1a of the container body 1 . The baffle plate 5 is provided so as to separate the inner surface of the side wall 1 c of the container body 1 facing the inflow port 2 a of the inflow pipe 2 from the outflow port 3 a of the outflow pipe 3 . Therefore, when the liquid refrigerant flowing from the inlet 2a collides with the inner surface of the side wall 1c of the container body 1 facing the inlet 2a and scatters, the scattered liquid refrigerant has the maximum area of the baffle plate 5. collide with the board. Hereinafter, the plate surface having the maximum area of the baffle plate 5 with which the liquid refrigerant collides with the inner surface of the container body 1 and scatters is referred to as a collision surface 5b.
 流入口2aから容器本体1に流入して、容器本体1の側壁1cの内面に衝突して飛散した液冷媒は、バッフル板5の衝突面5bに衝突して落下する。このため、バッフル板5は、流入口2aから流入した液冷媒が、容器本体1の内面に衝突して飛散した場合に、飛散した液滴が流出口3aに吸い込まれることを防ぐことができる。また、流入口2aから容器本体1に流入した微細な液滴状の液冷媒は、バッフル板5の衝突面5bに衝突して液滴同士が集まって下方に流れる。このため、液冷媒の微細な液滴が容器本体1の内部を浮遊して、流出配管3の流出口3aに吸い込まれることを抑制できる。 The liquid refrigerant that flows into the container body 1 from the inlet 2a, collides with the inner surface of the side wall 1c of the container body 1 and scatters, collides with the collision surface 5b of the baffle plate 5 and drops. Therefore, when the liquid refrigerant flowing from the inlet 2a collides with the inner surface of the container body 1 and scatters, the baffle plate 5 can prevent the scattered droplets from being sucked into the outlet 3a. Further, the liquid refrigerant in the form of fine droplets flowing into the container main body 1 from the inlet 2a collides with the collision surface 5b of the baffle plate 5, and the droplets gather together and flow downward. Therefore, fine droplets of the liquid refrigerant can be prevented from floating inside the container body 1 and being sucked into the outflow port 3 a of the outflow pipe 3 .
 バッフル板5は、X方向、Y方向、及びZ方向の全てにおいて、流入口2aと流出口3aとの間を隔てているとよい。このようにすることで、流入口2aから容器本体1に流入した微細な液滴状の液冷媒が、バッフル板5によって遮られて、直接的に流出口3aに流入しにくい。また、バッフル板5に液冷媒が衝突して飛散しても、飛散した液滴が流出口3aに吸い込まれにくい。 The baffle plate 5 preferably separates the inlet 2a and the outlet 3a in all of the X, Y and Z directions. By doing so, fine liquid refrigerant droplets that have flowed into the container body 1 from the inlet 2a are blocked by the baffle plate 5 and are less likely to flow directly into the outlet 3a. Further, even if the liquid refrigerant collides with the baffle plate 5 and scatters, the scattered droplets are less likely to be sucked into the outlet 3a.
実施の形態6.
 実施の形態6に係る冷媒貯留容器101について説明する。本実施の形態と実施の形態1~実施の形態5との相違点は、冷媒貯留容器101が遠心力を利用するサイクロン型の冷媒貯留容器101である点である。以下、実施の形態1~実施の形態5との相違点を中心に説明する。本実施の形態の冷媒貯留容器101及び冷凍サイクル装置100の構成及び作用は、冷媒貯留容器101がサイクロン型である点を除いて、実施の形態1~実施の形態5と同様であるため説明を省略する。
Embodiment 6.
A refrigerant storage container 101 according to Embodiment 6 will be described. The difference between this embodiment and Embodiments 1 to 5 is that the refrigerant storage container 101 is a cyclone-type refrigerant storage container 101 that utilizes centrifugal force. The following description focuses on the differences from the first to fifth embodiments. The configurations and functions of the refrigerant storage container 101 and the refrigeration cycle device 100 of the present embodiment are the same as those of the first to fifth embodiments except that the refrigerant storage container 101 is of the cyclone type. omitted.
 図17は、実施の形態6に係る冷媒貯留容器101を上面側から示した概略図である。図18は、実施の形態6に係る冷媒貯留容器101を正面側から示した概略図である。図17及び図18に示す実線の矢印は、冷媒の流れを概念的に示すものである。 FIG. 17 is a schematic diagram showing the refrigerant storage container 101 according to Embodiment 6 from the top side. FIG. 18 is a schematic diagram showing the refrigerant storage container 101 according to Embodiment 6 from the front side. Solid-line arrows shown in FIGS. 17 and 18 conceptually indicate the flow of the refrigerant.
 本実施の形態の冷媒貯留容器101は、円筒形状の容器本体1を有する。容器本体1は、円筒形状の軸方向が鉛直になるように設置される縦置き型である。流入配管2は、流入口2aが容器本体1の側壁1cの湾曲した内面の接線方向に向けて開口している。このため、流入配管2の流入口2aから流入する液冷媒は、図18に示すように、容器本体1の側壁1cの内面に沿って、円周方向に旋回しながら下方に流れる。このように、流入口2aから流入した液冷媒は、容器本体1の側壁1cの内面に沿って下方に流れることで、液冷媒が飛散することが抑制できる。したがって、流入口2aから流入する液冷媒が、流出口3aに吸い込まれることが抑制される。 A refrigerant storage container 101 of the present embodiment has a cylindrical container body 1 . The container main body 1 is of a vertical type installed so that the axial direction of the cylindrical shape is vertical. The inflow pipe 2 has an inflow port 2a that opens toward the tangential direction of the curved inner surface of the side wall 1c of the container body 1 . Therefore, as shown in FIG. 18, the liquid refrigerant flowing from the inflow port 2a of the inflow pipe 2 flows downward along the inner surface of the side wall 1c of the container body 1 while swirling in the circumferential direction. In this manner, the liquid refrigerant that has flowed in from the inlet 2a flows downward along the inner surface of the side wall 1c of the container body 1, thereby suppressing scattering of the liquid refrigerant. Therefore, the liquid refrigerant flowing from the inflow port 2a is suppressed from being sucked into the outflow port 3a.
(実施の形態6の変形例1)
 図19は、実施の形態6の変形例1に係る冷媒貯留容器101を上面側から示した概略図である。図20は、実施の形態6の変形例1に係る冷媒貯留容器101を正面側から示した概略図である。図19及び図20に示す実線の矢印は、冷媒の流れを概念的に示すものである。以下、本変形例の流入配管2の形状について、実施の形態6との相違点を中心に説明する。流入配管2の形状を除いて、本変形例の冷媒貯留容器101及び冷凍サイクル装置100の構成は実施の形態6と同様であるため説明を省略する。
(Modification 1 of Embodiment 6)
FIG. 19 is a schematic top view of the refrigerant storage container 101 according to Modification 1 of Embodiment 6. As shown in FIG. FIG. 20 is a schematic front view of the refrigerant storage container 101 according to Modification 1 of Embodiment 6. As shown in FIG. Solid-line arrows shown in FIGS. 19 and 20 conceptually indicate the flow of the refrigerant. The shape of the inflow pipe 2 of this modified example will be described below, focusing on the differences from the sixth embodiment. Except for the shape of the inflow pipe 2, the configurations of the refrigerant storage container 101 and the refrigerating cycle device 100 of this modified example are the same as those of the sixth embodiment, so the description thereof is omitted.
 本変形例に係る流入配管2は、図20に示すように、下方に傾斜する傾斜部2bを有する。流入口2aは、傾斜部2bの先端に設けられる。流入口2aは、容器本体1の側壁1cの湾曲した内面の接線方向に向けて開口している。なお、流入配管2の傾斜部2bは下方に傾斜しているため、冷媒貯留容器101を上面側から見た場合、実施の形態6と本変形例では流入配管2の形状は相違しない。そのため、図17及び図19は相違しない。流入口2aは、図20に示すように、斜め下方に向かって開口する。 As shown in FIG. 20, the inflow pipe 2 according to this modified example has a sloped portion 2b that slopes downward. The inlet 2a is provided at the tip of the inclined portion 2b. The inlet 2a opens in a tangential direction to the curved inner surface of the side wall 1c of the container body 1 . Since the inclined portion 2b of the inflow pipe 2 is inclined downward, the shape of the inflow pipe 2 does not differ between the sixth embodiment and this modified example when the refrigerant storage container 101 is viewed from above. Therefore, FIGS. 17 and 19 are not different. The inlet 2a opens obliquely downward as shown in FIG.
 本変形例に係る冷媒貯留容器101では、流入配管2は、容器本体1内で下方に傾斜する傾斜部2bを有し、流入配管2の流入口2aは、傾斜部2bの先端で、斜め下方に向かって開口している。このため、流入口2aから流入する液冷媒の液滴が上方に飛散することが抑制される。したがって、流入口2aから流入する液冷媒が、流出口3aに直接吸い込まれることが抑制される。よって、流出配管3から液冷媒が流出することを抑制できる。 In the refrigerant storage container 101 according to this modified example, the inflow pipe 2 has an inclined portion 2b that inclines downward inside the container body 1, and the inflow port 2a of the inflow pipe 2 is at the tip of the inclined portion 2b and obliquely downward. open towards. Therefore, droplets of the liquid refrigerant flowing from the inlet 2a are prevented from scattering upward. Therefore, the liquid refrigerant flowing from the inflow port 2a is suppressed from being directly sucked into the outflow port 3a. Therefore, it is possible to suppress the outflow of the liquid refrigerant from the outflow pipe 3 .
実施の形態7.
 図21は、実施の形態7に係る冷媒貯留容器101を正面側から示した概略図である。図21に示す実線の矢印は、冷媒の流れを概念的に示すものである。図22は、図21に示したA方向から見た冷媒貯留容器101の概略図である。なお、A方向は容器本体1の長手方向に相当する方向である。
Embodiment 7.
FIG. 21 is a schematic diagram showing the refrigerant storage container 101 according to Embodiment 7 from the front side. Solid line arrows shown in FIG. 21 conceptually indicate the flow of the refrigerant. FIG. 22 is a schematic diagram of the refrigerant storage container 101 viewed from direction A shown in FIG. Note that the A direction corresponds to the longitudinal direction of the container body 1 .
 本実施の形態に係る冷媒貯留容器101は、容器本体1の形状が、実施の形態1~実施の形態5における容器本体1の形状と異なる。実施の形態1~実施の形態5では、冷媒貯留容器101の容器本体1が、縦置き型であった。本実施の形態における容器本体1は、図21に示すように、筒形状の軸方向が水平になるように設置される横置き型である。本実施の形態の冷媒貯留容器101及び冷凍サイクル装置100の構成及び作用は、容器本体1が横置き型である点を除いて、実施の形態1~実施の形態5と同様であるため説明を省略する。なお、実施の形態6はサイクロン型の冷媒貯留容器101であるため、本実施の形態と実施の形態6とは組み合わせることはできない。 In the refrigerant storage container 101 according to the present embodiment, the shape of the container body 1 is different from the shape of the container body 1 in the first to fifth embodiments. In Embodiments 1 to 5, the container body 1 of the refrigerant storage container 101 is of the vertical type. As shown in FIG. 21, the container body 1 according to the present embodiment is of a horizontal type which is installed so that the axial direction of the cylindrical shape is horizontal. The configuration and operation of the refrigerant storage container 101 and the refrigeration cycle device 100 of the present embodiment are the same as those of the first to fifth embodiments except that the container body 1 is of a horizontal type, so description thereof will be omitted. omitted. Since Embodiment 6 is a cyclone-type refrigerant storage container 101, this Embodiment and Embodiment 6 cannot be combined.
 図21及び図22では、側面から見た場合、真円形状を有する横置き型の容器本体1を示している。しかし、容器本体1を側面視した場合の形状は、真円には限定されない。図示しないが、容器本体1を側面視した場合の形状が楕円であってもよい。また、図21では、流入配管2及び流出配管3が、容器本体1の天井1aから容器本体1に挿入されているが、実施の形態1と同様に、流入配管2及び流出配管3は、容器本体1の上下前後左右のいずれの面から挿入されてもよい。また、容器本体1の内部において、流入配管2と流出配管3との位置関係は、上下前後左右のいずれの方向においても限定されない。 21 and 22 show the horizontal container body 1 having a perfect circular shape when viewed from the side. However, the shape of the container body 1 when viewed from the side is not limited to a perfect circle. Although not shown, the shape of the container body 1 when viewed from the side may be an ellipse. 21, the inflow pipe 2 and the outflow pipe 3 are inserted into the container main body 1 from the ceiling 1a of the container main body 1. However, as in the first embodiment, the inflow pipe 2 and the outflow pipe 3 are connected to the container. It may be inserted from any of the upper, lower, front, rear, left, and right surfaces of the main body 1 . Further, the positional relationship between the inflow pipe 2 and the outflow pipe 3 inside the container body 1 is not limited in any of the vertical, front, rear, left, and right directions.
 本実施の形態に係る冷媒貯留容器101の容器本体1は横置き型なので、冷媒貯留容器101を低背化できる。このため、設置場所の問題で、縦置き型の容器本体1を備える冷媒貯留容器101を設置出来ない場合でも、本変形例に係る冷媒貯留容器101を設置することができる。 Since the container body 1 of the refrigerant storage container 101 according to the present embodiment is of a horizontal type, the height of the refrigerant storage container 101 can be reduced. Therefore, even if the refrigerant storage container 101 having the vertical container body 1 cannot be installed due to the installation location, the refrigerant storage container 101 according to this modification can be installed.
 以上、実施の形態1~実施の形態7、実施の形態1~実施の形態6の各変形例について説明した。冷媒貯留容器101及び冷凍サイクル装置100は、上述の実施の形態1~実施の形態7、実施の形態1~実施の形態6の各変形例に限定されるものではなく、要旨を逸脱しない範囲内で様々な変形や応用が可能である。すなわち、冷媒貯留容器101及び冷凍サイクル装置100は、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更及び応用のバリエーションの範囲を含む。 The modifications of Embodiments 1 to 7 and Embodiments 1 to 6 have been described above. The refrigerant storage container 101 and the refrigeration cycle device 100 are not limited to the modifications of the first to seventh embodiments and the modifications of the first to sixth embodiments described above, and are within the scope of the gist. Various modifications and applications are possible. That is, the refrigerant storage container 101 and the refrigeration cycle device 100 include a range of design changes and application variations that are normally made by those skilled in the art without departing from the technical idea thereof.
 1 容器本体、1a 天井、1b 底部、1c 側壁、2 流入配管、2a 流入口、2b 傾斜部、2c 拡径部、3 流出配管、3a 流出口、3b 油戻し穴、3c 拡径部、3d U字部、 3e 第1U字部、 3f 第2U字部、4 油戻し配管、5 バッフル板、5a 衝突面、5b 衝突面、10 圧縮機、10a 吸込口、12 凝縮器、13 膨張機構、14 蒸発器、15 冷媒配管、20 オイルレギュレータ、21 均圧管、22 吸入管、30 電磁弁、31 油面センサ、100 冷凍サイクル装置、101 冷媒貯留容器、200 冷媒回路、CL 中心軸線。 1 container body, 1a ceiling, 1b bottom, 1c side wall, 2 inflow pipe, 2a inflow port, 2b inclined portion, 2c enlarged diameter portion, 3 outflow pipe, 3a outflow port, 3b oil return hole, 3c enlarged diameter portion, 3d U 3e 1st U-shaped part 3f 2nd U-shaped part 4 Oil return pipe 5 Baffle plate 5a Collision surface 5b Collision surface 10 Compressor 10a Suction port 12 Condenser 13 Expansion mechanism 14 Evaporation vessel, 15 refrigerant pipe, 20 oil regulator, 21 pressure equalizing pipe, 22 suction pipe, 30 electromagnetic valve, 31 oil level sensor, 100 refrigeration cycle device, 101 refrigerant storage container, 200 refrigerant circuit, CL central axis.

Claims (20)

  1.  液体を溜める容器本体と、
     流入口を有し、前記容器本体に冷媒を流入させる流入配管と、
     流出口を有し、前記容器本体から前記冷媒を流出させる流出配管と、
     前記容器本体から冷凍機油を流出させる油戻し機構と
     を備え、
     前記流出配管の前記流出口は、前記容器本体の底部に向かって開口している
     冷媒貯留容器。
    a container body for storing liquid;
    an inflow pipe that has an inflow port and allows the refrigerant to flow into the container body;
    an outflow pipe that has an outflow port and causes the refrigerant to flow out from the container body;
    an oil return mechanism for flowing out refrigerating machine oil from the container body,
    The refrigerant storage container, wherein the outlet of the outflow pipe opens toward the bottom of the container body.
  2.  前記流出配管は、前記流出口が、前記流入配管の前記流入口よりも上方に位置するように設けられている
     請求項1に記載の冷媒貯留容器。
    The refrigerant storage container according to claim 1, wherein the outflow pipe is provided such that the outflow port is positioned above the inflow port of the inflow pipe.
  3.  前記流入配管の前記流入口と前記流出配管の前記流出口との間の距離は、前記容器本体の内径の20%以上である
     請求項1または請求項2に記載の冷媒貯留容器。
    3. The refrigerant storage container according to claim 1, wherein the distance between the inlet of the inlet pipe and the outlet of the outlet pipe is 20% or more of the inner diameter of the container body.
  4.  前記流入配管は、前記容器本体の側壁から挿入され、
     前記流出配管は、前記容器本体を天井から透視した場合に、前記流出口が前記流入配管の一部に重複するように設けられ、
     前記流出配管の前記流出口は、前記流入配管よりも上方に位置する
     請求項1~請求項3のいずれか1項に記載の冷媒貯留容器。
    The inflow pipe is inserted from the side wall of the container body,
    The outflow pipe is provided so that the outflow port overlaps a part of the inflow pipe when the container body is seen through from the ceiling,
    The refrigerant storage container according to any one of claims 1 to 3, wherein the outflow port of the outflow pipe is located above the inflow pipe.
  5.  前記流入配管は、前記容器本体内で下方に傾斜する傾斜部を有し、
     前記流入配管の前記流入口は、前記傾斜部の先端で、斜め下方に向かって開口している
     請求項2に記載の冷媒貯留容器。
    The inflow pipe has an inclined portion that inclines downward within the container body,
    3. The refrigerant storage container according to claim 2, wherein the inflow port of the inflow pipe opens obliquely downward at the tip of the inclined portion.
  6.  前記流入配管は、前記容器本体内で、前記流入口に向かって断面積が徐々に大きくなっている拡径部を有する
     請求項1~請求項5のいずれか1項に記載の冷媒貯留容器。
    6. The refrigerant storage container according to any one of claims 1 to 5, wherein the inflow pipe has an enlarged diameter portion in the container body, the cross-sectional area of which gradually increases toward the inflow port.
  7.  前記流入配管が複数設けられており、
     前記冷媒は、前記複数の流入配管のそれぞれの前記流入口から前記容器本体に流入する
     請求項1~請求項5のいずれか1項に記載の冷媒貯留容器。
    A plurality of the inflow pipes are provided,
    The refrigerant storage container according to any one of claims 1 to 5, wherein the refrigerant flows into the container body from the inlets of the plurality of inflow pipes.
  8.  前記流出配管は、前記容器本体内で、前記流出口に向かって断面積が徐々に大きくなっている拡径部を有する
     請求項1~請求項5のいずれか1項に記載の冷媒貯留容器。
    6. The refrigerant storage container according to any one of claims 1 to 5, wherein the outflow pipe has an enlarged diameter portion in which the cross-sectional area gradually increases toward the outflow port within the container main body.
  9.  前記流出配管が複数設けられており、
     前記複数の流出配管のそれぞれの前記流出口の開口面積の合計値は、前記流入配管の前記流入口の開口面積よりも大きい
     請求項1~請求項5のいずれか1項に記載の冷媒貯留容器。
    A plurality of outflow pipes are provided,
    The refrigerant storage container according to any one of claims 1 to 5, wherein the total opening area of the outflow ports of the plurality of outflow pipes is larger than the opening area of the inflow ports of the inflow pipe. .
  10.  前記容器本体の側壁の内面に片持ち状に支持されたバッフル板を備え、
     前記バッフル板は、前記流入配管の前記流入口に対面する前記側壁の前記内面の部分から上方に傾斜して設けられている
     請求項2に記載の冷媒貯留容器。
    A baffle plate supported in a cantilever manner on the inner surface of the side wall of the container body,
    3. The refrigerant storage container according to claim 2, wherein the baffle plate is inclined upward from the portion of the inner surface of the side wall facing the inlet of the inflow pipe.
  11.  前記バッフル板は、上方に凸となる曲面形状を有している
     請求項10に記載の冷媒貯留容器。
    11. The refrigerant storage container according to claim 10, wherein the baffle plate has an upwardly convex curved shape.
  12.  前記容器本体の天井の内面に片持ち状に支持されたバッフル板を備え、
     前記流入配管の前記流入口が対面する前記容器本体の側壁の内面と、前記流出配管の前記流出口とは、前記バッフル板により隔てられている
     請求項2に記載の冷媒貯留容器。
    A baffle plate supported in a cantilever manner on the inner surface of the ceiling of the container body,
    3. The refrigerant storage container according to claim 2, wherein the inner surface of the side wall of the container body facing the inflow port of the inflow pipe and the outflow port of the outflow pipe are separated from each other by the baffle plate.
  13.  前記容器本体は、縦置き型の円筒形状を有し、
     前記流入配管は、前記流入口が前記容器本体の側壁の内面の接線方向に向かって開口している
     請求項1~請求項12のいずれか1項に記載の冷媒貯留容器。
    The container body has a vertical cylindrical shape,
    The refrigerant storage container according to any one of claims 1 to 12, wherein the inflow port of the inflow pipe opens in a tangential direction to the inner surface of the side wall of the container body.
  14.  前記油戻し機構は、前記容器本体の前記底部から前記容器本体に挿入された油戻し配管である
     請求項1~請求項13のいずれか1項に記載の冷媒貯留容器。
    The refrigerant storage container according to any one of claims 1 to 13, wherein the oil return mechanism is an oil return pipe inserted into the container body from the bottom portion of the container body.
  15.  前記油戻し機構は、前記流出配管に設けられた油戻し穴である
     請求項1~請求項13のいずれか1項に記載の冷媒貯留容器。
    The refrigerant storage container according to any one of claims 1 to 13, wherein the oil return mechanism is an oil return hole provided in the outflow pipe.
  16.  前記流出配管は、
     前記容器本体内で下方に凸となる第1U字部と、
     前記容器本体内で上方に凸となる第2U字部と
     を有し、
     前記第1U字部は前記第2U字部よりも下方に位置し、
     前記油戻し穴は、前記第1U字部に設けられている
     請求項15に記載の冷媒貯留容器。
    The outflow pipe is
    a first U-shaped portion projecting downward within the container body;
    a second U-shaped portion that protrudes upward within the container body,
    The first U-shaped portion is positioned below the second U-shaped portion,
    The refrigerant storage container according to claim 15, wherein the oil return hole is provided in the first U-shaped portion.
  17.  前記流出配管は、前記容器本体の前記底部から前記容器本体に挿入され、前記容器本体内で上方に凸となるU字部を有し、
     前記油戻し穴は、前記U字部より下方に設けられている
     請求項15に記載の冷媒貯留容器。
    The outflow pipe is inserted into the container body from the bottom of the container body and has a U-shaped portion that protrudes upward within the container body,
    The refrigerant storage container according to claim 15, wherein the oil return hole is provided below the U-shaped portion.
  18.  請求項1~請求項13のいずれか1項に記載の冷媒貯留容器と、
     前記冷媒貯留容器に、前記冷媒貯留容器の前記流出配管を介して接続された圧縮機と
     を備え、
     前記油戻し機構は、前記容器本体の前記底部から前記容器本体に挿入された油戻し配管であり、
     前記冷媒貯留容器の前記油戻し配管から流出する前記冷凍機油が、前記圧縮機に流入する
     冷凍サイクル装置。
    a refrigerant storage container according to any one of claims 1 to 13;
    a compressor connected to the refrigerant storage container via the outflow pipe of the refrigerant storage container,
    The oil return mechanism is an oil return pipe inserted into the container body from the bottom of the container body,
    A refrigeration cycle device in which the refrigerating machine oil flowing out from the oil return pipe of the refrigerant storage container flows into the compressor.
  19.  前記圧縮機に接続され、前記圧縮機に供給される前記冷凍機油の油量を調整するオイルレギュレータを備え、
     前記油戻し配管が前記オイルレギュレータに接続されている
     請求項18に記載の冷凍サイクル装置。
    an oil regulator connected to the compressor for adjusting the amount of the refrigerating machine oil supplied to the compressor;
    The refrigeration cycle apparatus according to claim 18, wherein the oil return pipe is connected to the oil regulator.
  20.  前記圧縮機に設けられた油面センサと、
     前記油戻し配管に設けられた電磁弁と
     を備え、
     前記油戻し配管が前記流出配管に接続されている
     請求項18に記載の冷凍サイクル装置。
    an oil level sensor provided in the compressor;
    and a solenoid valve provided in the oil return pipe,
    The refrigeration cycle apparatus according to claim 18, wherein the oil return pipe is connected to the outflow pipe.
PCT/JP2022/009404 2022-03-04 2022-03-04 Refrigerant storage container and refrigeration cycle device provided with said refrigerant storage container WO2023166705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009404 WO2023166705A1 (en) 2022-03-04 2022-03-04 Refrigerant storage container and refrigeration cycle device provided with said refrigerant storage container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009404 WO2023166705A1 (en) 2022-03-04 2022-03-04 Refrigerant storage container and refrigeration cycle device provided with said refrigerant storage container

Publications (1)

Publication Number Publication Date
WO2023166705A1 true WO2023166705A1 (en) 2023-09-07

Family

ID=87883476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009404 WO2023166705A1 (en) 2022-03-04 2022-03-04 Refrigerant storage container and refrigeration cycle device provided with said refrigerant storage container

Country Status (1)

Country Link
WO (1) WO2023166705A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182136A (en) * 1977-12-22 1980-01-08 Tecumseh Products Company Suction accumulator
JPS6392167U (en) * 1986-12-05 1988-06-15
JPH10170078A (en) * 1996-12-05 1998-06-26 Mitsubishi Electric Corp Freezer device
JP2004317115A (en) * 2003-04-02 2004-11-11 Daikin Ind Ltd Refrigerating apparatus
JP2005127593A (en) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd Accumulator
JP2006125744A (en) * 2004-10-29 2006-05-18 Tgk Co Ltd Refrigerating cycle, and accumulator
JP2007139250A (en) * 2005-11-16 2007-06-07 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2008157504A (en) * 2006-12-21 2008-07-10 Itomic Kankyou System Co Ltd Heat pump device and accumulator for heat pump
JP2012145307A (en) * 2011-01-14 2012-08-02 Mitsubishi Electric Corp Hermetic compressor
JP2013253714A (en) * 2012-06-05 2013-12-19 Mitsubishi Electric Corp Refrigeration system
JP2016125767A (en) * 2015-01-05 2016-07-11 三菱電機株式会社 Accumulator and air conditioner
WO2020195711A1 (en) * 2019-03-22 2020-10-01 日本電気株式会社 Liquid separator, cooling system, and gas-liquid separation method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182136A (en) * 1977-12-22 1980-01-08 Tecumseh Products Company Suction accumulator
JPS6392167U (en) * 1986-12-05 1988-06-15
JPH10170078A (en) * 1996-12-05 1998-06-26 Mitsubishi Electric Corp Freezer device
JP2004317115A (en) * 2003-04-02 2004-11-11 Daikin Ind Ltd Refrigerating apparatus
JP2005127593A (en) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd Accumulator
JP2006125744A (en) * 2004-10-29 2006-05-18 Tgk Co Ltd Refrigerating cycle, and accumulator
JP2007139250A (en) * 2005-11-16 2007-06-07 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2008157504A (en) * 2006-12-21 2008-07-10 Itomic Kankyou System Co Ltd Heat pump device and accumulator for heat pump
JP2012145307A (en) * 2011-01-14 2012-08-02 Mitsubishi Electric Corp Hermetic compressor
JP2013253714A (en) * 2012-06-05 2013-12-19 Mitsubishi Electric Corp Refrigeration system
JP2016125767A (en) * 2015-01-05 2016-07-11 三菱電機株式会社 Accumulator and air conditioner
WO2020195711A1 (en) * 2019-03-22 2020-10-01 日本電気株式会社 Liquid separator, cooling system, and gas-liquid separation method

Similar Documents

Publication Publication Date Title
KR100516577B1 (en) Oil separator and outdoor unit with the oil separator
US20050178149A1 (en) Gas-liquid separator
CN107076487B (en) Oil separator
JP2008202894A (en) Oil separator
CN110542251A (en) Improved gas-liquid separator
JP4248770B2 (en) Gas-liquid separator and air conditioner using the same
WO2023166705A1 (en) Refrigerant storage container and refrigeration cycle device provided with said refrigerant storage container
JP6456089B2 (en) Oil separator and refrigeration cycle equipment
EP4151928A1 (en) Accumulator and refrigeration cycle device
KR102183547B1 (en) Oil separator
JP5072523B2 (en) Gas-liquid separator and air conditioner
CN110892213B (en) Refrigeration cycle device
JP2005233470A (en) Gas-liquid separator
WO2023007620A1 (en) Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container
WO2017085813A1 (en) Air conditioner
JP2015001367A (en) Gas-liquid separator, and air conditioner having the same mounted thereon
WO2022239211A1 (en) Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container
JP3780834B2 (en) Air conditioner
JP6827554B2 (en) Oil separator and air conditioner equipped with it
WO2023017594A1 (en) Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container
JP2008175433A (en) Gas-liquid separator for air conditioner, and air conditioner
JP2020159633A (en) Oil separation device and compressor
WO2023238234A1 (en) Heat exchanger
JP5331574B2 (en) Air conditioner
CN111256384A (en) Air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024504304

Country of ref document: JP

Kind code of ref document: A