JP5331574B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5331574B2
JP5331574B2 JP2009128180A JP2009128180A JP5331574B2 JP 5331574 B2 JP5331574 B2 JP 5331574B2 JP 2009128180 A JP2009128180 A JP 2009128180A JP 2009128180 A JP2009128180 A JP 2009128180A JP 5331574 B2 JP5331574 B2 JP 5331574B2
Authority
JP
Japan
Prior art keywords
oil
refrigerating machine
cylindrical container
gas refrigerant
machine oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009128180A
Other languages
Japanese (ja)
Other versions
JP2010276250A (en
Inventor
裕貴 古田
博之 川口
純一郎 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009128180A priority Critical patent/JP5331574B2/en
Publication of JP2010276250A publication Critical patent/JP2010276250A/en
Application granted granted Critical
Publication of JP5331574B2 publication Critical patent/JP5331574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)

Description

本発明は、空気調和機に係り、特に、複数の圧縮機の冷媒吸入管と冷媒吐出管を並列に接続して形成された冷凍サイクルを有する空気調和機に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner having a refrigeration cycle formed by connecting a refrigerant suction pipe and a refrigerant discharge pipe of a plurality of compressors in parallel.

例えば、特許文献1には、複数の室外機に設けられた各圧縮機の冷媒吸入側の配管と冷媒吐出側の配管を並列に接続して、冷凍サイクルを形成した空気調和機(以下、マルチエアコンという。)が提案されている。また、各圧縮機の冷媒吐出側の配管にオイルセパレータを設け、圧縮機から吐出されたガス冷媒中に含まれる冷凍機油をオイルセパレータで分離して圧縮機に戻すようにしている。特に、同文献によれば、各圧縮機の運転状況によってオイルセパレータから各圧縮機に戻される冷凍機油の量が不均一になるから、オイルセパレータ同士を均油管で連通し、各圧縮機に戻される冷凍機油量のバランスを保つようにしている。   For example, Patent Document 1 discloses an air conditioner (hereinafter referred to as a multi-unit) in which a refrigerant suction side pipe and a refrigerant discharge side pipe of each compressor provided in a plurality of outdoor units are connected in parallel to form a refrigeration cycle. Air conditioner) has been proposed. In addition, an oil separator is provided in the refrigerant discharge side piping of each compressor, and the refrigeration oil contained in the gas refrigerant discharged from the compressor is separated by the oil separator and returned to the compressor. In particular, according to this document, the amount of refrigerating machine oil returned from the oil separator to each compressor becomes non-uniform depending on the operating condition of each compressor, so that the oil separators are communicated with each other through an oil equalizing pipe and returned to each compressor. The balance of the amount of refrigerating machine oil is maintained.

一方、特許文献2には、空気調和機のオイルセパレータとして、圧縮機から吐出されたガス冷媒を円筒容器の内周面に沿って旋回させ、旋回流の遠心力でガス冷媒中に含まれる冷凍機油を分離するものが提案されている。そして、円筒容器の底部に貯留した冷凍機油を、円筒容器の底部に接続した戻し管を介して圧縮機に戻し、冷凍機油を分離したガス冷媒を、円筒容器の頂部から同心状に挿入した配管下端の開口から排出するようになっている。   On the other hand, in Patent Document 2, as an oil separator of an air conditioner, a gas refrigerant discharged from a compressor is swirled along an inner peripheral surface of a cylindrical container, and refrigeration contained in the gas refrigerant by a centrifugal flow centrifugal force. The thing which isolates machine oil is proposed. Then, the refrigerating machine oil stored in the bottom of the cylindrical container is returned to the compressor via a return pipe connected to the bottom of the cylindrical container, and the gas refrigerant separated from the refrigerating machine oil is inserted concentrically from the top of the cylindrical container. It discharges from the opening at the lower end.

特開平04−93561号公報Japanese Patent Laid-Open No. 04-93561 特開平05−180539号公報JP 05-180539 A

しかしながら、特許文献1は、均油管で各圧縮機に戻される冷凍機油のバランスを保っているから、均油管によって構成が複雑になり、また、各オイルセパレータが同じ高さになるよう据付ける必要があるから、据付作業が複雑になるという問題がある。   However, since Patent Document 1 maintains the balance of the refrigeration oil returned to each compressor with an oil equalizing pipe, the structure is complicated by the oil equalizing pipe, and each oil separator needs to be installed at the same height. Therefore, there is a problem that the installation work becomes complicated.

一方、特許文献2の技術は、単一の室外機にとどまり、複数の室外機を並列運転する場合については配慮されていない。例えば、特許文献1のように、オイルセパレータ同士を均油管で接続すれば、上述したように、構成及び据付作業が複雑になる。   On the other hand, the technique of Patent Document 2 is limited to a single outdoor unit, and no consideration is given to the case where a plurality of outdoor units are operated in parallel. For example, if the oil separators are connected to each other with an oil equalizing pipe as in Patent Document 1, the configuration and the installation work are complicated as described above.

本発明が解決しようとする課題は、構成及び据付作業を簡単化でき、かつ、並列運転される複数の室外機の、各圧縮機に戻す冷凍機油の量を均一化できるオイルセパレータを備えた空気調和機を提供することにある。   The problem to be solved by the present invention is that air having an oil separator that can simplify the configuration and installation work and can equalize the amount of refrigeration oil returned to each compressor of a plurality of outdoor units operated in parallel. It is to provide a harmony machine.

上記の課題を解決するため、本発明の空気調和機は、複数の圧縮機の冷媒吸入管と冷媒吐出管を並列に接続して形成された冷凍サイクルと、各圧縮機の冷媒吐出管に挿入接続されたオイルセパレータを有し、オイルセパレータは円筒容器と、円筒容器の頂部から同心状に挿入され円筒容器内に開口された内筒と、円筒容器の接線方向にガス冷媒を導入するガス冷媒入口管と、内筒の内側に連通されたガス冷媒出口管と、円筒容器内に貯留された冷凍機油を抜き出して圧縮機に戻す戻し管を有してなり、円筒容器と内筒の間隔を、ガス冷媒入口管の内径以下の大きさに形成したことを特徴とする。   In order to solve the above problems, an air conditioner according to the present invention includes a refrigeration cycle formed by connecting a refrigerant suction pipe and a refrigerant discharge pipe of a plurality of compressors in parallel, and inserted into the refrigerant discharge pipe of each compressor. The oil separator has a connected oil separator, and the oil separator introduces a gas refrigerant in a tangential direction of the cylindrical container, an inner cylinder inserted concentrically from the top of the cylindrical container and opened in the cylindrical container It has an inlet pipe, a gas refrigerant outlet pipe that communicates with the inside of the inner cylinder, and a return pipe that extracts the refrigeration oil stored in the cylindrical container and returns it to the compressor. The gas refrigerant inlet pipe is formed in a size smaller than the inner diameter.

これによれば、円筒容器と内筒の間隔をガス冷媒入口管の内径以下にすることで、円筒容器内に導入されたガス冷媒の流速をガス冷媒入口管内の流速と同等もしくはその流速以上にすることができ、冷凍機油の分離性能を高くできる。つまり、ガス冷媒を旋回させて冷凍機油を分離するオイルセパレータは、流速が大きいほど旋回力を大きくでき、分離性能を確実に向上できる。本発明に反して、円筒容器と内筒の間隔をガス冷媒入口管の内径より大きくすると、円筒容器内でガス冷媒の流速が低下して、旋回による遠心力が低下するので、冷凍機油の分離性能が低下する。   According to this, the flow rate of the gas refrigerant introduced into the cylindrical container is equal to or higher than the flow rate in the gas refrigerant inlet pipe by setting the distance between the cylindrical container and the inner cylinder to be equal to or smaller than the inner diameter of the gas refrigerant inlet pipe. The separation performance of the refrigerating machine oil can be increased. In other words, the oil separator that turns the gas refrigerant to separate the refrigerating machine oil can increase the turning force as the flow velocity increases, and can reliably improve the separation performance. Contrary to the present invention, if the interval between the cylindrical container and the inner cylinder is made larger than the inner diameter of the gas refrigerant inlet pipe, the flow rate of the gas refrigerant is reduced in the cylindrical container and the centrifugal force due to the swirling is reduced. Performance decreases.

さらに、本発明者らは、本発明のオイルセパレータにおいて、冷凍機油の液面と内筒下端との間の距離が分離性能に影響することを知見した。すなわち、冷凍機油の貯留量が増加して、冷凍機油の液面と内筒下端との距離が小さくなると、ガス冷媒の旋回時間の低下や、排出されるガス冷媒に巻き上げられた冷凍機油がガス冷媒出口管に導入されるから、冷凍機油の貯留量が多いオイルセパレータでは分離性能が低下する。特に、冷凍機油の液面が上昇して内筒下端との距離が一定値以下に低下すると、冷凍機油の分離効率が著しく低下する現象を知見した。そこで、冷凍機油の初期充填量やオイルセパレータの寸法などを調整して、冷凍機油の液面の高さ(内筒下端との距離)を設定高さ以下にすることで、オイルセパレータのみで各圧縮機に戻される冷凍機油の量を均一化できることを見いだした。   Furthermore, the present inventors have found that in the oil separator of the present invention, the distance between the liquid level of the refrigerating machine oil and the lower end of the inner cylinder affects the separation performance. That is, when the amount of refrigerating machine oil storage increases and the distance between the refrigerating machine oil level and the lower end of the inner cylinder decreases, the swirling time of the gas refrigerant decreases and the refrigerating machine oil wound up by the discharged gas refrigerant is gas. Since it is introduced into the refrigerant outlet pipe, an oil separator with a large amount of refrigerating machine oil has poor separation performance. In particular, it has been found that when the liquid level of the refrigerating machine oil rises and the distance from the lower end of the inner cylinder falls below a certain value, the refrigerating machine oil separation efficiency is remarkably lowered. Therefore, by adjusting the initial filling amount of the refrigerating machine oil, the dimensions of the oil separator, etc., and making the liquid level of the refrigerating machine oil (distance from the lower end of the inner cylinder) below the set height, It was found that the amount of refrigeration oil returned to the compressor can be made uniform.

また、各圧縮機への負荷が異なると、各オイルセパレータで分離されて貯留される冷凍機油の量が変化して、液面が設定高さを越えることが考えられる。しかし、冷凍機油の貯留量が多いオイルセパレータでは冷凍機油の分離性能が低下し、分離されなかった冷凍機油はガス冷媒出口管から室外熱交換器を介して又は直接並列接続された室内機に導入される。各オイルセパレータから室内機に導入された液冷媒又はガス冷媒中の冷凍機油の含有率は、混合により均一化されて各圧縮機に戻り、再び各オイルセパレータに導入される。そして、冷凍機油の貯留量が少ないオイルセパレータは分離性能が高いので、より多くの冷凍機油を分離することになる。このようにして、運転を維持するうちに、各オイルセパレータの冷凍機油の貯留量が均一になる。これによれば、均油管を用いることなくオイルセパレータのみで、各圧縮機に戻される冷凍機油の量を均一化できるから、並列運転される複数の室外機を備えた空気調和機の構成及び据付作業を簡単化でできる。   Also, if the load on each compressor is different, the amount of refrigerating machine oil separated and stored by each oil separator may change, and the liquid level may exceed the set height. However, oil separators with a large amount of refrigerating machine oil have reduced refrigerating machine oil separation performance, and refrigerating machine oil that has not been separated is introduced from the gas refrigerant outlet pipe through the outdoor heat exchanger or directly into the indoor units connected in parallel. Is done. The content of the refrigeration oil in the liquid refrigerant or gas refrigerant introduced from each oil separator into the indoor unit is made uniform by mixing, returns to each compressor, and is introduced again into each oil separator. And since the oil separator with little storage amount of refrigerating machine oil has high separation performance, more refrigerating machine oil will be separated. In this way, the amount of refrigerating machine oil stored in each oil separator becomes uniform while the operation is maintained. According to this, since the amount of refrigerating machine oil returned to each compressor can be made uniform with only an oil separator without using an oil equalizing pipe, the configuration and installation of an air conditioner having a plurality of outdoor units operated in parallel Work can be simplified.

なお、各オイルセパレータで貯留できる最大油量を冷凍サイクル全体が保有する冷凍機油の量に基づいて予め決めておき、各オイルセパレータの大きさ及び冷凍機油の設定液面高さ(内筒下端との距離)を決める。この設定液面(設定油面)高さは、オイルセパレータでの冷凍機油の分離効率が、例えば、85%以上で且つ100%未満となるように決められ、この場合、分離効率が85%まで低下するときの液面高さまでの貯油量を貯留できる最大油量として設計する。設定液面高さは、オイルセパレータでの冷凍機油の分離性能が著しく低下する液面高さとなるよう実験して求めることができる。   The maximum amount of oil that can be stored in each oil separator is determined in advance based on the amount of refrigerating machine oil that the entire refrigeration cycle holds, and the size of each oil separator and the set liquid level height of the refrigerating machine oil (with the lower end of the inner cylinder and The distance). This set liquid level (set oil level) height is determined so that the separation efficiency of the refrigerating machine oil in the oil separator is, for example, 85% or more and less than 100%. In this case, the separation efficiency is up to 85%. Designed as the maximum amount of oil that can be stored up to the liquid level when it drops. The set liquid level can be obtained by experimentation so that the separation level of the refrigerating machine oil in the oil separator becomes a liquid level that significantly decreases.

また、全てのオイルセパレータを同一形状にすることも可能になる。オイルセパレータを同一形状にした場合には、オイルセパレータの製造設計が容易になり、オイルセパレータのコストを低減できる。   It is also possible to make all the oil separators have the same shape. When the oil separator has the same shape, the manufacturing design of the oil separator is facilitated, and the cost of the oil separator can be reduced.

本発明によれば、構成及び据付作業を簡単化でき、かつ、並列運転される複数の室外機の、各圧縮機に戻す冷凍機油の量を均一化できるオイルセパレータを備えた空気調和機を提供できる。   According to the present invention, there is provided an air conditioner including an oil separator that can simplify the configuration and installation work, and can equalize the amount of refrigerating machine oil returned to each compressor of a plurality of outdoor units operated in parallel. it can.

本発明の一実施形態のオイルセパレータの構成図である。It is a block diagram of the oil separator of one Embodiment of this invention. 本発明の一実施形態の冷凍サイクルの系統図である。It is a systematic diagram of the refrigerating cycle of one embodiment of the present invention. 図1のガス冷媒入口管の位置の水平断面図である。It is a horizontal sectional view of the position of the gas refrigerant inlet pipe of FIG. 冷凍機油の液面高さと内筒下端までの距離に対するオイルセパレータの分離性能を示す図である。It is a figure which shows the isolation | separation performance of the oil separator with respect to the liquid level height of refrigerator oil, and the distance to an inner cylinder lower end. オイルセパレータ内の冷凍機油が偏った場合の冷凍機油の流れを示す図である。It is a figure which shows the flow of refrigerating machine oil when the refrigerating machine oil in an oil separator is biased.

以下、本発明を実施の形態に基づいて説明する。図1に、本発明の一実施形態の空気調和機に備えられるオイルセパレータの構成図を示し、図2に、本発明の一実施形態の空気調和機の冷凍サイクルの系統図を示す。図示のように本実施形態の空気調和機は、複数台(例えば、図示では2台)の室外機と、複数台(例えば、図示では3台)の室内機で構成されるマルチエアコンであり、各圧縮機1の冷媒吸入管2と冷媒吐出管3が並列に接続されて冷凍サイクルが形成されている。   Hereinafter, the present invention will be described based on embodiments. FIG. 1 shows a configuration diagram of an oil separator provided in an air conditioner according to an embodiment of the present invention, and FIG. 2 shows a system diagram of a refrigeration cycle of the air conditioner according to an embodiment of the present invention. As shown in the figure, the air conditioner of the present embodiment is a multi air conditioner composed of a plurality of (for example, two in the figure) outdoor units and a plurality of (for example, three in the figure) indoor units, The refrigerant suction pipe 2 and the refrigerant discharge pipe 3 of each compressor 1 are connected in parallel to form a refrigeration cycle.

図2中の破線で囲まれた各室外機の筐体内には、圧縮機1、アキュムレータ7、オイルセパレータ9、四方弁11、室外熱交換器13、室外膨張弁15が設けられている。圧縮機1は、例えば、容量可変型の圧縮機1であり、求められる空調能力などに応じて圧縮室の容量を増減できるようになっている。圧縮機1には、冷媒吸入管2、冷媒吐出管3、配管17が接続されている。配管17の他端は冷媒吐出管3に接続され、圧縮機1内の冷凍機油が設定範囲を越えた場合に、圧縮機1内の冷凍機油を冷媒吐出管3に排出するようになっている。冷媒吸入管2にはアキュムレータ7が挿入接続され、ガス冷媒中に液冷媒が含まれている場合に、ガス冷媒から液冷媒を分離して液冷媒が圧縮機1に浸入しにくいようになっている。圧縮機1の冷媒吐出管3には、オイルセパレータ9が挿入接続され、ガス冷媒中に含まれる冷凍機油を分離して貯留し、貯留した冷凍機油を圧縮機1に戻すようになっている。オイルセパレータ9の後流側には、四方弁11が設けられている。四方弁11は、冷房運転時と暖房運転時で冷媒の流路を変えるようになっている。なお、図2の四方弁11の位置は暖房運転時の流路を示しているが、冷房運転時は四方弁11を時計回りに90°回転させた位置に調整される。   A compressor 1, an accumulator 7, an oil separator 9, a four-way valve 11, an outdoor heat exchanger 13, and an outdoor expansion valve 15 are provided in the casing of each outdoor unit surrounded by a broken line in FIG. The compressor 1 is, for example, a variable capacity compressor 1, and the capacity of the compression chamber can be increased or decreased according to the required air conditioning capacity. A refrigerant suction pipe 2, a refrigerant discharge pipe 3, and a pipe 17 are connected to the compressor 1. The other end of the pipe 17 is connected to the refrigerant discharge pipe 3, and when the refrigeration oil in the compressor 1 exceeds the set range, the refrigeration oil in the compressor 1 is discharged to the refrigerant discharge pipe 3. . When the accumulator 7 is inserted and connected to the refrigerant suction pipe 2 and the liquid refrigerant is contained in the gas refrigerant, the liquid refrigerant is separated from the gas refrigerant so that the liquid refrigerant does not easily enter the compressor 1. Yes. An oil separator 9 is inserted and connected to the refrigerant discharge pipe 3 of the compressor 1 so that the refrigeration oil contained in the gas refrigerant is separated and stored, and the stored refrigeration oil is returned to the compressor 1. A four-way valve 11 is provided on the downstream side of the oil separator 9. The four-way valve 11 changes the refrigerant flow path during cooling operation and heating operation. The position of the four-way valve 11 in FIG. 2 indicates the flow path during the heating operation, but during the cooling operation, the four-way valve 11 is adjusted to a position rotated 90 ° clockwise.

室外熱交換器13には、冷媒を通流させる伝熱管が設けられ、図示していないファンで外気を伝熱管に向けて送風し、冷媒と外気を熱交換するようになっている。室外熱交換器13には、室外熱交換器13に導入される冷媒を減圧する室外膨張弁15が備えられ、図示していない開度制御手段により室外膨張弁15を設定開度に制御するようになっている。   The outdoor heat exchanger 13 is provided with a heat transfer tube through which the refrigerant flows, and the outside air is blown toward the heat transfer tube by a fan (not shown) to exchange heat between the refrigerant and the outside air. The outdoor heat exchanger 13 is provided with an outdoor expansion valve 15 that depressurizes the refrigerant introduced into the outdoor heat exchanger 13, and the outdoor expansion valve 15 is controlled to a set opening by an opening control means (not shown). It has become.

一方、図2中の破線で囲まれた各室内機の筐体内には、室内熱交換器19と室内膨張弁21が設けられている。室内熱交換器19には、冷媒を通流させる伝熱管が設けられ、図示していないファンで室内の空気を吸込んで伝熱管を通過させ、冷媒と室内の空気を熱交換するようになっている。室内熱交換器19には、室内熱交換器19に導入される冷媒を減圧する室内膨張弁21が備えられ、図示していない開度制御手段により室内膨張弁21を設定開度に制御するようになっている。   On the other hand, an indoor heat exchanger 19 and an indoor expansion valve 21 are provided in the casing of each indoor unit surrounded by a broken line in FIG. The indoor heat exchanger 19 is provided with a heat transfer tube through which the refrigerant flows, and the indoor air is sucked through a heat transfer tube by a fan (not shown) to exchange heat between the refrigerant and the indoor air. Yes. The indoor heat exchanger 19 is provided with an indoor expansion valve 21 that depressurizes the refrigerant introduced into the indoor heat exchanger 19, and the indoor expansion valve 21 is controlled to a set opening by an opening control means (not shown). It has become.

次に、本実施形態の特徴構成を説明する。各室外機に設けられている各オイルセパレータ9は、円筒容器22と、円筒容器22の頂部から同心状に挿入され円筒容器22内に開口された内筒23が備えられている。円筒容器22には、ガス冷媒を円筒容器22内に導入するガス冷媒入口管27が接続されている。ガス冷媒入口管27の一端は円筒容器22の接線方向から接続され、他端は冷媒吐出管3と連通するようになっている。円筒容器22の底部には、円筒容器22内に貯留された冷凍機油を抜き出して圧縮機1に戻す戻し管29が接続されている。戻し管29の他端は、圧縮機1の吸入側に接続されている。戻し管29の管路には、電磁弁31とキャピラリーチューブ33が備えられ、運転状況に応じて冷凍機油を圧縮機1に戻すようになっている。電磁弁31の開閉は、例えば、空気調和機の運転中は開、停止中を閉となるよう図示していない制御手段で制御されている。内筒23の上端には、内筒23よりも管径の小さなガス冷媒出口管35が接続されている。ガス冷媒出口管35は、内筒23の内側に連通するようになっている。円筒容器22と内筒23の間隔は、図3に示すように間隔bがガス冷媒入口管27の内径a以下の大きさになるよう形成されている。なお、内筒23の長さdは分離性能などに応じて適宜選択でき、例えば、円筒容器22の上端からガス冷媒入口管27の中心までの距離eよりも大きくできる。   Next, the characteristic configuration of the present embodiment will be described. Each oil separator 9 provided in each outdoor unit includes a cylindrical container 22 and an inner cylinder 23 that is inserted concentrically from the top of the cylindrical container 22 and opened into the cylindrical container 22. A gas refrigerant inlet pipe 27 that introduces a gas refrigerant into the cylindrical container 22 is connected to the cylindrical container 22. One end of the gas refrigerant inlet pipe 27 is connected from the tangential direction of the cylindrical container 22, and the other end communicates with the refrigerant discharge pipe 3. A return pipe 29 for extracting the refrigerating machine oil stored in the cylindrical container 22 and returning it to the compressor 1 is connected to the bottom of the cylindrical container 22. The other end of the return pipe 29 is connected to the suction side of the compressor 1. The return pipe 29 is provided with a solenoid valve 31 and a capillary tube 33 so that the refrigeration oil is returned to the compressor 1 in accordance with the operation status. The opening and closing of the electromagnetic valve 31 is controlled by a control means (not shown) so that, for example, the air conditioner is opened during operation and closed during operation. A gas refrigerant outlet pipe 35 having a smaller diameter than the inner cylinder 23 is connected to the upper end of the inner cylinder 23. The gas refrigerant outlet pipe 35 communicates with the inside of the inner cylinder 23. The interval between the cylindrical container 22 and the inner cylinder 23 is formed such that the interval b is equal to or smaller than the inner diameter a of the gas refrigerant inlet pipe 27 as shown in FIG. The length d of the inner cylinder 23 can be appropriately selected according to the separation performance and the like, and can be larger than the distance e from the upper end of the cylindrical container 22 to the center of the gas refrigerant inlet pipe 27, for example.

このように構成される本実施形態の動作を暖房運転を例として説明する。各圧縮機1で圧縮したガス冷媒は、冷媒吐出管3を介して各オイルセパレータ9に導入されガス冷媒中に含まれる冷凍機油が分離される。冷凍機油が分離されたガス冷媒はオイルセパレータ9から排出され、四方弁11により弁37を通過して直接室内熱交換器19に導かれる。室内熱交換器19に導入されたガス冷媒は凝縮し、室内の空気に潜熱を放出して液冷媒となる。室内熱交換器19から排出された液冷媒は弁39を通過して、設定開度に絞られている室外膨張弁15で減圧され、室外熱交換器13に導入される。室外熱交換器13に導入された液冷媒は、外気と熱交換することで蒸発してガス冷媒となり、四方弁11を介してアキュムレータ7に導入される。アキュムレータ7に導入されたガス冷媒は、未蒸発の液冷媒が除去された後、冷媒吸入管2を介して圧縮機1に導入され圧縮される。なお、空気調和機の停止時は、弁37、39を閉じ、室外機と室内機間の冷媒の通流を阻止する。   The operation of the present embodiment configured as described above will be described by taking heating operation as an example. The gas refrigerant compressed by each compressor 1 is introduced into each oil separator 9 through the refrigerant discharge pipe 3, and the refrigerating machine oil contained in the gas refrigerant is separated. The gas refrigerant from which the refrigerating machine oil is separated is discharged from the oil separator 9, passes through the valve 37 by the four-way valve 11, and is directly guided to the indoor heat exchanger 19. The gas refrigerant introduced into the indoor heat exchanger 19 condenses and releases latent heat to the indoor air to become a liquid refrigerant. The liquid refrigerant discharged from the indoor heat exchanger 19 passes through the valve 39, is decompressed by the outdoor expansion valve 15 that is throttled to the set opening degree, and is introduced into the outdoor heat exchanger 13. The liquid refrigerant introduced into the outdoor heat exchanger 13 evaporates by exchanging heat with the outside air to become a gas refrigerant, and is introduced into the accumulator 7 via the four-way valve 11. The gas refrigerant introduced into the accumulator 7 is introduced into the compressor 1 through the refrigerant suction pipe 2 and compressed after the unevaporated liquid refrigerant is removed. When the air conditioner is stopped, the valves 37 and 39 are closed to prevent the refrigerant from flowing between the outdoor unit and the indoor unit.

次に、本実施形態の特徴動作を説明する。圧縮機1から吐出されたガス冷媒は、ガス冷媒入口管27を介して円筒容器22の接線方向から円筒容器22内に導入される。この際、円筒容器22と内筒の間隔をガス冷媒入口管27の内径以下であるから、円筒容器22内に導入されたガス冷媒の流速をガス冷媒入口管27内の流速と同等もしくはその流速以上にすることができる。円筒容器22に導入されたガス冷媒は、円筒容器22と内筒23の間隔に沿って旋回する。この旋回の遠心力によりガス冷媒中の液状の冷凍機油が分離され、円筒容器22の内周面に付着し流下して円筒容器22の底部に貯留する。冷凍機油が分離されたガス冷媒は、ガス冷媒出口管35から排出されて室内熱交換器19に導かれる。円筒容器22の底部に貯留された冷凍機油は、適宜電磁弁31を開けることで戻し管29を介して圧縮機1に戻される。通常電磁弁31は、圧縮機の運転中は開、停止中は閉とされている。また、各オイルセパレータ9に貯留される冷凍機油の量が一定範囲になるよう、冷凍機油の初期充填量やオイルセパレータ9の寸法などを調整しておくと良い。なお、圧縮機1の吸入側とオイルセパレータ9内の差圧により分離された冷凍機油は圧縮機1に戻される。そして、冷凍機油の戻し量はキャピラリーチューブ33での抵抗の大きさで決定される。キャピラリーチューブ33の抵抗は、そのサイズ(通路面積)及び長さに相関して変わるから、差圧を考慮して決められる。オイルセパレータ9内には冷凍機油が常時貯留されている状態が維持されるよう、キャピラリーチューブ33を設計する。   Next, the characteristic operation of this embodiment will be described. The gas refrigerant discharged from the compressor 1 is introduced into the cylindrical container 22 from the tangential direction of the cylindrical container 22 through the gas refrigerant inlet pipe 27. At this time, since the distance between the cylindrical container 22 and the inner cylinder is equal to or smaller than the inner diameter of the gas refrigerant inlet pipe 27, the flow rate of the gas refrigerant introduced into the cylindrical container 22 is equal to or equal to the flow rate in the gas refrigerant inlet pipe 27. This can be done. The gas refrigerant introduced into the cylindrical container 22 turns along the interval between the cylindrical container 22 and the inner cylinder 23. The refrigerating machine oil in the gas refrigerant is separated by the swirling centrifugal force, adheres to the inner peripheral surface of the cylindrical container 22, flows down, and is stored at the bottom of the cylindrical container 22. The gas refrigerant from which the refrigerating machine oil has been separated is discharged from the gas refrigerant outlet pipe 35 and led to the indoor heat exchanger 19. The refrigerating machine oil stored at the bottom of the cylindrical container 22 is returned to the compressor 1 through the return pipe 29 by opening the electromagnetic valve 31 as appropriate. Normally, the electromagnetic valve 31 is open during operation of the compressor and closed during stoppage. In addition, the initial filling amount of the refrigerating machine oil, the dimensions of the oil separator 9 and the like may be adjusted so that the amount of the refrigerating machine oil stored in each oil separator 9 falls within a certain range. The refrigerating machine oil separated by the differential pressure in the suction side of the compressor 1 and the oil separator 9 is returned to the compressor 1. The amount of refrigerating machine oil returned is determined by the magnitude of the resistance in the capillary tube 33. Since the resistance of the capillary tube 33 changes in correlation with the size (passage area) and the length thereof, it is determined in consideration of the differential pressure. The capillary tube 33 is designed so that the state in which the refrigerating machine oil is always stored in the oil separator 9 is maintained.

ここで、図4を用いて各圧縮機1に戻される冷凍機油の量を各オイルセパレータ9のみで均一化(均油)できる原理を説明する。図4の縦軸にオイルセパレータ9の分離性能(分離効率)を示し、横軸に冷凍機油の液面と内筒23下端との距離を示す。分離性能とは、言い換えるとオイルセパレータ9で分離されない冷凍機油の量であり、例えば、分離性能が高いとは、オイルセパレータ9で冷凍機油が多く分離されることを意味し、分離性能が低いとは、オイルセパレータ9で冷凍機油が殆ど分離されないことを意味する。図示のとおり、分離性能は円筒容器22内に貯留された冷凍機油の液面と内筒23下端との距離cに相関する。つまり、円筒容器22内の冷凍機油の貯留量が増加して、冷凍機油の液面と内筒23の下端との距離が小さくなると分離性能が低下する。さらに、冷凍機油の液面と内筒23の下端との距離が一定値以下になると、分離性能か急激に低下する。つまり、冷凍機油の液面と内筒23の下端との距離cが一定値以下(分離限界)になると、冷凍機油を分離できる領域(分離領域)から冷凍機油を殆ど分離できない領域(分離不可領域)になる。この特性を利用し、各オイルセパレータ9の冷凍機油の液面と内筒22下端との距離cが一定値以下になると分離限界に達するように、冷凍機油の初期充填量やオイルセパレータの寸法などを調整する。これにより、各オイルセパレータ9内の冷凍機油の分離性能を一定範囲(例えば、冷凍機油が貯留されていないオイルセパレータ9の分離性能を100%として、85%以上で且つ100%未満の範囲)にでき、各オイルセパレータ9の冷凍機油の貯留量を略均一化できる。なお、各オイルセパレータ9の設計ポイントは、同一である必要はなく、例えば、分離性能が85%以上で且つ100%未満の範囲で適宜設定して良い。例えば、分離性能が85%より低下すると、オイルセパレータ9の分離性能が急激に低下し、オイルセパレータ9からガス冷媒出口管35を介して冷凍サイクルに冷凍機油が放出されるように分離限界を設定することができる。   Here, the principle that the amount of refrigerating machine oil returned to each compressor 1 can be made uniform (equalized oil) only by each oil separator 9 will be described with reference to FIG. The vertical axis of FIG. 4 shows the separation performance (separation efficiency) of the oil separator 9, and the horizontal axis shows the distance between the liquid level of the refrigerator oil and the lower end of the inner cylinder 23. In other words, the separation performance is the amount of refrigerating machine oil that is not separated by the oil separator 9. For example, high separation performance means that a large amount of refrigerating machine oil is separated by the oil separator 9, and the separation performance is low. Means that the oil separator 9 hardly separates the refrigerating machine oil. As illustrated, the separation performance correlates with the distance c between the liquid level of the refrigerating machine oil stored in the cylindrical container 22 and the lower end of the inner cylinder 23. That is, when the amount of refrigerating machine oil stored in the cylindrical container 22 increases and the distance between the refrigerating machine oil level and the lower end of the inner cylinder 23 decreases, the separation performance decreases. Further, when the distance between the liquid level of the refrigerating machine oil and the lower end of the inner cylinder 23 becomes a certain value or less, the separation performance is rapidly lowered. That is, when the distance c between the liquid level of the refrigerating machine oil and the lower end of the inner cylinder 23 becomes a certain value or less (separation limit), the area where the refrigerating machine oil can hardly be separated from the area where the refrigerating machine oil can be separated (separation area) (non-separable area). )become. Utilizing this characteristic, the initial filling amount of the refrigerating machine oil, the size of the oil separator, etc. so that the separation limit is reached when the distance c between the liquid level of the refrigerating machine oil of each oil separator 9 and the lower end of the inner cylinder 22 becomes a certain value or less. Adjust. Thereby, the separation performance of the refrigerating machine oil in each oil separator 9 is in a certain range (for example, the separation performance of the oil separator 9 in which the refrigerating machine oil is not stored is 100%, a range of 85% or more and less than 100%). The amount of refrigerating machine oil stored in each oil separator 9 can be made substantially uniform. In addition, the design point of each oil separator 9 does not need to be the same, For example, you may set suitably in the range whose separation performance is 85% or more and less than 100%. For example, when the separation performance falls below 85%, the separation performance of the oil separator 9 suddenly drops, and the separation limit is set so that the refrigeration oil is discharged from the oil separator 9 to the refrigeration cycle via the gas refrigerant outlet pipe 35. can do.

また、空気調和機の運転状況などに応じて圧縮機1への負荷が異なると、各オイルセパレータ9で貯留される冷凍機油の量が変化する場合がある。例えば、図5に示すように室外機40aのオイルセパレータ9aの液面が分離限界を越えることが考えられる。しかし、オイルセパレータ9aは、冷凍機油の液面高さが分離限界を超えているから、分離されなかった冷凍機油やガス冷媒に巻き上げられ貯留されている冷凍機油がガス冷媒出口管35に導入される。そして、冷凍機油を多く含むガス冷媒が室外機40b、cから排出されたガス冷媒と混合して均一化し、ガス冷媒に含まれる冷凍機油の量が増加する。このガス冷媒が各室内機を通過して各室外機40a、b、cの各オイルセパレータ9a、b、cに導入される。分離性能が低いオイルセパレータ9aでは冷凍機油が殆ど分離されず、分離性能が高いオイルセパレータ9b、cで冷凍機油が多く分離される。このように、運転を維持するうちにオイルセパレータ9a、b、c間の冷凍機油の貯留量が均一化する。   Further, when the load on the compressor 1 varies depending on the operating condition of the air conditioner, the amount of refrigerating machine oil stored in each oil separator 9 may change. For example, as shown in FIG. 5, the liquid level of the oil separator 9a of the outdoor unit 40a may exceed the separation limit. However, in the oil separator 9a, since the liquid level height of the refrigerating machine oil exceeds the separation limit, the refrigerating machine oil wound up and stored in the refrigerating machine oil or the gas refrigerant that has not been separated is introduced into the gas refrigerant outlet pipe 35. The Then, the gas refrigerant containing a large amount of refrigerating machine oil is mixed with the gas refrigerant discharged from the outdoor units 40b and 40c to be uniform, and the amount of refrigerating machine oil contained in the gas refrigerant increases. This gas refrigerant passes through each indoor unit and is introduced into each oil separator 9a, b, c of each outdoor unit 40a, b, c. Refrigerating machine oil is hardly separated by the oil separator 9a having a low separation performance, and a large amount of refrigerating machine oil is separated by the oil separators 9b and 9c having a high separation performance. In this way, the amount of refrigerating machine oil stored between the oil separators 9a, 9b, 9c is made uniform while the operation is maintained.

これによれば、円筒容器22内に導入されたガス冷媒の流速をガス冷媒入口管27内の流速と同等もしくはその流速以上にすることができるから、旋回による遠心力を大きくでき、オイルセパレータ9の分離性能を確実に向上できる。   According to this, since the flow rate of the gas refrigerant introduced into the cylindrical container 22 can be made equal to or higher than the flow rate in the gas refrigerant inlet pipe 27, the centrifugal force due to the swirling can be increased, and the oil separator 9 The separation performance can be improved with certainty.

さらに、本実施形態のオイルセパレータ9において、冷凍機油の初期充填量やオイルセパレータ9の寸法などを調整し、冷凍機油の液面の高さ(内筒23下端との距離c)を設定高さ以下にすることで、オイルセパレータ9のみで各圧縮機に戻される冷凍機油の量を均一化できる。その結果、均油管を用いる必要がないから、並列運転される複数の室外機を備えた空気調和機の構成及び据付作業を簡単化できる。さらに、各圧縮機1に戻す冷凍機油の量を均一化することで、圧縮機1に冷凍機油不足が生じることを抑制できるから、空気調和機を安定運転できる。   Further, in the oil separator 9 of the present embodiment, the initial filling amount of the refrigerating machine oil, the dimensions of the oil separator 9 and the like are adjusted, and the liquid level of the refrigerating machine oil (distance c from the lower end of the inner cylinder 23) is set to the set height. By making it below, the amount of refrigerating machine oil returned to each compressor can be made uniform only by the oil separator 9. As a result, since it is not necessary to use an oil equalizing pipe, the configuration and installation work of an air conditioner including a plurality of outdoor units operated in parallel can be simplified. Furthermore, since the amount of refrigeration oil returned to each compressor 1 can be made uniform, it is possible to suppress the occurrence of a shortage of refrigeration oil in the compressor 1, so that the air conditioner can be stably operated.

また、圧縮機の周波数を変動させることなく冷凍機油を均一化できることから、消費電力が過度に増加しない空気調和装置を得ることができる。さらに、冷凍機油を高圧である圧縮機1の吐出側に貯留して、圧縮機1の高速起動による冷媒吸入管2側の減圧の影響を受けないようにしたから、減圧沸騰によるオイルフォーミングを抑制できる。また、膨張弁の開度を決定する制御定数(指令から動作までの時間)は、冷媒と冷凍機油の溶解度で決定される。そして、冷媒と冷凍機油の溶解度は、圧力が低くなると変化するから、高圧になっている圧縮機1の吐出側にオイルセパレータ9を配置して冷凍機油を貯留することで、制御定数変更の必要が無くなり、空気調和機の信頼性を向上できる。   Moreover, since the refrigeration oil can be made uniform without changing the frequency of the compressor, an air conditioner in which power consumption does not increase excessively can be obtained. Further, since the refrigeration oil is stored on the discharge side of the high-pressure compressor 1 so as not to be affected by the pressure reduction on the refrigerant suction pipe 2 side due to the high-speed start-up of the compressor 1, oil forming due to reduced-pressure boiling is suppressed. it can. Further, the control constant (time from command to operation) for determining the opening degree of the expansion valve is determined by the solubility of the refrigerant and the refrigerating machine oil. Since the solubility of the refrigerant and the refrigerating machine oil changes as the pressure decreases, it is necessary to change the control constant by disposing the oil separator 9 on the discharge side of the high-pressure compressor 1 and storing the refrigerating machine oil. And the reliability of the air conditioner can be improved.

なお、本実施形態は暖房運転を例として説明したが、四方弁11を切り換えて冷媒の通流方向を暖房運転と逆にすることで冷房運転できることは言うまでもない。   In addition, although this embodiment demonstrated as an example of heating operation, it cannot be overemphasized that cooling operation can be performed by switching the four-way valve 11 and making the flow direction of a refrigerant | coolant reverse with heating operation.

また、各オイルセパレータ9は、冷凍機油の液面高さと内筒23下端との距離と分離性能が相関するものを用いることができればよく、特に、同一形状のオイルセパレータを用いることで、オイルセパレータの製造設計が容易になり、オイルセパレータのコストを低減できる。また、各オイルセパレータ9の外径を同一にして、圧縮機1又は室外機の容量に応じて全長のみを変えることで、各圧縮機1に戻される冷凍機油の量を略均一化できる。   Further, each oil separator 9 may be any oil separator whose liquid level height and the distance between the lower end of the inner cylinder 23 and the separation performance can be correlated. In particular, by using an oil separator having the same shape, the oil separator The manufacturing design can be facilitated, and the cost of the oil separator can be reduced. Further, by making the outer diameter of each oil separator 9 the same and changing only the overall length according to the capacity of the compressor 1 or the outdoor unit, the amount of refrigerating machine oil returned to each compressor 1 can be made substantially uniform.

1 圧縮機
2 冷媒吸入管
3 冷媒吐出管
9 オイルセパレータ
22 円筒容器
23 内筒
27 ガス冷媒入口管
29 戻し管
35 ガス冷媒出口管
DESCRIPTION OF SYMBOLS 1 Compressor 2 Refrigerant suction pipe 3 Refrigerant discharge pipe 9 Oil separator 22 Cylindrical container 23 Inner cylinder 27 Gas refrigerant inlet pipe 29 Return pipe 35 Gas refrigerant outlet pipe

Claims (1)

複数の圧縮機の冷媒吸入管と冷媒吐出管を並列に接続して形成された冷凍サイクルと、前記各圧縮機の前記冷媒吐出管に挿入接続されたオイルセパレータを有し、該オイルセパレータは円筒容器と、該円筒容器の頂部から同心状に挿入され前記円筒容器内に開口された内筒と、前記円筒容器の接線方向にガス冷媒を導入するガス冷媒入口管と、前記内筒の内側に連通されたガス冷媒出口管と、前記円筒容器内に貯留された冷凍機油を抜き出して前記圧縮機に戻す戻し管を有してなり、前記円筒容器と前記内筒との間隔は、前記ガス冷媒入口管の内径以下の大きさに形成され、前記内筒の下端から前記円筒容器の底部に貯留される冷凍機油の液面までの距離が小さくなって冷凍機油を分離できない分離限界に達する液面を、前記冷凍サイクル全体が保有する冷凍機油の量に基づいて求めた各オイルセパレータの最大油量の液面としてオイルセパレータの寸法を決定してなる空気調和機。 A refrigerating cycle formed by connecting a refrigerant suction pipe and a refrigerant discharge pipe of a plurality of compressors in parallel; and an oil separator inserted and connected to the refrigerant discharge pipe of each of the compressors. A container, an inner cylinder inserted concentrically from the top of the cylindrical container and opened in the cylindrical container, a gas refrigerant inlet pipe for introducing a gas refrigerant in a tangential direction of the cylindrical container, and an inner side of the inner cylinder The gas refrigerant outlet pipe communicated, and a return pipe for extracting the refrigerating machine oil stored in the cylindrical container and returning it to the compressor, the interval between the cylindrical container and the inner cylinder being the gas refrigerant A liquid level that is formed in a size that is equal to or smaller than the inner diameter of the inlet pipe and that reaches a separation limit where the distance from the lower end of the inner cylinder to the liquid level of the refrigerating machine oil stored in the bottom of the cylindrical container becomes small and the refrigerating machine oil cannot be separated The entire refrigeration cycle There air conditioner comprising determining the size of the oil separator as the liquid level of the maximum oil quantity of each oil separator, which has been calculated based on the amount of the refrigeration oil held.
JP2009128180A 2009-05-27 2009-05-27 Air conditioner Active JP5331574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009128180A JP5331574B2 (en) 2009-05-27 2009-05-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009128180A JP5331574B2 (en) 2009-05-27 2009-05-27 Air conditioner

Publications (2)

Publication Number Publication Date
JP2010276250A JP2010276250A (en) 2010-12-09
JP5331574B2 true JP5331574B2 (en) 2013-10-30

Family

ID=43423375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009128180A Active JP5331574B2 (en) 2009-05-27 2009-05-27 Air conditioner

Country Status (1)

Country Link
JP (1) JP5331574B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105299979B (en) * 2015-10-15 2017-09-12 海信(山东)空调有限公司 Compressor method for controlling oil return, oil return apparatus and air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249431A (en) * 1999-02-25 2000-09-14 Mitsubishi Heavy Ind Ltd Oil separator
JP2000028215A (en) * 1999-05-19 2000-01-28 Hitachi Ltd Multi-air conditioner
JP2004036583A (en) * 2002-07-05 2004-02-05 Denso Corp Compressor
JP2005283067A (en) * 2004-03-31 2005-10-13 Mitsubishi Heavy Ind Ltd Air conditioner
JP2009109102A (en) * 2007-10-31 2009-05-21 Nippon Soken Inc Oil separator and refrigerant compressor provided with it

Also Published As

Publication number Publication date
JP2010276250A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP4404148B2 (en) Economizer
JP4715561B2 (en) Refrigeration equipment
EP2869002B1 (en) Air conditioner and method of controlling the same
KR20130059450A (en) Refrigeration circuit
KR100857794B1 (en) Air-conditioning system and Controlling Method for the same
CN101443615A (en) Refrigerating system with economizing cycle
JP2007155230A (en) Air conditioner
US9625181B2 (en) Refrigerator cycle system and refrigerator having the same including a gas-liquid separator and a liquid refrigerant remover
JP2013257121A (en) Refrigerating device
JP5696084B2 (en) Air conditioner
EP2801770B1 (en) Refrigeration device
CN110542251A (en) Improved gas-liquid separator
CN101769659B (en) heat pump type air conditioning system
JP6456089B2 (en) Oil separator and refrigeration cycle equipment
WO2015029204A1 (en) Air conditioner
JP5331574B2 (en) Air conditioner
JP2003185286A (en) Air conditioner
KR20150133565A (en) Economizer comprising condenser and turbo chiller comprising the same
JP5225895B2 (en) Air conditioner
CN103649654B (en) Oil subsidy in refrigerating circuit is repaid
JP2022054729A (en) Oil separator and air conditioner
US11175078B2 (en) Gas-liquid separator and air conditioner including the same
KR102106003B1 (en) An air conditioner
CN220524404U (en) Heat recovery device for refrigeration cycle system and air conditioning system
CN106766415A (en) Knockout system is set up after a kind of dry type unit evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5331574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250